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SUR LA CONVERGENCE DES ORBI-VARIÉTÉS
ARITHMÉTIQUES

by Jean RAIMBAULT (*)

Abstract. — We discuss the geometry of some arithmetic orbifolds locally
isometric to a product X of real hyperbolic spaces Hm of dimension m = 2, 3,
and prove that certain sequences of non-compact orbifolds are convergent to X
in a geometric (“Benjamini–Schramm”) sense for low-dimensional cases (when X
is equal to H2 × H2 or H3). We also deal with sequences of maximal arithmetic
three–dimensional hyperbolic lattices defined over a quadratic or cubic field. A
motivating application is the study of Betti numbers of Bianchi groups.
Résumé. — Cet article est consacré à l’étude de la géométrie globale de

certaines orbi-variétés localement isométriques à un produit d’espaces tridimen-
sionnels et de plans hyperboliques. On démontre que pour les peties dimensions
(pour l’espace ou le plan hyperbolique, ou un produit de plans hyperboliques) cer-
taines suites de telles orbi-variétés non-compactes de volume fini convergent vers
l’espace symétrique en un sens géométrique précis (« convergence de Benjamini–
Schramm »). On traite aussi le cas des réseaux arithmétiques maximaux en dimen-
sion trois dont les corps de traces sont quadratiques ou cubiques. Une des princi-
pales motivations est d’étudier l’asymptotique des nombres de Betti des groupes
de Bianchi.

1. Introduction

Let X be a Riemannian symmetric space without Euclidean or compact
factors: this means that X is obtained as a quotient G∞/K∞ of a semisim-
ple, noncompact real Lie group G∞ by a maximal compact subgroup K∞.

Keywords: Variétés hyperboliques arithmétiques, Multiplicités limites, Variétés
tridimensionnelles.
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2 Jean RAIMBAULT

The space X is a contractible manifold (homeomorphic to an Euclidean
space) and can be endowed with the unique (up to homothety in each irre-
ducible factor) Riemannian metric invariant under the action of G∞ by left
translations. For any discrete subgroup Γ in G∞ the quotient M = Γ\X
then has the structure of a Riemannian orbifold (i.e. there is a subset of
codimension > 2 where the smooth structure and the metric can have sin-
gularities), and in particular various metric invariants can be associated
to Γ:

• the Riemannian volume vol(M) ∈]0,+∞];
• for each x ∈ M the injectivity radius injx(M) is defined to be the
largest R such that the ball of radius R around x in M is isometric
to a ball in X; equivalently, choosing a lift x̃ of x to X one has

injx(M) = 1
2 inf
γ∈Γ−{1}

d(x̃, γx̃)

and the global injectivity radius inj(M) is then defined as
infx∈M injx(M);

• the maximal radius of M is defined by

max inj(M) = sup
x∈M

injx(M) .

All these invariants have been well–studied in the case of real hyperbolic
manifolds, usually with the purpose of establishing universal constraints (or
the lack thereof) for a given dimension: we refer to the introduction of [24]
for a recent survey on this type of result. In this paper we are interested
in the relations of the volume to the other invariants in some specific se-
quences of arithmetic locally symmetric orbifolds (of finite volume); this is
related to the Benjamini–Schramm convergence which was studied (in [1])
by M. Abért, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, I. Samet
and the author for locally symmetric orbifolds, which in turn has conse-
quences on the Betti numbers (among other things) of these spaces.

1.1. Geometric convergence of locally symmetric orbifolds

1.1.1. Benjamini–Schramm convergence to the universal cover

The R-thin part of a Riemannian orbifold M is by definition

(M)6R = {x ∈M : injx(M) 6 R}.
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CONVERGENCE DES ORBI-VARIÉTÉS 3

Its volume is a metric invariant of M . Fix X a contractible complete Rie-
mannian manifold; in [1] the notion of Benjamini–Schramm (BS) conver-
gence of a sequence of finite–volume orbifold quotients Mn of X to X was
introduced by the following definition: (Mn) is BS-convergent to X if and
only if for all R > 0 we have

(1.1) vol(Mn)6R
volMn

−−−−→
n→∞

0 .

In informal terms this means that “the injectivity radius of Mn goes to
infinity at almost every point”. One should see this notion of convergence
as a middle ground between the so-called pointed Gromov–Hausdorff con-
vergence to X, which asks that the maximal radius of theMn go to infinity,
and the stronger statement that the global injectivity radius goes to infinity.
Pointed Gromov–Hausdorff convergence is defined in a more general set-

ting, and in fact any sequence of pointed Riemannian manifolds has accu-
mulation points in this sense (the limit of course does not have to be a man-
ifold itself), we refer to [34, Chapter 10] for more information. Benjamini–
Schramm convergence is also defined for more general sequences than only
those satisfying (1.1), and the limits arising in this context are invariant
random subgroups of the group of isometries of X (see 2.1 below for a short
introduction to this). An analogous notion was first considered in the con-
text of regular graphs by I. Benjamini and O. Schramm in [6], elaborated
upon by M. Abért, Y. Glasner and B. Virág in [3] and is the main tool used
in [1]. In this Benjamini–Schramm topology, every sequence of lattices in
G∞ is relatively compact (see 2.1 below). Thus, to prove (1.1) for a given
sequence one can argue by compactness as follows: any subsequence of µΓn
has a limit, and if one can show in some way that any such limit must
be equal to X then (1.1) must hold for the whole sequence. This line of
argument was used in [1] to prove that if G∞ is simple and of real rank
larger than 2 then any sequence of X–orbifolds must satisfy (1.1).

1.1.2. Questions on the convergence of arithmetic orbifolds

For this section we fix the Lie group G∞. Recall that a lattice in G∞ is
a discrete subgroup such that the quotient Γ\G∞ carries a finite, G∞-
invariant Borel measure. An important class of lattices in G∞ are the
so-called arithmetic subgroups, which are “integral points” of Q-groups
whose real points are isomorphic to G∞ up to a compact factor (see [30,
Section 10.3] for a short introduction to arithmetic groups). This work is
mainly concerned with them and their convergence properties, and espe-
cially with the following question:
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4 Jean RAIMBAULT

Question. — Let Γn be a sequence(1) of maximal arithmetic irreducible
lattices in G∞; are the orbifolds Γn\X Benjamini–Schramm convergent
to X?

Recall that a lattice in G∞ is said to be maximal if it is not contained in a
strictly larger discrete subgroup of G∞, and in the case where G∞ has more
than one simple factor, a lattice it is said to be irreducible if its projection
on every simple factor is dense. In the case where all simple factors of G∞
are of real rank 2 or higher an affirmative answer to the above question
is provided by the much stronger result that all sequences of finite-volume
irreducible X-orbifolds are BS-convergent to X [1, Theorem 1.5]. The irre-
ducibility condition is needed in all cases, as is easily seen by considering
the example of a sequence of maximal lattices which all contain a fixed
lattice in one factor. In real rank one it is likely that the condition that the
lattices be maximal (or congruence–see below) is needed; for all lattices in
real hyperbolic spaces, and for some in complex hyperbolic ones there are
sequences of finite covers which are not BS-convergent to the symmetric
space (this is related to the failure of the congruence subgroup property
in real rank one (see for example the survey in [29, Chapter 7]), as can be
seen from [1, Theorem 1.12]).
The arithmetic lattices in G∞ can be constructed as follows. We need

a number field F whose embeddings into R we denote by σ1, . . . , σr1 , and
σr1+1, . . . , σr2 are the remaining embeddings into C up to complex con-
jugation (thus the degree r = [F : Q] equals r1 + 2r2). We also need an
algebraic group G over F , and we require that the group

G′∞ := G(F ⊗Q R) =
r1∏
j=1

Gσj (R)×
r2∏

i=r1+1
Gσi(C)

has a surjective map to G∞, with compact kernel. Suppose moreover that
there is an F -embedding of G into some SLm, and let Γ be the subgroup
G(F ) ∩ SLm(OF ) where OF is the ring of integers of F . Then the image
of Γ is a lattice in G∞ by a theorem of A. Borel and Harish–Chandra.
The construction above actually defines (without need to refer to an

embedding into SLm) a commensurability class(2) of lattices in G∞. This
commensurability class contains infinitely many maximal lattices, and thus

(1) In this paper such sequences will always satisfy the following nontriviality assumption:
for distinct n, n′ the subgroups Γn,Γ′

n are not conjugated in G∞.
(2)Recall that two subgroups Γ1,Γ2 of G∞ are said to be commensurable if their inter-
section has finite index in both.
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CONVERGENCE DES ORBI-VARIÉTÉS 5

we see that there are two ways to generate sequences of maximal arithmetic
lattices:

• By taking a sequence of maximal lattices inside a commensurability
class;

• By changing the group G and/or the field of definition F .
We expect that in the first situation the sequence will always be BS-
convergent to the universal cover. In the second situation we expect, with
much less certainty however, that if the degree of the field is kept bounded
the sequence will be convergent. One of the aims of this paper is to sub-
stantiate these expectations for low–dimensional examples with R-rank one
factors, in particular hyperbolic three–manifolds.
An alternative to considering maximal lattices is to study sequences of

so-called congruence lattices. It is more usual to consider congruence sub-
groups of a given arithmetic group: if Γ stabilizes a lattice L in a represen-
tation of G∞ on a real vector space, one defines the principal congruence
subgroups of Γ as the kernels Γ(n) of the reduction maps Γ→ GL(L/nL)
(where n is a positive integer and L/nL is considered as a Z/nZ-module),
and a congruence subgroup of Γ is any subgroup containing some Γ(n) (see
also [29, Chapter 6]). In general, given a F -form G of G∞, the congruence
lattices in G(F ) are defined as the subgroups of G(F ) which are equal to
the intersection of G(F ) with their closure in the group of points over finite
adèles G(Af ) (if Γ is a congruence lattice in G(F ) then the congruence sub-
groups of Γ as defined above are also congruence lattices in G(F )). Some
of these are closely related to maximal arithmetic lattices (see [41]), and we
expect also that in a sequence of commensurability classes the congruence
subgroups be BS-convergent to the universal cover when the degree of the
field F in the construction above is bounded. The case of congruence sub-
groups of a fixed arithmetic lattice was dealt with in [1] (actually only in
the case of compact orbifolds–but the general case can be deduced from [1,
Theorem 1.11] with little effort, see Proposition 2.2 below).

1.1.3. Non-arithmetic lattices

We should say a word on the arithmeticity assumption in the question
above. The only semisimple Lie groups G∞ known to contain infinitely
many commensurability classes of irreducible non-arithmetic lattices(3) are
the groups G∞ = SO(m, 1) for m > 2 (and groups isogenic to those).

(3)The only other groups with known non-arithmetic lattices are SU(2, 1) and SU(3, 1),
and these fall into finitely many commensurability classes (see for example [18]).
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6 Jean RAIMBAULT

The symmetric space associated to SO(m, 1) is real hyperbolic space Hm;
for each m it can be seen that there are sequences of nonarithmetic min-
imal hyperbolic m-orbifolds which are far from being BS-convergent to
the universal cover. For m = 2, 3 there are in fact sequences of noncon-
jugated maximal lattices in SO(m, 1) with bounded covolume (obtained
by gluing pants for m = 2, and by Thurston’s hyperbolic Dehn surgery
in dimension 3). For general m > 4 this latter phenomenon is impossible
because of H. C. Wang’s finiteness theorem, but the variation on Gromov
and Piatetski-Shapiro’s construction of nonarithmetic lattices [27] given
in [40] implies (for every m > 3) that there is a C > 0 and a sequence of
pairwise noncommensurable hyperbolic m-manifolds Mn such that for all
n and x ∈Mn we have injx(Mn) 6 C, so that if we take the manifold with
minimal volume in the commensurability class of Mn we obtain a sequence
of maximal lattices with covolume going to infinity but injectivity radius
6 C at every point. The limit points in the BS-topology in this case are
the IRS studied in [1, Section 13].

1.1.4. Unbounded maximal radius

One can also ask whether the maximal injectivity radius is unbounded
in a sequence of maximal (or congruence) arithmetic manifolds; this is
obviously weaker than asking for BS-convergence of the sequence but still
fails for sequences of nonarithmetic manifolds because of the same example.
We ask the following questions.

Question. — Let R > 0 and m > 2; is there only a finite number
of maximal (or congruence) arithmetic hyperbolic m-orbifolds M with
max injM 6 R?
More generally, without fixing the dimension, is there only a finite num-

ber of maximal (or congruence) arithmetic hyperbolic manifolds M with
max injM 6 R?

As a particular case of the second question one can ask whether for
the sequence Mn = SO(n, 1;Z)\Hn we have max inj(Mn) −−−−−→

n→+∞
+∞ or

not(4) .

(4)This question was communicated to the author by M. Belolipetsky, who heard it from
Jun-Muk Hwang who asked it out of algebro-geometric motivations.
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CONVERGENCE DES ORBI-VARIÉTÉS 7

1.2. Results on Benjamini–Schramm convergence

1.2.1. Arithmetic hyperbolic three–manifolds and Bianchi groups

In the case where G∞ is a product of factors isomorphic to SL2(R) or
SL2(C) and Γ is an irreducible lattice in G∞ one can use the field F gener-
ated by the set tr(adΓ) to define the commensurability class of Γ as above
(this field is independant of the choic of Γ in the commensurability class;
it is called the invariant trace field of Γ, see [30, 3.3]). The main result in
this paper is then the following.

Theorem 1.1. — Let Γn be a sequence of maximal arithmetic or con-
gruence lattices in SL2(C) and Fn the invariant trace field of Γn. Suppose
that the Fn are quadratic, or that they are cubic and either the Γn are
derived from a quaternion algebra or the size of the 2-torsion subgroup of
Fn is � D0.24

n (where Dn is the discriminant of Fn). Let Mn = Γn\H3.
Then the oribifolds Mn are Benjamini–Schramm convergent to H3. In fact
there is a δ > 0 such that for every R > 0 there is a constant C so that

vol(Mn)6R 6 C(volMn)1−δ

holds for all n.

Here are a few remarks about the hypothesis on the class group in the
cubic case: it is conjectured that the p-torsion subgroup is of size � Dε

F

for all p and F , with a bound depending on p and the degree of F (see for
example [22], which also provides some bounds in this direction). In the case
of interest to us (p = 2 and degree 3) the best currently known bound, due
to Bhargava–Shankar–Taniguchi–Thorne–Tsimerman–Zhao [9], is D0.2785

F ,
which misses what we need by about 0.04. On the other hand the mean size
of the 2-torsion is bounded by a result of Bhargava [8], so the hypothesis
that it is � D0.24

F is true for a subset of density one in the set of all cubic
fields.
The bound on the size of the thin part is reminescent of that obtained

for congruence covers in [1, Theorem 1.12]; however there is a big differ-
ence between the latter result and the one above, which is that in [1] the
dependancy of C on R is made explicit (for compact orbifolds; the case of
congruence covers of non-compact arithmetic three–manifolds is dealt with
in [38]), which we do not do here (we use a non-explicit finiteness argument
at some point).
An important example which the result above covers is that of the se-

quence of the Bianchi groups. These were historically among the first arith-
metic groups studied in relation with hyperbolic geometry, by L. Bianchi
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8 Jean RAIMBAULT

in his paper [10]; they are parametrized by positive square–free integers m
as follows: for such m let D = m if m = 3 (mod 4) or 4m otherwise and
FD be the quadratic imaginary number field Q(

√
−m) (whose discriminant

equals −D) and OD its ring of integers. The Bianchi group associated to
m or D is defined to be:

ΓD = SL2(OD) .

Then ΓD is obviously a congruence lattice in SL2(C) with invariant trace
field FD. As we will now explain the proof of Theorem 1.1 rests on this
special case (for which we actually can take δ = 1/3−ε for every ε > 0, see
Theorem 1.3 below). The non-cocompact arithmetic lattices in SL2(C) are
all commensurable to one of the Bianchi groups [30, Theorem 8.2.3], and
it is not very hard to deduce Theorem 1.1 in the case of maximal nonuni-
form lattices from the special case of Bianchi groups; the congruence case
then follows from this together with the statement that in a commensura-
bility class a sequence of congruence lattices is BS-convergent to H3. For
the compact case one uses the “classical” proof of the Jacquet–Langlands
correspondance given in [12], which relates the length spectra of compact
congruence lattices in SL2(C) defined over a quadratic imaginary field with
that of congruence subgroups of the Bianchi groups. For the cubic case, in-
stead of considering Bianchi orbifolds one needs to consider the irreducible
noncompact quotients of H3 ×H2.
Using the compactness argument outlined in 1.1.1 we also prove the

following result.

Theorem 1.2. — LetMn be a sequence of arithmetic hyperbolic three–
orbifolds with fields of definition Fn such that

• for each n, Fn is a quadratic extension of a totally real subfield Bn;
• the relative discriminants DFn/Bn go to infinity;
• the absolute degree [Fn : Q] is bounded.

Then Mn is BS-convergent to H3.

The first hypothesis on Mn is equivalent to the statement that Mn is
an arithmetic manifold of the simplest type (in the commonly used termi-
nology), i.e. it contains immersed totally geodesic hypersurfaces, or equiv-
alently its commensurability class is defined by a quadratic form over Bn
(using the isogeny from SO(3, 1) to SL2(C)). Note that Theorem 1.2 in-
cludes the case of lattices defined over imaginary quadratic fields whose
discriminant goes to infinity but not that of lattices defined over cubic
fields.

ANNALES DE L’INSTITUT FOURIER
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1.2.2. SL2

As explained above, the proof we give for Theorem 1.1 in the quadratic
case rests on the study of the special case of Bianchi groups. We will actually
study the latter within a slightly larger problem which we now explain. Fix
(r1, r2) and let F be the set of all number fields which have signature equal
to (r1, r2); we will denote by r = r1 + 2r2 the degree of those fields. For
F ∈ F let ΓF be the group SL2(OF ); then all ΓF are nonuniform arithmetic
lattices in the Lie group G∞ = SL2(R)r1×SL2(C)r2 , and we letMF be the
finite–volume orbifold ΓF \X where X = (H2)r1 × (H3)r2 is the symmetric
space associated to G∞. Then we can ask the following question.

Question. — Are the orbifolds MF BS-convergent to X as DF → +∞
and F ∈ F?

Here and in the remainder of this paper, we useDF to denote the absolute
value of the discriminant of the field F . As stated in Theorem 1.1, this has
a positive answer for the Bianchi orbifolds (the case (r1, r2) = (0, 1)).

Theorem 1.3. — For all R > 0, ε > 0 there is a C > 0 such that for
any imaginary quadratic field F we have

vol(MF )6R 6 C(volMF )1−(1/3−ε).

We also study real quadratic fields F , for which we get the following
result.

Theorem 1.4. — There exists a sequence Fn of pairwise distinct real
quadratic fields for which the following holds: for all R > 0, ε > 0 there is
a C > 0 such that for all n we have

vol(MFn)6R 6 C(volMFn)1−1/10+ε.

The 1/10 is not optimal, even with our arguments. We note that a so-
lution to Gauss’ conjecture that there are infinitely many real quadratic
number fields of class-number one would yield such a sequence (with a
much better estimate), and actually a good enough approximation to it
also does. Let us make this rigorous: if Fn = Q(

√
Dn) satisfies hFn � Da

Fn

for some 0 < a < 1/4 then the sequence MFn BS-converges to H2 × H2,
with an estimate on the volume of the thin part of the order D1+2a+ε

Fn
for

all ε > 0; in particular an estimate like hFn � logDFn is as efficient as the
solution to Gauss conjecture would be here.
Let us now briefly discuss the proof of these theorems; until the last steps

we actually work with fields of arbitrary signature. Recall that in both
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10 Jean RAIMBAULT

cases the total volume of MF is of order D3/2
F . To estimate the volume

of the thin part of MF it is natural to distinguish between components
according to whether they correspond to cuspidal elements (belonging to
an F -rational parabolic subgroup) or not. The part corresponding to the
cuspidal elements is sufficiently explicit, and we can relate its volume to
well–known invariants of the number field F (namely its discriminant, class-
number and regulator) to prove that it is bounded above by a power < 1 of
the volume. The rest of the thin part corresponds to compact flats and we
use a method already present in Bianchi’s work to estimate the number of
such flats in MF . Namely, reduction theory provides us with a covering of
MF by horoball regions (“Siegel domains”), one for each cusp of MF . We
actually need a quantitative description of the reduction theory of G, for
which we rely on results of S. Ohno and T. Watanabe [32]. It is then easy
to count the number of geodesics of a given length through one of these
horoballs, and summing over all cusps we get an estimate for the number
of geodesics of a given length. Since the cusps of MF are in one-to-one
correspondance with the class group of F , we get a sum over the latter.
The upper bound we obtain is then roughlyD

r−1
2

F

∑
j |Cj |−r+2, where Cj are

representants of least possible norm for the ideal classes of F . It simplifies to
DF for r = 2; for r > 4 it diverges because of the cusp at infinity (C = OF ),
and for r = 3 we can estimate it using an elementary argument about
the distribution of norms of ideal classes (note that a much more precise
statement holds: by a difficult result of M. Einsiedler, E. Lindenstrauss,
P. Michel and A. Venkatesh [20] the ideal classes become equidistributed
in the space of unimodular three–dimensional Euclidean lattices as the
discriminant goes to infinity).
The difficulties do not stop there, since we must then estimate the volume

of the flats entering the count: these volumes are related to the relative
regulators of quadratic extensions of F , and in general we did not manage
to get good enough estimates for them. For F imaginary quadratic there
is no problem (this is the only case where the flats are 1-dimensional, i.e.
geodesics), and for F real quadratic we can use an ad hoc argument to find
a sequence where we can control them. For the cubic case we do not know
how to deal with this.
Finally, note that via the Jacquet–Langlands correspondance, if we can

estimate the number of maximal compact flats with given systole in MF

for F of signature (r1, r2) = (r − 2, 1) we get as a corollary the statement
that a sequence of minimal arithmetic hyperbolic 3–orbifolds defined over
fields of degree r is BS-convergent to H3 (we do not need estimates for the

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE DES ORBI-VARIÉTÉS 11

volume of the flats for this–in fact we care only about those of dimension 1).
This is how the cubic case of Theorem 1.1 is proven.

1.2.3. Other cases

We could also deduce from our methods a few other examples of BS-
convergent maximal sequences; since our interest is mostly in hyperbolic
three–manifolds we will only state them briefly:

• Sequences of maximal arithmetic Fuchsian lattices defined over to-
tally real fields of degree less than 3 are BS-convergent to H2;

• Sequences of irreducible cocompact lattices in SL2(R × R) defined
over the fields in Theorem 1.4 are BS-convergent to H2 ×H2.

The argument of Theorem 1.2 can also be applied to higher-degree CM-
fields to yield results of convergence towards (H3)r for r > 1.

1.3. Applications

1.3.1. Quadratic forms

As we mentioned the proof of Theorem 1.3 we give is a quantification of
some of Bianchi’s arguments in [10]; one of the purposes of his work was to
establish the finiteness of the number hF (d) of classes of integral quadratic
forms over F modulo SL2(OF ) with discriminant d. Bianchi’s paper does
not give an explicit estimate in terms of either d or DF : using our result
we obtain the following estimate.

Corollary. — For every ε > 0 there is a Cε > 0 such that for ev-
ery discriminant d ∈ OF and every quadratic field F we have hF (d) 6
Cε(d ·DF )1+ε.

There are δ, Cε > 0 such that for every cubic field F we have hF (d) 6
Cεd

3/2+ε ·D3/2−δ
F .

1.3.2. Fibered arithmetic manifolds

We can use Theorem 1.1 to prove a result on the virtual fibrations of
arithmetic manifolds; the proof of this was suggested by a discussion with
J. Souto. We need to introduce some more terminology on hyperbolic three–
manifolds to state the result. It is a seminal result of W. Thurston that for a
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12 Jean RAIMBAULT

so–called pseudo-Anosov diffeomorphism φ of a finitely triangulated surface
S of Euler characteristic χ(S) < 0, the three–manifold Mφ obtained as the
mapping torus

Mφ = S × [0, 1]/ ∼, (φ(x), 1) ∼ (x, 0)

has a complete hyperbolic structure of finite volume (this is proven for
example in J. P. Otal’s book [33]). Amazingly, the converse is true up
to finite covers: it was conjectured by Thurston, and recently proven by
I. Agol [4] (following work of D. Wise) that any complete hyperbolic three–
manifold M of finite volume admits a finite cover which is a fiber bundle
over the circle; the image of a fiber in such a fibration under the covering
map to M is called a virtual fiber of M . Theorem 1.1 in [11], together with
the fact that the Laplacian spectra on functions for congruence hyperbolic
three–manifolds have a uniform lower bound [17], implies that for a given r
there are only finitely many maximal or congruence lattices with invariant
trace field of degree r having a virtual fiber of a given genus: see [17,
Theorem 7.2]. From our results we can recover the following special case of
this.

Corollary. — For any g > 2 there are at most finitely many con-
gruence arithmetic hyperbolic 3–manifolds defined over quadratic or cubic
fields which contain a virtual fiber of genus g.

Proof. — Suppose the contrary, and let S be a surface of genus g which
is a virtual fiber for infinitely many such manifolds. Then by Theorem 1.1
we get that there exists a sequence of hyperbolic manifolds Mn which is
BS-convergent to H3 and such that every Mn is fibered over the circle with
fiber S. But the latter fact implies that any pointed Gromov–Hausdorff
accumulation point of the sequenceMn has to be a so-called doubly degen-
erate manifold (cf. [1, proof of Theorem 12.8]), which contradicts the fact
that Mn BS-converges to H3. �

Replacing “genus > 2” by “Euler characteristic < 0” we get a statement
which deals also with noncompact manifolds and has the same proof.

1.3.3. Heegard genera

A handlebody H of genus g is a regular neighbourhood of an embed-
ding in R3 of a wedge of g circles. Taking two copies H1, H2 of H and
identifying their boundaries via an diffeomorphism of the boundary ∂H

(a closed surface of genus g) we get a closed three–manifold. The Heegard
genus of a given closed three–manifold is defined to be the smallest g such
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that M can be obtained by the above construction with a handlebody of
genus g. As in the case of fibered manifolds, bounds on the Heegard genus
imply strong constraints on the geometry for hyperbolic manifolds. More
precisely, D. Bachman, D. Cooper and M. White prove in [5] that for every
g there is a C(g) such that any hyperbolic three–manifold M of Heegard
genus g has max inj(M) 6 C(g). Together with Theorem 1.1 this implies
the following result, which is a particular case of the results discussed by
M. Gromov and L. Guth in [26, Appendix A].

Corollary. — Given g > 0 there are at most finitely many congruence
closed arithmetic hyperbolic three–manifolds of Heegard genus g whose
invariant trace-field is of degree 2 or 3.

1.3.4. Growth of Betti numbers

One of the original motivations for the study of BS-convergent sequences
of manifolds is that in such sequences one can relate the growth of Betti
numbers to the so-called L2-Betti numbers of the limit [1, Theorem 1.15].
For hyperbolic three–manifolds, when the limit is the universal cover the
L2-Betti numbers vanish. Thus we get the following corollary of Theo-
rem 1.2.

Corollary. — Let Γn be a sequence of maximal arithmetic or congru-
ence lattices in SL2(C) whose invariant trace fields are quadratic, or cubic
and satisfying the conditions in Theorem 1.1. Then

lim
n→+∞

b1(Γn)
vol(Γn\H3) = 0 .

Proof. — Let Γ′n be any sequence of torsion-free, finite index subgroups
of Γn. Then by Proposition C in [39] (in the compact case it is Theorem 1.8
in [1]) we get that b1(Γ′n) = o(vol Γ′n\H3). Since b1(Γn) 6 b1(Γ′n), it suffices
to prove that there exists a constant C independant of n such that all Γn
have a torsion-free subgroup of index less than C.
We will actually prove the following more general (well-known) claim: if

r,G∞ are given, there is a C such that for any arithmetic lattice Γ in G∞
defined over a field F of degree r, there is a torsion-free subgroup of Γ of
index less than C. To prove this we use a theorem of Minkowski (see [7,
Théorème 2.13]) stating that if Π is a subgroup of GLd(Z), the kernel of the
reduction map from Π to GLd(Z/3Z) is torsion-free. Thus the claim reduces
to showing that we can find a morphism from Γ into GLd(Z) whose kernel
is of uniformly bounded order, with a d depending only on G∞ and r. This
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is well-known, and can be proven as follows. Let G be the algebraic goup
over F defining the commensurability class of Γ, and let G be its adjoint
group and gF the F -Lie algebra of G. By [14, Proposition 1.2], we have
that the image Γ of Γ in the adjoint group of G∞ is contained in G(F );
hence we get a map ρ : Γ → GL(gF ), whose kernel contains only central
elements of Γ, and hence is of order less than the number of roots of unity
contained in F (itself bounded by a constant depending only on r). By a
local-global argument it is easily seen that ρ(Γ) stabilizes an OF -lattice
in gF , hence ρ induces a map Γ → GLd(OF ) where d = dimF (gF ) whose
kernel has its order bounded by a constant depending only on r. Weil’s
restriction of scalars yields an embedding of GLd(OF ) into GLrd(Z), which
concludes the proof of the claim. �

In particular for Bianchi groups, whose covolume has the asymptotic
behaviour vol(ΓD\H3) � D3/2, we get the following limit:

lim
D→+∞

b1(ΓD)
D3/2 = 0

which does not seem to have been previously known. Lower bounds of
the order D � (volMD) 2

3 are known for b1(ΓD) (see [42]), and there are
computations of H1(ΓD) for D 6 1867 in [36]. An interesting question
would be to determine whether the limit

lim
D→+∞

log b1(ΓD)
logD

exists, and to evaluate it. The existing data indicates that it could be
as small as possible, i.e. one: it may well be that almost all the cuspidal
cohomology of the Bianchi groups comes from base change (which gives a
lower bound of the order of Rohlfs’); cf. [37] for more information.

1.3.5. Torsion homology

As in [1, Section 10] one can apply the convergence result above (The-
orem 1.1) to the growth of the torsion homology of uniform arithmetic
lattices in SL2(C), with coefficients in nontrivial modules. Here is a sample
of what can be proven: if Γn is a sequence of maximal lattices with qua-
dratic trace field and we choose for each n an adΓn-stable latticeLn inside
sl2(C) then we have

(1.2) lim
n→+∞

log |H1(Γn, Ln)|
vol(Γn\H3) = 13

6π .

and this generalizes without much problem to cubic lattices and to higher-
dimensional local systems.
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On the other hand the problem for Bianchi groups seem more compli-
cated. It seems that the arguments of [31] can be adapted to this setting to
prove the required asymptotics of analytic torsion, but assuming that there
would still be some nontrivial analysis to perform to be able to conclude
that (1.2) holds. Let us mention here that the computations of A. Rahm
alluded to above show that the order of torsion classes in the first homology
with trivial coefficients of the Bianchi groups can be quite large.

1.3.6. Trace formulae and limit multiplicities

The following “limit multiplicities” result is an immediate consequence
of Theorem 1.1 and [1, Theorem 1.2].

Corollary. — Let Γn be a sequence of maximal or congruence uniform
arithmetic lattices in G∞ = SL2(C) defined over quadratic or cubic fields
with the conditions in Theorme 1.1; for a unitary representation π of G∞ let
m(π,Γn) denote the multiplicity of π in L2(Γn\G∞). Then for any regular,
bounded open subset S of the unitary dual of G∞ we have

lim
n→+∞

∑
π∈Sm(π,Γn)
vol Γn\H3 = νG∞(S)

where νG∞ is the Plancherel measure on the unitary dual.

Since SL2(C) has no discrete series this implies that for a single repre-
sentation π we have m(π,Γn)/ vol(Γn\H3) → 0 (see [1, Corollary 1.3]). In
particular this result implies Corollary 1.3.4 on Betti numbers for uniform
lattices. For the nonuniform case, rather than using an indirect argument
as in the proof of above it would be more natural (and more susceptible
of generalizing to other symmetric spaces, where the magic of hyperbolic
Dehn surgery is not available) to give a proof using the trace formula. Such
a proof was given in [38] for congruence covers of Bianchi orbifolds, but it
needed an additional assumption on the asymptotic geometry, that the sum∑
j |τj |2 over the cusps (see (2.2) for the definition of τ) be an o(vol). This

condition is easily seen to be realized for Bianchi groups (I am grateful to
Akshay Venkatesh for pointing this out to me) as can be established using
an argument similar to that in Lemma 5.3 below, and thus we have another
proof of the Corollary. This proof is also the first step towards establishing
limit multiplicities for the sequence of Bianchi groups; the missing ingredi-
ent for this more precise result is the control of intertwining operators at
large eigenvalues (see [38, Section 3.2]).
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There is a reverse result for the problem of limit multiplicities. In [2]
Miklós Abért, Nicolas Bergeron and Balínt Virág extend the results of [3]
to the setting of IRSs in Lie groups to obtain the following result. Let G∞
is a simple Lie group; if Y is a Riemannian manifold let λ0(Y ) denote the
infimum of the spectrum of the Laplace operator on functions on Y . Then
if ν is any IRS of G∞ supported on discrete subgroups and for ν-almost
all Λ we have λ0(Λ\X) > λ0(X) then ν is trivial. This implies that if a
sequence of lattices Γn 6 PSL2(C) satisfies the condition sthat∑

λ∈σ(∆n)
λ61

dim ker(∆n − λ) = o(vol(Mn)

(where ∆n is the Laplacian of Mn = Γn\H3) then the associated locally
symmetric spaces BS-converge to X. In particular it follows that the Ra-
manujan conjecture for GL2 implies (a more general version of) our non-
quantitative results.

1.4. Outline

In Section 2 we recall the notion of Benjamini–Schramm convergence
from [1] and make various general observations about it which were not in-
cluded there. The next Section 4 recalls (mostly) well-known results on the
geometry of the groups SL2(OF ). We prove Theorem 1.2 in Section 3, and
then Theorems 1.3 and 1.4 in Section 5. The end of the proof of Theorem 1.1
is finally completed in the last Section 6 after recalling the description of
maximal arithmetic lattices.

2. Finite–volume orbifolds and Benjamini–Schramm
convergence

In this section we fix a real, noncompact, semisimple Lie group G∞ (we
will also suppose for clarity that G∞ has no center), a maximal compact
subgroup K∞ and let X = G∞/K∞ be the associated symmetric space.
We will study the volume of the thin part of X-orbifolds of finite volume
by decomposing it into cuspidal and compact components. We will also
recall the notion of Benjamini–Schramm convergence from [1] and prove
criteria for BS-convergence to the universal cover. These results were not
in the original paper [1] since the focus there was on compact manifolds
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rather than general finite-volume orbifolds; this section should be seen as an
appendix to this paper rather than a new development. We have however
tried to be a little self-contained by recalling some important definitions
from [1].

2.1. A recapitulation of Benjamini–Schramm convergence

As stated in the introduction, Benjamini–Schramm convergence of a se-
quence of X-orbifolds Mn = Γn\X of finite volume towards X means that
Mn converges almost everywhere in the Gromov–Hausdorff sense to X as
n tends to infinity. This can be rephrased in more group–theoretic terms as
follows: for any Chabauty neighbourhood(5) W of the trivial subgroup Id
of G∞ the proportion of g ∈ G/Γn for which gΓng−1 intersects W trivially
tends to 1.
This allows us to define a more general notion of convergence for finite–

volume X-orbifolds. Let SubG∞ be the compact space of closed subgroups
of G∞ with its Chabauty topology; an invariant random subgroup (IRS) of
G∞ is a probability measure on SubG∞ which is invariant under conjugation
(this term was first coined in [3]). Endowed with the topology of weak
convergence the set IRS(G∞) of IRS of G∞ is compact. Moreover, there is
a map from the isometry classes of finite-volume X-orbifolds to IRS(G∞)
defined as follows: for any such orbifold M we may choose a monodromy
from π1(M) to a lattice Γ in G∞. To a lattice Γ we may then associate the
only G∞-invariant probability measure µΓ on SubG∞ which is supported on
the conjugacy class of Γ; in other terms we take µΓ to be the pushforward
of the G∞-invariant probability on G∞/Γ by the map gγ 7→ gΓg−1. This
measure does not depend on the choice of the monodromy group Γ and we
say that a sequence Mn is BS-convergent to an IRS µ if the sequence of
IRS µΓn converges weakly to µ. It is established in [1, Lemma 3.5] that BS-
convergence to the Dirac mass δId on the trivial subgroup is the same as BS-
convergence to X in the sense given in (1.1). This is intuitively clear: (1.1)
translates in group-theoretical terms to the statement that for almost all
gn ∈ G/Γn the sequence gnΓng−1

n converges in Chabauty topology to the
trivial group.
Invariant random subgroups should be thought of as a generalization of

lattices and their normal subgroups; there is a neat analogue of Borel’s

(5)For the definition of the Chabauty topology we refer to the beginning of Section 2
of [1].
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density theorem for IRS ([1, Theorem 2.6]) which states that any nontriv-
ial IRS of G∞ is supported on discrete, Zariski–dense subgroups of G∞.
Recall that an isometry of X is said to be elliptic if it has a fixed point
in X, unipotent if it has a unique fixed point on the boundary at infin-
ity and hyperbolic otherwise. Since a Zariski–dense subgroup must contain
hyperbolic elements we get the following consequence:

Lemma 2.1. — Let µ ∈ IRS(G∞) and suppose that there exists an open
subset U in SubG∞ such that any Λ ∈ U does not contain an hyperbolic
element of G∞ and µ(U) > 0. Then µ = δId.

In more informal language this means that for an IRS µ 6= δId a µ-random
subgroup must contain an hyperbolic element.

2.2. A criterion for BS–convergence in rank one

If M is a closed Riemannian manifold with (strictly) negative sectional
curvature and R > 0 we define NR(M) to be equal to the number(6) of
closed geodesics of length less than R in M .

Proposition 2.2. — Let X be a rank-one irreducible symmetric space
and Mn be a sequence of finite-volume X-orbifolds. Suppose that there
exists a δ > 0 such that for all n the systole sys(Mn) is larger than δ. Then
Mn is BS–convergent to X if and only if for all R > 0 we have

lim
n→+∞

NR(Mn)
volMn

= 0 .

This allows to deduce from [1, Theorem 1.11] the following corollary.

Corollary. — Let G∞ be a Lie group of real rank 1 and let Γ be an
nonuniform arithmetic lattice in G∞. If Γn is a sequence of congruence
subgroups of Γ then the sequence Γn\X is BS-convergent to X.

Proof of Proposition 2.2. — For each n fix a monodromy Γn for π1(Mn)
and let µ be any limit point of a subsequence of µΓn . We will prove that
µ-random subgroups do not contain hyperbolic elements, from which it
follows by the generalization of Borel’s density theorem to IRS [1, Theo-
rem 2.6] (see Lemma 2.1 above) that we must have µ = δId.

(6)This number is well-known to be finite: in the Hausdorff topology the set of closed
geodesics of length 6 R is compact, and the negative curvature forbids that it has an
accumulation point.
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Let g0 ∈ G∞ be any hyperbolic isometry, let U be a relatively compact,
open neighbourhood of g0 in G∞ which contains only hyperbolic elements,
and let WU ⊂ SubG∞ be the set of closed subgroups of G∞ which contain
at least one element in U ; then WU is open in the Chabauty topology. We
will see that for any U as above we have

(2.1) lim
n→+∞

µΓn(WU ) = 0

whence it follows by a standard argument that for any µ as above we must
have µ(WU ) = 0 for all U , which finally yields the claim that a µ-random
subgroup does not contain hyperbolic elements.
To prove (2.1) it suffices to show that there is a R > 0 depending on U

such that µΓn(WU ) � (volMn)−1NR(Mn), which we will now do. Let x0
be the fixed point of K∞ in X and

R = sup
h∈U

dX(x0, hx0) .

Now let Sn be the compact subset of points in Mn through which passes
a closed curve of length 6 R which is homotopic to a closed geodesic in
Mn. Then for all x ∈ Mn \ Sn and g such that x = gΓnx0 we have that
(gΓng−1) ∩ U = ∅ (for any h ∈ g−1Γng the image in Mn of the geodesic
segment [x0, hx0] is a closed curve homotopic to a closed geodesic and of
length 6 R), and it follows that

µΓn(WU ) 6 volSn
volMn

.

On the other hand by Lemma 2.3 below we have that volSn � NR(Mn),
so (2.1) follows from the hypothesis.
The converse statement is [1, Proposition 6.7] : we note that we do not

use it in the paper. �

2.3. Estimating the volume of the thin part for products of
hyperbolic spaces

In this subsection we restrict to G∞ = SL2(R)r1 × SL2(C)r2 (so that
X = (H2)r1 × (H3)r2) and we let Γ be an arithmetic irreducible lattice
in G∞ (if r1 + r2 > 1 then arithmeticity is a consequence of Margulis’
arithmeticity theorem). Then either Γ is co-compact or it is commensurable
to SL2(OF ) for some number field F of signature (r1, r2). Here we will give
a rough description of the R-thin part of Γ\X in terms of the geometry of
its compact flats and its cusps (the latter will be described in Section 4 in
terms of number-theoretic quantities).
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2.3.1. Geometry of flat manifolds

For the contents of this section we refer the reader to Siegel’s book [45].
If Λ is a lattice in Euclidean space Rr we denote by α1(Λ) 6 . . . 6 αr(Λ)
the successive minima of L, by vol Λ the covolume of Λ and we put

(2.2) τ(Λ) = vol Λ
α1(Λ)r �

α2(Λ) . . . αr(Λ)
α1(Λ)r−1 .

The asymptotics on the right follow from Minkowski’s second theorem and
thus depend only on r; note that Mahler’s criterion affirms that a set
of unimodular lattices is bounded in SLn(R)/ SLn(Z) if and only if τ is
bounded on this set. For a compact Euclidean manifold T = ∆\Rr we
define τ(T ) = τ(Λ) and also α1(T ) = α1(Λ) where Λ is the translation
subgroup of ∆.

2.3.2. Neighbourhoods of compact flats

If g is a semisimple isometry of X = (H2)r1 × (H3)r2 there is a maximal
subset in X which is a union of flats on which g acts as a Euclidean trans-
lation or trivially. We will denote it by Min(g), and by `(g) the distance
d(x, gx) for x ∈ Min(g) (this is the minimal displacement of g, and Min(g)
is the set on which it is attained—see [15, II.6] for a discussion in a larger
context).

Lemma 2.3. — There is a function f : ]0,+∞[→ ]0,+∞[ such that for
any R > 0 and any semisimple g with `(g) 6 R, the subset

{x ∈ X : d(x, gx) 6 R}

is contained in the f(R)-neighbourhood of Min(g).

Proof. — This is easily seen for a semisimple isometry of H2 or H3. The
result on a product follows immediately (note that the isometry may be
trivial in some factor, in which case Min(g) is not a flat subspace but a
union of such). �

Lemma 2.4. — If Γ is an irreducible lattice in G∞ then Min(g) is a
flat of X for every semisimple g ∈ Γ. Moreover, if Γ is co-compact, or if Γ
is commensurable to SL2(OF ) and g does not fix a point in P1(F ), then
Min(g) projects to a compact subset in Γ\X.

Proof. — The first statement follows immediately from the fact that a
non-trivial element in an irreducible lattice in G∞ cannot be trivial in
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any factor (since the lattice is arithmetic, hence obtained by restriction of
scalars from a F -form G of SL2 for some number field F ).
If g does not belong to a F -rational proper parabolic subgroup of G∞,

then it is contained in a maximal torus T of G which is anisotropic over
F . On the other hand, Min(g) is contained in the flat preserved by T. By
Godement’s compactness criterion we know that

(T(F ⊗Q R) ∩ Γ)\T(F ⊗Q R)

is compact (see for example [35, Proposition 10.16]) and it follows that
Min(g) itself must map to a compact set in the quotient Γ\X. �

2.3.3. Cusps

Here we suppose that Γ is not uniform, so that it is a lattice in G∞
commensurable to SL2(OF ). The cusps of Γ\X correspond to the points of
the projective space P1(F ). If ξ ∈ P1(F ) the corresponding cusp is described
as follows. Let P be the Borel subgroup of SL2(F ) stabilising ξ and ΓP =
Γ ∩ P . Then the cusp associated to ξ (or P ) is C = ΓP \X.

Let N be the unipotent subgroup of P and Λ = Γ ∩ N , viewed as a
lattice in the Euclidean space N and let T = Λ\N , a flat torus of dimension
r = r1 + 2r2. Let A be a maximal (split of rank r1 + r2) torus in P with
the following property: ΓP is generated by Λ and U = Γ∩A. Let M be the
(r1 + r2 − 1)-dimensional subtorus of A containing U , in other words

M = g

{((
a1 0
0 a−1

1

)
, . . . ,

(
ar1+r2 0

0 a−1
r1+r2

))
:
r1∏
i=1
|ai| = 1

}
g−1

for g such that g∞ = ξ and let S be the compact manifold U\M . Then
C is topologically ]0,+∞[×B where B is a flat torus bundle with fiber T
over S, and the fibers over {a} × S are isometric to T scaled by a factor
proportional to a−1. The length element on ]0,+∞[ is da/a and the met-
ric on S is constant along a so the volume of the cusp truncated at ε is
ε−r vol(T ) vol(S).
We choose the parameter a so that α1(T ) = 1 and let η ∈ Λ realise

it (as an euclidean translation). Then the euclidean displacement of η on
the horosphere at height a is equal to a−1 and its dispacement in X is
� log(1 + a−1). We now fix R > 0; we see that the part of C where there
is some unipotent element with a displacement less than R is of volume
C(R) vol(T ) vol(S) (where CR � erR, which we won’t use in the sequel).
To express this in terms of the conformal geometry of T we use (2.2): we
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have vol(T ) � τ(Λ). We record the conclusion of the discussion in the
following lemma : let

M6R,Λ = {x ∈M : ∃ x̃ a lift of x, λ ∈ Λ \ {1} : d(x, λx) 6 R}

be the subset of M where some non-trivial element of (the conjugacy class
of) Λ displaces less than R.

Lemma 2.5. — Let R > 0. Then

vol(M6R,Λ)�R τ(Λ) vol(S)

for any maximal unipotent subgroup Λ where S is the flat (r1+r2−1)-torus
associated to Λ as above.

We still have to estimate the volume of the chunk of the thin part of
Γ\X coming from non-unipotent elements of ΓP . For this we define, for
ζ ∈ P1(F ), ζ 6= ξ, a subgroup Uζ = StabΓP (ζ). Then ΓP is the disjoint
union of Λ and all Uζ − {1}. There is a unique maximal flat Fζ stabilised
by Uζ , foliated by hyperplanes on which it acts cocompactly with quotient
Sξ,ζ .
Now we fix R > 0 and we suppose that the injectivity radius of Sξ,ζ is

6 R (there are only finitely many ζ with this property). By Lemma 2.3 the
part of X where some non-trivial element of Uζ displaces of less than R is
an f(R)-neighbourhood of Fζ . We do not need to estimate the volume of
its image in Γ\X, only that of the part where there in no unipotent element
which displaces less than all non-trivial elements of Uζ . Let :

Mnu
6R,ξ =

{
x ∈M :

for all unipotent λ ∈ Γ : d(x̃, λx̃) > R

and ∃ γ ∈ ΓP \ Λ : d(x̃, γx̃) 6 R

}
.

the subset of M \
⋃

Λ′M6R,Λ′ where some element of ΓP \Λ displaces less
than R. Projecting that to Fζ we find a subset bounded by two parallel
hyperplanes: we let `(ζ) be the distance between these two hyperplanes.
Then the volume we want to estimate is bounded by `(ζ) vol(Sξ,ζ) and we
get the following lemma.

Lemma 2.6. — Let R > 0. Then

vol(Mnu
6R,ξ)�

∑
ζ∈P1(F ), ζ 6=ξ
inj(Sξ,ζ)6R

`(ζ) vol(Sξ,ζ) .

for all ξ ∈ P1(F ), with a constant depending only on R.

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE DES ORBI-VARIÉTÉS 23

2.3.4. Conclusion

Putting together all lemmas proven in this subsection we get the following
result.

Proposition 2.7. — Fix δ,R > 0; then for any irreducible arithmetic
non-uniform lattice Γ in G∞, such thatM = Γ\X has a systole sys(M) > δ,
we have:

volM6R �
∑

T :α1(T )6R

volT +
h∑
j=1

vol(Sj)τ(Λj)

+
h∑
j=1

∑
ζ∈P1(F ), ζ 6=ξj
inj(Sξj,ζ)6R

`(ζ) vol(Sξj ,ζ) +
e∑
j=1

qj volM [γj ]

where the constant depends only on R, δ,X. The first sum on the right
is over top-dimensional compact flats T of M , q1, . . . , qj are the orders of
γ1, . . . , γe where the γj are generators for a set of representatives for the
conjugacy classes of maximal finite cyclic subgroups in Γ, and M [γj ] is the
image in M of the fixed flat of γj . Finally, N1, . . . ,Nh are representatives
for the Γ-conjugacy classes of maximal unipotent subgroups of SL2(F ),
Λj = Γ ∩ Nj(R), ξj is the fixed point in P1(F ) of Nj and the Sj are
compact quotients of the Levi subgroups of the parabolics associated with
the Λj .
In the case where M is compact we have the same result, without the

second and third term in the sum above.

Proof. — If g ∈ Γ is a semisimple element of infinite order with `(g) 6 R,
then by Lemmas 2.3 and 2.4 the image in M of the region of X where g
displaces by distance less than R is contained in an f(R)-neighbourhood
of a compact flat T . The volume of the former is bounded by C(R) vol(T )
where C(R) depends only on X and R (for example it can be taken to be
the volume of a R-ball in X). Hence the first term; the last one is obtained
in the same way. The second and third terms follow immediately from
Lemmas 2.5 and 2.6. �

3. Proof of Theorem 1.2

3.1. Closed geodesics in arithmetic orbifolds

Here we briefly explain how to describe the lengths of closed geodesics in
hyperbolic arithmetic three–orbifolds (up to multiplication by a rational)
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and prove a finiteness result. We will suppose the reader familiar with the
description of arithmetic lattices in SL2(C) (which can be found for example
in [30]).
If Γ is any arithmetic subgroup of SL2(C) defined over a number field

F it is well–known that we can relate the lengths of closed geodesics in
Γ\H3 to the norms of units in quadratic extensions of F . More precisely: Γ
is commensurable to an arithmetic subgroup of G(F ) for some quaternion
algebra A over F and G = SL1(A).
We will now state a general result on translation lengths on products of

hyperbolic planes and spaces, to be re-used later (see also [30, 12.3]). We
use m to denote the logarithmic Mahler measure defined for a ∈ Q by

(3.1) m(a) =
∑
σ

max(0, log |aσ|)

where the sum runs over all conjugates of a in Q. Let γ ∈ G(F ) have
eigenvalues λ±1 and let σ : F → C is a real (resp. imaginary) embedding
of F . There is a unique extension of σ to F (λ) such that |λσ| > 1, and the
minimal displacement of γσ ∈ SL2(R) (resp. SL2(C)) on H2 (resp. H3) is
then equal to log |λσ|. Note that the formula is also valid in case A ramifies
at σ since it gives 0 in this case. So in the end we get that the double
of the minimal displacement on the relevant symmetric space is equal to∑
σ δmax(0, log |λσ|) where the sum is over all conjugates of λ in C and

δ = 2 if λσ ∈ R and 1 otherwise. Let rRam
1 be the number of real places

where A ramifies and r′1 = r1− rRam
1 and `(γ) the minimal displacement of

γ on (H2)r′1 × (H3)r2 . By the Cauchy–Schwarz inequality we finally obtain

(3.2) m(λ)√
r2 + r′1

6 `(γ) 6 2m(λ) .

Now we suppose that F has exactly one complex place and A ramifies at
all real places. We may suppose that F ⊂ C such that RF = C, and we will
view Γ as a subgroup of SL1(A⊗C) ∼= SL2(C). Let tr be the reduced trace
of A; any γ ∈ Γ has integral trace t = tr(γ) ∈ OF , and if it is moreover a
semisimple element it can be diagonalized over E = F (

√
d), d = t2−4, with

eigenvalues ε±1 where ε is a unit of E such that NE/F (ε) = 1. Note that
this kernel is an abelian group of rank 1 since E/F is inert at all infinite
places but one. The proof for the following lemma follows an argument of
N. Elkies [21].

Lemma 3.1. — Fix an integer r > 1 and a real R > 0; there exists a
finite set {t1, . . . , tm} of algebraic integers (depending only on R and the
degree r) such that the following holds: for any number field F of degree
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[F : Q] 6 r, any quaternion algebra A/F (split at an infinite place) and
any hyperbolic γ ∈ A1 with integral trace, of minimal displacement 6 R

(on the symmetric space associated to (A ⊗Q R)1) there is i ∈ {1, . . . ,m}
such that tr γ = ti.

Proof. — The set TR = {u ∈ Z× : [Q(u) : Q] 6 r, m(u) 6 R} is finite
for all R > 0, as the coefficients of the minimal polynomial of such an u are
bounded by polynomials in exp(m(u)). By (3.2) (in this case the lefmost
term there is simply m(λ)), the eigenvalues of a γ as in the statement must
be some εi in TR. Putting TR = {ε1, . . . , εm} and setting ti = εi + ε−1

i we
get the result. �

3.2. Convergence of orbifolds of the simplest type

We prove here Theorem 1.2. The ingredients are only Lemma 3.1 and
the following result.

Lemma 3.2. — Suppose that Γn is a sequence of finite-covolume
Kleinian groups such that for any R > 0, for large enough n any hyperbolic
element in Γn with minimal displacement less than R has real trace. Then
the sequence of orbifolds Γn\H3 is BS-convergent to H3.

Proof. — To prove this it suffices to prove that any limit of a subsequence
of µΓn is equal to the trivial IRS δId. We will show that any such limit must
be supported on non Zariski-dense subgroups of PSL2(C), which forces it
to be trivial by “Borel’s density theorem” [1, Theorem 2.6].
The proof of this claim is similar to that of Proposition 2.2: if U is

an open, relatively compact subset of (C \ R)/{±1} let WU be the open
subset of SubG (G = PSL2(C)) of subgroups which contain an element
having its trace in U . We can choose a countable set U of such Us so
that

⋃
U∈U U = (C\R)/{±1}. Then the complement of

⋃
U∈U WU in SubG

contains only non-Zariski-dense subgroups. Indeed, the condition ± tr(g) =
±tr(g) describes a Zariski-closed subset in PSL2(C), so every Zariski-dense
subgroup of G must contain an element with trace in (C \R)/{±1} and so
belongs to WU for some U ∈ U .

Thus it suffices to prove that for every U ∈ U we have:

lim
n→+∞

µΓn(WU ) = 0

(from which the result follows by the σ-additivity of any limit measure).
But since for any given U , there is a R > 0 so that WU is contained in
{z : |z| 6 R} we have in fact that µΓn(WU ) = 0 for large enough n. �
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We now check the condition of Lemma 3.2 for the sequence Γn in the
statement of Theorem 1.2. Fix R > 0, and let t1, . . . , tm be the finite
set given by Lemma 3.1, ordered so that the totally real ones are exactly
t1, . . . , tl. Then for any l < i 6 m we have ti 6∈ Fn for n large enough:
indeed, since ti is not totally real we have ti ∈ Fn ⇒ Fn = Bn(ti) but the
relative discriminants DBn(ti)/Bn for i = 1, . . . ,m are bounded so we must
have ti 6∈ Fn for large n since DFn/Bn is by hypothesis unbounded.
Thus, for n large enough, the traces of the elements in Γn of displacement

less than R are among those of the ti which are totally real numbers.

4. Geometry of MF

Recall from the introduction that if F is a number field with signature
(r1, r2) we denote by MF the finite-volume orbifold

MF = PSL2(OF )\(H2)r1 × (H3)r2 .

This section is preliminary to the proof of our main results; we record
various known results about the global geometry of the orbifolds MF . We
will also set notation as we go along. We begin by recalling the volume
formula for MF given in [13]:

(4.1) volMF = 2ζF (2)
23r2πr1+2r2

D
3
2
F .

4.1. Reduction theory for SL2

We describe here the well–known reduction theory for the groups ΓF =
SL2(OF ) in a manner suitable to the use we will make of it later. We will
work with the adelic version of reduction theory, which is much better
suited to the study of manifolds which have more than one cusp. For this
subsection we fix a number field F with r1 real places and r2 complex ones,
and let r = r1 + 2r2 be its absolute degree. We will denote by Vf , V∞ the
set of finite and infinite places of F . For each v either finite of infinite we
denote by | · |v the absolute value at v and by Fv the metric completion of F
for | · |v. We will use Af to signify the ring of finite adèles of F , and denote
F∞ =

∏
v∈V∞ Fv and A = F∞ × Af the complete ring of adèles. If v is a

finite place of F we let Kv = SL2(Ov), and we denote by Kf the closure
of ΓF in SL2(Af ) (which equals

∏
v∈Vf Kv). For each v ∈ V∞ we choose

the maximal compact subgroup Kv of SL2(Fv) to be SO(2) if Fv = R and
SU(2) if Fv ∼= C. The product K = Kf ×

∏
v∈V∞ Kv is then a compact

subgroup of SL2(A).
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4.1.1. Minkowski–Hermite reduction

Let B be the standard Borel subgroup (upper triangular matrices) over F
for SL2, N its unipotent subgroup and T the maximal F -split torus of diag-
onal matrices. Let hF be the class-number of F and C1 = OF ,C2, . . . ,ChF
a set of representatives for the class-group of F . For each i = 1, . . . , hF
we choose ai to be an idèle of (idélic) norm 1 such that for all v ∈ Vf
we have aiOv = CiOv; we will (abusively) also denote by ai the matrix(
ai 0
0 a−1

i

)
∈ SL2(A). Let T∞ = T(F∞) and for any c > 1 define

T∞(c) =
{(

t 0
0 t−1

)
∈ T∞ : |t|∞ > c

}
,

where we put |t|∞ =
∏
v∈V∞ |tv|v. The following result is then a straighfor-

ward consequence of classical reduction theory (see for example [25]): for
small enough cF we have(7) :

(4.2) SL2(A) =
hF⋃
i=1

SL2(F ) ·N(A)T∞(cF )aiK .

There is an estimate for cF for number fields due to S. Ohno and T. Watan-
abe [32]: they prove that

(4.3) γ(F ) := sup
g∈GL2(A)

inf
v∈F 2

(
‖gv‖ 2

r

|det g| 1r

)
6 CD

1
r

F

where ‖ · ‖ is a norm on A2 given at each place v by a norm preserved by
Kv and normalized so that ‖e1‖ = 1. It is easy to see that we can take
cF > γ(F )− r2 in (4.2).
Using strong approximation for G it is possible to replace each ai in (4.2)

by an element of SL2(A) which is equal to some γi ∈ SL2(F ) at all finite
places. We will give an explicit choice for these γi (which will actually
circumvent the use of the strong approximation property of G). For ξ ∈ F
we put

(4.4) γξ =
(

0 1
−1 ξ

)
.

Let v ∈ Vf ; if v(ξ) 6 1 then γξ ∈ Kv; if v(ξ) > 1 then one can easily
compute the Iwasawa decomposition of γξ at v:

(4.5) γξ =
(
ξ−1 1
0 ξ

)(
1 0
−ξ−1 1

)
.

(7)To make the sets on the right-hand side of finite volume one usually replace N(A) by
a compact subset U such that N(A) = N(F )U ; we will not need to do so here.
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Fix i = 1, . . . , hF ; choose α, β ∈ OF such that(8) Ci = (β)/(α, β) and let
ξ = α/β then it follows from (4.5) that

N(Af )aiKf = N(Af )γξKf .

Putting γi = γξ we thus get from (4.2)

SL2(A) =
hF⋃
i=1

SL2(F ) ·N(A)T∞(cF )(ai)∞K∞(ai)fKf

=
hF⋃
i=1

SL2(F ) ·N(A)T∞(|ai|∞cF )K∞γiKf ,

as we have |ai|∞ = |Ci| we can write the last equality as:

(4.6) SL2(A) =
hF⋃
i=1

SL2(F )N(A)T∞(ci)K∞(γiKf )

where ci = |Ci| · cF .

4.1.2. Height functions

Let α be the simple root of T defined over F given by

α

(
t 0
0 t−1

)
= t2 .

We extend it as a character of B trivial on N, and we define a function on
SL2(A) by α(bk) = α(b). Then the height function yA on SL2(A) is defined
by yA(g) = maxγ∈SL2(F ) |α(γg)|. We will identify this adelic function with
height functions on the symmetric space X in the sense of [39, 2.1, 2.2].
First we need to fix once and for all a model for X: for v ∈ V∞ we

identify Xv = SL2(Fv)/Kv with Fv×]0,+∞[ using the Iwasawa decompo-
sition in the usual manner where (0, 1) is the fixed point of Kv, so that
X = G∞/K∞ =

∏
v∈V∞ is identified with a product F∞×]0,+∞[r of

half-planes and -spaces. We define a height function y on X as follows:
for (z, y) ∈ F∞×]0,+∞[r put y∞(z, y) =

∏
v∈V∞ |yv|v, and for ξ ∈ P1(F )

choose a γ ∈ SL2(F ) such that γ · ξ = ∞ and an Iwasawa decomposition
γ = bfkf with kf ∈ Kf , bf ∈ B(Af ) (see [16, Proposition 4.5.2]), and put

(4.7) yξ(x) = |α(bf )|f · y∞(γx)

(8)This is possible since a=every ideal of OF is generated by two elements, hence if we
take α, β to generate a representative for the inverse class of Ci we get that the integral
ideal (β)/(α, β) is a representative of Ci.
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(which does not depend on the particular γ chosen). Then y(x) =
maxξ∈P1(F ) yξ(x) is a ΓF -invariant height function, and if π is the natu-
ral isomorphism SL2(F )\SL2(A)/K → ΓD\H3 we have yA = y ◦ π.
We record that if ξ ∈ F and γξ is defined as in (4.4) then (4.5) yields:

(4.8) yξ(x) = |B|−1y∞(γξx)

where B is the ideal (β)/(α, β) if ξ = α/β.

4.1.3. A fundamental set in classical setting

From the decomposition (4.6) one can deduce a fundamental set for ΓF
in X: let x0 be the fixed point of K∞ and for Y > 0 let

B∞(Y ) = {x ∈ X : y∞(x) > Y }

be the horoball about infinity of height Y ; one hasB∞(Y ) = T∞(Y )N(F∞)·
x0. Thus it follows from (4.6) that

(4.9) X = ΓF
hF⋃
i=1

γ−1
i B∞(Yi) .

where for each i = 1, . . . , hF we put Yi = ci = cF |Ci|.

4.2. Cusps

In this subsection we make the discussion of cusps in Section 2.3 more
explicit.

4.2.1. Cusp stabilizers

Let ξ ∈ P1(F ) = F ∪ {∞} and let Pξ its stabiliser in G∞ = SL2(R)r1 ×
SL2(C)r2 . Let Γξ = Γ ∩ Pξ; if ξ =∞ then we have

(4.10) Γ∞ =
{(

t z

t−1

)
: t ∈ O×F , z ∈ OF

}
.

For ξ = α
β ∈ F let as before B be the ideal (β)/(α, β). Then an easy

computation yields
(4.11)

Γξ =
{(

t−1−zξ zξ2 +(t− t−1)ξ
−z t+zξ

)
: t ∈ O×F , z ∈ B, zξ+(t− t−1) ∈ B

}
.
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4.2.2. Unipotent part

Let Nξ be the unipotent radical of Pξ: in this subsection we study the
shape of the flat tori Tξ = (Nξ ∩ Γ)\Nξ. The unipotent subgroup of Γ∞
is 1 + OFX where X = ( 0 1

0 0 ). It follows that T∞ is isometric to OF \F∞.
From (4.11) we compute that the unipotent part of Γξ is:

(4.12) Λξ =
{

1 +
(
−zξ zξ2

−z zξ

)
: z ∈ B2

}
and it follows that Tξ is isometric to (B2\F∞).

There is a crude estimate for the shape of the lattice in F∞ associated
to an ideal of OF . Let A be an ideal and a ∈ A such that ‖a‖ = α1(A).
Then A contains the finite-index lattice aOF which has the same α1, and
it follows that τ(A) 6 τ(aOF ) = τ(OF ) = D

1/2
F . So we get:

(4.13) τ(Tξ) = τ(B2) 6 D1/2
F .

We will also need (because of the term `(u) in Proposition 2.7) an es-
timate of the displacement of elements in Λξ at a given height. It follows
easily from the explicit description (4.12) and Minkowski’s first theorem
implies that on the horosphere H = {yξ = 1}, we have α1(Λξ\H) � |B|
with an absolute constant.

4.2.3. Levi component

Here we describe the geometry of the flat tori Sξ (which may be called the
“Levi components” of the cusps, since they come from the Levi components
of the Pξ). We will use the usual notation Log for the map O×F → Rr1+r2−1

defined by u 7→ (log |u|v)v∈V∞ , where we have fixed an isometry Rr1+r2−1 ∼=
{(xv)v∈V∞ ∈ RV∞ :

∑
v xv = 0}, and RF for the regulator, i.e. the covolume

of LogO×F .
We will work at all places of F and hence need to describe things using

F -algebraic groups. We fix ξ ∈ P1(F ) and let Bξ be the stabiliser of ξ in
SL2 /F , and Nξ its unipotent radical. Recall that for any finite place v of
F we have defined Kv = SL2(Ov). In the sequel we will make use of the
Bruhat–Tits tree of SL2(Fv) which we will denote by Xv.

Lemma 4.1. — There exists an F -split torus Tξ in Bξ such that for
every finite place v, Tξ(Fv)∩Kv is a maximal compact subgroup in Tξ(Fv).
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Proof. — Let xv be the fixed point of Kv in Xv. It suffices to show that
there exists a ζ ∈ F such that for each v ∈ Vf the geodesic ]ξ, ζ[ determined
by ξ, ζ in Xv goes through xv; starting from any ζ0 ∈ F we can move it at
each v by an nv ∈ N(Fv) so that xv ∈]ξ, nvζ0[; strong approximation for N
tells us that there is a n ∈ N(F ) such that nvN(Ov) = nN(Ov) for all v,
and since N(Ov) fixes xv it follows that ζ = nζ0 yields what we need. �

We have an identification of Tξ(F ) ∩ Γξ with the group of units O×F , so
that Sξ,ζ0 is isometric to Log(O×F )\Rr1+r2−1. The following lemma gives
a similar description for the other Sξ,ζ , where we denote by O×F (I) the
congruence subgroup (1 + IOF ) ∩ O×F .

Lemma 4.2. — Let ζ ∈ P1(F ), ζ 6= ξ, let x′v ∈ Xv such that ]ζ, ξ[ ∩
]ζ0, ξ[ = [x′v, ξ[, and mv = dXv (xv, x′v) in case xv lies on [x′v, ξ[ and
0 otherwise. Put Iξ,ζ =

∏
v∈Vf P

mv ; then Sξ,ζ is isometric to
Log(O×F (I))\Rr1+r2−1.

Proof. — We denote by Tξ,ζ the F -torus in SL2 fixing ξ and ζ. Let
Uv = Kv∩Tξ,ζ(Fv) and Uζ = Tξ,ζ(F )∩

(∏
v∈Vf Uv

)
. Let α be any nontrivial

F -character of Tξ,ζ and let Mξ,ζ be the Q-subgroup ker(NF/Q ◦ α). Then
Uζ ⊂ Mξ,ζ(F ) and we have M := Mξ,ζ(R) ∼= Rr1+r2−1 × U(1)r2 . We get
that Sξ,ζ is isometric to Uζ\M/U(1)r2 , so we need to describe Uζ .

In case xv lies on [x′v, ξ[ we have that Uv is a maximal compact subgroup.
Now suppose that mv > 0. We prove that for every v ∈ Vf we have that
Uv = Tξ,ζ(Fv)∩Kv is a subgroup identified with 1 +Pmv

v Ov in a maximal
compact subgroup of Tξ,ζ(Fv) identified with O×v . We have that Uv fixes
x′v since this point is on [xv, ξ[ and Uv fixes both xv and ξ. Thus we see
that Uv is the subgroup of the maximal compact subgroup StabTξ,ζ(Fv)(x′v)
acting trivially on the ball of radiusmv, which is exactly the right subgroup.
By strong approximation for SL2 we can conclude that Uζ ⊂ Tξ,ζ(F ) is
conjugated by an element of SL2(F ) to

(4.14)
{(

u 0
0 u−1

)
: u ∈ O×F (I)

}
⊂
{(

t 0
0 t−1

)
: t ∈ F×

}
.

It follows from (4.14) that Sξ,ζ is isometric to (LogO×F (I))\Rr1+r2−1. �

It follows from Lemma 4.2 that

(4.15) volSξ,ζ = RF · φ(I)

where φ(I) is the number of units of the ring OF /I, so that φ(I) 6 |I|. We
also get that:

(4.16) injSξ,ζ � log |I|
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with a constant depending only on r. Indeed, the coefficients of the elements
in LogO×F (I) in any basis of Log(O×F ) are > log |I|, and the minimal norm
of an element of logO×F is bounded below by a constant depending only
on r.

Finally, we can also describe `(ζ) in this setting: let ζ ∈ P1(F ), ζ 6= ξ,
then on the geodesic between them in X we have

(4.17) | log yξ − log yζ | 6 log |Iξ,ζ |+
1
2 logDF .

To see this we argue as follows: let Tξ,ζ as above and choose γ0 ∈ SL2(F )
sending (0,∞) to (ζ, ξ). For each v ∈ Vf let x′v be the projection on the
geodesic (ζ, ξ) in Xv of the point xv and x′′v = γ0xv. We can choose for
each v an element av ∈ Tξ,ζ(Fv) such that avx′′v = x′v, and then (av)v∈Vf
can be approximated, up to an element C of the idèle class-group, by an
element a0 ∈ T(F ). Let γ1 = a0γ0, γ′1 = γ1w (where as usual w =

( 0 −1
1 0

)
),

so that we have:
(1) γ1 · ∞ = ξ and γ′1 · ∞ = ζ;
(2) For all v ∈Vf , dXv(xv,γ−1

1 xv) = dXv(xv,(γ′1)−1xv)6 logqv |Cv|+mv.
The claim that (4.17) holds then follows from (1) and (2) and the defi-
nition (4.7), as we have |C| 6 D

1/2
F , | logα(bv)| 6 log dXv (xv, bvxv) and

α(wbw−1) = α(b)−1 for all b ∈ B(Fv) (and recall that Iξ,ζ =
∏
vP

mv
v ).

By using (4.17) and the bound mentioned above on the displacement of
unipotent elements on horospheres of height one we finally get the following
upper bound on `(ζ):

(4.18) `(ζ)� logDF + log |I|

with an absolute constant.

4.3. Flats

There is a well–known bijection between the ΓF -equivalence classes of
quadratic forms over OF and the top-dimensional compact flats in MF

which we will now briefly describe; for details we refer to [43, Section 4]
and [19, Chapitre I.5] (which treat respectively the case of imaginary qua-
dratic and totally real F , but similar arguments work in general). We will
also relate the geometry of the flats to the invariants of the quadratic forms
for later use.
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4.3.1. Correspondance with quadratic forms

The set of fundamental discriminants of F is defined as follows:

DF = {d ∈ OF : d 6∈ O2
F , ∃ x ∈ OF : d = x2 (mod 4)};

it is the set of discriminants d = b2 − 4ac of quadratic forms q = az2
1 +

bz1z2 + cz2
2 on F 2 when a, b, c ∈ OF have no common factor in OF (note

that it may not be the case that the ideal (a, b, c) is the whole of OF ). To
such a quadratic form q we can associate an abelian subgroup of ΓF as
follows:

Γq = SO(q) ∩ ΓF .
We will now construct a flat subspace Z ⊂ X of maximal dimension, whose
(setwise) stabilizer in ΓF is Γq which will act cocompactly. For v ∈ V∞ let
σv be the corresponding embedding of F in C and define Zv to be:

• If Fv ∼= C, the geodesic in Xv
∼= H3 between the isotropic lines in

P1(Fv) = ∂Xv of the quadratic form qσv ;
• If Fv ∼= R and dσv > 0, the geodesic between the isotropic lines in
P1(Fv) = ∂Xv of the quadratic form qσv ;

• If Fv ∼= R and dσv < 0, the point in Xv ⊂ P1(Fv⊗C) corresponding
to an isotropic line of qσv .

Let
r′1 = |{v ∈ V∞ : Fv ∼= R, dσ > 0}, m = r2 + r′1;

note that m is the dimension of maximal flats in X. There is a unique flat
Zq in X of dimension m which contains all Zv; clearly the setwise stabiliser
StabΓF Zq = Γq, and we will now explain (following [19, Theorem 5.6]) that
Γq is of rank m, and thus acts cocompactly on Zq (since it acts properly
discontinuously).
Let A be the ideal generated by a, b, c in OF , let E be the quadratic

extension F (
√
d) of F , and let Oq be the order:

Oq =
{
t+ u

√
d

2 : t ∈ OF , u ∈ A−1

}
in OE . It is proven in [19] that the group Γq consists of the matrices:

(4.19) Γq =
{(

t+bu
2 cu

−au t−bu
2

)
: ε = t+ u

√
d

2 ∈ Oq, NE/F (ε) = 1
}

where NE/F denotes the relative norm of the field extension E/F . A quick
computation shows that E has exactly 2r′1 real places and 2r2 + r1 − r′1
complex ones; it follows that the rank of the abelian group O×E ∩ker(NE/F )
equals r2 + r′1 = m.
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4.3.2. Volume and systole

Let us define the notation:

D+
F =

{
{d ∈ DF : ∃ σ, dσ > 0} if r2 = 0;
DF otherwise.

Thus the results of the previous paragraph mean that there is a bijection be-
tween maximal compact flats (of dimension > 0) inMF and ΓF -equivalence
classes of integral quadratic forms on F 2 whose discriminant belongs to D+

F .
We will now describe the geometry of the flats in function of d.
Recall that m is the logarithmic Mahler measure defined in 3.1. As the

matrices on the right-hand side of (4.19) has eigenvalues equal to ε±1 it
follows from (3.2) that the lengths of closed geodesics in Γq\Zq are, up to
a bounded factor, equal to m(ε) for ε ∈ O×q , NE/F (ε) = 1.
As for the volume, it is proven in [19, Chapitre I.7] that the volume of

Γq\Zq is equal to the covolume of Log(O×q ∩ ker(NE/F )) in its R-span in
RV∞(E); it is easily seen that LogO×F is orthogonal in RV∞(E) to ker(NE/F ),
and it follows that

vol(Γq\Zq) = vol(O×q ∩ ker(NE/F ))

=
[O×E : O×q ]

[NE/F (O×E) : NE/F (O×q )]
vol ker(NE/F )

and since we have

RF = volO×F = 2−
r2+r′1

2 [O×F : NE/F (O×E)]−1 volO×E
vol ker(NE/F )

we finally get that

(4.20) vol(Γq\Zq) = 2−
r2+r′1

2
RE
RF
×

[O×E : O×q ]
[O×F : NE/F (O×q )]

.

Note that the term [O×E : O×q ] on the right-hand side is bounded above
by a constant depending only on d, r: indeed, it is bounded by a constant
depending only on p,NF/Q(d) at each place of F dividing p, and equal to
1 if v does not divide d.

4.4. Singular locus

We will be very brief here; since the eigenvalues of elliptic elements belong
to quadratic extensions of F their order is bounded by a constant depending
only on r. As for the volume of their fixed flat we have the following (see [43,
equation (4.8)]).
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Lemma 4.3. — If d ∈ DF and |d|∞ > 4 then Γq is torsion-free for all q
whose discriminant equals d.

Proof. — If Γq contains torsion this means that there exists a ε ∈ O×q ,
NE/F (ε) = 1 such that |ε|v = 1 for all v ∈ V∞(E); writing ε = (t+u

√
d)/2

with t2 − u2d = 4 we get that |t ± u
√
d|∞ = 1 and it follows that |t|2∞ +

|u|2∞|d|∞ = 4, hence |d|∞ 6 4. �

5. Geometry of MF as DF → +∞

5.1. Counting flats in a cusp neighbourhood

In this section we establish upper bounds for the number of flats con-
taining geodesic of length less than a given R; in view of Proposition 2.2
they would be sufficient to prove than MF

BS−−−−−−→
DF→+∞

X.

5.1.1. A criterion for going through an horoball

For ξ = α
β ∈ F recall that we have defined B as the ideal (β)/(α, β). We

recall that we denote by Bξ(Y ) the horoball around ξ of height |B|−1Y ;
it follows from the description (4.8) of heights functions that it is equal to
γ−1
ξ B∞(Y ).

Lemma 5.1. — Let ξ ∈ F , a, b, c ∈ OF , q = ax2
1 + bx1x2 + cx2

2 and
d = b2 − 4ac. Then the flat Zq goes through the horoball Bξ(Y ) is and
only if

|d|1/2∞
|aξ2 + bξ + c|∞

> 2r1+r2Y .

If ξ =∞ this condition degenerates to

|d|1/2∞
|a|∞

> 2r1+r2Y .

Proof. — It is simpler to prove this at infinity and then pass to a given
ξ than to try to do all computations for ξ; thus we will do so. Let z± =
(−b±

√
d)/2a ∈ F (

√
d) be the roots of az2 + bz+ c. If v is a complex place

or a real place such that dσv > 0 then the highest point in Zv with respect
to ∞ is the point on the geodesic line between z± which is directly above
(z+ +z−)/2, and the height of this point equals |z+−z−|v/2 =

√
|d|v/2|a|v.

If v is real and dσv < 0 then Zv is a point of height Im(z+) =
√
|d|v/2|a|v.
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Thus the maximal height of a point on Zq equals |d|1/2∞ /2r1+r2 |a|∞, and
this proves the lemma for ξ =∞.
Now let ξ ∈ F , and recall that we have defined

γξ =
(

0 1
−1 ξ

)
.

Let c be the flat of X corresponding to the quadratic form q = ax2
1 +

bx1x2 + cx2
2. Then the image of c under γξ corresponds to the quadratic

form γξ · q := q ◦ γ−1
ξ and we can compute that:

γξ · q = a(ξx1 − x2)2 + b(ξx1 − x2)x1 + cx2
1

= (aξ2 + bξ + c)x2
1 − (b+ 2aξ)x1x2 + ax2

2 .

Thus the lemma follows from the computation we did just above. �

5.1.2.

We will need the following classical counting result: if Λ is a lattice in
Rr then we have

(5.1) |{v ∈ Λ : |v| 6 ρ}| � ρr

vol Λ + τ(Λ)

where the constant depends only on r. This follows rather immediately
from Minkowski’s second theorem and the fact that one can find a basis
of Λ whose vectors realize its successive minima (see [39, Lemma 2.2] for a
detailed proof in the two-dimensional case).
Let Nξ,d(Y ) be the number of closed flats which intersect Bξ(Y ) and

correspond to forms of discriminant d. We will now prove:

Lemma 5.2. — For any ε > 0 we have

Nξ,d(Y )� Y −r−ε|B|2+εD
− 1

2
F

with a constant depending only on d, ε.

Proof. — Let S̃ ⊂ O3
F be the set of triples (a, b, c), b2 − 4ac = d corre-

sponding to closed geodesics meeting B, and let Φξ be the self-map of F 3

defined by
Φξ(a, b, c) = (aξ2 + bξ + c, 2aξ + b, a) ;

in other words Φξ corresponds to the map q 7→ γξ ·q in the space of quadratic
forms. Thus it preserves the quadratic form b2 − 4ac, and it follows from
Lemma 5.1 above that

Φξ(S̃) ⊂
{

(a, b, c) ∈ B−2 ×B−1 ×OF : b2 − 4ac = d, a 6 2r1+r2
|d|1/2∞
Y

}
.
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Since Φξ intertwines the actions of Λξ and γξΛξγ−1
ξ (which we identify with

B2 according to (4.12)) and the latter is given by

B2 ×
(
B−2 ×B−1 ×OF

)
3 (u, (a, b, c)) 7→ (a, b+ 2ua, c+ ub+ u2a)

we get that the quotient S of S̃ by Γξ is identified through Φξ with a subset
of

S′=
{

(a, b) ∈B−2×B−1 : |a|6 2r1+r2
|d|1/2∞
Y

,∃ c ∈ OD : b2−4ac = d

}
/B2

where the action of B2 is given by u · (a, b) = (a, b + 2ua). Now we fix an
ε > 0; it is easily seen that for a given d ∈ OF the number of solutions
to the congruence b2 = d (mod 2a) has � |a|ε solutions in B−1 modulo
2aB2, where the constant is absolute: indeed, at each finite place there are
at most two solutions, so the total number is bounded by 2l (where l is
the number of prime divisors of B) which is � |B|ε for all ε > 0. So we
get that for a given a ∈ B−2 there are � |B−1/aB|ε possible choices for
b ∈ B−1 (mod 2aB) such that (a, b) ∈ S′. It follows that

|S′| =
∑

a∈B−2

|a|∞6
√
d/Y

|
{
b ∈ B−1/2aB2 : b2 = d (mod 2aB2)

}
|

�
∑

a∈B−2

|a|∞6
√
d/Y

[B−1 : 2aB2]ε

6 4
∑

a∈B−2

|a|∞6
√
d/Y

|aB|ε 6 |B|ε(d/Y 2)ε
∣∣∣∣∣
{
a ∈ B−2 : |a|∞ 6

√
d

Y

}∣∣∣∣∣
� |B|ε(d/Y 2)ε

(
|d|r/2∞

Y r vol(B−2) + τ(B)
)
.

(using (5.1) for Λ = B at the third line) for any ideal I in OF the volume
of its inverse I−1 is equal to |I|−1 volOF so the right-hand side is bounded
above by

Y −r−2ε|B|2+2εD−
1
2 + Y −2ε|B|2εD 1

2

which finishes the proof of the lemma. �

5.2. Estimating the volume of the thin part of MF

Let C1, . . . ,ChF associated to ξj are the integral representatives of lowest
norm for the ideal classes of F and ξj = αj/βj , j = 1, . . . , hF such that
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Cj = (βj)/(αj , βj). Let γj = Γξj ; by (4.9) we know that the projections
to MF of the horoballs γjB∞(Yj) cover it entirely when Yj = c0|Cj |D−1/2

F

for a constant c0 depending only on r. For a field F let DR,F be the set
of fundamental discriminants for F which yield units in the set TR in the
proof of Lemma 3.1. We put Nξ(Y ) =

∑
d∈DR,F Nξ,d(Y ); it follows from

Lemma 5.2 that for all ε > 0 we have:∑
T,α1(T )6R

volT 6
hF∑
j=1

Nξj (Yj) max
d∈DR,F

(
Cd ·

RF (
√
d)

RF

)

� max
d∈DR,F

(
Cd ·

RF (
√
d)

RF

) hF∑
j=1

(
|Cj |
D

1/2
F

)−r−ε
· |Cj |2+ε ·D−1/2

F

� max
d∈DR,F

(
Cd
RF (

√
d)

RF

)
·D

r−1
2 +ε

F

hF∑
j=1
|Cj |−r+2+ε .

Here Cd is a constant independant of F , since the term [O×E : O×q ] on
the right-hand side of (4.20) is bounded independantly of F . In particular,
when r = 2 (which is the case of interest for later) we get using the estimate
hF � D

1/2
F logD that:

(5.2)
∑

T,α1(T )6R

volT � D1+ε
F max

d∈DR,F

(
Cd ·

RF (
√
d)

RF

)
.

For cubic fields we record independently the following estimates for the
number of compact flats.

Lemma 5.3. — For all R, ε > 0 there exists Cr,ε > 0 such that for
all cubic fields F we have NR(MF ) 6 CR,εD

5/4+2ε
F , where NR(M) is the

number of maximal compact flats in M whose systole is less than R.

Proof. — From Lemma 5.2 and (4.9) we get the estimate:

NR(MF )�ε,R D
1+ε
F

hF∑
j=1
|Cj |−1/2+ε .

The number of ideals Cj of norm 6 Da
F is less than CεD

a+ε
F for some

absolute Cε > 0 (this follows from elementary arguments, see for example
the proof of Theorem 3.5 in [28]) and we get that for any a > 0 we have:

NR(MF )�ε,R D
1+2ε−a
F |hF |+D1+2ε

F Da+ε
F .

Taking a = 1/4 we get the estimate in the lemma. �
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Now we deal with the cusps: for a given ξ, the S[u] which contribute
to the R-thin part are those with log |I| 6 CR according to (4.16) (where
C depends only on r). Thus there is a uniform bound on their number,
the volume of each of the associated compact flats is bounded above by
RF , and we have `(u) � logDF by (4.18). In particular, since hFRF �
D

1
2
F (logDF )r−1 we get that

(5.3)
∑
ξ,u

vol `(u)S[u]� CRhF log(DF )RF � D
1/2
F (logDF )r .

On the other hand, by (4.13) and the description of the Levi component of
cusps we have that the contribution of the unipotent elements is bounded
by

(5.4)
∑
ξ

RF τ(Λξ)� hFRFD
1/2
F � DF (logDF )r−1

Finally, the description of the compact singular locus yields that there
exists a R0 such that for r = 2 we have

(5.5)
e∑
j=1

volMn[γj ]�
∑

T,α1(T )6R0

volT � D1+ε
F max

d∈DR0

(
Cd ·

RF (
√
d)

RF

)
.

5.3. Bianchi orbifolds

We are interested here in the sequence MD = MF , F = Q(
√
−m), D =

DF as the square-free, positive integer m tends to infinity. In this case we
have that O×F is trivial as soon as D > 6. The proof of Lemma 3.1 yields
that for any R, for D large enough the only discriminants d ∈ DF which
yield closed geodesics of length less than R in MD are among a finite set
d1, . . . , dk ∈ Z, and for each d among these the unit group O×

F (
√
d)

is equal
to O×

Q(
√
d)
. It follows that maxd∈DR CdRF (

√
d) is bounded independantly of

F and thus (5.2) yields that for all ε > 0 we have

vol(MD)6R � D1+ε

(there is no Levi part in the cusps, and the contribution of unipotents is
� D logD by (5.4)). This finishes the proof of Theorem 1.3.
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5.4. Hilbert–Blumenthal surfaces

Here we consider the sequence of fields F = Q(
√
D) for square–free

D > 0, as above we denote MF = MD. This case is more subtle, as we
have that O×F is of rank one, and O×E is of rank three for any totally real
extension of F , and we will have to use some elementary manipulations to
circumvent this problem. In the sequel we arbitrarily choose an embedding
F → R for all real fields we encounter and denote by | · | the absolute value
we get this way.
Recall that for any number field L of degree r we have the bound

(5.6) RL � D
1/2
L (logDL)r−1.

Now let D, d ∈ D+
Q be two square-free positive integers, F = Q(

√
D), F ′ =

Q(
√
dD) and E = F (

√
d) = F ′(

√
d). Let ε, ε′ and εd be fundamental

units (such that |ε|, |ε′| > 1) for the fields F, F ′ and Q(
√
d) respectively, so

that we have RF =
√

2 log |ε| and RF ′ =
√

2 log |ε′|. We number the real
embeddings of E as follows: σ1 is the identity, and

• σ2(
√
d) =

√
d, σ2(

√
D) = −

√
D;

• σ3(
√
d) = −

√
d, σ2(

√
D) =

√
D;

• σ4(
√
d) = −

√
d, σ2(

√
D) = −

√
D .

Then we have εσi = ε for i = 1, 3 and ε−1 for i = 2, 4, (ε′)σi = ε′ for
i = 1, 2 and (ε′)−1 for i = 3, 4 and finally εσid = εd for i = 1, 4 and ε−1

d

for i = 2, 3. It follows that the images of ε, ε′ and εd by Log are pairwise
orthogonal and thus they generate a sublattice of finite index in LogO×E .
This implies that

(5.7) RE 6 C(d)RFRF ′

where C(d)� d1/2 by (5.6) for L = Q(
√
d).

Now there are two possibilities:
(1) both RF 6 D1/5

F and RF ′ 6 D1/5
F ′ ;

(2) RF ′ > D1/5
F ′ .

If we are in case (1) then we get from (5.7) that

(5.8) RE/RF �d D
1/5
F .

On the other hand, if we are in case (2) we get in that for all d′ ∈ D+
Q ,

E′ = F ′(
√
d′) we have

RE′ � D
1/2
E′ (logDE′)3 � D

1/2
F ′ (logDF ′)3
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so that we finally obtain

(5.9) RE′/RF ′ � D
3/10
F ′ (logDF ′)3 � D

2/5
F ′

with a constant depending only on d.
Now we will define a sequence Fn as follows: let Rn = n; by Lemma 3.1

there is a D(n) ∈ D+
Q such that for all D ∈ D+

Q , D > D(n) the only
d ∈ DQ(

√
D) contibuting geodesics of length less than Rn belong to a finite

set DRn ⊂ Z>0. Now define:
• Fn = Q(

√
D(n)) if we are in situation (1) for all d ∈ DRn ;

• Fn = Q(
√
dD(n)) if we are in situation (2) for some d ∈ DRn .

Thus in any case we obtain by (5.8) or by (5.9) that for all d ∈ DRn ,
En = Fn(

√
d) we have REn/RFn � D

2/5
Fn

and in the proof of (5.2) we get

(5.10) (volMFn)6Rn � C(Rn)(volMFn)1−1/10

where C(Rn) = maxd∈DRn C(d): by increasing D(n) we may suppose that
C(Rn)� D(n)ε for all ε > 0, so that Theorem 1.4 follows from (5.10).

6. Convergence of congruence and maximal lattices

6.1. Description of maximal lattices

6.1.1. Unit groups of quaternion algebras

We recall for the reader’s convenience, and for fixing notation, the de-
scription of the maximal lattices in an arithmetic commensurability class
in G∞ = SL2(C). For details we refer to the book [30]. Such classes are
in correspondance with certain quaternion algebras. We restrict in what
follows to lattices defined over quadratic or cubic fields, hence we will only
need to consider quaternion algebras defined over quadratic or cubic fields.
Moreover, in the cubic case we need only consider fields which have only
one real place and algebras which ramify at that place. Fix a field F and
a quaternion algebra A/F satisfying to the requirements above; then the
classification of quaternion algebras implies that there exists a set S of
places of F not containing its complex place, containing the real place if F
is cubic, and of even cardinality, such that A is isomorphic over F to the
unique quaternion algebra whose ramification locus is exactly S.
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Suppose we are in this setting; we let G = SL1(A) be the F -algebraic
group defined by the units of norm 1 in A, and at each place v 6∈ S (in-
cluding the complex place) we fix an isomorphism Iv : G(Fv) ∼= SL2(Fv)
and we put(9)

Kv = I−1
v SL2(Ov), K0,v = I−1

v

{(
a b

c d

)
∈ SL2(Ov) : |c|v < 1

}
.

For each finite set of places T ⊂ Vf −S we define a compact-open subgroup
of G(Af ) as follows:

KS(T ) =
∏

v∈S∩Vf

G(Fv)×
∏
v∈T

K0,v ×
∏

v∈Vf−S∪T
Kv .

We finally define:
ΓS(T ) = G(F ) ∩KS(T ) .

Then all maximal arithmetic subgroups of G(F ) are locally conjugated
to a ΓS(∅) for some collection of isomorphisms Iv as above. The conjuga-
tion is in general not global (see [30, Chapter 6.7]) but for our purposes
(counting closed geodesics) all lattices obtained this way are equivalent (see
Lemma 6.4 below) and we will not introduce further notation to distinguish
between them. We recall that the lattice ΓS(T ) is nonuniform if and only
if S = ∅.
Finally, we remark that the usual definition of the lattices ΓS(T ) uses

maximal orders and Eichler orders rather than the isomorphisms Iv: this
is in particular the case in [30]. It is however trivial to pass from one to
the other: the maximal order corresponding to (Iv) is the one which is
normalized by Kv at each v.

6.1.2. Maximal lattices

The lattices ΓS(∅) are usually not maximal in SL2(C), and not every
maximal lattice in their commensurability class contains them. However
any maximal lattice in SL2(C) is obtained as the normalizer of some ΓS(T ).
We will denote this normalizer by

ΓS(T ) = NSL2(C)ΓS(T ) .

We have a very good control over the index of ΓS(T ) in ΓS(T ):

(9)This is equivalent to choosing a vertex of the Bruhat–Tits tree Xv and an adjacent
edge in Xv , and taking Kv ,K0,v to be the stabilizers in the action of G(Fv) on Xv of
this vertex and edge respectively (see for example [44, II.1.3]).
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Lemma 6.1. — We have for all F, S, T the equality

(6.1) [ΓS(T ) : ΓS(T )] 6 22+|T |+|S|h
(2)
F

where h(2)
F is the order of the 2-torsion subgroup of the class group of F .

Proof. — By [30, Theorem 11.5.1] we have

[ΓS(∅) : ΓS(T )]
[ΓS(T ) : ΓS(T )]

= 2−m
∏
P∈T

(|P|+ 1)

for some 0 6 m 6 |T |. It follows that

[ΓS(T ) : ΓS(T )] 6 2|T | [ΓS(∅) : ΓS(T )]∏
P∈T (|P|+ 1) = 2|T |[ΓS(∅) : ΓS(∅)]

since [ΓS(∅) : ΓS(T )] =
∏

P∈T (|P|+ 1).
The result then follows from [30, Corollary 11.6.4, Theorem 11.6.5]. More

precisely, there is a subgroup Γ between ΓS(∅) and ΓS(∅) such that [Γ :
ΓS(∅)] 6 2|S|+2 [30, Corollary 11.6.4] and ΓS(∅)/Γ embeds in the 2-torsion
subgroup of the class-group of F [30, Theorem 11.6.5]. �

6.1.3. Fixed points

The following result is similar to [1, Theorem 1.11] (but much, much
simpler to prove). For any finite place v of a number field we denote by Pv

the prime ideal {a ∈ OF , v(a) < 1} and by qv the cardinality of the residue
field fv = OF /Pv.

Lemma 6.2. — There is a δ > 0 such that the for any R > 0, any
imaginary quadratic field F , any finite set S ⊂ Vf and any loxodromic
γ ∈ Γ = ΓS(∅) whose minimal displacement is 6 R and any T ⊂ Vf − S
we have ∣∣FixΓ/ΓS(T )

∣∣ 6 C2|T |

with a constant C depending only on R.

Proof. — We will use the notation Kv(m) for v ∈ Vf ,m ∈ N to denote
the subgroup of matrices in Kv congruent to the identity modulo Pm

v Ov.
First we oserve that if qmv > 2 cosh(R/2) + 2 and γ is as in the statement
then we must have γ 6∈ Kv(m). To see this, just note that if γ ∈ Kv(m)
is not unipotent then we have | tr(γ) − 2| > qmv ; in particular we get that
qmv 6 2 cosh(R/2) + 2, which proves the claim.
Now we put C =

∏
v:qv62 cosh(R/2)+2(qv + 1). For any T ⊂ Vf − S we let

T0 = {v ∈ T, qv 6 2 cosh(R/2)+2} and T1 = T −T0. Let v ∈ T1; the action
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of Γ on Kv/K0,v is equivalent to the action on P1(fv) via Γ → PSL2(fv).
So since γ does not belong to the kernel ±Kv(1) of the latter action it acts
non-trivially. Any non-trivial element of PSL2(fv) has at most two fixed
directions, so we get that γ has at most two fixed points on Kv/K0,v. It
follows that:

|FixΓ/ΓS(T )(γ)| =
∏

v∈Vf−S
|FixKv/ΓS(T )(γ)|

=
∏
v∈T
|FixKv/K0,v (γ)| 6 2|T1|

∏
v∈T0

|Kv/K0,v|

6 C2|T | . �

6.2. Length spectra

6.2.1. A complicated formula

In the adelic proof of the Jacquet–Langlands correspondance one does
not care about the length spectra since all congruence subgroups are con-
sidered at once. However, when one wants results linking the spectrum of
explicit orbifolds it is necessary to be more precise about that. This is devel-
oped for Riemann surfaces in [12], the French-reading reader is also refered
to Chapter 8 of the book [7]; here we “generalize” their results to imaginary
quadratic number fields using the following result which we quote(10) from
M. F. Vignéras’ book [46, Corollaire 5.17]. We use the standard notation
(same as in [46]): for an order B in a quadratic extension E/F , and a finite
place v of F the Eichler symbol

(B
v

)
is given by:

• 1 if Bv := BOv is not a maximal order in Ev or if v splits in E ;
• −1 if Bv is maximal, and v is inert in E ;
• 0 if Bv is maximal, and v ramifies in E .

We also define an ad hoc Eichler symbol at infinity by:

ε∞(λ;A) =


1 if F is quadratic or E = F (λ) has no real place

or A splits at the real place of F ;
0 otherwise.

for λ ∈ Z of degree 2 over F . Let also h(B) denote the class-number of B;
the result is then:
(10)The quotation is not verbatim: her statement is in the language of orders, she con-
siders also S-arithmetic groups and there are additional conditions in her statement
which trivialize in our case.
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Theorem 6.3. — Let F be a quadratic or cubic field; A a quaternion
algebra over F . Let E = F (λ) be a quadratic extension, where λ ∈ OE .
Then the number of ΓS(T )-conjugacy classes among the elements in ΓS(T )
which have λ as an eigenvalue is given by:

ε∞(λ;A) ·
∑
B3λ

h(B)
hE
·
∏
v∈S

(
1−

(
B
v

))
·
∏
w∈T

(
1 +

(
B
v

))
where the sum runs over all orders of L which contain λ.

6.2.2. Comparison of length spectra

First we have the obvious corollary of Theorem 6.3 above:
Lemma 6.4. — The length spectrum of a group ΓS(∅) does not depend

on the collection Iv (equivalently on the maximal order in AS) chosen to
define it.
The precise form of the formula in 6.3 can be used to compare between

the cases where S = ∅ or not; the following lemma has a proof which
follows exactly that of [12, Lemma 3.4] (see also [7, Lemme 8.23]), as the
arguments used there are purely combinatorial.
Lemma 6.5. — Let F be a quadratic field, and for ` > 0 let µ(S, T ; `)

be the number of closed geodesics of length ` in ΓS(T )\H3.

µ(S, T ; `) =
∑
S′⊂S

(−2)|S
′|µ(∅, S′ ∪ T ; `) .

If F is a cubic field we want to compare the length spectra of compact
maximal congruence orbifolds defined over F with that of the 5-dimensional
orbifolds Γ∅(T )\(H3 × H2) where Γ∅ = SL2(OF ). Let µ1(∅, T ′; `) is the
number of 1-dimensional maximal compact flats of length ` in Γ∅(T ′)\(H3×
H2) (corresponding to elements which are elliptic at the real place).
Lemma 6.6. — Let F be a cubic field with one real place, then we have:

µ(S, T ; `) =
∑
S′⊂S

(−2)|S
′|µ1(∅, S′ ∪ T ; `)

where

6.3. Proof of Theorem 1.1

Theorem 1.1 follows from Proposition 2.7 with input from Proposition 6.7
(taking into account the fact that in rank 1, vol(T ) 6 R for a R-thin
flat) and 6.3.4 in the compact case, and from the same plus (6.7) in the
noncompact case.
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6.3.1. Covolume of maximal lattices

We begin by a remark about the covolumes of maximal lattices. For a
field F and S, T ⊂ Vf , S ∩ T = ∅ we denote by MS(T ) the hyperbolic
three-orbifold ΓS(T )\H3. The volume of MS(T ) is given by the formula:

(6.2) volMS(T ) � D
3
2
F

∏
P∈S

(|P| − 1)
∏

P∈T (|P|+ 1)
[ΓS(T ) : ΓS(T )]

with constants depending only on the degree of F (this follows from [30,
(11.3) on p. 333] and the formula for the index of ΓS(T ) in ΓS(∅)).
In case F is quadratic, the 2-torsion subgroup of the class group is gen-

erated by the prime divisors of DF (see [23, Corollary 1 to Theorem 39])
and in particular h(2)

F is less than the number of rational prime factors of
DF so we have by comparing with (6.2):

(6.3) [ΓS(T ) : ΓS(T )] 6 2|S|+|T |+2h
(2)
F � (volMS(T ))ε

for all F, S, T and all ε > 0, where the constant depends only on ε. In the
case where F is cubic and we have h(2)

F � D0.24
F we get

(6.4) [ΓS(T ) : ΓS(T )] 6 2|T |+|S|+1h
(2)
F � (volMS(T ))1/6−δ0

for some δ0 > 0.

6.3.2. Closed geodesics

Recall that for an hyperbolic three–orbifold we denote by NR(M) the
number of closed geodesics of length 6 R in M .

Proposition 6.7. — There is a δ > 0 such that for any R > 0 there is
a CR such that for all cubic or quadratic fields F and all S, T we have

NR(MS(T )) 6 CR(volMS(T ))1−δ.

Proof. — Let M ′S(T ) = ΓS(T )\H3; we will deduce below that for all
R > 0 we have

(6.5) NR(M ′S(T )) 6 C ′R(volM ′S(T ))5/6+ε

for any ε > 0. The proposition then follows easily from this and Lemma 6.1,
by the following argument: a theorem of Takeuchi [30, Corollary 8.3.3]
states that for every γ ∈ ΓS(T ) we have γ2 ∈ ΓS(T ), and it follows that
NR(MS(T )) 6 N2R(M ′S(T )). It follows from (6.5) and Lemma 6.1 that

NR(MS(T )) 6 C ′2R · 2|T |h
(2)
F · (volMS(T ))5/6+ε)
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and since 2|T |h(2)
F � (volMS(T ))1/6−δ0 by (6.3) (in this case we actually

get a much better bound) or (6.4) we can conclude that NR(MS(T )) �
vol(MS(T ))1−δ with δ = δ0 − ε, which can be made positive by taking ε
small enough.
The proof of (6.5) will follow from Theorem 1.3 by using Jacquet–

Langlands and Lemma 6.2 with arguments similar to those used in [1],[38];
we will repeat them here for the reader’s convenience.

Fix F, S and let γ1, . . . , γr be representatives of the hyperbolic conju-
gacy classes in Γ = ΓS(∅) corresponding to geodesics of length less than
R in MS(∅): we include in this count the conjugacy classes which are non-
primitive. For T ⊂ Vf − S and i = 1, . . . , r let ni(T ) be the number of
ΓS(T )-conjugacy classes (in ΓS(T )) which are Γ-conjugated to γi; then we
have

NR(M ′S(T )) =
r∑
i=1

ni(T ) .

Now ni(T ) is equal to the number of fixed points of γi in Γ/ΓS(T ): indeed,
for any subgroup Γ′ ⊂ Γ we see that g ∈ Γ conjugates γi into Γ′ if and only
if γi fixes gΓ′ ∈ Γ/Γ′. Thus it follows from Lemma 6.2 that

(6.6) NR(M ′S(T )) 6 C2|T |NR(M ′S(∅))�R,ε (volM ′S(∅))εNR(M ′S(∅))

since 2|T | � (volM ′S(∅))ε for all ε > 0. We now see that (6.5) can be
deduced as follows:

• For F quadratic and S = T = ∅ it follows from Theorem 1.3 (the
case of Bianchi groups) and Lemma 6.4 for the other maximal con-
gruence lattices in the commensurability class;

• ForF quadratic and S= ∅ it follows from the previous case and (6.6);
• When F is quadratic, S 6= ∅ we deduce (6.5) from the previous
cases and Lemma 6.5: we have

NR(M ′S(T )) 6
∑
S′⊂S

2|S−S
′|NR(M ′∅(S′ ∪ T ))

6 2|S| · |2S | · 2|S|NR(M ′∅(T )) = 8|S|NR(M ′∅(T ))

and 8|S| � (volM ′S(T ))ε for all ε > 0.
• When F is cubic the same sequence of arguments applies (for S 6= ∅)
by using Lemma 5.3 instead of Theorem 1.3 (note that D5/4

F �
(volMF )5/6) and Lemma 6.6 instead of 6.5.

This completes the proof of the proposition. �

Note that Propositions 6.7 and 2.2 suffice to imply the mere statement
of BS-convergence in Theorem 1.1.
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6.3.3. Unipotent elements

Since we have τ(I) 6 τ(OF ) 6 D
1/2
F for all F and ideals I of OF , we

have τ(Λ′) 6 D1/2
F for any cuspidal subgroup Λ′ of any Γ∅(T ) (see (4.12)).

Now if Λ is a cuspidal subgroup of Γ∅(T ) and Λ′ the corresponding cuspidal
subgroup of Γ∅(T ) we have 2Λ ⊂ Λ′ and it follows that τ(Λ) 6 2τ(Λ′). On
the other hand the number of cusps ofM ′T is less than 2|T |hF and it follows
that the volume of the contribution of unipotent elements to the R-thin
part of M∅(T ) is bounded above by

(6.7) CR · 2|T |hF · 2D1/2
F � D1+ε

F .

6.3.4. Singular locus

We give here an estimate on the length of the singular locus of MS(T );
we will be quite sketchy about this. First, the proof of Lemma 4.3 applies in
general and we thus have that there is a finite set Ds ⊂ Z of discriminants
such that the singular geodesics in an arithmetic manifold in a commen-
surability class defined by an algebraic group over an imaginary quadratic
field F are associated to the quadratic extensions F (

√
d), d ∈ Ds.

Now, the singular locus of the M ′S(T ) can be dealt with using Lem-
ma 6.2: we leave the details to the reader, one obtains that its length is
6 (volM ′S(T ))1−δ′ with the same δ′ as for the number of geodesics. It
remains to bound the length of those geodesics which are singular for the
elements of order 2 in ΓS(T ) not in ΓS(T ). The key point here is that
those geodesics correspond to tori whose reduction modulo the primes in
T belong to the reduction of K0,v: this can be seen by a local argument
at each v ∈ T ; it follows that the length of the corresponding geodesics in
M ′S(T ) is equal to the length of their projections in M ′S(∅), thus bounded,
and the result follows from Proposition 6.7.
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