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Abstract—Traditional motion planning approaches for multi-
legged locomotion divide the problem into several stages, such
as contact search and trajectory generation. However, reasoning
about contacts and motions simultaneously is crucial for the
generation of complex whole-body behaviors. Currently, coupling
theses problems has required either the assumption of a fixed gait
sequence and flat terrain condition, or non-convex optimization
with intractable computation time. In this paper, we propose a
mixed-integer convex formulation to plan simultaneously contact
locations, gait transitions and motion, in a computationally effi-
cient fashion. In contrast to previous works, our approach is not
limited to flat terrain nor to a pre-specified gait sequence. Instead,
we incorporate the friction cone stability margin, approximate
the robot’s torque limits, and plan the gait using mixed-integer
convex constraints. We experimentally validated our approach
on the HyQ robot by traversing different challenging terrains,
where non-convexity and flat terrain assumptions might lead to
sub-optimal or unstable plans. Our method increases the motion
robustness while keeping a low computation time.

Index Terms—Legged Robots, Motion and Path Planning,
Optimization and Optimal Control.

I. INTRODUCTION

PLANNING motions for multi-legged robots can be a chal-
lenging task, as it involves both the discrete choice of the

gait sequence, and continuous decisions on foot location and
robot dynamics. Because of this, most traditional approaches
[1], [2], [3], [4] simplify the planning problem by decoupling
it into two stages: 1) find a sequence of contact locations;
and 2) generate body trajectories based on a stability metric,
like the Zero Moment Point (ZMP) [5] or the generalized
Contact Wrench Cone (CWC) [6], [7] stability criterion.
Ignoring the dynamics in the first stage might restrict the
number of feasible motion on the second one, when dynamics
are considered. Hence, in this paper we combine these two
stages into one single problem, in order to efficiently generate
complex behaviors.

Trajectory Optimization (TO) has emerged as a solution
to the coupled motion planning problem [8], [9], [10], [11],
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Fig. 1: The proposed approach generates robust plans in challenging terrain,
simultaneously reasoning about contacts and motions. This figure shows HyQ
executing an optimized motion with non-coplanar contacts.

[12]. Unfortunately, even state of the art approaches are often
restricted to simple environments, a fixed gait, or require
intractable computation time. Furthermore, none of them can
guarantee global optimality, and can easily fall into local
minima, since these are posed as non-convex optimization
problems. On the other hand, Mixed-Integer Convex Program-
ming (MICP) proved to be an efficient tool to solve multi-
contact motion planning problems. In [1], [3], the authors first
find a set of safe surfaces, and then use integer variables to
assign each contact to one surface. Further works incorporate
a convex or mixed-integer convex dynamic model in the
formulation [13], [14], which can efficiently optimize contacts
and motions. Unfortunately, these approaches do not incorpo-
rate torque constraints nor maximize any generalized stability
margin. Moreover, they do not reason about the sequence of
contacts, being limited to a fixed gait sequence.

In this work, we introduce a novel MICP formulation for
non-gaited multi-legged locomotion on challenging terrain.
Here, we formulate a single mixed-integer convex optimiza-
tion problem that simultaneously plans contacts and motions.
In contrast to other approaches, our method guarantees dy-
namic feasibility and optimizes gaits sequences in challenging
terrains. For this, we incorporate convex representations of
friction cones, torque limits, and gait planning constraints.
For the friction cone constraints, we exploit the segmentation
of the terrain and pose the stability margin computation as
a convex constraint. This optimization problem can then be
solved efficiently to its global optimum, using off-the-shelf
optimization solvers. We validated our approach by traversing
different challenging terrains with the Hydraulically actuated
Quadruped (HyQ) robot, shown in Fig. 1. Our approach
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Fig. 2: Overview of our convex trajectory optimization approach. Here, we
compute contact locations and motions within a single mixed-integer convex
program, given a goal state and a convex segmentation of the safe terrain.

generates robust motions, even during gait transitions and non-
coplanar contact scenarios.

The rest of this paper is organized as follows: Section
II presents our simultaneous contact and motion planning
approach. Section III presents our whole-body controller.
Section IV presents a set of experiments on HyQ traversing
challenging terrains, and Section V discusses and concludes
on the contributions of this work.

II. SIMULTANEOUS CONTACT AND MOTION PLANNING

In this section, we describe our formulation of the simul-
taneous contact and motion planning problem using Mixed-
Integer Convex Optimization.

A. Approach Overview

Let us consider a robot with nl legs and a locomotion plan,
discretized on N time-knots. We formulate a MICP to find the
optimal contact locations and motions, given a goal position
rG and a convex segmentation of the terrain. An illustration
of this approach is shown in Fig. 2.

We describe the dynamic evolution of the system with
a centroidal model (Section II-B). We include gait plan-
ning as part of the optimization (Section II-C), describing
the motion through time-slots over which legs swing. This
evolution is subject to robot and environmental constraints
such as: approximated kinematic reachability (Section II-D),
friction cone constraints (Section II-F), and approximated
torque limits (Section II-H). describing the motion through
time-slots over which we will generate leg swings. We adopt
the formulation in [13] to further address the non-linearities of
the angular dynamics by relying on a convex decomposition
of bilinear terms, making our optimization problem convex
(Section II-G).

B. Centroidal Dynamics

We describe the evolution of the system using a centroidal
dynamics model [15], [16], as depicted in Fig. 3. In this case,
the dynamics of the system are written as:[

mr̈

k̇

]
=

[
mg +

∑nl

l=1 λl∑nl

l=1(pl − r)× λl

]
, (1)

where variables are named as specified in Table I, m is the
mass of the robot, and g is the gravity vector. This formulation

Fig. 3: Centroidal dynamic model of a quadruped.

TABLE I: Variables of the trajectory optimization

r = [rx, ry , rz ]T Center of Mass (CoM) in the world frame
k = [kx, ky , kz ]T Centroidal angular momentum
pl = [plx , ply , plz ]

T End-effector positions in the world frame
λl = [λlx , λly , λlz ]

T Contact force at the lth end-effector
Nt, Nk Number of time-slots and knots per swing
Nf , Nr Number of contacts and convex regions

of the dynamics is entirely convex, except for the cross product
to compute the torque at center of mass.

Remark 1: Note that (1) neglects the effect of contact
torques. This is done because most multi-legged platforms
have approximate point contacts, without support surface to
generate moments.

Furthermore, the dynamics of the model are discretized in
knots of ∆t seconds, over which we will perform backward
Euler integration.

C. Gait Sequence

In order to plan gait transitions, we represent the motion
through Nf contact locations and Nt time-slots over which
the legs will swing between adjacent contacts , and introduce
a binary transition matrix T ∈ {0, 1}Nf×Nt . Here, Tij = 1
means that the robot will move to the ith contact location
at the jth time-slot, as shown in Fig. 4. Since each contact
location in the plan is reached once, we enforce that:

Nt∑
j=1

Tij = 1 , ∀i = 1, .., Nf . (2)

Additionally, we enforce that each cycle of nl contacts must
be reached before the next transfer cycle starts. For this, we
define a vector t = T

[
1 . . . Nt

]T
which computes the

corresponding slot assigned to each movement. Furthermore,
since the gait follows a sequentially ordered contact plan, we
enforce the following constraint:

tj > tj−nl
, ∀j = nl + 1, . . . , Nt. (3)

Terrain heuristics can also be added in order to guide the gait
through different environments. These can be incorporated in
the formulation as shown in [3].

D. Contact Location

In order to simplify the formulation, we only optimize the
contact locations and contact timing, leaving the end-effector



3

Fig. 4: Gait transition matrix and equivalent phase diagram. R, L,
H and F represent right, left, hind and front supports.

Fig. 5: Left: Convex segmentation of safe contact surfaces. Right: Approximate
kinematic reachability constraints.

trajectory as an interpolation between adjacent contacts in the
plan. Since swing phases do not contribute to the centroidal
dynamics, as force in the leg becomes null, this simplification
has no effect on the resulting plan.

As part of the decision variables, we describe contact
locations for nl end-effectors using an array of Nf vectors
in R4, ordered by end-effector number, of the form:

f = (fx, fy, fz, θ),

representing the position of each contact in Cartesian space
and the yaw orientation of the trunk when transitioning to
that contact, neglecting roll and pitch positions.

1) Safe-region assignment: Here, we will invert the prob-
lem of avoiding obstacles by constraining the contacts to lie
within one of Nr convex safe contact surfaces, shown colored
in Fig. 5 (left). Each surface is represented as a polygon
R = {c ∈ R3|Arc ≤ br}. The assignment of contacts
to these surfaces is done through a binary decision matrix
H ∈ {0, 1}Nf×Nr . The constraints, for the ith contact, are:

Nr∑
r=1

Hir = 1, (4)

Hir ⇒ Arfi ≤ br, (5)

where the ⇒ (implies) operator is represented with big-M
formulation [17]. Such surfaces can be easily obtained with
segmentation algorithms.

2) Kinematic constraints: In order to ensure kinematic
reachability, we must account for the workspace of each
independent leg. To do this, we constrain each contact location
within the biggest square inscribed in the leg workspace, as
shown in Fig. 5 (right). Algebraically:∣∣∣∣fi − [rT (i) + Li

(
cos(θi + φi)
sin(θi + φi)

)]∣∣∣∣ ≤ dlim, (6)

where rT (i) is the CoM location after transitioning to the
contact (given by the gait matrix T(i)), dlim is the square
diagonal, Li is the approximate distance from the trunk to
the leg, and φi is a known offset for each foot. Here, the
trigonometric functions are decomposed in terms piecewise
linear approximations of the trunk orientation functions.

To have them expressed as mixed-integer convex, we will
follow the approach of [1] and replace the trigonometric

functions of (6) with piecewise linear approximations of Ns
segments s and c. We define binary matrices S and C in
{0, 1}Nf×Ns to assign linear segments, which is done with
the following constraints:

Ns∑
s=1

Sis = 1

Ns∑
s=1

Cis = 1, (7)

Sik ⇒

{
ψk−1 ≤ θi ≤ ψk
si = mskθi + nsk

Cik ⇒

{
γk−1 ≤ θi ≤ γk
ci = mckθi + nck

,

(8)
where ψ and γ represent the boundaries between each linear
segment, and m and n represent its slope and intersection.

E. End-effector Trajectories

As mentioned in Section II-D, the end-effector trajectories
are defined by the gait transition matrix T. For simplicity, we
define the function γ(j, t) to reference the knots over which
an end-effector swings between two adjacent contacts in the
plan, where j indicates the time-slot used for the swing and
t ∈ [1, . . . , Nk] indicates the knot, where Nk is the number of
knots allocated for each slot. Then, the end-effector motions
are governed by the following constraint:

Tij ⇒ pl(i)γ(j,Nk) = fi, (9)

where l(i) is the leg number for the ith contact. This constraint
enforces that the leg reaches the contact position fi at the end
of the jth slot. Also, it is important to constrain that the leg
remains stationary when there is no transition. This is enforced
using the following constraint over the lth leg:∑
i∈C(l)

Tij = 0⇒ plγ(j,t) = plγ(j,1) ∀t ∈ [2, . . . , Nk], (10)

where C(l) are the contact indexes assigned to the lthleg. Fur-
ther constraints can be added to make the end-effector follow
a specific swing trajectory. Moreover, we ensure kinematic
feasibility by constraining the CoM position with respect to
the end-effectors (Fig. 6). Here, we use the bounding box
constraint:

d− < rj −
∑nl

l=1 plj
nl

< d+, (11)

where d− and d+ are the bounding box limits.
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Fig. 6: We incorporate bounding box constraints, shown in orange,
to ensure the CoM remains in its workspace.

Fig. 7: Left: Friction polyhedron constraint. Right: Illustration of the α lower-
bound of the friction cone stability margin.

F. Contact Dynamics
We model the dynamic interaction of the forces through

activation and friction cone constraints, which ensure stability
in the motion. Here, we will describe how to pose these
constraints as mixed-integer convex.

1) Activation constraints: In order to ensure dynamic con-
sistency, it is important that no force is present on a leg when
it breaks contacts. This is constrained, for the lth leg, as:∑

i∈C(l)

Tij = 1⇒ λlγ(j,t) = 0 , ∀t ∈ NC(j), (12)

where NC(j) is the set of knots in the jth slot used for
the swing. This relation can be seen as a complementarity
constraint, which can be also used to activate contacts [11],
[18], between

∑
i∈C(l) Tij and λlγ(j,i).

2) Dynamic stability constraints: In order to maintain sta-
bility in non-coplanar contact conditions, the contact forces
must remain within their friction cones [7]. We exploit the
convex segmentation of the terrain in order to linearly ap-
proximate the friction cone constraints at each segment. This
allows us to maintain the convexity in the problem, while also
providing formal robustness guarantees.

Given that the rth surface has a normal unit vector n̂r, we
approximate its friction cone as a polyhedron with Ne edges
vr1 , . . . ,vrNe

. Therefore, each force remains in its respective
contact cone FCr through the following constraint:

λlj ∈ FCr ⇒ λlj =

Ne∑
e=1

ρevre , ρ1, . . . , ρNe > 0,

where ρe are positive multipliers on each cone edge, as shown
in Fig. 7 (left). Then, in order to add robustness to the motion,
we maximize the distance between the nonlinear friction cone
boundary and the force vector. This distance can be computed
as α sin θ, where θ is the half-angle of the cone, and α is
defined as

α = arg max
ᾱ

s.t λlj − ᾱn̂r ∈ FCr,

namely, α is the distance from the contact force λlj to
the boundary of the friction cone, along the normal force
direction [19], as shown in Fig. 7 (right). Therefore, we seek
to maximize the value of α at each knot, which increases
the stability margin, and we introduce the following linear
constraint over each safe surface:

Tij and Hri ⇒ λl(i)γ(j) − αl(i)γ(j)n̂r ∈ FCr , α ≥ 0. (13)

Since the contact cone must not change when it is in stance
phase, we also add the constraint:∑

l∈C(i)

∑
t∈NS(j)

Tlt = 0,

⇒ λl(i)γ(j) − αl(i)γ(j)nr ∈ FCr, (14)

where NS(j) is the set of time-slots succeeding j. Note
that this ensures that the cone constraint holds for all the
succeeding knots in which the leg is stationary.

G. Convex Decomposition of Angular Dynamics

The angular dynamics of the centroidal model are non-
convex due to the cross product (pl − r) × λl. Other
mixed-integer approaches have used McCormick envelopes
to approximate these bilinear relations [14]. Nevertheless,
this increases significantly the complexity of the problem.
Here, we exploit the relation noted in [13], namely that
this non-convexity can be addressed by reformulating bilinear
constraints as a decomposition of quadratic terms:

ab =
u+ − u−

4
u+ ≥ (a + b)2 u− ≥ (a− b)2. (15)

This convex decomposition is represented via quadratic con-
straints, turning the problem into Mixed-Integer Quadratically
Constrained Quadratic Programming (MIQCQP) and, thus, a
convex optimization. We penalize the norm of u+ and u− to
bound the rate of the centroidal angular momentum. For more
details, the readers can refer to [13].

H. Approximate Torque Limits

In order to improve the feasibility of the motion, we
approximate torque limits by relying on a quasi-static motion
assumption. This allows us to represent torques by projected
the contact forces at each joint, compensating gravity terms,
with respect to each leg frame:

JTl,jλl,j ≤ τmax,

where Jl,j ∈ R3×3 is the operational space foot Jacobian for
the lth leg at the jth knot, and τmax are the joint torque limits
of the leg. Unfortunately, convex computation of the Jacobian
requires prior knowledge of the joint positions. Thankfully, the
invariance of the operational space allows us to approximate it
around a nominal value J∗l,j . Therefore, we approximate joint
limits with the following constraint:

J∗Tl,jλl,j ≤ τmax, (16)
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This constraint approximates the Actuation Wrench Poly-
tope (AWP) to define an approximation of the Feasible Wrench
Polytope (FWP), as defined in [20]. In practice, this approx-
imation is useful for most motions, close to the nominal
position and without aggressive speeds. For further precision,
one could use robust optimization [21] to constrain over the
variations of the Jacobian J∗l,j ± δJl,j .

I. Trajectory Optimization

Given the constraints stated above, we formulate a convex
trajectory optimization, as follows:

min
r,ko,pl,λl

gT +

N∑
k=1

g(k),

where T is the total number of knots, g(k) is a running cost
along the plan and gT is a terminal cost. Our running cost
g(k) maximizes the stability of the motion, while seeking for
the fastest and smoothest gait. For this, the objectives are:

1) Minimize the CoM acceleration r̈.
2) Minimize the contact forces magnitude ‖λ‖.
3) Minimize the upper bound of quadratic terms U =

(u−,u+) used in the convex angular dynamics model.
4) Maximize the stability margin α.
5) Minimize the execution time, by minimizing the sum of

the elements in the time vector t.
The running cost g(k) is defined as:

g(k) = ‖r̈k‖Qv + ‖λl,k‖QF
+ quUk + qttk − qααk,

On the other hand, the terminal cost gT biases the plan
towards its goal, the terminal position rG, as:

gT = ‖rT − rG‖Qg , (17)

where q are positive weights, Q are positive-semidefinite
weighting matrices, and ‖v‖Q stands for the weighted
squared-L2 norm vTQv. In practice, we add a small cost
to ‖k̇‖Qk

in order to generate smoother motions.

III. WHOLE-BODY CONTROL

The CoM motion, body attitude and swing motions are
controlled by a trunk controller. It computes the feed-forward
joint torques τ ∗ff necessary to achieve a desired motion
without violating friction, torques or kinematic limits. To
address unpredictable events (e.g. limit foot divergence in case
of slippage on an unknown surface), an impedance controller
computes in parallel the feedback joint torques τ fb from the
desired joint motion (qdj , q̇

d
j ). Note that the desired body and

joint motions have to be consistent with each other in order
to prevent conflicts with the trunk controller.

To achieve compliantly desired trunk motions, we compute
a reference CoM acceleration (r̈r ∈ R3) and body angular
acceleration (ω̇rb ∈ R3) through a virtual model:

r̈r = r̈d + Kr(r
d − r) + Dr(ṙ

d − ṙ),

ω̇rb = ω̇db + Kθe(R
d
bR

T
b ) + Dθ(ω

d
b − ωb), (18)

where (rd, ṙd, r̈d) ∈ R3 are the desired CoM position,
velocity and acceleration respectively, e(·) : R3×3 → R3

is a mapping from the rotation matrix into the associated
rotation vector, ωb ∈ R3 is the angular velocity of the
trunk. Kr,Dr,Kθ,Dθ ∈ R3×3 are positive-definite diagonal
matrices of proportional and derivative gains, respectively.

The target of our trunk controller is to minimize the error
between the reference and actual accelerations while enforc-
ing friction, torque and kinematic constraints. As mentioned
above, the reference accelerations are computed from (18).
We formulate the problem using Quadratic Programming (QP)
with the generalized accelerations and the contact forces as
decision variables, i.e. x = [q̈T ,λT ]T ∈ R6+n+3nl :

x∗ = arg min
x
gerr(x) + ‖x‖W

s. t. Ax = b

d < Cx < d̄

(19)

where n represents the number of active Degrees of Freedom
(DoFs). The first term of the cost function (19) penalizes the
tracking error:

gerr(x) =

∥∥∥∥ r̈− r̈r

ω̇b − ω̇rb

∥∥∥∥
S

, (20)

while the second one is a regularization factor to keep the
solution bounded or to pursue additional criteria. Both costs
are quadratic-weighted terms. As the CoM acceleration is not
a decision variable, we compute them from the contact forces
using the centroidal dynamic model. We then re-write the
tracking cost (20) as ‖Gx− g0‖ where:

G =

[
03×3 03×3 03×n

1
mI1 · · · 1

mInl

03×3 13×3 03×n 03×3nl

]
,g0 =

[
r̈r + g
ω̇rb

]
,

and Ik representing an identity matrix for the kth end-
effector. The equality constraints Ax = b encodes dynamic
consistency, stance condition and swing task. On the other
hand, the inequality constraints d < Cx < d̄ encode friction,
torque, and kinematic limits.

We map the optimal solution x∗ into desired feed-forward
joint torques τ ∗ff ∈ Rn using the actuated part of the full
dynamics of the robot as:

τ ∗ff =
[
MT

bj Mj

]
q̈∗ + hj − JTcjλ

∗ (21)

where Mbj ∈ R(6+n)×n represents the coupled inertia be-
tween the floating-base and joints, Mj ∈ Rn×n the joint
contribution to the inertia matrix, hj ∈ Rn is the force vector
that accounts for Coriolis, centrifugal, and gravitational forces
to the joint torque, and Jcj ∈ R3nl×n is a stack of Jacobians
of the nl end-effectors.

Finally, the feed-forward torques τ ∗ff are summed with the
joint PD torques (i.e. feedback torques τ fb) to form the desired
torque command τ d:

τ d = τ ∗ff + PD(qdj , q̇
d
j ), (22)

which is sent to a low-level joint-torque controller. For more
information on this controller the reader can refer to [22]
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Fig. 8: Snapshots of experiments 1 through 3, used to evaluate the performance of our planner on challenging terrain. Top: Climbing a pallet and crossing
a 20 cm gap, while climbing 3 cm. Middle: Climbing a 10◦ slope and crossing a 15 cm gap leading to a −10◦ slope. Bottom: Climbing a 10◦ slope and
crossing a 20 cm gap, while climbing down 6 cm leading to an 11 cm stair.

IV. EXPERIMENTAL VALIDATION

We validated our approach on the HyQ robot [23], a 85 kg
hydraulically actuated quadruped robot, traversing various
challenging terrains while also optimizing the gait transition
1. The HyQ robot is fully-torque controlled and equipped
with high-precision joint encoders, a Multisense SL sen-
sor (Carnegie Robotics) and an Inertial Measurement Unit
(KVH). HyQ has approximately the dimensions of a goat:
1.0 m×0.5 m×0.98 m (length×width×height). The planned
motions are computed off-board using the Drake Toolbox [24]
in MATLAB 2015a, on a Dual-Core Laptop running Mac OS
X Sierra. We use Gurobi 6.0.5 [25] as our MIQCQP solver.
The whole-body controller and state estimation run fully on-
board and in real-time. Our state estimation is based on a
modular inertial-driven Extended Kalman Filter which incor-
porates a rugged probabilistic leg odometry component with
additional inputs from stereo vision and LIDAR registration,
as described in [26].

A. Locomotion on rough terrain

In our first experiments we showcase the different capabil-
ities of our approach by navigating over various challenging
terrains composed of gaps, ramps, and steps with different
terrain heights (Fig. 8). Our method allows the robot to suc-
cessfully cross those terrains because of the use of a) a convex
model of robot’s dynamics and terrain, b) an approximation
of the torque limits, and c) stability maintenance capabilities
in non-coplanar contact conditions.

1) Convex model of robot’s dynamics and terrain: Travers-
ing a gap while climbing requires to accommodate properly
the body position because of the robot’s kinematic limitations.
In Fig. 8 (top), we show that our method exploits properly the
leg reachability, requiring fewer contact locations to reach the
goal compared with [8]. In fact, having a convex model of
the robot’s dynamics, and especially of the terrain, avoids to
fall into a local minimum because of the global optimality
guarantees. This convex terrain model works well for most

1video with the experiments: https://youtu.be/s4PMXpbwUes
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Fig. 9: Comparison of climbing up and down two slopes with (bottom) and
without (top) approximate torque constraints. Figures show the real torque
limits (lims) and the torque (cmd) for the RF hip pitch joint (HFE).

scenarios, however, it might lose validity when the terrain has
significant non-linear curvature.

2) Approximate torque constraints: We compare two dif-
ferent planned motions, with and without approximate torque
constraints in the optimization (see Fig. 9). While the robot
climbed up successfully the slope in both cases, it was able to
cross the gap only when the torque limits were considered. In
fact, in these scenarios, the admissible set of contact forces is
reduced due to the friction cones pointing outwards from the
robot’s CoM. Here, only the approximate torque constraints
(highlighted in blue in Fig. 9) account for this reduction of
the feasible wrench set, and as result, the contact forces are
distributed accordingly, see Fig. 9 (bottom)2. However, if we
do not consider the approximate torque constraints, the robot
reaches torque limits three times, red shade in Fig. 9 (top),
and it falls while climbing down, see Fig. 9 (top-right).

3) Stability in non-coplanar contact conditions: Crossing
a gap and ascending up stairs is a challenging task, because
the robot has to maintain stability while considering potential
non-coplanar contacts, see Fig. 8 (bottom). For instance, ZMP-
based approaches such as [8], [9] cannot ensure stability in
such terrains. We experimentally found an increment on the
robustness of the planned motion compared to the aforemen-

2Note that HyQ’s torque limits depend on the joint position, resulting
in limit differences in the yellow shade on Fig. 9 (bottom), which are not
accessible using the centroidal dynamics and the quasi-static assumption.
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Fig. 10: Snapshots of experiment 4, used to evaluate the performance of different gaits generated with our planning scheme in a roof-like terrain. Top: Fixed
walking gait. Middle: Fixed trotting gait. Bottom: Automatically discovered gait.

tioned methods. This robustness is especially important be-
cause we rely on a reference for the robot attitude modulation
as in [8]. This is done because we restrict our trajectories to
small angular momentum changes, because of limitations in
the convex model (see Section II-G).

B. Gait transitions
Afterwards, we tested the gait planning and transitioning

capabilities of our approach. In the optimization, we seed
a gait sequence by first optimizing only over the linear
dynamics. For this, we run trials over a challenging terrain
with non-coplanar contacts to compare two different scenarios:
a) crossing with a fixed gait that is predefined, walk and trot,
and b) crossing while the gait sequence is optimized. Figure
10 shows snapshots of these experimental trials.

1) Fixed walking and trotting gaits: In these cases, as
expected, the motions are executed robustly across the entire
trial. For walking, we obtained motions of quality similar to
those of the previous experiments. In the case of the trotting,
we increased the execution speed compared to the walking
case (from 18 cm/s to 31 cm/s). This fast motion is effectively
tracked by our controller, despite relatively slow corrections,
from the visual sources, in the state estimation.

2) Automatic gait discovery: In this trial, we showcase the
trade-offs involved when optimizing the gait transitions Fig. 10
(bottom). First, in order to minimize acceleration, our motion
planner selects a walking gait before smoothly transitioning
to a dynamic trotting gait. As expected, the robot continues
trotting until it faces a significant change of terrain. At that
moment, the robot transitions to a slower gait (i.e. walking
gait) in order to accommodate for the terrain conditions. For
comparison, Fig. 11 shows the minimum α margin at each
time-step, normalized by its contact force. Finally, it returns
to a trotting gait as is detailed in Fig. 11. In contrast to [3],
we do not include any terrain heuristics in the planning stage,
resulting in an automatic gait discovery based on the centroidal
dynamics of the robot.

C. Discussion
The experimental trials presented above showcase the main

aspects of our approach. As expected, all of our plans re-

TABLE II: Computation time for a locomotion cycle for various terrain
conditions and gaits

Experiment convex surfaces Gait mean time (s)
Exp. 1 3 Walk 0.47
Exp. 2 3 Walk 0.64
Exp. 3 4 Walk 0.44
Exp. 4 3 Walk 0.48
Exp. 4 3 Trot 0.51
Exp. 4 3 Free 1.62

sult in successful executions. Thanks to our incorporation of
approximate torque limits, we are able to push the limits of
our hardware, reaching faster walking speeds (around 15 cm/s)
than previous approaches executed on the same robot [2],
[8], [9]. Additionally, we have shown that our approach is
able to handle gait transitions robustly even on challenging
terrain. In our experiments, the convex approximation of
the angular dynamics helps the planner to generate natural
motions. Nonetheless, we found that this model does not
extend well to more dynamical gaits, such as bounding or
pace, since it cannot impose limits in the angular momentum,
causing divergence.

Computation time is one of the main concerns in any
optimization problem. In Table II, we report the required
computation time (for a single locomotion cycle one stride)
of the above scenarios. We plan motion at least two orders
of magnitude faster than previous work on similar terrains
[8], [12] because of our convex formulation using MIQCQP.
The kinematic constraints imposed help the solver to quickly
discard infeasible surfaces. This captures the main advantage
of our method, that it is able to efficiently plan motions through
3D environments with obstacles, while maintaining stability
despite changes in the terrain.

Other factors might influence the computation time. For
instance, leaving the gait as a decision variable increases
computation time significantly. As in [1], we found that the
incorporation of piecewise-affine trigonometric functions has
a negative effect on the computation time. Likewise, quadratic
constraints in (15) also influence the computation time, result-
ing in increases of around 500%. However, we believe that
our method can potentially be extended to receding horizon
fashion.
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Fig. 11: Top: Normalized α margin for different gaits. Bottom: Resulting
optimal gait sequence for navigating in roof-like terrain, blue and green
segments represent trot and walk, respectively.

V. CONCLUSIONS

We have presented a novel approach for simultaneously
planning contacts and motions on multi-legged robots based
on MICP. Our approach is able to handle complex terrain,
while also providing formal robustness guarantees on the
plan. Moreover, we incorporate the gait sequences as a de-
cision variable, which allows for automatic gait discovery.
Our experimental trials use both a state-of-the-art whole-body
controller and state estimation [22], [26]. We demonstrate
the capabilities of our approach by traversing challenging
terrains with the HyQ robot. To our knowledge, these hardware
experiments constitute the first experimental validation of non-
gaited uneven locomotion via friction cone stability margin.
Moreover, our implementation is able to plan locomotion
cycles in less than a second, even in complex scenarios, which
is at least two orders of magnitude faster than previous non-
convex approaches [8], [10] in similar environments.

In future work, we plan to expand on the capabilities of real-
time planning that this approach might offer, possibly reaching
similar computation time to [9]. To this end, friction cone
constraints could be relaxed to vertex-based ZMP constraints
[9], sacrificing stability guarantees but improving computation
time. Here, we have relied on a convex decomposition of
the angular dynamics. This approach works well for simple
motions where angular momentum rates are often low. How-
ever, it can cause the angular momentum to diverge when
the contact forces vary significantly. Because of this, we are
interested in exploring other models of angular dynamics, like
those proposed in [14], so as to generate more aggressive
behaviors. In this work, we have approximated torque limits
with a nominal operational space Jacobian that is updated iter-
atively. While this works well for the experiments performed,
it loses validity for more aggressive motions. For this reason,
we are interested in studying other approximations of torque
limits. We are further interested in exploiting the piecewise
affine structure of the multi-contact dynamics in the receding
horizon.
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