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Robust Observer-Based H∞ Stabilization of Switched Discrete-Time Linear
Systems with Parameter Uncertainties

H. BIBI1, A. ZEMOUCHE2,3, A. AITOUCHE4, K. CHAIB-DRAA2, F. BEDOUHENE1

Abstract— This paper presents a robust observer-based H∞
controller design method via LMIs for a class of switched
discrete-time linear systems with l2-bounded disturbances and
parameter uncertainties. The main contribution of this paper
consists in a new and judicious use of the slack variables coming
from Finsler’s lemma. We show analytically how the proposed
slack variables allow to eliminate some bilinear matrix coupling.
The effectiveness of the proposed design methodology is shown
through a numerical example.

Index Terms— Observer-based control; Linear matrix In-
equalities (LMIs); Switched Lyapunov Functions (SLF);
Finsler’s lemma.

I. INTRODUCTION AND PRELIMINARIES

A. Introduction

Hybrid and Switched systems may be encountered in
several engineering applications [1], [2]. Among them, we
may cite the control of motor engine [3] and networked
systems [4]. Stability issues of such switching processes have
been the subject of growing interest in the last decades.
An overview of some basic problems related to that are
summarized in [1].

Usually, the considered switched systems, in the literature,
consist of linear subsystems or first-order nonlinear subsys-
tems. However, unfortunately up to now, no complex dy-
namics such as stochastic noises and unknown uncertainties
have been taken into account. In addition to that, plenty of
industrial systems cannot be described by simple switched
system models. Hence, traditional control synthesis methods
are no longer applicable for such systems. In this context,
we target, in this paper, the study of a class of switching
linear discrete-time systems affected by unknown distur-
bances. More precisely, we are interested in H∞ observer-
based controller problem in the synchronous switching case,
using LMI approach. Control techniques by switching among
different controllers have been applied extensively in recent
years ( [5], [6], [7], [2]). However, in this case, a fundamental
pre-requisite for the design of feedback control systems is
full knowledge of the state that may be impossible or costly.
This obstacle motivated the researchers to investigate the
problem of estimating the state of switching systems by
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different observer structures [8], [6], [9], [10]. Moreover, it
is always desirable to design a control system which is not
only stable, but also which guarantees an adequate level of
performance. This is the reason why control systems design
that can handle model uncertainties has been one of the
most challenging problems, and has received considerable
attention from control engineers and scientists [11], [12],
[13]. Indeed, such a problem remains far from being solved
especially when switched systems are concerned. Among the
works dealing with the output feedback control for a class
of switching discrete-time linear systems with parameters
uncertainties, we cite [14], [15], [16] and [17], that constitute
the main motivation of the present work.

The problem of observer-based stabilization of a class of
switched linear systems has been first considered in [15]
for systems without disturbances, using Finsler’s lemma
combined with a switching Lyapunov function [5]. Unfor-
tunately, an error has been occurred when applying the
Finsler lemma. Although a corrected version has been given
in [17] where many LMI scenarios have been provided for
several ways of use of the Finsler’s Lemma, the inferred LMI
synthesis conditions are conservative. Hence the observer-
based stabilization problem for switching systems remains
still open until now. Much remains to be done to improve the
available LMI methods. The proposed work may be viewed
as:

(i) an extension of the technique in [17] to systems with
disturbances in the dynamical equations and the output
measurements;

(ii) an improvement of the LMI techniques in [17] by intro-
ducing a more general structure of the slack variables
coming from Finsler’s lemma.

It is worth to notice that the obtained result can be
applied to robust observer-based H∞ control design problem
for polytopic uncertain linear time varying systems. Indeed,
asymptotic stability problem for switched linear systems with
arbitrary switching is equivalent to the robust asymptotic
stability problem for polytopic uncertain linear time-varying
systems, for which conservative stability conditions are avail-
able in the literature [18].

B. Preliminary lemmas

In this subsection, we provide some useful lemmas,
namely the Finsler’s Lemma, the Young’s relation, and the
Schur Lemma. The main contribution of this paper is based
on a convenient exploitation of Finsler’s lemma.
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Lemma 1 (Finsler’s Lemma [18]): Let x ∈ Rn, P ∈
Sn×n, and H ∈ Rm×n such that rank (H) = r < n. The
following statements are equivalent:

1) xTPx < 0, ∀Ux = 0, x 6= 0,
2) ∃X ∈ Rn×m such that P +XU + UTXT < 0.

Lemma 2 (Schur Lemma [19]): Let Q1, Q2, and Q3 be
three matrices of appropriate dimensions such that Q1 = QT1
and Q3 = QT3 . Then, Q3 < 0 and Q1 − Q2Q

−1
3 QT2 < 0 if

and only if [
Q1 Q2

QT2 Q3

]
< 0 .

Lemma 3 (Young’s relation [19]): For given matrices
X and Y of appropriate dimensions, we have for any matrix
S > 0,

XTY + Y TX ≤ XTSX + Y TS−1Y.

The rest of the paper is organized as follows. Section II is
devoted to the problem formulation. The main contribution
is presented and proved in Section III. A numerical example
is presented in Section IV to show the superiority of the
proposed methodology compared to the existing results in
the literature. Finally, we end the paper by a conclusion.

II. FORMULATION OF THE PROBLEM

A. System description and assumptions
Let us consider the class of switching discrete-time linear

systems described by:

xt+1 = (Aσt + ∆Aσt)xt +Bσtut + Eσtωt (1a)
yt = (Cσt + ∆Cσt)xt + Sσtωt (1b)
zt = Hσtxt +Dσtut + Jσtωt (1c)

where t ∈ N, xt ∈ Rn is the state vector, yt ∈ Rp is the
output measurement, ut ∈ Rm is the control input, wt ∈
Rv is an unknown exogenous disturbance, zt ∈ Rq is the
controlled output, and σ : N→ Λ = {1, 2, . . . , N}, t 7→ σt,
is a switching rule.

Without ambiguity and for shortness, we write σ instead
of σt. The matrices Aσ ∈ Rn×n, Bσ ∈ Rn×m, Eσ ∈ Rn×v ,
Cσ ∈ Rp×n, Sσ ∈ Rp×v , Hσ ∈ Rq×n, Dσ ∈ Rq×m, and
Jσ ∈ Rq×v, σ ∈ Λ, are constant with real coefficients.

The uncertainties ∆Aσ and ∆Cσ are structured and norm-
bounded in the sense of conditions

[∆Aσ, ∆Cσ] = [Mσ, Nσ] Γσ [Eσ, Sσ], (2)

ΓTσΓσ ≤ I, (3)

where the matrices Mσ, Nσ, Eσ,Sσ are known constant
which characterize the structure of the uncertainty, and the
normalized matrix Γσ contains the uncertain parameters.

The pairs (Aσ, Bσ) and (Aσ, Cσ) are assumed to be sta-
bilizable and detectable, respectively. Throughout the paper,
the coming assumptions are to build (see e.g. [15], [17]).
Assume without loss of generality that the switching rule σt
satisfies the following two items:
• The switching rule σ is not known a priori, but its

instantaneous value is available in real time.
• The switching of the observer for systems should coin-

cide exactly with the switching of the system.

B. H∞ Observer-based stabilization problem

The state observer-based controller we consider in this
paper has the following standard structure:

x̂t+1 = Aσx̂t +Bσut + L
(
yt − Cσx̂t

)
(4a)

ut = Kσx̂t (4b)

where x̂t ∈ Rn is the estimate of xt, and for each
σ ∈ Λ, Lσ ∈ Rn×p,Kσ ∈ Rm×n is the observer-based
controller gains to be determined such that the estimation
error et = xt − x̂t and the state xt satisfy a prescribed
performance criterion, namely the H∞ criterion considered
in this paper.

From (1) and (4), the dynamics of the augmented vector
x̄t = [x̂Tt eTt ]T is given by:

xt+1 =

[
Ω11(σ) Ω12(σ)
Ω21(σ) Ω22(σ)

]
︸ ︷︷ ︸

Ωσ

x̄t +

[
LσSσ

LσSσ − Eσ

]
︸ ︷︷ ︸

Πσ

wt

, Ωσx̄t + Πσwt (5)

where

Ω11(σ) = Aσ +BσKσ + Lσ∆Cσ, (6a)
Ω12(σ) = −Lσ(Cσ + ∆Cσ), (6b)
Ω21(σ) = −(∆Aσ − Lσ∆Cσ), (6c)
Ω22(σ) = Aσ + ∆Aσ − Lσ(Cσ + ∆Cσ). (6d)

Let us define the indicator function

ξ(t) = [ξ1(t), ξ2(t), . . . , ξN (t)]T

as follows:
ξi(t) =

{
1, σt = i;
0, otherwise.

Therefore, system (5) and zt in (1c) can be rewritten in the
unified form:[

x̄t+1

zt

]
=

N∑
i=1

ξi(t)

[
Ωi Πi

Hi +DiKi −Hi

] [
x̄t
wt

]
, (7)

where Ωi are defined in (5)-(6), when σt = i.
In the aim to analyze stability of the closed-loop sys-

tem (7), we use the switched Lyapunov function defined as:

V (x̄t, ξ(t)) = x̄Tt P̂ (ξ(t))x̄t

=

N∑
i=1

ξi(t)x
T
t

[
P̂ 11
i P̂ 12

i

(?) P̂ 22
i

]
x̄t. (8)

Notice that the Lyapunov function (8) is well known in the
literature, (see for instance [10] and [20]). For shortness we
use σt = i and σt+1 = j. This means that ξi(t) = 1 and
ξj(t+ 1) = 1. Then we have

∆Vij(t) , V (xt+1, ξ(t+ 1))− V (xt, ξ(t))

= xTt+1(

N∑
i=1

ξi(t+ 1)P̂i)xt+1 − xTt (

N∑
i=1

ξi(t)P̂i)xt

= [xTt xTt+1]

[
−P̂i 0

0 P̂j

]
[xTt xTt+1]T (9)



Hence the H∞ performance criterion is fulfilled if the
following inequality holds:

ϑij(t) := ∆Vij(t) + zTt zt − µwTt wt < 0. (10)

It is worth to notice that the inequalities (10) are sufficient
to ensure the H∞ criterion

‖z‖`n2 ≤
√
µ‖w‖2

`q2
+ ν‖z0‖2 (11)

where
√
µ is the disturbance attenuation level, representing

the disturbance gain from w to z, and ν > 0 is to be
determined. To show how (10) implies the classical H∞
criterion (11), we refer the reader to [21] and [22] for
instance. This criterion is well known in the literature and
the use of Lyapunov analysis like in (10) is standard.

C. Application of Finsler’s Lemma

Now we will exploit the Finsler’s lemma to get sufficient
conditions ensuing ϑij(t) < 0 for all t ≥ 0.

Let us introduce the following notations:

ζt =

 xt
xt+1

wt

 , Pij =


−P̂i 0 0 Υi

(?) P̂j 0 0
(?) (?) −µI JTi
(?) (?) (?) −I

 ,
Ui =

[
Ωi −I Πi

]
,

Υi =

[
KT
i D

T
i +HT

i

−HT
i

]
, ∀i, j ∈ Λ

We have Uiζt = 0 and ϑ(t) = ζ>t Pijζt. Then, from
Lemma 1 (Finsler’s Lemma), we deduce that

ϑ(t) < 0, ∀Uiζt = 0, ζt 6= 0

if there exists

Xi,j =

Fi,jGi,j
Ti,j


such that

Pij +Xi,jUi + UTi X
T
i,j < 0. (12)

After developing the calculations, we get the following
equivalent detailed form of (12):
=ij −Fij + ΩTi G

T
ij FijΠi + ΩTi T

T
ij Υi

(?) P̂j −He(Gij) GijΠi − TTij 0
(?) (?) −µI + He(TijΠi) JTi
(?) (?) (?) −I

 < 0, (13)

for all i, j ∈ Λ, where =ij = He(FijΩi)−P̂i, and He(Y ) =
Y + Y T , for any matrix Y .

Rewriting the matrices Fij , Gij , Tij and P̂i under the
detailed forms:

Fij =

[
F 11
ij F 12

ij

F 21
ij F 22

ij

]
, (14)

Gij =

[
G11
ij G12

ij

G21
ij G22

ij

]
, (15)

P̂i =

[
P̂ 11
i P̂ 12

i

(?) P̂ 22
i

]
, (16)

Tij =
[
T 1
ij T 2

ij

]
, (17)

we get the equivalent detailed form of (13):[
Ψij

[
ΥT
i 0 0 Ji

]T
(?) −I

]
< 0, (18)

for all i, j ∈ Λ, where

Ψij =


Ωij11 Ωij12 Ωij13 Ωij14 Ωij15

(?) Ωij22 Ωij23 Ωij24 Ωij25

(?) (?) Ωij33 P̂ 12
j −G12

ij − (G21
ij )T Ωij35

(?) (?) (?) P̂ 22
j −G22

ij − (G22
ij )T Ωij45

(?) (?) (?) (?) Ωij55

 ,

Ωij11 =− P̂ 11
i + He

(
F 11
ij Ai + F 11

ij BiKi + (F 11
ij + F 12

ij )Li∆Ci

− F 12
ij ∆Ai

)
,

Ωij12 = −P̂ 12
i + F 12

ij (Ai + ∆Ai)− (F 11
ij + F 12

ij )Li(Ci + ∆Ci)

+KT
i B

T
i (F 21

ij )T +ATi (F 21
ij )T + ∆CTi L

T
i (F 21

ij + F 22
ij )T

−∆ATi (F 22
ij )T ,

Ωij13 =− F 11
ij +ATi (G11

ij )T +KT
i B

T
i (G11

ij )T −∆ATi (G12
ij )T

+ ∆CTi L
T
i (G11

ij +G12
ij )T ,

Ωij14 =− F 12
ij +ATi (G21

ij )T +KT
i B

T
i (G21

ij )T −∆ATi (G22
ij )T

+ ∆CTi L
T
i (G21

ij +G22
ij )T ,

Ωij15 =ATi (T 1
ij)

T +KT
i B

T
i (T 1

ij)
T + ∆CTi L

T
i (T 1

ij + T 2
ij)

T

−∆ATi (T 2
ij)

T + (F 11
ij + F 12

ij )LiSi − F 12
ij Ei,

Ωij22 =− P̂ 22
i + He

(
F 22
ij Ai + F 22

ij ∆Ai

− (F 22
ij + F 21

ij )Li(Ci + ∆Ci)
)
,

Ωij23 =− F 21
ij − (Ci + ∆Ci)

TLTi (G11
ij +G12

ij )T +ATi (G12
ij )T

+ ∆ATi (G12
ij )T ,

Ωij24 =− F 22
ij +ATi (G22

ij )T + ∆ATi (G22
ij )T

− (Ci + ∆Ci)
TLTi (G22

ij +G21
ij )T ,

Ωij25 =− (Ci + ∆Ci)
TLTi (T 1

ij + T 2
ij)

T +ATi (T 2
ij)

T

+ ∆ATi (T 2
ij)

T + (F 21
ij + F 22

ij )LiSi − F 22
ij Ei,

Ωij33 = P̂ 11
j − (G11

ij )T −G11
ij ,

Ωij35 =(G11
ij +G12

ij )LiSi −G12
ij Ei − (T 1

ij)
T ,

Ωij45 =(G21
ij +G22

ij )LiSi −G22
ij Ei − (T 2

ij)
T ,

Ωij55 =− µI + He
(

(T 1
ij + T 2

ij)LiSi − T 2
ijEi

)
.

In the next section we will provide some techniques allowing to
handle the BMI problem (18). By exploiting the Finsler’s lemma,
we will show that convenient choices of some matrices in Xij lead
to less conservative LMI conditions compared to the existing results
in the literature.

III. NEW LMI DESIGN TECHNIQUE

This section is devoted tot the main contribution of this paper. We
will propose new and less conservative LMI conditions to handle the
observer-based stabilization problem for a class of linear switched
systems in the presence of L2 bounded disturbances and norm-
bounded parameter uncertainties.

A. Main Theorem
This subsection is devoted to the main result of the paper. We

will provide less conservative LMI synthesis conditions ensuring
the H∞ criterion (11).



Theorem 1: If for i, j ∈ Λ there exist positive definite matrices
P̃ 11
i , P̂ 22

i ∈ Rn×n, invertible matrices G22
i , G̃

11
ij , F̃

11
i ∈ Rn×n,

matrices K̃i ∈ Rm×n, L̂i ∈ Rn×p, such that the following convex
optimization problem holds for some positive constants εi and λi:

min(µ) subject to (19)[
Ξij Si
(?) Di

]
< 0, ∀i, j ∈ Λ, (20)

where

Ξij =



Υi
11 −Ai Υij

13 I Ei Υi
16 0

(?) −P̂ 22
i −ATi Υi

24 0 −HT
i 0

(?) (?) Υij
33 I Ei 0 G̃11

ij

(?) (?) (?) Υij
44 Υi

45 0 0
(?) (?) (?) (?) −µI JTi 0
(?) (?) (?) (?) (?) −I 0

(?) (?) (?) (?) (?) (?) −P̃ 11
j


,

(21)

Υi
11 =P̃ 11

i + He
(
− F̃ 11

i +Ai(F̃
11
i )T +BiK̃i

)
,

Υij
13 =F̃ 11

i ATi + K̃T
i B

T
i − (G̃11

ij )T ,

Υi
16 =K̃T

i D
T
i + F̃ 11

i HT
i ,

Υi
24 =ATi (G22

i )T − CTi L̂Ti ,
Υij

33 =−He(G̃11
ij ),

Υi
45 =L̂iSi −G22

i Ei,

Υij
44 =P̂ 22

j −G22
i − (G22

i )T , (22)

Si =



−F̃ 11
i ETi −Mi F̃ 11

i STi 0
ETi 0 −STi 0
0 −Mi 0 0

0 G22
i Mi 0 L̂iNi

0 0 0 0
0 0 0 0
0 0 0 0


, (23)

Di = diag(−ε−1
i I,−εiI,−λ−1

i I,−λiI), (24)

then the H∞ criterion (11) is satisfied with the obtained minimum
attenuation level µ and the observer-based controller gains:

Ki = K̃i(F̃
11
i )−T , Li = (G22

i )−1L̂i. (25)

B. Proof of Theorem 1
The proof is too long and uses different tools. To enhance the

clarity of the contributions, we shared it into three steps. We will
present the linearization of the BMI (18) to get the LMI (20) step
by step until a full linearization.

1) First step: Linearization with respect to Ki:

From inequality (18), we can deduce that the matrices G11
ij , and

G22
ij are invertible. Let us focus on the case where F 11

ij is invertible
and independent of j. This is mainly due to the following principle
of congruence. Indeed, by pre- and post-multiply the left hand side
of (18) by

diag
(

(F 11
i )−1, I, (G11

ij )−1, I
)

and by using the change of variables

G̃11
ij = (G11

ij )−1, F̃ 11
i = (F 11

i )−1, K̃i = Ki(F̃
11
i )T

we get the equivalent inequality
Ω̃ij11 Ω̃ij12 Ω̃ij13 Ω̃ij14 Ω̃ij15 K̃T

i D
T
i + F̃ 11

i HT
i

(?) Ωij22 Ω̃ij23 Ωij24 Ωij25 −HT
i

(?) (?) Ω̃ij33 Ω̃ij34 Ω̃ij35 0
(?) (?) (?) Ωij44 Ωij45 0
(?) (?) (?) (?) Ωij55 JTi
(?) (?) (?) (?) (?) −I

 < 0,

(26)
where

Ω̃ij11 =− F̃ 11
i P̂ 11

i (F̃ 11
i )T + He

(
Ai(F̃

11
i )T +BiK̃i

+ (I + F̃ 11
i F 12

ij )Li∆Ci(F̃
11
i )T − F̃ 11

i F 12
ij ∆Ai(F̃

11
i )T

)
,

Ω̃ij12 =F̃ 11
i F 12

ij (Ai + ∆Ai)− (I + F̃ 11
i F 12

ij )Li(Ci + ∆Ci)

+ K̃T
i B

T
i (F 21

ij )T + F̃ 11
i ATi (F 21

ij )T − F̃ 11
i P̂ 12

i

+ F̃ 11
i ∆CTi L

T
i (F 21

ij + F 22
ij )T − F̃ 11

i ∆ATi (F 22
ij )T ,

Ω̃ij13 =− (G̃11
ij )T + F̃ 11

i Ai
T + K̃T

i B
T
i − F̃ 11

i ∆Ai
T (G̃11

ijG
12
ij )T

+ F̃ 11
i ∆CTi L

T
i (I + G̃11

ijG
12
ij )T ,

Ω̃ij14 =− F̃ 11
i F 12

ij + F̃ 11
i ATi (G21

ij )T + K̃T
i B

T
i (G21

ij )T

− F̃ 11
i ∆Ai

T (G22
ij )T + F̃ 11

i ∆CTi L
T
i (G21

ij +G22
ij )T ,

Ω̃ij15 =F̃ 11
i ATi (T 1

ij)
T + K̃T

i B
T
i (T 1

ij)
T + F̃ 11

i ∆CTi L
T
i (T 1

ij + T 2
ij)

T

− F̃ 11
i ∆ATi (T 2

ij)
T + (I + F̃ 11

i F 12
ij )LiSi − F̃ 11

i F 12
ij Ei,

Ω̃ij23 =− F 21
ij (G̃11

ij )T − (Ci + ∆Ci)
TLTi (I + G̃11

ijG
12
ij )T

+ (ATi + ∆ATi )(G̃11
ijG

12
ij )T ,

Ω̃ij33 =G̃11
ij P̂

11
j (G̃11

ij )T − G̃11
ij − (G̃11

ij )T ,

Ω̃ij34 =G̃11
ij P̂

12
j − G̃11

ijG
12
ij − G̃11

ij (G21
ij )T ,

Ω̃ij35 =(I + G̃11
ijG

12
ij )LiSi − G̃11

ijG
12
ij Ei − G̃11

ij (T 1
ij)

T ,

Ωij44 =P̂ 22
j −G22

ij − (G22
ij )T .

Note that F 11
ij must depend only on i, otherwise the previous

congruence principle reveals the term Ki(F̃
11
ij )T , which prevents a

change of variables with respect to the gain Ki.
There are still some bilinear terms related to K̃i, which need to

be avoided, namely the coupling of K̃i with F 21
ij , G

21
ij , T

1
ij and T 2

ij .
To do this, the best way we propose is the following convenient
and judicious choice:

G21
ij = F 21

ij = 0, T 1
ij = T 2

ij = 0.

This is mainly do to the presence of bilinear terms
F̃ 11
i ATi (T 1

ij)
T , F̃ 11

i ∆ATi (T 2
ij)

T , which may lead to very
conservative conditions if they are not null. Consequently, by using
the change of variable P̃ 11

i = (P̂ 11
i )−1 and the following Young’s

inequality −F̃ 11
i P̂ 11

i (F̃ 11
i )T ≤ P̃ 11

i − F̃ 11
i − (F̃ 11

i )T , we deduce
that (26) is fulfilled if the following inequality holds:



Ω̂ij11 Ω̂ij12 Ω̂ij13 Ω̂ij14 Ω̂ij15 K̃T
i D

T
i + F̃ 11

i HT
i

(?) Ω̂ij22 Ω̂ij23 Ω̂ij24 Ω̂ij25 −HT
i

(?) (?) Ω̃ij33 Ω̂ij34 Ω̂ij35 0

(?) (?) (?) Ωij44 Ω̂ij45 0
(?) (?) (?) (?) −µI JTi
(?) (?) (?) (?) (?) −I

 < 0,

(27)
where

Ω̂ij11 =P̃ 11
i + He

(
− F̃ 11

i +Ai(F̃
11
i )T +BiK̃i

+ (I + F̃ 11
i F 12

ij )Li∆Ci(F̃
11
i )T − F̃ 11

i F 12
ij ∆Ai(F̃

11
i )T

)
,



Ω̂ij12 =F̃ 11
i F 12

ij (Ai + ∆Ai)− (I + F̃ 11
i F 12

ij )Li(Ci + ∆Ci)

+ F̃ 11
i ∆CTi L

T
i (F 22

ij )T − F̃ 11
i ∆ATi (F 22

ij )T − F̃ 11
i P̂ 12

i ,

Ω̂ij13 =− (G̃11
ij )T + F̃ 11

i Ai
T + K̃T

i B
T
i − F̃ 11

i ∆Ai
T (G̃11

ijG
12
ij )T

+ F̃ 11
i ∆CTi L

T
i (I + G̃11

ijG
12
ij )T ,

Ω̂ij14 =− F̃ 11
i F 12

ij − F̃ 11
i ∆Ai

T (G22
ij )T + F̃ 11

i ∆CTi L
T
i (G22

ij )T ,

Ω̂ij15 =(I + F̃ 11
i F 12

ij )LiSi − F̃ 11
i F 12

ij Ei,

Ω̂ij22 =− P̂ 22
i + He

(
F 22
ij Ai + F 22

ij ∆Ai − F 22
ij Li(Ci + ∆Ci)

)
,

Ω̂ij23 =− (Ci + ∆Ci)
TLTi (I + G̃11

ijG
12
ij )T

+ (ATi + ∆ATi )(G̃11
ijG

12
ij )T ,

Ω̂ij24 =− F 22
ij +ATi (G22

ij )T + ∆ATi (G22
ij )T

− (Ci + ∆Ci)
TLTi (G22

ij )T ,

Ω̂ij25 =F 22
ij LiSi − F 22

ij Ei,

Ω̃ij33 =G̃11
ij P̂

11
j (G̃11

ij )T − G̃11
ij − (G̃11

ij )T ,

Ω̂ij34 =G̃11
ij P̂

12
j − G̃11

ijG
12
ij ,

Ω̂ij35 =(I + G̃11
ijG

12
ij )LiSi − G̃11

ijG
12
ij Ei,

Ω̂ij45 =G22
ij LiSi −G22

ij Ei.

Now that the BMI (18) is linearized with respect to the
matrices K̃i, we will proceed to the linearization with respect
to the observer gains Li. The next second step is dedicated
to this issue.

2) Second step: Semi-linearization with respect to Li:

The gains Li are coupled with the matrices (I +
F̃ 11
i F 12

ij )LiCi, (I + G̃11
ijG

12
ij )LiCi, F 22

ij LiCi, and G22
ij LiCi.

Since G22
ij is necessarily invertible and Li depends only on i,

then to avoid complicated bilinearities, we take G22
ij = G22

i
independent of j. With the following convenient matrices:

Fi =

[
F 11
i −F 11

i

0 0

]
, (28a)

Gij =

[
G11
ij −G11

ij

0 G22
i

]
, (28b)

P̂ 12
i = 0, (28c)

and the change of variable L̂i = G22
i Li, we get the following

semi-linearized version of (27) with respect to Li:

Θi
11 Θi

12 Θij
13 Θi

14 Ei Θi
16 0

(?) −P̂ 22
i Θi

23 Θi
24 0 −HT

i 0

(?) (?) Θij
33 I Ei 0 G̃11

ij

(?) (?) (?) Θij
44 Θi

45 0 0
(?) (?) (?) (?) −µI JTi 0
(?) (?) (?) (?) (?) −I 0

(?) (?) (?) (?) (?) (?) −P̃ 11
j


< 0,

(29)
where

Θi
11 =P̃ 11

i + He
(
− F̃ 11

i +Ai(F̃
11
i )T +BiK̃i + ∆Ai(F̃

11
i )T

)
,

Θi
12 =− (Ai + ∆Ai),

Θij
13 =− (G̃11

ij )T + F̃ 11
i Ai

T + K̃T
i B

T
i + F̃ 11

i ∆Ai
T ,

Θi
14 =I − F̃ 11

i ∆Ai
T (G22

i )T + F̃ 11
i ∆CTi L̂

T
i ,

Θi
16 =K̃T

i D
T
i + F̃ 11

i HT
i ,

Θi
23 =− (ATi + ∆ATi ), Θij

33 = −G̃11
ij − (G̃11

ij )T ,

Θi
24 =ATi (G22

i )T + ∆ATi (G22
i )T − (Ci + ∆Ci)

T L̂Ti ,

Θij
44 =P̂ 22

j −G22
i − (G22

i )T , Θi
45 = L̂iSi −G22

i Ei.

In fact, equations (28a)-(28b) imply

I + F̃ 11
i F 12

ij = 0, (30a)

I + G̃11
ijG

12
ij = 0, (30b)

which mean that the bilinear terms (I+ F̃ 11
i F 12

ij )LiCi, (I+

G̃11
ijG

12
ij )LiCi related to Li vanish. Finally, with (28c) and

from Schur Lemma applied on the term G̃11
ij P̂

11
j (G̃11

ij )T , we
get easily (29).

Hence all the bilinear terms except those related to ∆Ai
and ∆Ci, are avoided. The linearization of the terms related
to the uncertainties is the aim of the next and last step of the
proof.

3) Third step: Full linearization :

In this subsection, we use the Young relation for linearize
the uncertainties. By developing ∆Ai and ∆Ci , we can
rewrite the previous inequality in the following more suitable
form:

Inequality (29) may be rewritten under the form:

Ξij + He
(
ZTi1ΓTi Zi2 + ZTi3ΓTi Zi4

)
< 0, (31)

where

Zi1 =
[
−Ei(F̃ 11

i )T Ei 0 0 0 0 0
]
,

Zi3 =
[
Si(F̃ 11

i )T −Si 0 0 0 0 0
]
,

Zi2 =
[
−MT

i 0 −MT
i MT

i (G22
i )T 0 0 0

]
,

Zi4 =
[
0 0 0 NT

i L̂
T
i 0 0 0

]
,

and Ξij is defined in (21). Consequently, applying the well
known Young’s inequality, we deduce that (31) holds if the
following one is satisfied:

Ξij + εiZ
T
i1Zi1 + ε−1i ZTi2Zi2 + λiZ

T
i3Zi3 + λ−1i ZTi4Zi4 < 0

(32)
where εi, λi are some positive scalars coming from Young’s
relation. finally, by using again Schur Lemma (2), inequal-
ity (32) is fulfilled if the LMI (20) is feasible. This ends the
proof of Theorem 1.

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example to show
the validity and effectiveness of the proposed design method-
ology. Through this example, we will show that the proposed
LMIs (20) are less conservative than those provided in [12].
Then, we reconsider the same example given in [12], which
is a linear system without parameter uncertainties. The
system is described by the following matrices:

A =

 δ 0.8 −0.4
−0.5 0.4 0.5
1.2 1.1 0.8

 , B =

 0 1
2 −1
0 1.3

 ,
ET =

[
0.1 0.4 0.1

]
, C =

[
−1 1.2 1
0 −3 1

]
, D = 0,



ST =
[

0.1 0.4
]
, H =

[
−1 0 2

]
, J = 0.3

Obviously, this example can be viewed as a switching
system under the form (1) with only one mode (there are no
switching) and with ∆Ai = ∆Ci = 0. We test the feasibility
for different values of δ and we look for the minimum value
of µmin provided by each method. Table I summarizes the
results.

δ Theorem 1 in [12] LMI (20)

(α, β) µmin µmin

0.5 (−0.03,−2.85) 0.5523 0.3703

1.2 (0.11, 3.66) 0.6307 0.3703

1.7 (1.03, 4.08) 2.9248 0.3703

1.9 (−1.20, −1.69) 16.1504 0.3703

TABLE I
EXAMPLE 2: VALUE OF µmin FOR TWO LMI DESIGN METHODS

V. CONCLUSION

In this paper, new LMI conditions have been developed
for the problem of the stabilization of a class of switching
discrete-time linear systems with parameter uncertainties and
l2-bounded disturbances. We have shown that a judicious
choice of slack variables coming from Finsler’s lemma leads
to less conservative LMIs. Analytical developments have
been provided to clarify how the proposed choice allows to
eliminate some bilinear matrix coupling without using any
conservative inequality. The validity of the proposed design
method is shown through a numerical example.

In future work, we hope to extend our technique to
more general classes of switching systems, namely nonlinear
systems, systems with uncertainties in all the matrices of the
model, and linear parameter varying systems with inexact
parameters.
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