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This note is an addendum to [1, 2], pointing out the differences between these papers and raising open questions.

The authors of [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF]Theorem 2.11] developed in 2017 a different approach, with packages of needlelike variations and necessary conditions for an extreme in a cone. Note that the authors of [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF] prove moreover in [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF]Theorem 2.13] that the necessary conditions derived in the PMP are also sufficient in the linear-convex case.

In the sequel of this paragraph, we focus on the major pros and cons of each approach:

1. In [START_REF] Bourdin | Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales[END_REF]: (a) The set Ω of control constraints is assumed to be closed. This is in order to apply the Ekeland variational principle on a complete metric space.

(b) There is no assumption on the time scale T.

In [2]:

(a) The set Ω of control constraints is assumed to be convex, but need not to be closed. Hence, the method developed in [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF] allows to remove the closedness assumption done on Ω in [START_REF] Bourdin | Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales[END_REF], but this is at the price of an additional assumption on the time scale T.

In Additional comments on the terminal constraints. In [START_REF] Bourdin | Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales[END_REF] the authors considered constraints on the initial/final state of the kind g(x(t 0 ), x(t 1 )) ∈ S, where S is a nonempty closed convex set and g is a general smooth function.

In [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF] the authors considered constraints on the initial/final state of the kind Φ i (x(t 0 ), x(t 1 )) = 0 for i = 1, . . . , k, and Φ i (x(t 0 ), x(t 1 )) ≤ 0 for i = k+1, . . . , n, where Φ i are general smooth functions.

Contrarily to what is claimed in [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF], the terminal constraints considered in [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF] are only a particular case of the ones considered in [START_REF] Bourdin | Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales[END_REF]. Indeed, it suffices to take

g = (Φ 1 , . . . , Φ k , Φ k+1 , . . . , Φ n ) and S = {0} × . . . × {0} × R -× . . . × R -.
Moreover, note that the necessary condition -Ψ ∈ O S (g(x(t 0 ), x(t 1 ))) obtained in [1, Theorem 1] encompasses both the sign condition (1) and the complementary slackness (2) obtained in [2, Theorem 2.11]. For the sign condition, it is sufficient to recall that the orthogonal of R -at a point x ∈ R -is included in R + . For the complementary slackness, it is sufficient to recall that the orthogonal of S at g(x(t 0 ), x(t 1 )) is reduced to {0} when g(x(t 0 ), x(t 1 )) belongs to the interior of S.

Additional comments on the convexity of Ω. The set Ω is assumed to be convex in [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF], while it is not in [START_REF] Bourdin | Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales[END_REF]. As explained in [1, Section 3.1], in order to apply necessary conditions of an extreme in a cone, the authors of [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF] require that the parameters of perturbations live in intervals. As a consequence, in order to remove the convexity assumption on Ω, one would need (local-directional) convexity of the set Ω for perturbations at right-scattered points, which is a concept that differs from the stable Ω-dense directions used in [START_REF] Bourdin | Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales[END_REF]. Hence, in spite of the claim done in [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF], the convexity assumption on Ω does not seem to be easily removable.

where T k denotes the operator removing the open (α k , 1 -α k )-central part of all intervals. Note that the classical Cantor set corresponds to the case where α k = 1 3 for every k ∈ N. In our situation, we obtain

A 1 = [0, α 0 ] ∪ [1 -α 0 , 1], A 2 = [0, α 1 α 0 ] ∪ [(1 -α 1 )α 0 , α 0 ] ∪ [1 -α 0 , 1 -(1 -α 1 )α 0 )] ∪ [1 -α 1 α 0 , 1] ,
etc. We define the generalized Cantor set T = ∩ k∈N A k . In order to prove that the time scale T satisfies the density conditions, from the fractal properties of T, it suffices to prove that the density condition is satisfied at the right-dense point 0 ∈ T. More precisely, it is sufficient to prove that lim β→0 + β∈T µ(β) β = 0.

Since µ(β) = 0 for every right-dense point β, we only have to consider the case where β is a rightscattered point of T. In that case, one can easily see that µ(β) β ≤ 1-2α k α k for some k ∈ N and that k tends to +∞ when β tends to 0. The conclusion follows from the fact that lim k→+∞ α k = 1 2 .

[ 1 ,

 1 Section 3.1], the authors explained why other approaches (other than the Ekeland variational principle), based for instance on implicit function arguments, or on Brouwer fixed point arguments, or on separation (Hahn-Banach) arguments, fail for general time scales. As a conclusion, a time scale version of the PMP without closedness assumption on Ω and without any assumption on the time scale T still remains an open challenge.

On the universal Lagrange multipliers. This paragraph is devoted to providing more details on the existence of universal Lagrange multipliers claimed in [2, page 25]. In the sequel, we use the notations of [START_REF] Bohner | Pontryagin's maximum principle for dynamic systems on time scales[END_REF], and we denote by S the unit sphere of R n+1 .

A package P consists of:

-N ∈ N and ν ∈ N; -τ = (τ 1 , . . . , τ N ) where τ i are right-dense points of T;

r = (r 1 , . . . , r ν ) where r i are right-scattered points of T.

-z = (z 1 , . . . , z ν ) where z i ∈ U .

Let (P i ) i∈I denotes the set of all possible packages. Following the proof of [2, Theorem 2.11], for every i ∈ I, there exists a nonzero vector λ = (λ 0 , . . . , λ n ) (that we renormalize in S) of Lagrange multipliers such that:

(i) ( 1) and ( 2) in [2, Theorem 2.11] are satisfied;

(ii) the adjoint vector Ψ solution of (2.9), with the final condition (3.65) which depends on λ, satisfies the initial condition Ψ(t 0 ) = L x0 ;

(iii) (4a) and (4b) in [2, Theorem 2.11] are satisfied, but only at the points contained in τ and r respectively.

For every i ∈ I, the above vector λ is not necessarily unique. Then, for every i ∈ I, we denote by K i the set of all nonzero and renormalized Lagrange multiplier vectors associated with P i satisfying the above properties.

By continuity of the adjoint vector Ψ with respect to the Lagrange multipliers (dependence from its final condition), we infer that K i is a nonempty closed subset contained in the compact S. This is true for every i ∈ I.

Now, let us prove that the family (K i ) i∈I satisfies the finite intersection property. Let J ⊂ I be a finite subset and let us prove that ∩ i∈J K i = ∅. Note that we can construct a package P corresponding to the union of all packages P i with i ∈ J. It follows that P ∈ (P i ) i∈I , and thus there exists a nonzero and renormalized Lagrange multiplier vector λ associated with P satisfying the above properties. Since λ ∈ K i for every i ∈ J, we conclude that

It follows from the lemma of a centered system in a compact set that ∩ i∈I K i = ∅, and we deduce the existence of a universal Lagrange multiplier vector.

On the density conditions and the Cantor set. Contrarily to what is claimed in [2, Example 2.5], the classical Cantor set does not satisfy the density conditions. However, generalized versions of the Cantor set (see, e.g., [START_REF] Turbin | Fractal sets, functions, distribution[END_REF]) that satisfy density conditions can be constructed as follows.

Let (α k ) k∈N be a real sequence such that 0 < α k < 1 2 for all k ∈ N, and such that lim k→+∞ α k = 1 2 . Let (A k ) k∈N be the sequence of compact subsets defined by the induction