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Abstract

This note is an addendum to [1, 2], pointing out the differences between these papers and
raising open questions.
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The main differences. In view of establishing a time scale version of the Pontryagin Maximum
Principle (PMP), the authors of [1, Theorem 1] have developed in 2013 a strategy of proof based
on the Ekeland variational principle. This strategy was originally considered for the classical
continuous case by Ivar Ekeland in his seminal paper [3].

The authors of [2, Theorem 2.11] developed in 2017 a different approach, with packages of needle-
like variations and necessary conditions for an extreme in a cone. Note that the authors of [2]
prove moreover in [2, Theorem 2.13] that the necessary conditions derived in the PMP are also
sufficient in the linear-convex case.

In the sequel of this paragraph, we focus on the major pros and cons of each approach:

1. In [1]:

(a) The set Ω of control constraints is assumed to be closed. This is in order to apply the
Ekeland variational principle on a complete metric space.

(b) There is no assumption on the time scale T.

2. In [2]:

(a) The set Ω of control constraints is assumed to be convex, but need not to be closed.
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(b) The time scale T is assumed to satisfy density conditions (see [2, Definition 2.4]) of the
kind

lim
β→0+

s+β∈T

µ(s+ β)

β
= 0,

for every right-dense points s, in order to guarantee that

lim
β→0+

1

β

∫
[s,s+β)T

x(τ) ∆τ = x(s),

for ∆-integrable function x and for right-dense ∆-Lebesgue points s, even for β > 0 such
that s+ β /∈ T. Note that a discussion about this issue was provided in [1, Section 3.1].

Hence, the method developed in [2] allows to remove the closedness assumption done on Ω in [1],
but this is at the price of an additional assumption on the time scale T.

In [1, Section 3.1], the authors explained why other approaches (other than the Ekeland variational
principle), based for instance on implicit function arguments, or on Brouwer fixed point arguments,
or on separation (Hahn-Banach) arguments, fail for general time scales.

As a conclusion, a time scale version of the PMP without closedness assumption on Ω and without
any assumption on the time scale T still remains an open challenge.

Additional comments on the terminal constraints. In [1] the authors considered constraints
on the initial/final state of the kind g(x(t0), x(t1)) ∈ S, where S is a nonempty closed convex set
and g is a general smooth function.

In [2] the authors considered constraints on the initial/final state of the kind Φi(x(t0), x(t1)) = 0
for i = 1, . . . , k, and Φi(x(t0), x(t1)) ≤ 0 for i = k+1, . . . , n, where Φi are general smooth functions.

Contrarily to what is claimed in [2], the terminal constraints considered in [2] are only a particular
case of the ones considered in [1]. Indeed, it suffices to take

g = (Φ1, . . . ,Φk,Φk+1, . . . ,Φn)

and
S = {0} × . . .× {0} × R− × . . .× R−.

Moreover, note that the necessary condition −Ψ ∈ OS(g(x(t0), x(t1))) obtained in [1, Theorem 1]
encompasses both the sign condition (1) and the complementary slackness (2) obtained in [2,
Theorem 2.11]. For the sign condition, it is sufficient to recall that the orthogonal of R− at a
point x ∈ R− is included in R+. For the complementary slackness, it is sufficient to recall that
the orthogonal of S at g(x(t0), x(t1)) is reduced to {0} when g(x(t0), x(t1)) belongs to the interior
of S.

Additional comments on the convexity of Ω. The set Ω is assumed to be convex in [2], while
it is not in [1]. As explained in [1, Section 3.1], in order to apply necessary conditions of an extreme
in a cone, the authors of [2] require that the parameters of perturbations live in intervals. As a
consequence, in order to remove the convexity assumption on Ω, one would need (local-directional)
convexity of the set Ω for perturbations at right-scattered points, which is a concept that differs
from the stable Ω-dense directions used in [1]. Hence, in spite of the claim done in [2], the convexity
assumption on Ω does not seem to be easily removable.
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On the universal Lagrange multipliers. This paragraph is devoted to providing more details
on the existence of universal Lagrange multipliers claimed in [2, page 25]. In the sequel, we use
the notations of [2], and we denote by S the unit sphere of Rn+1.

A package P consists of:

- N ∈ N and ν ∈ N;

- τ = (τ1, . . . , τN ) where τi are right-dense points of T;

- v = (v1, . . . , vN ) where vi ∈ U ;

- r = (r1, . . . , rν) where ri are right-scattered points of T.

- z = (z1, . . . , zν) where zi ∈ U .

Let (Pi)i∈I denotes the set of all possible packages.

Following the proof of [2, Theorem 2.11], for every i ∈ I, there exists a nonzero vector λ =
(λ0, . . . , λn) (that we renormalize in S) of Lagrange multipliers such that:

(i) (1) and (2) in [2, Theorem 2.11] are satisfied;

(ii) the adjoint vector Ψ solution of (2.9), with the final condition (3.65) which depends on λ,
satisfies the initial condition Ψ(t0) = Lx0 ;

(iii) (4a) and (4b) in [2, Theorem 2.11] are satisfied, but only at the points contained in τ and r
respectively.

For every i ∈ I, the above vector λ is not necessarily unique. Then, for every i ∈ I, we denote by
Ki the set of all nonzero and renormalized Lagrange multiplier vectors associated with Pi satisfying
the above properties.

By continuity of the adjoint vector Ψ with respect to the Lagrange multipliers (dependence from
its final condition), we infer that Ki is a nonempty closed subset contained in the compact S. This
is true for every i ∈ I.

Now, let us prove that the family (Ki)i∈I satisfies the finite intersection property. Let J ⊂ I
be a finite subset and let us prove that ∩i∈JKi 6= ∅. Note that we can construct a package P
corresponding to the union of all packages Pi with i ∈ J . It follows that P ∈ (Pi)i∈I , and thus
there exists a nonzero and renormalized Lagrange multiplier vector λ associated with P satisfying
the above properties. Since λ ∈ Ki for every i ∈ J , we conclude that ∩i∈JKi 6= ∅.
It follows from the lemma of a centered system in a compact set that ∩i∈IKi 6= ∅, and we deduce
the existence of a universal Lagrange multiplier vector.

On the density conditions and the Cantor set. Contrarily to what is claimed in [2, Ex-
ample 2.5], the classical Cantor set does not satisfy the density conditions. However, generalized
versions of the Cantor set (see, e.g., [4]) that satisfy density conditions can be constructed as
follows.

Let (αk)k∈N be a real sequence such that 0 < αk <
1
2 for all k ∈ N, and such that limk→+∞ αk = 1

2 .
Let (Ak)k∈N be the sequence of compact subsets defined by the induction

A0 = [0, 1], Ak+1 = Tk(Ak) ∀k ∈ N,
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where Tk denotes the operator removing the open (αk, 1 − αk)-central part of all intervals. Note
that the classical Cantor set corresponds to the case where αk = 1

3 for every k ∈ N.

In our situation, we obtain
A1 = [0, α0] ∪ [1− α0, 1],

A2 =
(

[0, α1α0] ∪ [(1− α1)α0, α0]
)
∪
(

[1− α0, 1− (1− α1)α0)] ∪ [1− α1α0, 1]
)
,

etc. We define the generalized Cantor set T = ∩k∈NAk. In order to prove that the time scale T
satisfies the density conditions, from the fractal properties of T, it suffices to prove that the density
condition is satisfied at the right-dense point 0 ∈ T. More precisely, it is sufficient to prove that

lim
β→0+

β∈T

µ(β)

β
= 0.

Since µ(β) = 0 for every right-dense point β, we only have to consider the case where β is a right-

scattered point of T. In that case, one can easily see that µ(β)
β ≤ 1−2αk

αk
for some k ∈ N and that

k tends to +∞ when β tends to 0. The conclusion follows from the fact that limk→+∞ αk = 1
2 .
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