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Abstract

The present study considers the identification of crystal plasticity parameters from the knowledge of a deformed
microstructure, which has been backtracked to the reference state, and known kinematics along the sample surface.
This theoretical question is tackled on a numerical (synthetic) test case. A 2D microstructure with one dimension
along the depth is generated, and deformed using known crystal plasticity law. A procedure is proposed to perform the
calibration of the constitutive parameters addressing the specific challenge of having a partial knowledge of the boundary
conditions. The proposed identification strategy combined with the estimation of the reference microstructure is shown
to retrieve the constitutive parameters with good accuracy.
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1 Introduction

The present study aims at addressing the feasibility of backtracking the 3D depth-resolved microstructure of the final state
to the initial one, in order to enhance the reliability of the interpretation of surface characterizations of mechanical tests
performed in-situ (i.e., in a scanning electron microscope). The surface deformation of sample surfaces can be measured
thanks to full-field measurement techniques such as Digital Image Correlation [1, 2, 3, 4]. This detailed information
is specific from the observed surface, yet without a reliable 3D microstructure it remains incomplete for mechanical
models. In a companion paper [5], the feasibility of the determination of undeformed microstructures from postmortem
microstructures was studied. It has been shown through a 2D virtual test that an approximate, yet accurate, picture of
the depth resolved microstructure of the initial state can be achieved. The present study focuses on the effect of this
reconstructed reference on identification results.

The paper is organized as follows. Section 2 details the proposed procedure to combine the determination of the
reference configuration and the calibration of material parameters. Section 3 is dedicated to a virtual experiment carried
out to validate the procedure.

2 Proposed procedure

2.1 Definition of the problem

Modeling in-situ mechanical tests at the microstructure scale requires two types of unknowns, namely, the reference
configuration Ωref of the microstructure and the constitutive equation parameters {p} (assuming the constitutive law itself
is either known or chosen). Identification consists in providing estimates of the unknown Ωref and {p}. An estimate of the
former can be obtained when the microstructure is known in the final deformed configuration, and when {p} is known [5].
This paper proposes to solve the problem of determining both microstructure and constitutive parameters iteratively,
assuming one set of unknowns and estimating the other up to stationarity. Those two steps are carried out alternatively
until convergence of both. The whole procedure is summarized in Figure 1 and detailed in following subsections. The part
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of the flowchart in the dashed red box aims at microstructure backtracking at given constitutive parameters, as detailed
in a companion paper [5]. The right part determines the constitutive parameters at fixed configuration, which is described
herein.

The global loop shown in Figure 1, is indexed by a simple superscript, m. Each left or right block also contains
iterations labeled internally with an index (n) in between parentheses. At iteration m, Ωm

ref and {pm} are input data.

Ωm
ref is updated to Ωm+1

ref and {pm} remains unchanged in the estimation of reference configuration [5], then {pm} is

updated to {pm+1} and Ωm+1
ref remains unchanged in the calibration procedure. The global loop is stopped when a

stationarity condition is met, which is based on the relative incremental correction norm between iterations m+ 1 and m.
As mentioned in the first part of the study [5], it is assumed that the algebraic form of the law and the relevant internal
parameters are correct and only parameters {p} are to be identified.

Start

Input: Ωexp
def , {p0}, uexp

obs , F exp

Initialization

Estimate of refer-
ence configuration

Calibration of con-
stitutive equations

‖Ωm+1
ref − Ωm

ref‖ < ε1

‖{p
m+1}−{pm}
{pm} ‖ < ε2

Output: Ωm
ref , {pm}

Stop

Ωexp
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obs

Ω0
ref , {p0}

{pm+1}, Ωm+1
ref

yes

no

{pm}, Ωm
ref

updated

Ωm+1
ref , {pm}

Figure 1: Flowchart summarizing the determination of the reference configuration of the microstructure and the parameters
of the chosen constitutive equation

2.2 Calibration of material parameters

Finite Element Model Updating (i.e., FEMU [6]), which is described in Figure 2, will be used to calibrate material
parameters. The FEMU algorithm is based on measured and computed displacement fields u, and applied load F data.
Such approaches have already been used for analyses and calibration purposes of crystal plasticity models [3, 4]. It will
be referred to as FEMU-UF. In this procedure, the inputs are:
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- the reference configuration Ωm
ref , which is assumed to be known and is not updated;

- an initial estimate of the material parameters {p(n)} that will be updated iteratively (index n);
- boundary conditions prescribed on the reference configuration during FE analyses;
- experimental kinematic field {uexp}, experimental loading force {F exp}.
The outputs are an updated estimate of the material parameters, which are based on the current reference configuration
Ωm

ref .
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Figure 2: Flowchart describing FEMU-UF

FEMU-UF consists in minimizing a global cost function [3, 4]

χ({pm}) =
1

2η2fNdofNt

∑
t

{δu}Tt [M ] {δu}t +
1

η2FNt
{δF }T {δF } (1)

where Ndof the number of (scalar) degrees of freedom of the surface mesh, Nt the number of time steps, {δu}t is the
column vector of the difference evaluated at surface mesh node between experimental {uexp}t and simulated {usim({pm})}t
displacements at time step t. [M ] is the DIC matrix [7], whose inverse characterizes the covariance matrix of the measured
degrees of freedom [8]. When displacement and load data are taken into account (hence the acronym UF for the FEMU
algorithm used herein), {δF } is the column vector of the load differences between measured and computed values. ηf and
ηF are the standard deviations of noise of the experimental images, and load measurement, respectively.

Boundary conditions of the FE calculation are a crucial point here again, in a similar spirit as for determining the
initial microstructure [5]. For the hidden boundaries that are not accessible a prescription is used to extrapolate the
displacement from those measured at the boundary of the observed surface (the discussion about those prescriptions is
deferred to Section 3). The observed surface is left traction-free (i.e., Neumann condition). This is sufficient for the
computation and because the displacements are not prescribed, the differences between computed and observed values,
{δu}t can be used to drive the identification using FEMU-UF.

3 Proof of concept

3.1 Virtual experiment

In the following the 2D synthetic test case detailed in the first part of the study [5] is considered to prove the feasibility of
the proposed procedure by comparing the results Ωref and {p} with known values. A constitutive law based on dislocation
dynamics for body centered cubic crystals (DD CC [9]) has been chosen in the FE simulations. The parameters adopted
in DD CC correspond to a pressure vessel reactor steel and were obtained by identification on a stress-strain curve of
ASTM A508 cl3 (16MND5) steel at room temperature [10]. For the sake of representativity, two virtual experiments have
been computed, corresponding to the same 2D microstructure and boundary conditions, with two different samplings of
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orientations per grain. They are referred to as “test case 1” and “test case 2”. These finite element computations are
performed under plane strain assumption. The entire domain is subjected to a monotonic uniaxial tensile strain up to 6 %
with the following boundary conditions. The left and right edges both have uniform displacements in the x (horizontal)
direction.

All data extracted from the entire-domain simulations are designated as “experimental” in the following, for example
the “experimental” surface kinematic field uexp. The “experimental” macroscopic load F exp is estimated independently
by integration on the edge subjected to tension from a numerical homogenization on a Representative Volume Element
(RVE) [3, 11, 4], as shown in Figure 3, with the reference parameters of DD CC. The standard deviation of image noise,
ηf , is set to 2% of the gray level range of the “experimental” image of the surface and ηF , the standard deviation of
macroscopic load measurement is set to 2 N.

Figure 3: 2D RVE model for the calculation of macroscopic load. It consists of 250 Voronoi-style grains

The same RVE is used to calculate simulated macroscopic loads {F sim} during the identification procedure with the
current estimate of material parameters {pm}. The simulated kinematic field usim is obtained by FE calculation on the
reference configuration Ωref , and the adopted boundary conditions are shown in Figure 4(b) of the companion paper [5].

Two parameters, τF and Kself , are chosen as the sought constitutive parameters, namely, τF influences principally
the initial yield stress and Kself affects the hardening ratio. Unlike other parameters in DD CC (e.g., lath size, average
obstacle diameter, Burgers vector), these two parameters cannot be determined directly from physical measurements.
Their values have to be identified, and they are natural candidates for assessing the feasibility of the present procedure.
Reference values are set to τF = 35 MPa and Kself = 100 (dimensionless). Convergence is obtained when the relative
variations of each parameter are less than 0.5 % between two successive iterations.

To provide fair comparisons with the proposed procedure, Ωest
ref labeled “est” for estimated, two other models are

adopted. First, the reference microstructure Ωexp
ref , the “ideal” one, which is not available in real-life experiment except

on the sample observation surface, corresponds to the limit case where the determination of the microstructure would be
exact, and, second, a quasi 2D extruded model Ω2D

ref based on the microstructure of the observation surface that is simply
considered as invariant along the depth as shown in Figure 4. The latter is very commonly used [4] for identification
purposes from in-situ SEM experiments.
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Figure 3: 2D RVE model for the calculation of macroscopic load. It consists of 250 Voronoi-style grains

size, average obstacle diameter, Burgers vector), these two parameters cannot be determined directly from physical
measurements. Their values have to be identified, and they are natural candidates for assessing the feasibility of
identification. Reference values are set to 35 MPa for τF and 100 for Kself . Convergence is obtained when neither
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surface that is simply considered as invariant along the depth as shown in Figure 4. The latter is very commonly
used [2] for identification from in-situ SEM experiments.
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Figure 4: Microstructures used for identification purposes. (a) Ωexp
ref ; (b) Ωest

ref ; (c) Ω2D
ref . The top lines indicate the

observed ROI surface used for displacement measurement, which will be discussed in Section 3.2 [SR All meshes
should be aligned on the observation surface. Then the orientation color code can fit underneath c.
RS]

3.2 Choice of metric for u

The FEMU-UF method calls for a comparison between computed and observed displacement fields on the obser-
vation surface, and an L2-norm of the difference was mentioned as a standard. However, in contrast with usual
applications of FEMU [10], boundary conditions in the depth are known to be approximate at best. This implies
that the displacement on the observation surface cannot be securely compared with the computed values.

To illustrate this point, Figures 5(a) and 5(c) display, respectively for the two chosen cases, displacement fields
ux as functions of the surface coordinates x. They correspond to three different inferred microstructures, namely,
exact Ωexp

ref , estimated with the current procedure Ωest
ref , and extruded Ω2D

ref . For these computations, the DD CC
constitutive law is chosen with the exact parameters. The boundary condition prescription was chosen to be same as
that of Ref. [11]. Over the observed surface, all edge displacements (i.e., in the present 2D case, the displacements
at the two end points) coincide with the “experimental” data (shown in green), as a result of the prescription of
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3.2 Choice of metric for u

The FEMU-UF method calls for a comparison between computed and observed displacement fields on the observation
surface, and an L2-norm of the difference was mentioned as a standard. However, in contrast with usual applications of
FEMU [6], boundary conditions in the depth are known to be approximate at best. This implies that the displacement
on the observation surface cannot be securely compared with the computed values.

To illustrate this point, Figures 5(a) and 5(c) display, respectively for the two chosen cases, displacement fields ux as
functions of the surface coordinates x. They correspond to three different inferred microstructures, namely, exact Ωexp

ref ,

estimated with the current procedure Ωest
ref , and extruded Ω2D

ref . For these computations, the DD CC constitutive law is
chosen with the exact parameters. The boundary condition prescription was chosen to be same as that of Ref. [5]. Over
the observed surface, all edge displacements (i.e., in the present 2D case, the displacements at the two end points) coincide
with the “experimental” data (shown in green), as a result of the prescription of boundary conditions.

However, when using the exact microstructure Ωexp
ref , and exact constitutive law, the computed displacement over the

observed surface (shown in blue) differs significantly from the “experimental” data. This result emphasizes the large
impact of the boundary conditions in the depth. For the experimental case, the displacements along the ROI boundaries
results from the elastoplastic behavior of the surrounding grains. In contrast, the displacement profile computed with the
exact microstructure is obtained for the boundary condition prescription, and ux for instance is uniform along the vertical
boundaries.

It is also to be observed in the same figures that the displacement fields from the “estimated” microstructure (shown
in red) give a result that is extremely close to that of the exact microstructure. In contrast, the extruded microstructure,
Ω2D

ref , gives rise to displacement profiles that are rather distinct. However, in a blind application of this method in real life,
only the experimental data are available and hence the metric to be chosen for comparing different displacement profiles
or fields is critical for estimating the correct constitutive parameters.

When considering only the central zone of the observation surface, the sensitivity with respect to erroneous boundary
conditions is reduced, and the local microstructure imprints its signature in a more significant way. Thus it is proposed
to focus on the central half of the ROI surface x1 < x < x2, with x1 = L/4 and x2 = 3L/4, where L is the initial length
of the ROI surface. When extracting only this central part, the mean translation and mean strain over the surface are
different. In order to compare these profiles, a linear rescaling is proposed so that the displacements at the end of the
considered comparison window coincide. More precisely, any displacement profile vx(x) is rescaled to wx(x) as

wx(x) = ux(x1) + (vx(x)− vx(x1))
(ux(x2)− ux(x1))

(vx(x2)− vx(x1))
(2)

where u(x) refers to the experimental data. It is noteworthy that this rescaling is not exact, but it assumes that the local
relative strain varies in proportion to its mean (just as if the localization operator were insensitive to the total amount
of plastic strain), which may be considered as a decent approximation. After such rescaling over the comparison window
the displacement profiles are shown in Figures 5(b) and 5(d) for test cases 1 and 2, respectively. Apart from the extruded
quasi-2D microstructure that shows a poor agreement, the experimental data are very well captured by the exact and
estimated microstructures for the two test cases. Therefore, it is proposed in the following to use this comparison window
after rescaling as a substitute to the L2-norm used in the FEMU-UF cost function. Let us also point out that the 2D
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nature of this “toy model” restricts the comparison to a rather narrow interval, and thus few crystals, and in 1D. As a
consequence, the 1D comparison window bears little information as compared to a more realistic 2D surface case.

0 10 20 30 40 50
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x (µm)

u
x
(µ

m
)

’Experimental’ data
Correct model
Quasi 2D model
Estimated model

(a)

0 10 20 30 40 50
1.4

1.6

1.8

2

2.2

2.4

2.6

x (µm)

w
x
(µ

m
)

’Experimental’ data
Correct model
Quasi 2D model
Estimated model

(b)

0 10 20 30 40 50
1.8

2

2.2

2.4

2.6

2.8

3

x (µm)

u
x
(µ

m
)

’Experimental’ data
Correct model
Quasi 2D model
Estimated model

(c)

0 10 20 30 40 50
1.8

2

2.2

2.4

2.6

2.8

3

x (µm)

w
x
(µ

m
)

’Experimental’ data
Correct model
Quasi 2D model
Estimated model

(d)

Figure 5: Surface displacement profiles as functions of coordinates (x) along the observation surface for all models cal-
culated with the exact DD CC parameters. Top row (a-b) corresponds to test case 1, and bottom row (c-d) to test case
2. The left plots (a-c) correspond to the displacement profiles computed for all microstructures and the “experimental”
data (green). The right plots (b-d) show the same profiles over a narrower comparison window and rescaled to match the
experimental data at the two end points

Section 3.3 will now address the complete problem of estimating the initial configuration and identification of the
constitutive parameters. To this aim, only test case 2 is selected as its microstructure appears to be more influential on
the displacement profile and hence discriminating.

3.3 Results

The identification results are shown in Figure 6. It can be seen that convergence is reached after n ≈ 4− 5 iterations for
all the models, which is relatively fast. Three outer iterations are needed, i.e., m = 3, for the estimated model to reach
convergence. The correct and estimated models lead to very good identification results, whereas model Ω2D

ref gives much
poorer results. The efforts for having a more faithful picture of the in-depth microstructure are rewarded by the accuracy
of the identification results for constitutive parameters.
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Figure 6: Calibration results for τF and Kself for different microstructures: (a) exact; (b) estimated; (c) quasi 2D
configurations. The reference values are shown as dashed lines

The changes of the cost function during the identification iterations are shown in Figure 7. As shown in Figure 7(b),
since the microstructure changes from Ω1

ref to Ω2
ref , Φu drops significantly, although using the same parameters of DD CC

law. This phenomenon illustrates the beneficial effect of updating the reference configuration. The drop is much smaller in
subsequent transitions. At convergence the estimated model leads to comparable displacement residuals Φu to the correct
model, both much lower than Ω2D

ref (i.e., quasi 2D model). This is another proof that having a better knowledge of the
in-depth microstructure brings better synergy between experiments and simulations.
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Figure 7: Cost function changes during the identification for each model: (a) exact; (b) estimated; (c) Quasi 2D configu-
rations

In terms of deviation from the correct reference configuration Ωexp
ref , Ω3

ref is 23% lower than Ω0
ref and 57% lower than

Ωexp
def . In other words, the procedure that combines the determination of the reference configuration and the calibration

of material parameters gives satisfactory results in this virtual experiment.

4 Conclusion

The present study discussed the feasibility of combining the determination of undeformed microstructures from postmortem
microstructures [5] and the calibration of material parameters. An iterative process has been proposed to tackle the
two problems one at a time until global convergence. A 2D model has been adopted to carry out the analysis of a
virtual experiment. It has been found that even though the estimated microstructure differs from the reference one,
the identification results based on it are significantly better than with the commonly used (i.e., extruded) model. From
the better reconstructed model and with all information available at the surface, crystal plasticity can be studied more
precisely.

More efforts should be devoted to provide better descriptions of boundary conditions in the depth of the material,
as they are the current limitation to further lower the discrepancy with the exact reference configuration. An option is
to treat the in-depth boundary conditions as unknowns to be calibrated [12]. Another problem to address is the heavy
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calculation cost, as the procedure proposed herein contains nested loops of FE calculations. An important way to reduce
the time cost is to reduce the dimension along the depth, and special attention must be paid to avoid compromising the
whole model.

It should be noted that this study is devoted to a feasibility check, and hence a synthetic two-dimensional example is
considered. The efficiency and correctness of the process for three-dimensional models should be validated in simulations
and, all the more importantly, with experimental data. The strategy proposed herein is adapted to both 2D and 3D
cases. The obvious additional complexity of the 3D topology as compared to 2D situations is not expected to cause extra
difficulties neither in the backtracking procedure, nor in the calibration step.
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