A study of Numerical Dispersion for Helmholtz equation in one dimension by Z transform

Hélène Barucq¹ Henri Calandra² Sébastien Tordeux¹ Ha Pham¹.

Part of the workpackage WP3 on Stabilized High-order Galerkin Methods for Seismic Exploration

 $\operatorname{HOUSTON}$, September 2016

¹Inria Bordeaux Sud-Ouest, Project-Team Magique-3D, Univ. Pau, France ²Total E&P, Houston.

Overview

- Introduction
- 2 Analytic problem
- 3 Discretization of the problem on $\mathbb R$
- 4 Summary of techniques and results
- 5 Pole locating algorithm and Numerical Results
- 6 More details of analytic results

Introduction Analytic problem Discretization of the problem on $\mathbb R$ Summary of techniques and results Pole locating algorithm an

Plan

Numerical Dispersion

Helmholtz equation gives the long-time behavior of the wave equation

$$(\partial_t^2 - c^2 \Delta) \mathbf{U}(t, x) = \mathbf{f}(x) e^{-i\omega t}$$

where c = speed of propagation $\frac{\omega}{2\pi} =$ time freq. of the excitation

Look for time-harmonic sol with the same freq

$$\mathbf{U}(t,x) = \mathbf{u}(x) \, e^{-i\,\omega\,t}$$

thus \boldsymbol{u} solves the Helmholtz

$$\left(-\Delta - \frac{\omega^2}{c^2}\right)\mathbf{u} = \mathbf{f}$$

 $\kappa:=\frac{\omega}{c}$ the wave number .

Fund. sols of $(-\Delta - \kappa^2) \mathbf{u} = 0$ are $e^{i\kappa x}$, $e^{-i\kappa x}$. corresponding to harmonic plane wave $e^{i(\kappa x - \omega t)}$ propagating from L to R $e^{-i(\kappa x - \omega t)}$ propagating from R to L with phase velocity $\frac{\omega}{\kappa} = \text{constant speed } c$ depending only on material properties and not ω No dispersion behavior for the exact solution.

The numerical solution associated Finite Element or Finite Difference $u_h = e^{-i(\kappa_h x - \omega t)}$

with numerical wavenumber

 $\kappa_h = \kappa_h(\kappa h) = \kappa_h(\frac{\omega}{c}h) \neq \frac{\omega}{c},$ depending on ω .

The numerical phase velocity

 $\frac{\omega}{\kappa_h} \neq \text{constant speed } c$

and depends on $\boldsymbol{\omega}$

Dispersive behavior of

the numerical solution

Numerical Dispersion for Finite Difference Order 2

Numerical Dispersion for Finite Difference Order 2

Relative error between $\mathbf{u}_{exact} = e^{i \kappa x}$ and $u_h = e^{i \kappa_h x}$

The first maximum is reached in red (\mathbf{X}) and corresponds to 200% error.

Methodology and Results

Goal

Study the phase difference between

the analytic wavenumber $\boldsymbol{\kappa}$ and

the numerical one κ_h associated with the discretization of the variational problem by Continuous Galerkin FEM for any order.

 \star Discretization is on \mathbb{R} ,

 \Rightarrow the pollution is studied in *isolation with the effect of spurious reflection at the boundary* .

* Use blocking + Z-transform to transform system of two-sided infinite recurrence relations into one matrix-vector equation

 $\mathcal{A}(\kappa^2 h^2, z) W(\kappa, z) = h z H(z).$

* Identity the numerical wavenumber κ_h with the angle of the (analytic) poles of

$$[\mathcal{A}(\kappa^2 h^2, z)]^{-1}$$

* For any order *r*, obtain dispersion analysis in the form of an analytic expansion,

$$\kappa_h h = \kappa h + \kappa h O((\kappa h)^{2r}).$$

analytic
$$rac{\kappa_h-\kappa}{\kappa} \leq C(r) (\kappa h)^{2r}$$
.

* Use Guillaume's algorithm to numerically calculate the poles, and hence κ_h .

•

Toy Example : Numerical Dispersion analysis for FD order 2

Uniform discretization of $\mathbb R$ with step size h by nodes

 $x_n = nh$, $n \in \mathbb{Z}$.

Recurrence relation given by second order Finite Difference

$$-u_{n-1}+(2-\kappa^2h^2)u_n-u_{n+1}=0$$
, $n\in\mathbb{Z}$.

(Analytic) wavenumber κ controls the oscillatory behavior of u_{exact} ,

 $\mathbf{u}_{\text{exact}}(x) = a_{+} e^{i \kappa x} + a_{-} e^{-i \kappa x}$

The characteristic polynomial of the recurr. relation, $z^2 - \left(2 - \kappa^2 h^2\right) z + 1 = 0 \quad ,$

for 0 $\leq \kappa h <$ 2, has conjugate complex roots of norm 1:

 $e^{i\gamma_h}$, $e^{-i\gamma_h}$.

Solution of the recurrence relation :

$$u_n = a_+ e^{i \gamma_h n} + a_- e^{-i \gamma_h n}$$

The numerical wave number $\kappa_h := \frac{\gamma_h}{h}$

controls the oscillatory behavior of numerical solution,

$$u_n = a_+ e^{i \frac{\gamma h}{h} (nh)} + a_- e^{-i \frac{\gamma h}{h} (nh)}$$

= $a_+ e^{i \kappa_h x} + a_- e^{-i \kappa_h x}$,
 $x = nh$.

A toy example (cnt)

$$e^{i\gamma_{h}} \text{ solves } z^{2} - (2 - \kappa^{2}h^{2})z + 1 = 0$$

$$\Rightarrow e^{i\gamma_{h}} \text{ satifies } z - (2 - \kappa^{2}h^{2}) + z^{-1} = 0$$

$$\Rightarrow \underbrace{e^{i\gamma_{h}} + e^{-i\gamma_{h}}}_{2\cos(\gamma_{h})} = 2 - \kappa^{2}h^{2}$$

$$\Rightarrow 2(1 - \cos(\gamma_{h})) = \kappa^{2}h^{2}$$

$$\Rightarrow 4\sin^{2}(\frac{1}{2}\gamma_{h}) = \kappa^{2}h^{2}$$

$$\kappa > 0 \text{ and } h \text{ is chosen small enough so that } \sin(\frac{1}{2}\gamma_{h}) > 0.$$

$$\begin{aligned} \sin(\frac{1}{2}\gamma_h) &= \frac{1}{2}\kappa h \\ \Rightarrow \qquad \gamma_h &= 2 \arcsin(\frac{1}{2}\kappa h) \end{aligned}$$

$$\kappa_h = rac{2}{h} rcsin\left(rac{1}{2}\kappa\,h
ight)$$
 .

For
$$|\kappa h| < 2$$
,
 $\kappa_h = \frac{2}{h} \arcsin\left(\frac{1}{2}\kappa h\right)$

$$2\sum_{k=1}^{\infty} (2n)! = 1$$

$$=\frac{2}{h}\sum_{n=0}^{\infty}\frac{(2n)!}{4^n(n!)^2(2n+1)}\frac{1}{2\cdot 4^n}\,(\kappa\,h)^{2n+1}$$

Dispersion analysis

$$\delta_h = \kappa_h - \kappa$$

 $= \frac{1}{24}\kappa^3 h^2 + \mathcal{E}_h(\kappa h) , |\kappa h| < 2.$

 \mathcal{E}_{h} is analytic ,

$$\begin{aligned} \mathcal{E}_h(\kappa h) &= \kappa h \sum_{n=2}^{\infty} \frac{(2n)!}{4^{2n} (n!)^2 (2n+1)} (\kappa h)^{2n} \\ &= \kappa h \operatorname{O}((\kappa h)^4) \quad ; \quad |\kappa h| < 2 \quad . \end{aligned}$$

Results from literature

Theoretical proof that gives an upper bound of the phase difference :

Theorem (Ihlenburg-Babushka)

For
$$r \ge 1$$
, if $\frac{h\kappa}{r} < 1$, for the CG FEM discretization of the BVP
$$\begin{cases} -u'' - \kappa^2 u = f , & \text{on } (0,1) \\ u(0) = 0 ; & u'(1) - i\kappa u(1) = 0 \end{cases}$$

the difference between the continous wave number κ and the numerical one κ_h is bounded above by,

$$|\kappa_h - \kappa| \leq \kappa C \left(\frac{e}{4}\right)^{2r} \frac{(\pi r)^{-1/2}}{4} \left(\frac{\kappa h}{2r}\right)^{2r}$$

Here, C is a constant not depending on κ , h and r.

Other References : By numerical results : Thompson-Pinsky , Harari-Hughes ... Introduction Analytic problem Discretization of the problem on R Summary of techniques and results Pole locating algorithm an

Plan

Functional Analysis view point

$$\begin{split} \Delta \text{ is an unbounded op. on } L^2(\mathbb{R}) \text{ with domain } H^2(\mathbb{R}) \\ \sigma(-\Delta) = \sigma_{\text{continuous}}(-\Delta) = \mathbb{R}^+ : \text{ purely continuous.} \end{split}$$

Inverse of $-\Delta - \sigma$ is a resolvent $\mathcal{R}(\sigma)$ of Δ .

$$(-\Delta-\sigma)^{-1}: L^2(\mathbb{R}) o L^2(\mathbb{R})$$
 bounded , $\sigma \in \mathbb{C} \setminus \mathbb{R}^+$

No eigenvalue (no eigenfunction in $L^2(\mathbb{R})$).

$$(-\Delta - \sigma)u = 0 \text{ in } L^2(\mathbb{R}) \quad \Rightarrow \quad (|\xi|^2 - \sigma)\hat{u} = 0$$

$$\Rightarrow \qquad \hat{u} = 0 \qquad \Rightarrow \qquad u = 0 \text{ in } L^2(\mathbb{R}).$$

There are 'generalized ' eigenfunctions $\in \mathcal{S}'(\mathbb{R})$

$$\begin{aligned} (-\Delta - \sigma)u &= 0 \text{ in } \mathcal{S}'(\mathbb{R}) & \Rightarrow & (|\xi|^2 - \sigma)\widehat{u} = 0 \\ \Rightarrow \widehat{u} &= a_- \delta_{-\sqrt{\sigma}} + a_+ \delta_{\sqrt{\sigma}} & \Rightarrow u = \underbrace{a_- e^{-i\sqrt{\sigma}x} + a_+ e^{i\sqrt{\sigma}x}}_{ \notin L^2(\mathbb{R})}. \\ \hline \sigma \notin \mathbb{R}^+ & & & & & \\ \hline \sigma &= \kappa^2, \kappa \in \mathbb{R}^+ \end{aligned}$$

The variational form is coerc. in $L^2(\mathbb{R})$ Get \exists ! of sol in $L^2(\mathbb{R})$ by Fourier transf.

$$(-\Delta - \sigma)u = f \text{ in } L^{2}(\mathbb{R})$$

$$\Rightarrow u = \mathcal{F}^{-1} \frac{1}{|\xi|^{2} - \sigma} \mathcal{F}f$$

$$\Rightarrow \sigma(\Delta) \subset \mathbb{R}^{+}.$$

f. Construct a seq. w_n of 'almost eigenf.' (Weyl seq.)

$$\|(-\Delta - \lambda)w_n\|_{L^2(\mathbb{R})} \to 0; \|w_n\|_{L^2(\mathbb{R})} = 1.$$

Highlighted reg. $\mathbb{C} \setminus \mathbb{R}^+ = \text{resolv.}$ set of $-\Delta$

Limiting absorption principle

Explicit formula

By separation of variables, obtain

$$G_\epsilon(x) = rac{e^{i\sqrt{\kappa^2+i\epsilon}}\,|x|}{2\,i\,\sqrt{\kappa^2+i\epsilon}}$$
 as the fund. sol. to

$$(-\Delta - (\kappa^2 + i\epsilon)) G_{\epsilon} = \delta(y) , \ \kappa, \epsilon \in \mathbb{R}^+.$$

The unique solution in $L^2(\mathbb{R})$ is given by

$$\mathbf{u}_{\epsilon} = \int_{-\infty}^{\infty} \mathbf{G}_{\epsilon}(x-y) f(y) dy;$$

For each x , $\begin{aligned} &G_{\epsilon}(x) \xrightarrow{\text{point wise}} G_{\text{outgoing}}(x) := \frac{e^{i \kappa |x|}}{2 i \kappa}. \\ &\mathbf{u}_{\epsilon} \xrightarrow{}_{\epsilon \to 0} \mathbf{u}_{\text{outgoing}} := G_{\text{outgoing}} \star \mathbf{f} \text{ in } H^{2}_{\text{loc}}(\mathbb{R}). \end{aligned}$ gives the outgoing solution to $(-\Delta - \kappa^{2})\mathbf{u} = \mathbf{f}, \ \mathbf{f} \in L^{2}_{c}(\mathbb{R}). \end{aligned}$

The Sommerfeld radiation condition : The outgoing solution satisfies

$$\begin{aligned} \lim_{x \to \infty} \left| \frac{1}{i} u'(x) - ku(x) \right| &= 0\\ \lim_{x \to -\infty} \left| \frac{1}{i} u'(x) + ku(x) \right| &= 0 \end{aligned}$$

Analytic Continuation For $\mathbf{f} \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$, $\widehat{\mathbf{f}}$ has an analytic extension to \mathbb{C} .

For
$$\sigma \in \mathbb{C}$$
 with $\operatorname{Re} \sigma > 0$, $\operatorname{Im} \sigma > 0$, the
unique sol. in $L^2(\mathbb{R})$ to $(-\Delta - \sigma)\mathbf{u} = \mathbf{f}$ is
 $\mathbf{u}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ix\cdot\xi} \frac{\widehat{\mathbf{f}}(\xi)}{|\xi|^2 - \sigma} d\xi = \frac{1}{2\pi} \left(\int_{-\infty}^{0} + \int_{0}^{\infty} \right) \cdots$
 $= \frac{1}{2\pi} \int_{0}^{\infty} \left[e^{ix\cdot\xi} \widehat{\mathbf{f}}(\xi) + e^{-ix\cdot\xi} \widehat{\mathbf{f}}(-\xi) \right] \frac{1}{|\xi|^2 - \sigma} d\xi$
Deform $[0, \infty)$ to C_+ , and get analytic
continuation to $\{\sigma : \operatorname{Re} \sigma > 0\}$
 $\mathbf{u}_{outgoing}(x) = \frac{1}{2\pi} \int_{C_+} \frac{e^{ix\cdot\xi} \widehat{\mathbf{f}}(\xi) + e^{-ix\cdot\xi} \widehat{\mathbf{f}}(-\xi)}{\xi^2 - \sigma} d\xi$

Introduction Analytic problem Discretization of the problem on R Summary of techniques and results Pole locating algorithm an

Plan

Discretization

The real line $\mathbb R$ is partitioned into intervals of length h

 $I_J = \left[y_J, y_{J+1} \right], \ J \in \mathbb{Z}.$

the geometrical nodes $y_I := J h$

For a method of order *r*, the intervals are further partitioned by global interpolation nodes

$$x_{J,k} := (J + \frac{k}{r})h$$

 $J \in \mathbb{Z}, 0 \le k < r.$

Discrete solution : $u_h = \sum_{J \in \mathbb{Z}, 0 \le k < r} u_{J,k} \phi_{J,k} \, .$

A global basis for

$$\mathbb{P}_r = \{ p \in C^0(\mathbb{R}) \mid p \mid_{I_J} \in P_r(I_J), \forall J \in \mathbb{Z} \}$$
is given by $\phi_{J,k}$ -s defined on \mathbb{R} by

$$k = 0: \ \phi_{J,0}(x) := \begin{cases} \hat{\phi}_0(F_J^{-1}x) &, x \in I_J \\ \hat{\phi}_r(F_J^{-1}x) &, x \in I_{J-1} \\ 0 &, \text{ otherwise} \end{cases}$$

$$0 < k < r: \ \phi_{J,k}(x) := \begin{cases} \hat{\phi}_k(F_J^{-1}x) &, x \in I_J \\ 0 &, \text{ otherwise} \end{cases}$$

Ref Lagragian poly of deg r on [0,1] :

$$\hat{\phi}_i(\hat{x}) := \prod_{\substack{0 \le j \le r \ i \ne i}} rac{(\hat{x} - \hat{x}_j)}{(\hat{x}_i - \hat{x}_j)}$$

Isomorphism between reference interval and I_J

$$F_J: [0,1] \rightarrow I_J, \, \hat{x} \mapsto hx + y_J, \, J \in \mathbb{Z}.$$

Variational problem

Bilinear form for $v, w \in H^1(\mathbb{R})$,

$$a(v,w) := \int_{-\infty}^{\infty} v'(x) w'(x) dx - \kappa^2 \int_{-\infty}^{\infty} v(x) w(x) dx.$$

Discrete solution $u_h = \sum_{I \in \mathbb{Z}, 0 \le \ell < r} u_{I,\ell} \phi_{I,\ell}$ satisfies,

$$a(u_h, \phi_{J,k}) = \int_{-\infty}^{\infty} \mathbf{f}(x) \phi_{J,k}(x) dx \quad , \quad \forall \phi_{J,k}, J \in \mathbb{Z} \ , \ 0 \leq k < r.$$

Local mass matrix \widehat{M} of size $(r+1) \times (r+1)$

$$\widehat{M}_{ij} = \mathsf{a}_{\mathsf{M}}(\widehat{\phi}_i, \widehat{\phi}_j) \quad , \quad 0 \leq i, j \leq r.$$

Local stiff matrix \widehat{S} of size $(r+1) \times (r+1)$

$$\widehat{S}_{ij} = \mathsf{a}_{\mathsf{S}}(\hat{\phi}_i, \hat{\phi}_j) \quad , \quad 0 \leq i, j \leq r.$$

$$\mathcal{M}_{ij}(w) := \widehat{S}_{ij} - w \widehat{M}_{ij} \quad , \quad 0 \leq i,j \leq r.$$

For
$$f,g \in H^1(0,1)$$

 $\mathsf{a}_\mathsf{S}(f,g) = \int_0^1 f'(\hat{x}) \, g'(\hat{x}) \, d\hat{x}$

For
$$f, g \in L^2(0, 1)$$
,
 $a_M(f, g) = \int_0^1 f(\hat{x}) g(\hat{x}) d\hat{x}$.

Introduction Analytic problem Discretization of the problem on R Summary of techniques and results Pole locating algorithm an

Recurrence relations

The coefficients $u_{J,k}$ -s satify the following system of *r* recurrence relations:

Those at levels Jr, $J \in \mathbb{Z}$ come from applying (1) to $\phi_{J,0}$ (at geo. nodes)

$$\sum_{\ell=0}^{r-1} \mathcal{M}_{r\ell} \, \mathbf{u}_{J-1,\ell} \, + \, 2\mathcal{M}_{00} \, \mathbf{u}_{J,0} \, + \, \sum_{\ell=1}^{r-1} \mathcal{M}_{0\ell} \, \mathbf{u}_{J,\ell} \, + \, \mathcal{M}_{0r} \, \mathbf{u}_{J+1,0} = h \, f_{J,0};$$

The remaining types at levels Jr + k, with 0 < k < r, are obtained from applying (1) to $\phi_{J,k}$ (at interpolation nodes)

$$\sum_{\ell=0}^{r-1} \mathcal{M}_{k\ell} \, u_{J,\ell} + \mathcal{M}_{kr} \, u_{J+1,0} = h \, f_{J,k} \quad ; \quad 0 < k < r.$$

$$f_{J,k} := \int_{-\infty}^{\infty} \mathbf{f}(x) \, \phi_{J,k}(x); \quad J \in \mathbb{Z}, \, 0 \leq k < r.$$

Introduction Analytic problem Discretization of the problem on R Summary of techniques and results Pole locating algorithm an

Plan

(Two-sided) Z-transforms for scalar sequence $u = \{u_n\}_{n \in \mathbb{Z}}$

	Version θ	Version z				
Definition	$[Zu](heta):=\sum_{n=-\infty}^{\infty}u_ne^{2\pi i n heta}$ if the RHS converges	$[Zu](z) := \sum_{n=-\infty}^{\infty} u_n z^n$ if the RHS converges				
$u \in l^2(\mathbb{Z})$	[Zu](heta) is periodic in $ hetaZ: l^2(\mathbb{Z}) \longrightarrow L^2(0,1) is an isometry$	$Z: l^2(\mathbb{Z}) \longrightarrow L^2(\mathbb{S}^1)$ is an isometry				
	u_n is the n-th coefficient of Fourier series representing Zu $u_n = \int_0^1 [Zu](\theta) e^{-2\pi i n \theta} d\theta$	$l^2(\mathbb{Z}) = \left\{ (u_k)_{k\in\mathbb{Z}} : \sum_{k\in\mathbb{Z}} u_k^2 < \infty \right\}$				
$u \in l^2_{-\epsilon}(\mathbb{Z})$	[Zu](heta) is periodic and analytic in the horizontal strip $\{-\epsilon < {\sf Im} \; z < \epsilon\}$	$[Zu](z)$ is analytic in the annulus $\{e^{-\epsilon} < z < e^{\epsilon}\}$				
	$l_{-\epsilon}^{2}(\mathbb{Z}) = \left\{ (u_{k})_{k \in \mathbb{Z}} : \sum_{k \in \mathbb{Z}} e^{2\epsilon k } u_{k}^{2} < \infty \right\}$	u_n is the n-th coefficient of Laurent series representing Zu $u_n = \frac{1}{2\pi i} \oint_{C_1} [Zu](z) \ \frac{dz}{z^{n+1}},$				

 \textbf{C}_{1} a counter-clockwise simple closed curve parametrizing the unit circle $$_{19/41}$$

Z transform (cnt) and Blocking

Z-transform converts the translation operator into a multiplication operator.

$$[Z au_{\pm k} u](z) = z^{\pm k} [Zu](z) , k \in \mathbb{Z}^+.$$

Shift operator $(\tau_k U)_J := U_{J+k}, \ k \in \mathbb{Z}.$

algebraic equation.

Advantage of Blocking :

• Without blocking, have *r* reccurence relations, one of order 2r + 1, and r - 1 of order r + 1

• With blocking, we have one recurrence relation of order 2

 \Rightarrow one vector-valued polynomial of order 2.

Blocked recurrence relation (Example shown for order r = 3)

	Λ			R			Λt						
	А 						7					$u_{J-1,0}$	
												$u_{J-1,1}$	$\leftarrow U_{J-1}$
	\downarrow			\downarrow			\downarrow					$U_{J-1,2}$	
\mathcal{M}_{30}	\mathcal{M}_{31}	\mathcal{M}_{32}	$2\mathcal{M}_{00}$	$\overline{\mathcal{M}}_{01}$	$\overline{\mathcal{M}}_{02}$	\mathcal{M}_{03}	0	0	0	0	0		
			1									U _{J,0}	
0	0	0	\mathcal{M}_{10}	\mathcal{M}_{11}	\mathcal{M}_{12}	\mathcal{M}_{13}	0	0	0	0	0	$u_{J,1}$	$\leftarrow U_J$
			1									и _{J,2}	
0	0	0	\mathcal{M}_{20}	\mathcal{M}_{21}	\mathcal{M}_{22}	\mathcal{M}_{23}	0	0	0	0	0		
												<i>u</i> _{J+1,0}	
0	0	0	\mathcal{M}_{30}	\mathcal{M}_{31}	\mathcal{M}_{32}	$2\mathcal{M}_{00}$	\mathcal{M}_{01}	\mathcal{M}_{02}	\mathcal{M}_{03}	0	0	$u_{J+1,1}$	$\leftarrow U_{J+1}$
												<i>u</i> _{J+1,2}	
0	0	0	0	0	0	\mathcal{M}_{10}	\mathcal{M}_{11}	\mathcal{M}_{12}	\mathcal{M}_{13}	0	0		
												$u_{1+2,0}$	
0	0	0	0	0	0	\mathcal{M}_{20}	\mathcal{M}_{21}	\mathcal{M}_{22}	\mathcal{M}_{23}	0	0	$U_{l+2} = 1$	$\leftarrow 11$
												111100	• • • • • • • • •
												uj+2,2	

a

Formal Z-transform of the Helmholtz recurrence relations

Block
$$Z : 1 \le k \le r$$
, $\pi_k \operatorname{projection op. onto}_{k-\text{th component}}$
 $\left[\pi_k Z_{\mathfrak{B}} U\right](z) = \sum_{J=-\infty}^{\infty} u_{Jr+k} z^J$
Relation with the shift operator : $k \in \mathbb{Z}^+$,
 $\left[Z_{\mathfrak{B}} \tau_{\pm k} U\right](z) = z^{\mp k} \left[Z_{\mathfrak{B}} U\right](z)$.

The 'blocked' recurrence relation at κ , $w = \kappa^2 h^2$ $A(w) U_{l-1} + B(w) U_l + A^t(w) U_{l+1} = h F_l$ after formal $Z_{\mathfrak{B}}$ becomes , $[A(w) z + B(w) + A^{t}(w) z^{-1}]W(w, z) = h[Z_{\Re}F](z)$ For $z \neq 0$, this is equivalent to $\left[A(w) z^2 + B(w) z + A^t(w)\right] W(w, z) = h z \left[Z_{\mathfrak{B}} F\right](z)$ $\Rightarrow \mathcal{A}(w,z)W(w,z) = hz[Z_{\mathfrak{B}}F](z)$ If z is such that det $\mathcal{A}(w, z) \neq 0$, then $W(w, z) = A^{-1}(w, z) h z [Z_{23} F](z).$

Sol of the recurrence solution is given by

 $Z_{\mathfrak{B}}^{-1}W(w,z)$

For $\kappa \notin \mathbb{R}^+$, in particular for

 $\kappa_{\epsilon} = \kappa \left(1 + i\epsilon\right), \ \kappa \in \mathbb{R}^+, \ \epsilon > 0,$

the above process is justified

- The problem is l²(ℤ)-coercive
 → ∃! sol. in l²(ℤ).
- The unit circle C₁ is in the region of analyticity of W(κ²_ϵh, z)

• Can take
$$Z_{\mathfrak{B}}^{-1}$$
 transform
 $\frac{1}{2\pi i} \oint_{\mathbf{C}_1} W(\kappa_{\epsilon}^2 h, z) \frac{dz}{z^{J+1}}$

For $\kappa \in \mathbb{R}^+$, the problem is not coercive in $L^2(\mathbb{R})$ and the discretized one in $l^2(\mathbb{Z})$.

Strategy : Limiting absorbing principle.

Summary of analytic results (Part 1)

$$\begin{aligned} \mathcal{A}^{-1}(w,z) &:= \frac{\operatorname{Adj} \mathcal{A}(w,z)}{\det \mathcal{A}(w,z)}, & \mathcal{A}(w,z) \\ &= z^2 \mathcal{A}(w) + z \mathcal{B}(w) + \mathcal{A}^t \mathcal{B}(w). \\ \text{Adjugate Adj } \mathcal{A}(w,z) & \det \mathcal{A}(w,z) \\ &= z^{r-2} \mathcal{Q}(w,z) &= z^{r-1} \delta(w) \left(z^2 - 2\rho(w)z + 1 \right) \\ \text{the entries of } \mathcal{Q}(w,z) \text{ are } &= z^{r-1} \delta(w) & q(w,z), \\ \text{polynomial of second order } & \text{with } \rho(w) \text{ rational in } w \end{aligned}$$

v, z),with $\rho(w)$ rational in w $\delta(w)$ is polynomial in w.

For w small enough, $\delta(w) \neq 0$.

in z and first order in w.

 \Rightarrow The non-zero poles of $\mathcal{A}^{-1}(w, z)$ w.r.t z are the zeros of the characteristic poly $z \mapsto \mathbf{q}(w, z)$.

For $\epsilon > 0$: obtain solution to the recurrence relation

$$(U_{\epsilon})_{J} = \frac{1}{2\pi i} \oint_{\mathbf{C}_{1}} \frac{\mathcal{A}^{-1}(\kappa_{\epsilon}^{2}h^{2}, z) h z [Z_{\mathfrak{B}}F](z)}{z^{J+1}} dz$$

For $\epsilon \rightarrow 0$: | by contour deformation * show that the limit exists, giving a solution, and * this resulting sol can be written as a contour integral $\kappa_{\epsilon} = \kappa \sqrt{1 + i\epsilon}$, $\kappa, \epsilon > 0$ Roots of $\mathbf{q}(\kappa_{\epsilon}^2 h^2, z)$ are denoted by $z_{\pm,\epsilon}$ \mathbb{C}_{z} C₁ $Z_{-,\epsilon}$

Summary of analytic results (Part 2) : Dispersion Analysis

Consider $(-\Delta - \kappa^2) \mathbf{u} = \mathbf{f}$ with RHS \mathbf{f} having Supp $F \subset [N_{\min}, N_{\max}]$, $F = (f_{J,l})$

Outgoing solution of the recurrence relation at
$$\kappa > 0$$
, $\kappa h < \pi$

$$u_{\text{outgoing}}(\kappa^{2})_{J,0} = \frac{h}{2i} \frac{e^{i(Jh)} \frac{\phi_{0}}{h}}{\delta(\kappa^{2}h^{2}) \sin \phi_{0}} \sum_{\substack{0 \le l \le r-1 \\ N_{\min} \le J' \le N_{\max}}} e^{i(1-\bar{J})\phi_{0}} f_{J',l} \left[Q^{t} \left(\kappa^{2}h^{2}, e^{-i\phi_{0}}\right) \right]_{(l+1)1}, J > N_{\max};$$

$$u_{\text{outgoing}}(\kappa^{2})_{J,0} = \frac{h}{2i} \frac{e^{-i(Jh)} \frac{\phi_{0}}{h}}{\delta(\kappa^{2}h^{2}) \sin \phi_{0}} \sum_{\substack{0 \le l \le r-1 \\ N_{\min} \le J' \le N_{\max}}} e^{i(J'-1)\phi_{0}} f_{J',l} \left[Q^{t} \left(\kappa^{2}h^{2}, e^{i\phi_{0}}\right) \right]_{(l+1)1}, J < N_{\min}.$$

Analytic outgoing solution at $x = x_J = J h$ so that $x \notin \text{Supp } \mathbf{f} = [a, b]$

$$\mathbf{u}_{\text{outgoing}}(x_J) = \frac{1}{2\,i\,\kappa} \, e^{i\,(J\,\,\text{sgn}(J)\,h)\,\kappa} \,\,\hat{f}(\text{sgn}(J)\,\kappa).$$

The numerical wave number κ_h is related to the argument ϕ_0 of the analytic poles of $e^{\pm i\phi_0}$ of $(\mathcal{A}(\kappa^2h^2, z))^{-1}$. $\kappa_h = \frac{\phi_0}{h} = \frac{\kappa h (1 + O((\kappa h)^{2r}))}{h}$. Introduction Analytic problem Discretization of the problem on $\mathbb R$ Summary of techniques and results Pole locating algorithm an

Plan

Guillaume's Algorithm

At $\kappa_{\epsilon} = \kappa \sqrt{1 + i\epsilon}$, $\epsilon, \kappa > 0$, the blocked recurrence relation after $Z_{\mathfrak{B}}$ -transform gives

$$\mathcal{A}(\kappa_{\epsilon}^{2}h^{2},z) W(\kappa+i\epsilon,z) = h z [Z_{\mathfrak{B}}F](z).$$

Take $\epsilon \rightarrow 0$, obtain

$$\mathcal{A}(\kappa^2 h^2, z) W(\kappa, z) = h z [Z_{\mathfrak{B}} F](z).$$

The numerical wave number κ_h is related to the argument of the nonzero poles of $(\mathcal{A}(\kappa^2 h^2, z))^{-1}$.

Guillaume's algorithm: to look for these poles, we approximate those of x(z), which solves $\mathcal{A}(\kappa^2 h^2, z) x(z) = h z b$ for arbitrary scalar vector $b \in \mathbb{C}^r$.

Step 1: Expand *b* and *x* about an **analytic point** *z*₀

$$z h b = h z_0 b + h (z - z_0) b$$
$$x(z) = \sum_{k=0}^{\infty} x_k (z_0) (z - z_0)^k.$$

$$\begin{split} & \text{Step 2} : \text{Expand } \mathcal{A}(z) \text{ about } z_0 \\ \mathcal{A}(z) &= M_0 + M_1(z - z_0) + M_2(z - z_0)^2, \\ & M_0(z_0) = z_0 B + A^t + z_0^2 A \quad ; \\ & M_1(z_0) = 2z_0 A + B \quad ; \quad M_2(z_0) = A. \end{split}$$

 $\begin{array}{ll} \mbox{Step 3} &: \mbox{The coeff. } x_k \mbox{ solves} \\ M_0(z_0) \, x_0 = h \, z_0 \, b &; \\ M_0(z_0) \, x_1 = - M_1(z_0) \, x_0 + h \, b &; \\ M_0(z_0) \, x_k = - M_1(z_0) \, x_{k-1} - M_2(z_0) \, x_{k-2} \\ & k \geq 2 &. \end{array}$

If λ_0 is the unique closest pole to z_0 , $\frac{\pi_l x_k}{\pi_l x_{k+1}} \longrightarrow \lambda_0 - z_0 , \ k \to \infty.$ with z_0 the prejection on the l th

with π_l the projection on the *l*-th component of a vector.

Reference : (Thm 2.4) P. Guillaume, Nonlinear eigenproblems, Siam J. Matrix Anal. Appl. 20 (3) $_{26\,/\,41}$

Pole locating algorithm

Since the poles we look for are close to the unit circle, we consider the region $\Omega = [-2, 2] \times [-2, 2] \subset \mathbb{C}$, and partition it into smaller squares of width $\delta_z > 0$, $\Omega_{k,l} = [-2 + k \, \delta_z \,, \, -2 + (k+1) \, \delta_z] \times [-2 + l \, \delta_z \,, \, -2 + (l+1) \, \delta_z]$.

The operations carried out for each square $\Omega_{i,j}$.

- **1** Start : Choose initial data $z_0 \neq 0$ arbitrarily in $\Omega_{i,j}$
 - If cond M₀(z₀) > ε_{cond}, then z₀ is an analytic point, and continue to step 2;
 - If not, z_0 is a pole numerically, and move onto the next square.
- 2 Choose x_0 arbitrarily. Calculate $x_1(z_0), \ldots, x_{n_{der}+1}(z_0)$, using

$$\begin{split} & M_0(z_0) \, x_1 \;\; = \; -M_1(z_0) \, x_0 + z_0^{-1} \, M_0(z_0) \, x_0 \\ & M_0(z_0) \, x_k \;\; = \; -M_1(z_0) \, x_{k-1} - M_2(z_0) \, x_{k-2} \, , \, k \geq 2 \end{split}$$

The ratio $r = \frac{\pi_1 x_{n_{der}+1}}{\pi_1 x_{n_{der}}}$ gives an approximation of $\lambda_0 - z_0$, where λ_0 is the closest pole to initial data $z_0 \Rightarrow r$ gives an approximation of the direction to get from z_0 to λ_0 .

- **Restart** : Update the initial data $z_0 \mapsto z_0 + r$.
- Stop criteria :

the condition number of M_0 , the number of iterations N_{iter}

Application of Guillaume's Algorithm for Order 4

Notations :

 z_{ij} : the numerical poles calculated with Guillaume's algorithm, using initial guess from square Ω_{ij}

$$\kappa_{h,ij}$$
 is obtained from \mathbf{z}_{ij} by $\mathbf{z}_{ij} = e^{i\kappa_h,ij}$

Parameters

 $\begin{array}{l} \mbox{Analytic wavenumber } \kappa = 1 \\ \mbox{Discretization of } \mathbb{R} \ : \ h = 0.1 \\ \mbox{Size of square } \Omega_{ij} : \delta_z = 0.2 \\ \mbox{Stop criteria} \\ \ N_{\rm iter} = 5 \ ; \ \epsilon_{\rm cond} = 1.e - 13 \end{array}$

Nb of derivatives for approx

 $n_{\rm der}=20$

Application of Guillaume's Algorithm for Order 9

Notations :

 $\kappa_{h,ij}$ is obtained from \mathbf{z}_{ij} by $\mathbf{z}_{ii}=e^{i\kappa_{h,ij}\,h}$

$$\mathbf{a} := \min_{1 \le i,j \le 21} \operatorname{Re} \mathbf{z}_{ij}$$
; $\mathbf{b} = \min_{1 \le i,j \le 21} |\operatorname{Im} \mathbf{z}_{ij}|$

Parameters

Analytic wavenumber $\kappa = 1$ Discretization of \mathbb{R} : h = 0.1Size of square Ω_{ii} partitioning $[-2, 2] \times [-2, 2]$: $\delta_z = 0.2$ Stop criteria : $N_{\text{iter}} = 5$; $\epsilon_{\text{cond}} = 1.e - 13$ Nb of derivatives for approx $n_{der} = 20$

Numerical Dispersion Result

Introduction Analytic problem Discretization of the problem on $\mathbb R$ Summary of techniques and results Pole locating algorithm an

Numerical Dispersion Result

κh

Introduction Analytic problem Discretization of the problem on $\mathbb R$ Summary of techniques and results Pole locating algorithm and

Plan

6 More details of analytic results

Invertibility of the local matrices

The interior matrices \widehat{S}_{int} , \widehat{M}_{int} are symmetric and definite positive, and thus invertible.

Consider $g \in P_r(0, 1)$ (polynomial of degree $\leq r$) with g(0) = g(1) = 0.

Define $v \in \mathbb{R}^{r-1}$ by

$$egin{aligned} & \mathsf{v}_i := \mathsf{g}(rac{i}{r}) \;;\; \mathsf{v} = (\mathsf{v}_i)_{1 \leq i \leq r-1} \ & \Rightarrow \; \mathsf{g}(\hat{x}) := \sum_{i=1}^{r-1} \mathsf{v}_i \hat{\phi}_i(\hat{x}). \end{aligned}$$

We have

$$\begin{split} & v \cdot \widehat{S}_{\text{int}} v = \mathsf{a}_{\mathsf{S}} \left(g, g \right) = \int_{0}^{1} (g'(\hat{x}))^2 \, d\hat{x} \ \geq 0 \, ; \\ & v \cdot \widehat{M}_{\text{int}} v = \mathsf{a}_{\mathsf{M}} \left(g, g \right) = \int_{0}^{1} g^2(\hat{x}) \, d\hat{x} \ \geq 0. \end{split}$$

If $v \cdot \widehat{S}_{int}v$ or $v \cdot \widehat{M}_{int}v$, then g = 0 i.e v = 0.

For $|w| < \pi^2$, $\mathcal{M}_{int}(w)$ is invertible. In addition, its inverse is analytic in w with expansion

$$\mathcal{M}_{\rm int}^{-1}(w) = \widehat{S}_{\rm int}^{-1} + \sum_{k=1}^{\infty} w^k \left(\widehat{S}_{\rm int}^{-1}\widehat{M}_{\rm int}\right)^k \widehat{S}_{\rm int}^{-1}$$

Invertibility :

$$\begin{split} \mathbf{v} \cdot \mathcal{M}_{\text{int}} \mathbf{v} &= \int_0^1 g'^2 \, d\hat{\mathbf{x}} - w \int_0^1 g^2 \, d\hat{\mathbf{x}} \\ &\geq (\pi^2 - w) \|g\|_{L^2}^2. \end{split}$$
 Poincaré inequality for $f \in H_0^1(0,1)$

Since $\mathcal{M}_{int}(w) = \widehat{S}_{int} - w \widehat{M}_{int}$ is symmetric, \mathcal{M}_{int} is definite positive for $w < \pi^2$

 \Rightarrow is invertible for such w.

Analyticity : Can show that

Spectral radius
$$\rho\left(\widehat{M}_{\text{int}} \ \widehat{S}_{\text{int}}^{-1}\right) \leq \pi^2$$
.

Thus for $|w| < \pi^2$, the Neumann series converges, giving an analytic inverse.

Structure of zeros of det $\mathcal{A}(w, z) = \delta(w) \mathbf{q}(w, z) = \delta(w), (z^2 - 2\rho(w)z + 1)$

Goals - For small enough
$$w$$
: 1. $\rho(w) = \frac{\beta(w) + \det B(w)}{-2\delta(w)} = \cos w^{1/2} + wO(w^r)$; 2. $\delta(w) \neq 0$

Part 1 : Show

$$\begin{split} \beta(w) + \det B(w) &= -2\delta(w) - w \det \mathcal{M}_{int}(w) \left(1 + w\kappa \cdot \mathcal{M}_{int}^{-1}(w)\kappa\right). \\ \Rightarrow \frac{\beta(w) + \det B(w)}{\delta(w)} &= -2 - w \frac{\det \mathcal{M}_{int}(w)}{\delta(w)} \left(1 + w\kappa \cdot \mathcal{M}_{int}^{-1}(w)\kappa\right). \end{split}$$

Part 2 : Show
$$w \kappa \cdot \mathcal{M}_{int}^{-1} \kappa = -1 + \frac{2 - 2 \cos w^{1/2}}{w^{1/2} \sin w^{1/2}} + O(w^{2[r/2]+1})$$

Part 3 : Show
$$-\frac{\delta(w)}{\det \mathcal{M}_{int}(w)} = \frac{w^{1/2}}{\sin w^{1/2}} + w^{2[\frac{r-1}{2}]+2} e(\mathfrak{a}, \mathfrak{b}).$$

$$\kappa_j = \int_0^1 \hat{\phi}_j(\hat{x}) \, d\hat{x}.$$

$$\kappa = (\kappa_1, \dots, \kappa_{r-1})^t$$

<u>_1</u>

$$1 \leq j \leq r-1$$

$$(\mathfrak{a}_0)_j = \widehat{S}_{jr} \quad (\mathfrak{a}_1)_j = \widehat{M}_{jr}$$

$$(\mathfrak{b}_0)_j = \widehat{S}_{j0} \quad (\mathfrak{b}_1)_j = \widehat{M}_{j0}$$

$$\mathfrak{a}(w) = \mathfrak{a}_0 - w\mathfrak{a}_1$$

$$\mathfrak{b}(w) = \mathfrak{b}_0 - w\mathfrak{b}_1$$

$$B(w) = \begin{pmatrix} 2\mathcal{M}_{00}(w) & b^{t}(w) \\ b(w) & \mathcal{M}_{int}(w) \end{pmatrix}$$
$$\beta(w) := \det \begin{pmatrix} 0 & a^{t}(w) \\ a(w) & \mathcal{M}_{int}(w) \end{pmatrix}$$
$$\delta(w) := \det \begin{pmatrix} \mathcal{M}_{0r}(w) & b^{t}(w) \\ a(w) & a^{t}(w) \end{pmatrix}$$

$$:= \det \begin{pmatrix} \mathcal{M} & \mathcal{M} \\ \mathfrak{a}(w) & \mathcal{M}_{int}(w) \end{pmatrix}$$

$$\frac{34 / 41}{34 - 41}$$

Structure of zeros of $\mathbf{q}(w, z) = z^2 - 2\rho(w)z + 1$ (cnt)

$$\begin{array}{l} \boxed{ \mathsf{Part 2}: } \ \mathsf{Notation}: [f] = (f(j/r))_{0 \le j \le r} \\ \kappa \cdot \mathcal{M}_{\mathsf{int}}^{-1}(w) \ \kappa = \widehat{\mathcal{M}}_{\mathsf{int},\star} \ [1] \cdot \mathcal{M}_{\mathsf{int}}^{-1}(w) \ \widehat{\mathcal{M}}_{\mathsf{int},\star} \ [1] \\ = \mathsf{a}_w \ (f, f) + \mathsf{O}(w^{2[r/2]}). \\ = -w^{-1} + \frac{2 - 2\cos w^{1/2}}{w^{3/2}\sin w^{1/2}} + w^{2[r/2]} \ \mathsf{e}(\kappa), \end{array}$$

where f is the unique solution to the BVP

Part 3

Step 3a :

$$\delta(w) = \det \mathcal{M}_{int}(w) \left[\widehat{S}_{r0} - w \widehat{M}_{r0} - \mathfrak{a}(w) \cdot \mathcal{M}_{int}^{-1}(w) \mathfrak{b}(w) \right]$$

-f'' - wf = 1; f(0) = f(1).

Step 3b :

$$\begin{split} \mathfrak{a}(w) \cdot \mathcal{M}_{int}^{-1}(w) \, \mathfrak{b}(w) &= \mathfrak{a}_0 \cdot \widehat{S}_{int}^{-1} \mathfrak{b}_0 \\ &+ w \left(\widehat{S}_{int}^{-1} \mathfrak{a}_0 \cdot Y - \mathfrak{a}_1 \cdot \widehat{S}_{int}^{-1} \mathfrak{b}_0 \right) \\ &+ w^2 X \cdot \mathcal{M}_{int}^{-1}(w) Y \quad . \end{split}$$
with $Y := \widehat{M}_{int} \widehat{S}_{int}^{-1} \mathfrak{b}_0 - \mathfrak{b}_1 \ ; \ X := \widehat{M}_{int} \widehat{S}_{int}^{-1} \mathfrak{a}_0 - \mathfrak{a}_1 \end{split}$

Step 3c :

$$\begin{split} \mathfrak{a}_{0} \cdot \widehat{S}_{\text{int}}^{-1} \mathfrak{b}_{0} &= \mathsf{a}_{\mathsf{S}}(\hat{\phi}_{r}, \hat{\phi}_{0} + x - 1) = \widehat{S}_{r0} + 1. \\ \widehat{S}_{\text{int}}^{-1} \mathfrak{a}_{0} \cdot \mathsf{Y} - \mathfrak{a}_{1} \cdot \widehat{S}_{\text{int}}^{-1} \mathfrak{b}_{0} \\ &= \mathsf{a}_{\mathsf{M}}(\hat{\phi}_{r} - x, x - 1) - \mathsf{a}_{\mathsf{M}}(\hat{\phi}_{r}, \hat{\phi}_{0} + x - 1) = \frac{1}{6} - \widehat{M}_{r0}. \end{split}$$

Step 3d :

$$\begin{split} & \mathsf{X} \cdot \mathcal{M}_{\mathsf{int}}^{-1}(\mathsf{w}) \,\mathsf{Y} \\ &= \widehat{M}_{\mathsf{int},\star} \left[-x \right] \cdot \mathcal{M}_{\mathsf{int}}^{-1}(\mathsf{w}) \, \widehat{M}_{\mathsf{int},\star} \left[x - 1 \right] \\ &= \mathsf{a} \left(\tilde{f}, -f'' - \mathsf{w}f \right) + \mathsf{w}^{2\left[\frac{r-1}{2} \right]} \mathsf{e}(\mathfrak{a}, \mathfrak{b}) \\ &= -\frac{1}{\mathsf{w}^2} - \frac{1}{\mathsf{6}\mathsf{w}} + \frac{1}{\mathsf{w}^{3/2} \sin \mathsf{w}^{1/2}} + \mathsf{w}^{2\left[\frac{r-1}{2} \right]} \mathsf{e}(\mathfrak{a}, \mathfrak{b}) \end{split}$$

where f and \tilde{f} are the unique solutions to

$$\begin{aligned} &-\tilde{f}'' - w\tilde{f} = -x \ ; \ \tilde{f}(0) = \tilde{f}(1) = 0 \\ &-f'' - wf = x - 1 \ ; \ f(0) = f(1) = 0. \end{aligned}$$

$$\begin{split} \mathcal{M}(w) &= \widehat{S} - w \widehat{M} \ ; \ \mathcal{M}_{int}(w) = \widehat{S}_{int} - w \widehat{M}_{int} \\ \mathfrak{a}(w) &= \mathfrak{a}_0 - w \mathfrak{a}_1 \ ; \ \mathfrak{b}(w) = \mathfrak{b}_0 - w \mathfrak{b}_1 \\ \end{bmatrix} \label{eq:matrix_static_$$

Limiting absorption principle . Outgoing solution

$$\begin{aligned} \mathbf{q}(w,z) &= z^{2} - 2\rho(w)z + 1 \\ \rho(w) &= \cos w^{1/2} + wO(w'). \\ \text{Discri. } \Delta(w) &= -4\sin^{2}(w^{1/2})(1+O(w')) \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa_{\epsilon}^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ (U_{\text{outgoing}})J &= \lim_{\epsilon \to 0^{+}} (U_{\epsilon})J \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ (U_{\text{outgoing}})J &= \lim_{\epsilon \to 0^{+}} (U_{\epsilon})J \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{A^{-1}(\kappa^{2}h^{2}, z) h z [Z_{23}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}$$

Numerical wavenumber (Part 1)

Goal : obtain the explicit formula for the outgoing solution of the reccurence relation at $\kappa > 0$.

$$\begin{split} u_{\text{outgoing}}(\kappa^{2})_{J,0} &= \frac{h \ e^{i \ J \ \phi_{0}}}{2 \ i \ \delta(\kappa^{2} h^{2}) \sin \phi_{0}} \sum_{\substack{0 \le l \le r-1 \\ N_{\text{min}} \le J' \le N_{\text{max}}}} e^{i(1-\tilde{J})\phi_{0}} f_{J',l} \left[Q^{t} \left(\kappa^{2} h^{2}, e^{-i\phi_{0}}\right) \right]_{(l+1)1} , J > N_{\text{max}} \\ u_{\text{outgoing}}(\kappa^{2})_{J,0} &= \frac{h \ e^{-i \ J \ \phi_{0}}}{2 \ i \ \delta(\kappa^{2} h^{2}) \sin \phi_{0}} \sum_{\substack{0 \le l \le r-1 \\ N_{\text{min}} \le J' \le N_{\text{max}}}} e^{i \ (J'-1) \ \phi_{0}} f_{J',l} \left[Q^{t} \left(\kappa^{2} h^{2}, e^{i\phi_{0}}\right) \right]_{(l+1)1} , J < N_{\text{min}}. \end{split}$$

After this step, by using : $\phi_0 = \kappa h (1 + O((\kappa h)^{2r}), \text{ obtain})$

Dispersion Analysis

$$\kappa = \frac{\phi_0}{h} = \kappa + \kappa \operatorname{O}((\kappa h)^{2r})$$

Numerical wavenumber (cnt) : Explicit expression for outgoing sol

$$\mathcal{A}^{-1}(\kappa^2 h^2, z) = \frac{r^{r-2}Q(\kappa^2 h^2, z)}{z^{r-1}\delta(\kappa^2 h^2)\,\mathbf{q}(\kappa^2 h^2, z)} = \frac{Q(\kappa^2 h^2, z)}{z\,\delta(\kappa^2 h^2)\,(z - e^{i\phi_0})(z + e^{i\phi_0})} \,, \ z \neq e^{\pm i\phi_0}$$

$$\begin{aligned} (U_{\text{outgoing}})_{J} &= \lim_{\epsilon \to 0^{+}} (U_{\epsilon})_{J} = \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{\mathcal{A}^{-1}(\kappa^{2}h^{2},z) h z [Z_{\mathfrak{B}}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{Q(\kappa^{2}h^{2},z)}{\delta(\kappa^{2}h^{2})(z-e^{i\phi_{0}})(z+e^{i\phi_{0}})} \frac{h[Z_{\mathfrak{B}}F](z)}{z^{J+1}} dz \\ &= \frac{1}{2\pi i} \oint_{\Gamma_{\text{outgoing}}} \frac{W_{0}(z)}{z^{J+1}} dz \quad . \end{aligned}$$

Numerical wavenumber (cnt) : Explicit expression for outgoing sol

_

RHS **f** having Supp $F \subset [N_{\min}, N_{\max}]$, $F = (f_{J,l})$, write the integrand as

$$z^{-J-1}W_{0}(z) dz = \frac{h \ Q(\kappa^{2}h^{2}, z)}{\delta(\kappa^{2}h^{2}) \ \mathbf{q}(\kappa^{2}h^{2}, z)} z^{-J-1} \sum_{j=N_{\min}}^{N_{\max}} z^{j} \left(f_{j,k}\right)_{0 \leq k \leq r-1} dz$$

$$\boxed{For \ J < N_{\min} : \underbrace{W_{0}(z)}{z^{J+1}} \text{ is analytic at } z = 0$$

$$(U_{\text{outgoing}})_{J}$$

$$= \frac{1}{2\pi i} \left(\oint_{\Gamma_{+}} + \oint_{\gamma_{+,>} \cup -\gamma_{+,<}} \right) \frac{W_{0}(z)}{z^{J+1}} dz$$

$$= \frac{1}{2\pi i} \oint_{C_{r}} \frac{W_{0}(z)}{z^{J+1}} dz + \operatorname{Res} \left(\frac{W_{0}(z)}{z^{J+1}}, e^{i\phi_{0}}\right), r < 1$$
Deform $\Gamma_{\text{outgoing to } \Gamma_{+}.$

$$F_{+} := \Gamma_{\text{right}} \cup \gamma_{+,<} \cup \Gamma_{\text{left}} \cup \gamma_{-,<}$$

$$\Gamma_{+} \text{ is homotopic to } \mathbf{C}_{r}, r < 1.$$

$$= \frac{h \ Q(\kappa^{2}h^{2}, e^{i\phi_{0}}) \ [Z_{28}F](e^{i\phi_{0}})}{\delta(\kappa^{2}h^{2}) \ (e^{i\phi_{0}} - e^{-i\phi_{0}})} (e^{i\phi_{0}})^{-J-1}.$$

39/41

Numerical wavenumber (cnt) : Explicit expression for outgoing sol

For
$$\tilde{z} := z^{-1}$$
 : $z^{-J}W_0(z) \frac{dz}{z} = \frac{h}{\delta(\kappa^2 h^2)} \frac{Q^t(\kappa^2 h^2, \tilde{z})}{q(\kappa^2 h^2, \tilde{z})} \tilde{z}^J \sum_{j=N_{\min}}^{N_{\max}} \tilde{z}^{-j} (f_{j,k})_{0 \le k \le r-1} \frac{d\tilde{z}}{\tilde{z}}.$
For $J > N_{\max}$: $N_{\min} \le j \le N_{\max} \Rightarrow J - j - 1 \ge J - N_{\max} - 1 \ge 0$
 \Rightarrow the integrand is analytic at $\tilde{z} = 0.$
 $(U_{outgoing})_J = \frac{1}{2\pi i} \left(\oint_{\Gamma_{outgoing}} + \oint_{\gamma_{-,<} \cup -\gamma_{-,>}} \right) \frac{W_0(z)}{z^{J+1}} dz$
 $= \frac{1}{2\pi i} \oint_{C_r} \frac{W_0(z)}{z^{J+1}} dz - \operatorname{Res} \left(\frac{W_0(z)}{z^{J+1}}, e^{-i\phi_0} \right), \quad 1 < r$
 $= \frac{1}{2\pi i} \oint_{C_{r-1}} \frac{h\tilde{z}^J}{\delta(\kappa^2 h^2)} \frac{Q^t(\kappa^2 h^2, \tilde{z})}{q(\kappa^2 h^2, \tilde{z})} [Z_{\mathfrak{B}}F](\tilde{z}^{-1}) \frac{d\tilde{z}}{\tilde{z}}$
 $-\operatorname{Res} \left(\frac{W_0(z)}{z^{J+1}}, e^{-i\phi_0} \right)$
 $= -\operatorname{Res} \left(W_0(z) z^{-(J+1)}, e^{-i\phi_0} \right)$
 $= -\frac{h}{\delta(\kappa^2 h^2)} \frac{Q(\kappa^2 h^2, e^{-i\phi_0})}{(e^{-i\phi_0} - e^{i\phi_0})} (e^{-i\phi_0})^{-J-1}.$

Introduction Analytic problem Discretization of the problem on $\mathbb R$ Summary of techniques and results Pole locating algorithm an

Conclusion

Thank you for your attention