A study of Numerical Dispersion for Helmholtz equation in one dimension by Z transform

Hélène Barucq ${ }^{1}$ Henri Calandra ${ }^{2}$ Sébastien Tordeux ${ }^{1}$ Ha Pham ${ }^{1}$.

Part of the workpackage WP3 on Stabilized High-order Galerkin Methods for Seismic Exploration

Houston, September 2016

TOTAL

[^0]
Overview

(1) Introduction
(2) Analytic problem
(3) Discretization of the problem on \mathbb{R}

4 Summary of techniques and results
(5) Pole locating algorithm and Numerical Results
(6) More details of analytic results

Plan

Numerical Dispersion

Helmholtz equation gives the long-time behavior of the wave equation

$$
\left(\partial_{t}^{2}-c^{2} \Delta\right) \mathbf{U}(t, x)=\mathbf{f}(x) e^{-i \omega t}
$$

$$
\begin{array}{llc}
\text { where } & c= & \text { speed of propagation } \\
& \frac{\omega}{2 \pi}= & \text { time freq. of the excitation }
\end{array}
$$

Fund. sols of $\left(-\Delta-\kappa^{2}\right) \mathbf{u}=0$ are

$$
e^{i \kappa x}, \quad e^{-i \kappa x}
$$

corresponding to harmonic plane wave $e^{i(\kappa x-\omega t)}$ propagating from L to R $e^{-i(\kappa x-\omega t)}$ propagating from R to L with phase velocity $\frac{\omega}{\kappa}=$ constant speed c depending only on material properties and not ω

No dispersion behavior
for the exact solution.

Look for time-harmonic sol with the same freq

$$
\mathbf{U}(t, x)=\mathbf{u}(x) e^{-i \omega t}
$$

thus \mathbf{u} solves the Helmholtz

$$
\begin{aligned}
& \left(-\Delta-\frac{\omega^{2}}{c^{2}}\right) \mathbf{u}=\mathbf{f} \\
\kappa:= & \frac{\omega}{c} \text { the wave number } .
\end{aligned}
$$

The numerical solution associated Finite Element or Finite Difference

$$
u_{h}=e^{-i\left(\kappa_{h} x-\omega t\right)}
$$

with numerical wavenumber

$$
\kappa_{h}=\kappa_{h}(\kappa h)=\kappa_{h}\left(\frac{\omega}{c} h\right) \neq \frac{\omega}{c},
$$

depending on ω.
The numerical phase velocity

$$
\begin{aligned}
& \frac{\omega}{\kappa_{h}} \neq \text { constant speed } c \\
& \text { and depends on } \omega
\end{aligned}
$$

Dispersive behavior of the numerical solution

Numerical Dispersion for Finite Difference Order 2

Exact phase velocity $=c \quad ; \quad$ Numerical phase velocity $=\frac{\omega}{\kappa_{h}}=c \frac{\kappa}{\kappa_{h}}=c \frac{\frac{\kappa h}{2}}{\arcsin \left(\frac{\kappa h}{2}\right)} \sim 0.98939 c$

Numerical Dispersion for Finite Difference Order 2

Relative error between $\mathbf{u}_{\text {exact }}=e^{i \kappa x}$ and $u_{h}=e^{i \kappa_{h} x}$
The first maximum is reached in red (\boldsymbol{X}) and corresponds to 200% error.

Methodology and Results

Goal

Study the phase difference between the analytic wavenumber κ and the numerical one κ_{h} associated with the discretization of the variational problem by Continuous Galerkin FEM for any order.

* Discretization is on \mathbb{R},
\Rightarrow the pollution is studied in isolation with the effect of spurious reflection at the boundary .
* Use blocking + Z-transform to transform system of two-sided infinite recurrence relations into one matrix-vector equation

$$
\mathcal{A}\left(\kappa^{2} h^{2}, z\right) W(\kappa, z)=h z H(z)
$$

\star Identity the numerical wavenumber κ_{h} with the angle of the (analytic) poles of

$$
\left[\mathcal{A}\left(\kappa^{2} h^{2}, z\right)\right]^{-1}
$$

* For any order r, obtain dispersion analysis in the form of an analytic expansion,

$$
\begin{aligned}
& \kappa_{h} h=\kappa h+\kappa h \mathrm{O}\left((\kappa h)^{2 r}\right) . \\
& \underset{\substack{\text { analytic } \\
\text { in } \kappa h}}{\kappa_{h}-\kappa}<C(r)(\kappa h)^{2 r} .
\end{aligned}
$$

* Use Guillaume's algorithm to numerically calculate the poles, and hence κ_{h}.

Toy Example : Numerical Dispersion analysis for FD order 2

Uniform discretization of \mathbb{R} with step size h by nodes

$$
x_{n}=n h \quad, \quad n \in \mathbb{Z}
$$

Recurrence relation given by second order Finite Difference

$$
-u_{n-1}+\left(2-\kappa^{2} h^{2}\right) u_{n}-u_{n+1}=0 \quad, \quad n \in \mathbb{Z} .
$$

The characteristic polynomial of the recurr. relation,

$$
z^{2}-\left(2-\kappa^{2} h^{2}\right) z+1=0,
$$

for $0 \leq \kappa h<2$, has conjugate complex roots of norm 1:

$$
e^{i \gamma_{h}}, e^{-i \gamma_{h}} .
$$

Solution of the recurrence relation :

$$
u_{n}=a_{+} e^{i \gamma_{h} n}+a_{-} e^{-i \gamma_{h} n}
$$

(Analytic) wavenumber κ controls the oscillatory behavior of $u_{\text {exact }}$, $\mathbf{u}_{\text {exact }}(x)=a_{+} e^{i \kappa x}+a_{-} e^{-i \kappa x}$

The numerical wave number

$$
\kappa_{h}:=\frac{\gamma_{h}}{h}
$$

controls the oscillatory behavior of numerical solution,

$$
\begin{aligned}
u_{n}= & a_{+} e^{i \frac{\gamma_{h}}{h}(n h)}+a_{-} e^{-i \frac{\gamma_{h}}{h}(n h)} \\
= & a_{+} e^{i \kappa_{h} x}+a_{-} e^{-i \kappa_{h} x}, \\
& x=n h .
\end{aligned}
$$

A toy example (cnt)

For $|\kappa h|<2$,

$$
\begin{aligned}
\kappa_{h} & =\frac{2}{h} \arcsin \left(\frac{1}{2} \kappa h\right) \\
& =\frac{2}{h} \sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}(2 n+1)} \frac{1}{2 \cdot 4^{n}}(\kappa h)^{2 n+1}
\end{aligned}
$$

Dispersion analysis

$$
\begin{aligned}
\delta_{h} & =\kappa_{h}-\kappa \\
& =\frac{1}{24} \kappa^{3} h^{2}+\mathcal{E}_{h}(\kappa h) \quad, \quad|\kappa h|<2
\end{aligned}
$$

\mathcal{E}_{h} is analytic,

$$
\begin{aligned}
\mathcal{E}_{h}(\kappa h) & =\kappa h \sum_{n=2}^{\infty} \frac{(2 n)!}{4^{2 n}(n!)^{2}(2 n+1)}(\kappa h)^{2 n} \\
& =\kappa h \mathrm{O}\left((\kappa h)^{4}\right) \quad ; \quad|\kappa h|<2
\end{aligned}
$$

Results from literature

Theoretical proof that gives an upper bound of the phase difference :

Theorem (Ihlenburg-Babushka)

For $r \geq 1$, if $\frac{h \kappa}{r}<1$, for the CG FEM discretization of the BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}-\kappa^{2} u=f, \quad \text { on }(0,1) \\
u(0)=0 ; \quad u^{\prime}(1)-i \kappa u(1)=0
\end{array}\right.
$$

the difference between the continous wave number κ and the numerical one κ_{h} is bounded above by,

$$
\left|\kappa_{h}-\kappa\right| \leq \kappa C\left(\frac{e}{4}\right)^{2 r} \frac{(\pi r)^{-1 / 2}}{4}\left(\frac{\kappa h}{2 r}\right)^{2 r}
$$

Here, C is a constant not depending on κ, h and r.

Other References :
By numerical results: Thompson-Pinsky, Harari-Hughes ...

Plan

(2) Analytic problem

Functional Analysis view point

Δ is an unbounded op. on $L^{2}(\mathbb{R})$ with domain $H^{2}(\mathbb{R})$ $\sigma(-\Delta)=\sigma_{\text {continuous }}(-\Delta)=\mathbb{R}^{+}$: purely continuous.

Inverse of $-\Delta-\sigma$ is a resolvent $\mathcal{R}(\sigma)$ of Δ.

$$
(-\Delta-\sigma)^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}) \text { bounded, } \sigma \in \mathbb{C} \backslash \mathbb{R}^{+}
$$

No eigenvalue (no eigenfunction in $L^{2}(\mathbb{R})$).

$$
\begin{array}{lclll}
& (-\Delta-\sigma) u=0 \text { in } L^{2}(\mathbb{R}) & \Rightarrow & \left(|\xi|^{2}-\sigma\right) \widehat{u}=0 \\
\Rightarrow & \widehat{u}=0 & \Rightarrow & u=0 \text { in } L^{2}(\mathbb{R}) .
\end{array}
$$

Highlighted reg. $\mathbb{C} \backslash \mathbb{R}^{+}=$resolv. set of $-\Delta$

There are 'generalized ' eigenfunctions $\in \mathcal{S}^{\prime}(\mathbb{R})$

$$
\begin{array}{cc}
(-\Delta-\sigma) u=0 \text { in } \mathcal{S}^{\prime}(\mathbb{R}) & \Rightarrow \\
\Rightarrow \widehat{u}=a_{-} \delta_{-\sqrt{\sigma}}+a_{+} \delta \sqrt{\sigma} & \left(|\xi|^{2}-\sigma\right) \widehat{u}=0 \\
\sigma \notin \mathbb{R}^{+} & \Rightarrow u=\underbrace{a_{-} e^{-i \sqrt{\sigma} x}+a_{+} e^{i \sqrt{\sigma} x}}_{\notin L^{2}(\mathbb{R})} . \\
& \sigma=\kappa^{2}, \kappa \in \mathbb{R}^{+}
\end{array}
$$

The variational form is coerc. in $L^{2}(\mathbb{R})$ Get \exists ! of sol in $L^{2}(\mathbb{R})$ by Fourier transf.

$$
\begin{gathered}
(-\Delta-\sigma) u=f \text { in } L^{2}(\mathbb{R}) \\
\Rightarrow u=\mathcal{F}^{-1} \frac{1}{|\xi|^{2}-\sigma} \mathcal{F} f \\
\Rightarrow \sigma(\Delta) \subset \mathbb{R}^{+}
\end{gathered}
$$

Construct a seq. w_{n} of 'almost eigenf.' (Weyl seq.)

$$
\left\|(-\Delta-\lambda) w_{n}\right\|_{L^{2}(\mathbb{R})} \rightarrow 0 ;\left\|w_{n}\right\|_{L^{2}(\mathbb{R})}=1
$$

This prevents the existence of bounded

$$
(-\Delta-\sigma)^{-1} \text { in } L^{2}(\mathbb{R}) \text { for } \sigma \in[0,+\infty)
$$

$$
\Rightarrow \mathbb{R}^{+} \subset \sigma(-\Delta)
$$

Limiting absorption principle

Explicit formula

By separation of variables, obtain
$G_{\epsilon}(x)=\frac{e^{i \sqrt{\kappa^{2}+i \epsilon}|x|}}{2 i \sqrt{\kappa^{2}+i \epsilon}}$ as the fund. sol. to

$$
\left(-\Delta-\left(\kappa^{2}+i \epsilon\right)\right) G_{\epsilon}=\delta(y), \kappa, \epsilon \in \mathbb{R}^{+} .
$$

The unique solution in $L^{2}(\mathbb{R})$ is given by

$$
\mathbf{u}_{\epsilon}=\int_{-\infty}^{\infty} G_{\epsilon}(x-y) f(y) d y ;
$$

For each x,

$$
G_{\epsilon}(x) \xrightarrow[\epsilon \rightarrow 0]{\text { point wise }} G_{\text {outgoing }}(x):=\frac{e^{i \kappa|x|}}{2 i \kappa} .
$$

$\mathbf{u}_{\epsilon} \xrightarrow[\epsilon \rightarrow 0]{ } \mathbf{u}_{\text {outgoing }}:=G_{\text {outgoing }} \star \mathbf{f}$ in $H_{\text {loc }}^{2}(\mathbb{R})$.
gives the outgoing solution to

$$
\left(-\Delta-\kappa^{2}\right) \mathbf{u}=\mathbf{f}, \mathbf{f} \in L_{c}^{2}(\mathbb{R}) .
$$

The Sommerfeld radiation condition : The outgoing solution satisfies

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow \infty}\left|\frac{1}{i} u^{\prime}(x)-k u(x)\right|=0 \\
\lim _{x \rightarrow-\infty}\left|\frac{1}{i} u^{\prime}(x)+k u(x)\right|=0
\end{array}\right.
$$

Analytic Continuation

For $\mathbf{f} \in \mathcal{C}_{c}^{\infty}(\mathbb{R}), \widehat{\mathbf{f}}$ has an analytic extension to \mathbb{C}.
For $\sigma \in \mathbb{C}$ with $\operatorname{Re} \sigma>0, \operatorname{Im} \sigma>0$, the unique sol. in $L^{2}(\mathbb{R})$ to $(-\Delta-\sigma) \mathbf{u}=\mathbf{f}$ is

$$
\begin{aligned}
\mathbf{u}(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x \cdot \xi} \frac{\widehat{\mathbf{f}}(\xi)}{|\xi|^{2}-\sigma} d \xi=\frac{1}{2 \pi}\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right) \\
& =\frac{1}{2 \pi} \int_{0}^{\infty}\left[e^{i x \cdot \xi} \widehat{\mathbf{f}}(\xi)+e^{-i x} \cdot \xi \widehat{\mathbf{f}}(-\xi)\right] \frac{1}{|\xi|^{2}-\sigma} d \xi
\end{aligned}
$$

Deform $[0, \infty)$ to \mathcal{C}_{+}, and get analytic continuation to $\{\sigma: \operatorname{Re} \sigma>0\}$
$\mathbf{u}_{\text {outgoing }}(x)=\frac{1}{2 \pi} \int_{\mathcal{C}_{+}} \frac{e^{i x \cdot \xi \widehat{\mathbf{f}}(\xi)+e^{-i x \cdot \xi} \widehat{\mathbf{f}}(-\xi)}}{\xi^{2}-\sigma} d \xi$

Plan

(3) Discretization of the problem on \mathbb{R}

Discretization

The real line \mathbb{R} is partitioned into intervals of length h

$$
I_{J}=\left[y_{J}, y_{J+1}\right], J \in \mathbb{Z} .
$$

the geometrical nodes

$$
y_{J}:=J h
$$

For a method of order r, the intervals are further partitioned by global interpolation nodes

$$
\begin{aligned}
& x_{J, k}:=\left(J+\frac{k}{r}\right) h \\
& J \in \mathbb{Z}, 0 \leq k<r .
\end{aligned}
$$

Discrete solution :

$$
u_{h}=\sum_{J \in \mathbb{Z}, 0 \leq k<r} u_{J, k} \phi_{J, k}
$$

A global basis for

$$
\mathbb{P}_{r}=\left\{p \in C^{0}(\mathbb{R})|p|_{I_{J}} \in P_{r}\left(I_{J}\right), \forall J \in \mathbb{Z}\right\}
$$

is given by $\phi_{J, k}-s$ defined on \mathbb{R} by
$k=0: \phi_{J, 0}(x):=\left\{\begin{array}{ll}\hat{\phi}_{0}\left(F_{J}^{-1} x\right) & , x \in I_{J} \\ \hat{\phi}_{r}\left(F_{J-1}^{-1} x\right) & , x \in I_{J-1} \\ 0 & , \text { otherwise }\end{array} ;\right.$
$0<k<r: \phi_{J, k}(x):=\left\{\begin{array}{ll}\hat{\phi}_{k}\left(F_{J}^{-1} x\right) & , x \in I_{J} \\ 0 & , \text { otherwise }\end{array}\right.$.

Ref Lagragian poly of deg r on $[0,1]$:

$$
\hat{\phi}_{i}(\hat{x}):=\prod_{\substack{0 \leq j \leq r \\ j \neq i}} \frac{\left(\hat{x}-\hat{x}_{j}\right)}{\left(\hat{x}_{i}-\hat{x}_{j}\right)}
$$

Isomorphism between reference interval and I_{J}

$$
F_{J}:[0,1] \rightarrow I_{J}, \hat{x} \mapsto h x+y_{J}, J \in \mathbb{Z}
$$

Variational problem

Bilinear form for $v, w \in H^{1}(\mathbb{R})$,

$$
a(v, w):=\int_{-\infty}^{\infty} v^{\prime}(x) w^{\prime}(x) d x-\kappa^{2} \int_{-\infty}^{\infty} v(x) w(x) d x
$$

Discrete solution $u_{h}=\sum_{l \in \mathbb{Z}, 0 \leq \ell<r} u_{l, \ell} \phi_{l, \ell}$ satisfies,

$$
a\left(u_{h}, \phi_{J, k}\right)=\int_{-\infty}^{\infty} \mathbf{f}(x) \phi_{J, k}(x) d x \quad, \quad \forall \phi_{J, k}, J \in \mathbb{Z}, 0 \leq k<r
$$

Local mass matrix \widehat{M} of size $(r+1) \times(r+1)$

$$
\widehat{M}_{i j}=\mathrm{a}_{\mathrm{M}}\left(\hat{\phi}_{i}, \hat{\phi}_{j}\right) \quad, \quad 0 \leq i, j \leq r .
$$

Local stiff matrix \widehat{S} of size $(r+1) \times(r+1)$

$$
\begin{gathered}
\widehat{S}_{i j}=\operatorname{as}\left(\hat{\phi}_{i}, \hat{\phi}_{j}\right) \quad, \quad 0 \leq i, j \leq r . \\
\mathcal{M}_{i j}(w):=\widehat{S}_{i j}-w \widehat{M}_{i j} \quad, \quad 0 \leq i, j \leq r
\end{gathered}
$$

$$
\begin{gathered}
\text { For } f, g \in H^{1}(0,1) \\
\mathrm{a}_{\mathrm{s}}(f, g)=\int_{0}^{1} f^{\prime}(\hat{x}) g^{\prime}(\hat{x}) d \hat{x}
\end{gathered}
$$

For $f, g \in L^{2}(0,1)$,

$$
\mathrm{a}_{\mathrm{M}}(f, g)=\int_{0}^{1} f(\hat{x}) g(\hat{x}) d \hat{x}
$$

Recurrence relations

$$
u_{h}=\sum_{J \in \mathbb{Z}, 0 \leq k<r} u_{J, k} \phi_{J, k} \quad \begin{array}{r}
a\left(u_{h}, \phi_{J, k}\right)=f_{J, k} \tag{1}\\
J \in \mathbb{Z} \quad, \quad 0 \leq k<r .
\end{array}
$$

The coefficients $u_{J, k}-s$ satify the following system of r recurrence relations:

Those at levels $J r, J \in \mathbb{Z}$ come from applying (1) to $\phi_{J, 0}$ (at geo. nodes)

$$
\sum_{\ell=0}^{r-1} \mathcal{M}_{r \ell} u_{J-1, \ell}+2 \mathcal{M}_{00} u_{J, 0}+\sum_{\ell=1}^{r-1} \mathcal{M}_{0 \ell} u_{J, \ell}+\mathcal{M}_{0 r} u_{J+1,0}=h f_{J, 0}
$$

The remaining types at levels $J r+k$, with $0<k<r$, are obtained from applying (1) to $\phi_{J, k}$ (at interpolation nodes)

$$
\sum_{\ell=0}^{r-1} \mathcal{M}_{k \ell} u_{J, \ell}+\mathcal{M}_{k r} u_{J+1,0}=h f_{J, k} \quad ; \quad 0<k<r .
$$

$$
f_{J, k}:=\int_{-\infty}^{\infty} \mathbf{f}(x) \phi_{J, k}(x) ; \quad J \in \mathbb{Z}, 0 \leq k<r .
$$

Plan

4 Summary of techniques and results

(Two-sided) Z-transforms for scalar sequence $u=\left\{u_{n}\right\}_{n \in \mathbb{Z}}$

	Version θ	Version z
Definition	$[Z u](\theta):=\sum_{n=-\infty}^{\infty} u_{n} e^{2 \pi i n \theta}$ if the RHS converges	$[Z u](z):=\sum_{n=-\infty}^{\infty} u_{n} z^{n}$ if the RHS converges
$u \in I^{2}(\mathbb{Z})$	$[Z u](\theta)$ is periodic in θ $Z: I^{2}(\mathbb{Z}) \longrightarrow L^{2}(0,1)$ is an isometry	$Z: I^{2}(\mathbb{Z}) \longrightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is an isometry
	u_{n} is the n-th coefficient of Fourier series representing $Z u$ $u_{n}=\int_{0}^{1}[Z u](\theta) e^{-2 \pi i n \theta} d \theta$	$I^{2}(\mathbb{Z})=\left\{\left(u_{k}\right)_{k \in \mathbb{Z}}: \sum_{k \in \mathbb{Z}} u_{k}^{2}<\infty\right\}$

$u \in I_{-\epsilon}^{2}(\mathbb{Z})$
$[Z u](\theta)$ is periodic and analytic in the horizontal strip $\{-\epsilon<\operatorname{Im} z<\epsilon\}$

$$
I_{-\epsilon}^{2}(\mathbb{Z})=\left\{\left(u_{k}\right)_{k \in \mathbb{Z}}: \sum_{k \in \mathbb{Z}} e^{2 \epsilon|k|} u_{k}^{2}<\infty\right\}
$$

$[Z u](z)$ is analytic in the annulus $\left\{e^{-\epsilon}<|z|<e^{\epsilon}\right\}$
u_{n} is the n-th coefficient of Laurent series representing $Z u$

$$
u_{n}=\frac{1}{2 \pi i} \oint_{C_{1}}[Z u](z) \frac{d z}{z^{n+1}}
$$

Z transform (cnt) and Blocking

Z-transform converts the translation operator into a multiplication operator.

(order k) Constant coefficient
 Recurrence relation

$\left[Z \tau_{ \pm k} u\right](z)=z^{\mp k}[Z u](z) \quad, \quad k \in \mathbb{Z}^{+}$.

Shift operator $\left(\tau_{k} U\right)_{J}:=U_{J+k}, k \in \mathbb{Z}$.
(order k) Polynomial-typed algebraic equation.

Advantage of Blocking :

- Without blocking, have r reccurence relations, one of order $2 r+1$, and $r-1$ of order $r+1$
- With blocking, we have one recurrence relation of order 2
\Rightarrow one vector-valued polynomial of order 2.

Blocked recurrence relation (Example shown for order $r=3$)

				\downarrow			A^{t}					$\begin{aligned} & u_{J-1,0} \\ & u_{J-1,1} \\ & u_{J-1,2} \end{aligned}$	$\leftarrow U_{J-1}$
\mathcal{M}_{30}	\mathcal{M}_{31}	\mathcal{M}_{32}	$\Gamma_{1} \overline{\mathcal{M}} \bar{M}_{0}$	$\overline{M_{01}} \overline{-}^{-}$	${ }^{-} \overline{\mathcal{M}} \overline{0}^{-}$	$\overline{\mathcal{M}} \bar{M}_{03}^{-1}$	0	0	0	0	0		
						1						$u_{J, 0}$	
0	0	0	${ }_{1}{ }_{1} \mathcal{M}_{10}$	\mathcal{M}_{11}	\mathcal{M}_{12}	\mathcal{M}_{13}		0	0	0	0	$u_{J, 1}$	$\leftarrow U_{J}$
												$u_{J, 2}$	
0	0	0	\mathcal{M}_{20}	\mathcal{M}_{21}	\mathcal{M}_{22}	\mathcal{M}_{23}	0	0	0	0	0		
			1-	---		- - -	- - -	- - -	- - -			$u_{J+1,0}$	
0	0	0	${ }_{1}^{1} \mathcal{M}_{30}$	\mathcal{M}_{31}	\mathcal{M}_{32}	$2 \mathcal{M}_{00}$	\mathcal{M}_{01}	\mathcal{M}_{02}	\mathcal{M}_{03}	0	0	$u_{J+1,1}$	$\leftarrow U_{J+1}$
												$u_{J+1,2}$	
0	0	0	0	0	0	\mathcal{M}_{10}	\mathcal{M}_{11}	\mathcal{M}_{12}	\mathcal{M}_{13}	0	0		
												$u_{J+2,0}$	
0	0	0	0	0	0	\mathcal{M}_{20}	\mathcal{M}_{21}	\mathcal{M}_{22}	\mathcal{M}_{23}	0	0	$u_{J+2,1}$	$\leftarrow U_{J+2}$

Formal Z-transform of the Helmholtz recurrence relations

Block Z: $1 \leq k \leq r, \pi_{k} \begin{gathered}\text { projection op. onto } \\ k \text {-th component }\end{gathered}$

$$
\left[\pi_{k} Z_{\mathfrak{B}} U\right](z)=\sum_{J=-\infty}^{\infty} u_{J r+k} z^{J}
$$

Relation with the shift operator: $k \in \mathbb{Z}^{+}$,

$$
\left[Z_{\mathfrak{B}} \tau_{ \pm k} U\right](z)=z^{\mp k}\left[Z_{\mathfrak{B}} U\right](z)
$$

The 'blocked' recurrence relation at $\kappa, w=\kappa^{2} h^{2}$

$$
A(w) U_{J-1}+B(w) U_{J}+A^{t}(w) U_{J+1}=h F_{J}
$$

after formal $Z_{\mathfrak{B}}$ becomes,
$\left[A(w) z+B(w)+A^{t}(w) z^{-1}\right] W(w, z)=h\left[Z_{\mathfrak{B}} F\right](z)$
For $z \neq 0$, this is equivalent to

$$
\begin{aligned}
& {\left[A(w) z^{2}+B(w) z+A^{t}(w)\right] W(w, z)=h z\left[Z_{\mathfrak{B}} F\right](z)} \\
& \quad \Rightarrow \quad \mathcal{A}(w, z) W(w, z)=h z\left[Z_{\mathfrak{B}} F\right](z)
\end{aligned}
$$

If z is such that $\operatorname{det} \mathcal{A}(w, z) \neq 0$, then

$$
W(w, z)=\mathcal{A}^{-1}(w, z) h z\left[Z_{\mathfrak{B}} F\right](z) .
$$

Sol of the recurrence solution is given by

$$
z_{\mathfrak{B}}^{-1} W(w, z)
$$

For $\kappa \notin \mathbb{R}^{+}$, in particular for

$$
\kappa_{\epsilon}=\kappa(1+i \epsilon), \kappa \in \mathbb{R}^{+}, \epsilon>0
$$

the above process is justified

- The problem is $I^{2}(\mathbb{Z})$-coercive $\rightarrow \exists$! sol. in $I^{2}(\mathbb{Z})$.
- The unit circle \mathcal{C}_{1} is in the region of analyticity of $W\left(\kappa_{\epsilon}^{2} h, z\right)$
- Can take $Z_{\mathfrak{B}}^{-1}$ transform

$$
\frac{1}{2 \pi i} \oint_{\mathbf{C}_{1}}^{b} W\left(\kappa_{\epsilon}^{2} h, z\right) \frac{d z}{z^{J+1}}
$$

For $\kappa \in \mathbb{R}^{+}$, the problem is not coercive in $L^{2}(\mathbb{R})$ and the discretized one in $I^{2}(\mathbb{Z})$.

Strategy : Limiting absorbing principle.

Summary of analytic results (Part 1)

$\mathcal{A}^{-1}(w, z):=\frac{\operatorname{Adj} \mathcal{A}(w, z)}{\operatorname{det} \mathcal{A}(w, z)} . \begin{gathered}\mathcal{A}(w, z) \\ =z^{2} A(w)+z B(w)+A^{t} B(w) .\end{gathered}$

Adjugate $\operatorname{Adj} \mathcal{A}(w, z)$

$$
=z^{r-2} Q(w, z)
$$

the entries of $Q(w, z)$ are polynomial of second order in z and first order in w.
$\operatorname{det} \mathcal{A}(w, z)$
$=z^{r-1} \delta(w)\left(z^{2}-2 \rho(w) z+1\right)$
$=z^{r-1} \delta(w) \quad \mathbf{q}(w, z)$,
with $\rho(w)$ rational in w $\delta(w)$ is polynomial in w.

For w small enough, $\delta(w) \neq 0$.
\Rightarrow The non-zero poles of $\mathcal{A}^{-1}(w, z)$ w.r.t z are the zeros of the characteristic poly $z \mapsto \mathbf{q}(w, z)$.

For $\epsilon>0$: obtain solution to the recurrence relation

$$
\left(U_{\epsilon}\right)_{J}=\frac{1}{2 \pi i} \oint_{\mathbf{C}_{1}} \frac{\mathcal{A}^{-1}\left(\kappa_{\epsilon}^{2} h^{2}, z\right) h z\left[Z_{\mathfrak{B}} F\right](z)}{z^{J+1}} d z
$$

For $\epsilon \rightarrow 0$: by contour deformation

* show that the limit exists, giving a solution, and
\star this resulting sol can be written as a contour integral

$$
\kappa_{\epsilon}=\kappa \sqrt{1+i \epsilon}, \kappa, \epsilon>0
$$

Roots of $\mathbf{q}\left(\kappa_{\epsilon}^{2} h^{2}, z\right)$

For $\kappa h, \epsilon>0$ small enough,

$$
\begin{gathered}
\left|z_{+, \epsilon}\right|<1<\left|z_{-, \epsilon}\right| \\
z_{ \pm, \epsilon} \rightarrow e^{ \pm i \phi_{0}}, \epsilon \rightarrow 0
\end{gathered}
$$

Summary of analytic results (Part 2) : Dispersion Analysis

Consider $\left(-\Delta-\kappa^{2}\right) \mathbf{u}=\mathbf{f}$ with RHS \mathbf{f} having Supp $F \subset\left[N_{\text {min }}, N_{\text {max }}\right], F=\left(f_{J, l}\right)$
Outgoing solution of the reccurence relation at $\kappa>0, \kappa h<\pi$
$u_{\text {outgoing }}\left(\kappa^{2}\right)_{J, 0}=\frac{h e^{i(J h) \frac{\phi_{0}}{h}}}{2 i \delta\left(\kappa^{2} h^{2}\right) \sin \phi_{0}}$

$$
\sum_{\substack{0 \leq \leq \leq r-1 \\ N_{\min } \leq J^{\prime} \leq N_{\max }}} e^{i(1-\tilde{J}) \phi_{0}} f_{J^{\prime}, l}\left[Q^{t}\left(\kappa^{2} h^{2}, e^{-i \phi_{0}}\right)\right]_{(1+1) 1}, J>N_{\max }
$$

$u_{\text {outgoing }}\left(\kappa^{2}\right) J, 0=\frac{h e^{-i(J h) \frac{\phi_{0}}{h}}}{2 i \delta\left(\kappa^{2} h^{2}\right) \sin \phi_{0}} \sum_{\substack{0 \leq 1 \leq r-1 \\ N_{\text {min }} \leq J^{\prime} \leq N_{\text {max }}}} e^{i\left(J^{\prime}-1\right) \phi_{0}} f_{J^{\prime}, l}\left[Q^{t}\left(\kappa^{2} h^{2}, e^{i \phi_{0}}\right)\right]_{(1+1) 1}, J<N_{\min }$.

Analytic outgoing solution at $x=x_{J}=J h$ so that $x \notin \operatorname{Supp} \mathbf{f}=[a, b]$

$$
\mathbf{u}_{\text {outgoing }}\left(x_{J}\right)=\frac{1}{2 i \kappa} e^{i(J \operatorname{sgn}(J) h) \kappa} \hat{\mathrm{f}}(\operatorname{sgn}(J) \kappa) .
$$

The numerical wave number κ_{h}
is related to the argument ϕ_{0}

$$
\kappa_{h}=\frac{\phi_{0}}{h}=\frac{\kappa h\left(1+\mathrm{O}\left((\kappa h)^{2 r}\right)\right.}{h} .
$$ of the analytic poles of $e^{ \pm i \phi_{0}}$ of $\left(\mathcal{A}\left(\kappa^{2} h^{2}, z\right)\right)^{-1}$.

Plan

(5) Pole locating algorithm and Numerical Results

Guillaume's Algorithm

At $\kappa_{\epsilon}=\kappa \sqrt{1+i \epsilon}, \epsilon, \kappa>0$, the blocked recurrence relation after $Z_{\mathfrak{B}}$-transform gives

$$
\mathcal{A}\left(\kappa_{\epsilon}^{2} h^{2}, z\right) W(\kappa+i \epsilon, z)=h z\left[Z_{\mathfrak{B}} F\right](z) .
$$

Take $\epsilon \rightarrow 0$, obtain

$$
\mathcal{A}\left(\kappa^{2} h^{2}, z\right) W(\kappa, z)=h z\left[Z_{\mathfrak{B}} F\right](z)
$$

The numerical wave number κ_{h} is related to the argument of the nonzero poles of $\left(\mathcal{A}\left(\kappa^{2} h^{2}, z\right)\right)^{-1}$.

Guillaume's algorithm: to look for these poles, we approximate those of $x(z)$, which solves

$$
\mathcal{A}\left(\kappa^{2} h^{2}, z\right) \times(z)=h z b
$$ for arbitrary scalar vector $b \in \mathbb{C}^{r}$.

Step 1: Expand b and x about an analytic point z_{0}

$$
\begin{aligned}
& z h b=h z_{0} b+h\left(z-z_{0}\right) b \\
& x(z)=\sum_{k=0}^{\infty} x_{k}\left(z_{0}\right)\left(z-z_{0}\right)^{k} .
\end{aligned}
$$

Step 2 : Expand $\mathcal{A}(z)$ about z_{0}
$\mathcal{A}(z)=M_{0}+M_{1}\left(z-z_{0}\right)+M_{2}\left(z-z_{0}\right)^{2}$,
$M_{0}\left(z_{0}\right)=z_{0} B+A^{t}+z_{0}^{2} A$;
$M_{1}\left(z_{0}\right)=2 z_{0} A+B \quad ; \quad M_{2}\left(z_{0}\right)=A$.
Step 3 : The coeff. x_{k} solves
$M_{0}\left(z_{0}\right) x_{0}=h z_{0} b$;
$M_{0}\left(z_{0}\right) x_{1}=-M_{1}\left(z_{0}\right) x_{0}+h b \quad ;$

$$
\begin{gathered}
M_{0}\left(z_{0}\right) x_{k}=-M_{1}\left(z_{0}\right) x_{k-1}-M_{2}\left(z_{0}\right) x_{k-2} \\
\\
k \geq 2 .
\end{gathered}
$$

If λ_{0} is the unique closest pole to z_{0},

$$
\frac{\pi_{I} x_{k}}{\pi_{I} x_{k+1}} \longrightarrow \lambda_{0}-z_{0}, k \rightarrow \infty
$$

with $\pi_{/}$the projection on the $/$-th component of a vector.

Reference: (Thm 2.4) P. Guillaume, Nonlinear eigenproblems, Siam J. Matrix Anal. Appl. 20 (3) $26 / 41$

Pole locating algorithm

Since the poles we look for are close to the unit circle, we consider the region $\Omega=[-2,2] \times[-2,2] \subset \mathbb{C}$, and partition it into smaller squares of width $\delta_{z}>0$,

$$
\Omega_{k, I}=\left[-2+k \delta_{z},-2+(k+1) \delta_{z}\right] \times\left[-2+I \delta_{z},-2+(I+1) \delta_{z}\right] .
$$

The operations carried out for each square $\Omega_{i, j}$.
(1) Start: Choose initial data $z_{0} \neq 0$ arbitrarily in $\Omega_{i, j}$

- If cond $M_{0}\left(z_{0}\right)>\epsilon_{\text {cond }}$, then z_{0} is an analytic point, and continue to step 2;
- If not, z_{0} is a pole numerically, and move onto the next square.
(2) Choose x_{0} arbitrarily. Calculate $x_{1}\left(z_{0}\right), \ldots, x_{n_{\text {der }}+1}\left(z_{0}\right)$, using

$$
\begin{aligned}
& M_{0}\left(z_{0}\right) x_{1}=-M_{1}\left(z_{0}\right) x_{0}+z_{0}^{-1} M_{0}\left(z_{0}\right) x_{0} \\
& M_{0}\left(z_{0}\right) x_{k}=-M_{1}\left(z_{0}\right) x_{k-1}-M_{2}\left(z_{0}\right) x_{k-2}, k \geq 2 .
\end{aligned}
$$

The ratio $r=\frac{\pi_{1} x_{n_{\text {der }}+1}}{\pi_{1} x_{n_{\text {der }}}}$ gives an approximation of $\lambda_{0}-z_{0}$, where λ_{0} is the closest pole to initial data $z_{0} \Rightarrow r$ gives an approximation of the direction to get from z_{0} to λ_{0}.
(3) Restart : Update the initial data $z_{0} \longmapsto z_{0}+r$.
(4) Stop criteria :
the condition number of $M_{0} \quad, \quad$ the number of iterations $N_{\text {iter }}$

Application of Guillaume's Algorithm for Order 4

Notations:

$\mathbf{z}_{i j}$: the numerical poles calculated with Guillaume's algorithm, using initial guess from square $\Omega_{i j}$
$\kappa_{h, i j}$ is obtained from $\mathbf{z}_{i j}$ by $\mathbf{z}_{i j}=e^{i \kappa} h, i j h$

(a) $\operatorname{Re} \mathbf{z}_{i j}$

(b) $\operatorname{Im} \mathbf{z}_{i j}$
-0.2
.2
0.1
-0.1
-0.2

(c) $\left|\operatorname{lm} z_{i j}\right|$

Parameters

Analytic wavenumber $\kappa=1$
Discretization of $\mathbb{R}: h=0.1$
Size of square $\Omega_{i j}: \delta_{z}=0.2$
Stop criteria

$$
N_{\text {iter }}=5 ; \epsilon_{\text {cond }}=1 . e-13
$$

Nb of derivatives for approx

$$
n_{\text {der }}=20
$$

Application of Guillaume's Algorithm for Order 9

Notations:

$\mathbf{z}_{i j}$: the numerical poles calculated with Guillaume's algorithm, using initial guess from square $\Omega_{i j}$

(f) $\frac{\operatorname{Re} z_{i j}-a}{a}$

(g) $\operatorname{lm} z_{i j}$

$\kappa_{h, i j}$ is obtained from $\mathbf{z}_{i j}$ by $\mathbf{z}_{i j}=e^{i \kappa_{h}, i j h}$

$$
\mathbf{a}:=\min _{1 \leq i, j \leq 21} \operatorname{Re} \mathbf{z}_{i j} \quad ; \quad \mathbf{b}=\min _{1 \leq i, j \leq 21}\left|\operatorname{Im} \mathbf{z}_{i j}\right| .
$$

(h) $\frac{\left|\operatorname{lmg} z_{i j}\right|-b}{b}$

Parameters

Analytic wavenumber $\kappa=1$
Discretization of $\mathbb{R}: h=0.1$
Size of square $\Omega_{i j}$ partitioning $[-2,2] \times[-2,2]: \delta_{z}=0.2$
Stop criteria : $N_{\text {iter }}=5 ; \epsilon_{\text {cond }}=1 . e-13$
Nb of derivatives for approx $n_{\text {der }}=20$

$$
\left|\kappa_{h, i j}-1\right|
$$

Numerical Dispersion Result

Numerical Dispersion Result

Plan

(6) More details of analytic results

Invertibility of the local matrices

The interior matrices $\widehat{S}_{\text {int }}, \widehat{M}_{\text {int }}$ are symmetric and definite positive, and thus invertible.

Consider $g \in \operatorname{Pr}(0,1)$ (polynomial of degree $\leq r)$ with $g(0)=g(1)=0$.

Define $v \in \mathbb{R}^{r-1}$ by

$$
\begin{aligned}
v_{i} & :=g\left(\frac{i}{r}\right) ; \quad v=\left(v_{i}\right)_{1 \leq i \leq r-1} \\
& \Rightarrow g(\hat{x}):=\sum_{i=1}^{r-1} v_{i} \hat{\phi}_{i}(\hat{x}) .
\end{aligned}
$$

We have
$v \cdot \widehat{S}_{\text {int }} v=$ as $(g, g)=\int_{0}^{1}\left(g^{\prime}(\hat{x})\right)^{2} d \hat{x} \geq 0$;
$v \cdot \widehat{M}_{\text {int }} v=\mathrm{a}_{\mathrm{M}}(g, g)=\int_{0}^{1} g^{2}(\hat{x}) d \hat{x} \geq 0$.
If $v \cdot \widehat{S}_{\text {int }} v$ or $v \cdot \widehat{M}_{\text {int }} v$, then $g=0$ i.e $v=0$.

For $|w|<\pi^{2}, \mathcal{M}_{\text {int }}(w)$ is invertible. In addition, its inverse is analytic in w with expansion

$$
\mathcal{M}_{\mathrm{int}}^{-1}(w)=\widehat{S}_{\mathrm{int}}^{-1}+\sum_{k=1}^{\infty} w^{k}\left(\widehat{S}_{\mathrm{int}}^{-1} \widehat{M}_{\mathrm{int}}\right)^{k} \widehat{S}_{\mathrm{int}}^{-1}
$$

Invertibility :

$v \cdot \mathcal{M}_{\text {int }} v=\int_{0}^{1} g^{\prime 2} d \hat{x}-w \int_{0}^{1} g^{2} d \hat{x}$

$$
\geq{ }_{l \text { litv for } f \in H^{1}(0,1)}\left(\pi^{2}-w\right)\|g\|_{L^{2}}^{2} .
$$

Poincaré inequality for $f \in H_{0}^{1}(0,1)$
Since $\mathcal{M}_{\text {int }}(w)=\widehat{S}_{\text {int }}-w \widehat{M}_{\text {int }}$ is symmetric, $\mathcal{M}_{\text {int }}$ is definite positive for $w<\pi^{2}$

$$
\Rightarrow \text { is invertible for such } w .
$$

Analyticity : Can show that
Spectral radius $\rho\left(\widehat{M}_{\text {int }} \widehat{S}_{\text {int }}^{-1}\right) \leq \pi^{2}$.
Thus for $|w|<\pi^{2}$, the Neumann series converges, giving an analytic inverse.

Structure of zeros of $\operatorname{det} \mathcal{A}(w, z)=\delta(w) \mathbf{q}(w, z)=\delta(w),\left(z^{2}-2 \rho(w) z+1\right)$

Goals - For small enough w : 1. $\rho(w)=\frac{\beta(w)+\operatorname{det} B(w)}{-2 \delta(w)}=\cos w^{1 / 2}+w \mathrm{O}\left(w^{r}\right) ;$ 2. $\delta(w) \neq 0$

Part 1 : Show

$$
\begin{aligned}
& \beta(w)+\operatorname{det} B(w)=-2 \delta(w)-w \operatorname{det} \mathcal{M}_{\mathrm{int}}(w)\left(1+w \kappa \cdot \mathcal{M}_{\mathrm{int}}^{-1}(w) \kappa\right) \\
& \Rightarrow \frac{\beta(w)+\operatorname{det} B(w)}{\delta(w)}=-2-w \frac{\operatorname{det} \mathcal{M}_{\mathrm{int}}(w)}{\delta(w)}\left(1+w \kappa \cdot \mathcal{M}_{\mathrm{int}}^{-1}(w) \kappa\right)
\end{aligned}
$$

$$
\kappa_{j}=\int_{0}^{1} \hat{\phi}_{j}(\hat{x}) d \hat{x}
$$

$$
\kappa=\left(\kappa_{1}, \ldots, \kappa_{r-1}\right)^{t}
$$

Part 2 : Show $w \kappa \cdot \mathcal{M}_{\mathrm{int}}^{-1} \kappa=-1+\frac{2-2 \cos w^{1 / 2}}{w^{1 / 2} \sin w^{1 / 2}}+\mathrm{O}\left(w^{2[r / 2]+1}\right)$

$$
\begin{gathered}
1 \leq j \leq r-1 \\
\left(\mathfrak{a}_{0}\right)_{j}=\widehat{S}_{j r} \quad\left(\mathfrak{a}_{1}\right)_{j}=\widehat{M}_{j r} \\
\left(\mathfrak{b}_{0}\right)_{j}=\widehat{S}_{j 0} \quad\left(\mathfrak{b}_{1}\right)_{j}=\widehat{M}_{j 0} \\
\mathfrak{a}(w)=\mathfrak{a}_{0}-w \mathfrak{a}_{1} \\
\mathfrak{b}(w)=\mathfrak{b}_{0}-w \mathfrak{b}_{1}
\end{gathered}
$$

Part 3 : Show $-\frac{\delta(w)}{\operatorname{det} \mathcal{M}_{\text {int }}(w)}=\frac{w^{1 / 2}}{\sin w^{1 / 2}}+w^{2\left[\frac{r-1}{2}\right]+2} \mathrm{e}(\mathfrak{a}, \mathfrak{b})$.

$2 \mathcal{M}_{00}$	\mathcal{M}_{01}	$\mathcal{M}_{0(r-1)}$	\mathcal{M}_{0}
\mathcal{M}_{10}	\mathcal{M}_{11}	$\mathcal{M}_{1(r-1)}$	$\mathcal{M}_{1 r}$
$\mathcal{M}_{(r-1) 0}$	$\mathcal{M}_{(r-1) 1}$	$\mathcal{M}_{(r-1)(r-1)}$	$\mathcal{M}_{(r-1) r}$
$M_{r 0}$	$\mathcal{M}_{r 1}$	$\mathcal{M}_{r(r-1)}$	$\mathcal{M r r}^{\text {r }}$
		(w) \quad a	

$$
\begin{gather*}
B(w)=\left(\begin{array}{cc}
2 \mathcal{M}_{00}(w) & \mathfrak{b}^{t}(w) \\
\mathfrak{b}(w) & \mathcal{M}_{\text {int }}(w)
\end{array}\right) \\
\beta(w):=\operatorname{det}\left(\begin{array}{cc}
0 & \mathfrak{a}^{t}(w) \\
\mathfrak{a}(w) & \mathcal{M}_{\text {int }}(w)
\end{array}\right) \\
\delta(w):=\operatorname{det}\left(\begin{array}{cc}
\mathcal{M}_{0 r}(w) & \mathfrak{b}^{t}(w) \\
\mathfrak{a}(w) & \mathcal{M}_{\text {int }}(w)
\end{array}\right)
\end{gather*}
$$

Structure of zeros of $\mathbf{q}(w, z)=z^{2}-2 \rho(w) z+1$ (cnt)

Part 2 : Notation : $[f]=(f(j / r))_{0 \leq j \leq r}$

$$
\begin{aligned}
\kappa \cdot \mathcal{M}_{\text {int }}^{-1}(w) \kappa & =\widehat{M}_{\text {int }, \star}[1] \cdot \mathcal{M}_{\text {int }}^{-1}(w) \widehat{M}_{\text {int }, \star}[1] \\
& =\mathrm{a}_{w}(f, f)+\mathrm{O}\left(w^{2[r / 2]}\right) \\
& =-w^{-1}+\frac{2-2 \cos w^{1 / 2}}{w^{3 / 2} \sin w^{1 / 2}}+w^{2[r / 2]} \mathrm{e}(\kappa)
\end{aligned}
$$

where f is the unique solution to the BVP

$$
-f^{\prime \prime}-w f=1 ; f(0)=f(1)
$$

Part 3

Step 3a:

$\delta(w)=\operatorname{det} \mathcal{M}_{\mathrm{int}}(w)\left[\widehat{S}_{r 0}-w \widehat{M}_{r 0}-\mathfrak{a}(w) \cdot \mathcal{M}_{\mathrm{int}}^{-1}(w) \mathfrak{b}(w)\right]$

Step 3b :

$$
\begin{aligned}
\mathfrak{a}(w) \cdot \mathcal{M}_{\text {int }}^{-1}(w) & \mathfrak{b}(w) \\
+ & =\mathfrak{a}_{0} \cdot \widehat{S}_{\text {int }}^{-1} \mathfrak{b}_{0} \\
& +w^{2} \times \widehat{S}_{\mathrm{int}}^{-1} \mathfrak{a}_{0} \cdot Y-\mathcal{M}_{\mathrm{int}}^{-1}(w) \mathrm{Y}
\end{aligned}
$$

$$
\text { with } Y:=\widehat{M}_{\mathrm{int}} \widehat{S}_{\mathrm{int}}^{-1} \mathfrak{b}_{0}-\mathfrak{b}_{1} ; \mathrm{X}:=\widehat{M}_{\mathrm{int}} \widehat{S}_{\mathrm{int}}^{-1} \mathfrak{a}_{0}-\mathfrak{a}_{1}
$$

Step 3c :

$$
\begin{aligned}
& \mathfrak{a}_{0} \cdot \widehat{S}_{\mathrm{int}}^{-1} \mathfrak{b}_{0}=\mathrm{a}_{\mathrm{S}}\left(\hat{\phi}_{r}, \hat{\phi}_{0}+x-1\right)=\widehat{S}_{r 0}+1 \\
& \widehat{S}_{\mathrm{int}}^{-1} \mathfrak{a}_{0} \cdot \mathrm{Y}-\mathfrak{a}_{1} \cdot \widehat{S}_{\mathrm{int}}^{-1} \mathfrak{b}_{0} \\
= & \mathrm{a}_{\mathrm{M}}\left(\hat{\phi}_{r}-x, x-1\right)-\mathrm{a}_{\mathrm{M}}\left(\hat{\phi}_{r}, \hat{\phi}_{0}+x-1\right)=\frac{1}{6}-\widehat{M}_{r 0}
\end{aligned}
$$

Step 3d :

$$
\begin{aligned}
& \mathrm{X} \cdot \mathcal{M}_{\mathrm{int}}^{-1}(w) \mathrm{Y} \\
& =\widehat{M}_{\mathrm{int}, \star}[-x] \cdot \mathcal{M}_{\mathrm{int}}^{-1}(w) \widehat{M}_{\mathrm{int}, \star}[x-1] \\
& =\mathrm{a}\left(\tilde{f},-f^{\prime \prime}-w f\right)+w^{2\left[\frac{r-1}{2}\right]} \mathrm{e}(\mathfrak{a}, \mathfrak{b}) \\
& =-\frac{1}{w^{2}}-\frac{1}{6 w}+\frac{1}{w^{3 / 2} \sin w^{1 / 2}}+w^{2\left[\frac{r-1}{2}\right]} \mathrm{e}(\mathfrak{a}, \mathfrak{b})
\end{aligned}
$$

where f and \tilde{f} are the unique solutions to

$$
\begin{gathered}
-\tilde{f}^{\prime \prime}-w \tilde{f}=-x ; \tilde{f}(0)=\tilde{f}(1)=0 \\
-f^{\prime \prime}-w f=x-1 ; f(0)=f(1)=0
\end{gathered}
$$

$$
\begin{gather*}
\mathfrak{b}(w) \widehat{S}_{\mathrm{int}, \star}-w \widehat{M}_{\mathrm{int}, \star} \\
\mathcal{M}(w)=\widehat{\mathcal{S}}-w \widehat{M} ; \widehat{M}_{\mathrm{int}}(w)=\widehat{S}_{\mathrm{int}}-w \widehat{M}_{\mathrm{int}} \\
\mathfrak{a}(w)=\mathfrak{a}_{0}-w \mathfrak{a}_{1} ; \mathfrak{b}(w)=\mathfrak{b}_{0}-w \mathfrak{b}_{1}
\end{gather*}
$$

Limiting absorption principle . Outgoing solution

$$
\begin{aligned}
& \mathbf{q}(w, z)=z^{2}-2 \rho(w) z+1 \\
& \rho(w)=\cos w^{1 / 2}+w \mathrm{O}\left(w^{r}\right) .
\end{aligned}
$$

Discri. $\Delta(w)=-4 \sin ^{2}\left(w^{1 / 2}\right)\left(1+\mathrm{O}\left(w^{r}\right)\right)$

$$
\begin{aligned}
\left(U_{\epsilon}\right) J & =\frac{1}{2 \pi i} \oint_{\mathbf{C}_{1}} \frac{\mathcal{A}^{-1}\left(\kappa_{\epsilon}^{2} h^{2}, z\right) h z\left[Z_{\mathfrak{B}} F\right](z)}{z^{J+1}} d z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma_{\text {outgoing }}} \frac{\mathcal{A}^{-1}\left(\kappa_{\epsilon}^{2} h^{2}, z\right) h z\left[Z_{\mathfrak{B}} F\right](z)}{z^{J+1}} d z
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{z}_{ \pm, \epsilon}:=\rho\left(\kappa_{\epsilon}^{2} h^{2}\right) \pm \frac{1}{2} \sqrt{\Delta\left(\kappa_{\epsilon}^{2} h^{2}\right)} . \\
& \mathbf{z}_{ \pm, 0}=e^{ \pm i \phi_{0}}:=\rho(\kappa h) \pm \frac{1}{2} i \sqrt{\left|\Delta\left(\kappa^{2} h^{2}\right)\right|} .
\end{aligned}
$$

$$
\begin{aligned}
\left(U_{\text {outgoing }}\right) J & =\lim _{\epsilon \rightarrow 0^{+}}\left(U_{\epsilon}\right)_{J} \\
& =\frac{1}{2 \pi i} \oint_{\Gamma_{\text {outgoing }}} \frac{\mathcal{A}^{-1}\left(\kappa^{2} h^{2}, z\right) h z\left[Z_{\mathfrak{B}} F\right](z)}{z^{J+1}} d z
\end{aligned}
$$

$$
\cos \phi_{0}=\rho\left(\kappa^{2} h^{2}\right)=\cos (\kappa h)+(\kappa h)^{2} \mathrm{O}\left((\kappa h)^{2 r}\right)
$$

$$
\Rightarrow \quad \phi_{0} \quad=\kappa h\left(1+\mathrm{O}\left((\kappa h)^{2 r}\right) .\right.
$$

C_{1} is deformed to $\Gamma_{\text {outgoing }}$ $\Gamma_{\text {outgoing }}:=\Gamma_{\text {right }} \cup \gamma_{+,>} \cup \Gamma_{\text {left }} \cup \gamma_{\sigma-, \text {, }}$.

Numerical wavenumber (Part 1)

Goal : obtain the explicit formula for the outgoing solution of the reccurence relation at $\kappa>0$.
$u_{\text {outgoing }}\left(\kappa^{2}\right)_{J, 0}=\frac{h e^{i J \phi_{0}}}{2 i \delta\left(\kappa^{2} h^{2}\right) \sin \phi_{0}} \sum_{\substack{0 \leq I \leq r-1 \\ N_{\min } \leq J^{\prime} \leq N_{\max }}} e^{i(1-\tilde{J}) \phi_{0}} f_{J^{\prime}, I}\left[Q^{t}\left(\kappa^{2} h^{2}, e^{-i \phi_{0}}\right)\right]_{(I+1) 1}, J>N_{\max }$;
$u_{\text {outgoing }}\left(\kappa^{2}\right)_{J, 0}=\frac{h e^{-i J \phi_{0}}}{2 i \delta\left(\kappa^{2} h^{2}\right) \sin \phi_{0}} \sum_{\substack{0 \leq I \leq r-1 \\ N_{\min } \leq J^{\prime} \leq N_{\max }}} e^{i\left(J^{\prime}-1\right) \phi_{0}} f_{J^{\prime}, l}\left[Q^{t}\left(\kappa^{2} h^{2}, e^{i \phi_{0}}\right)\right]_{(I+1) 1}, J<N_{\text {min }}$.

After this step, by using : $\phi_{0}=\kappa h\left(1+\mathrm{O}\left((\kappa h)^{2 r}\right)\right.$, obtain

Dispersion Analysis

$$
\kappa=\frac{\phi_{0}}{h}=\kappa+\kappa \mathrm{O}\left((\kappa h)^{2 r}\right)
$$

Numerical wavenumber (cnt) : Explicit expression for outgoing sol

$$
\begin{aligned}
\mathcal{A}^{-1}\left(\kappa^{2} h^{2}, z\right)=\frac{r^{r-2} Q\left(\kappa^{2} h^{2}, z\right)}{z^{r-1} \delta\left(\kappa^{2} h^{2}\right) \mathbf{q}\left(\kappa^{2} h^{2}, z\right)}=\frac{Q\left(\kappa^{2} h^{2}, z\right)}{z \delta\left(\kappa^{2} h^{2}\right)\left(z-e^{i \phi_{0}}\right)\left(z+e^{i \phi_{0}}\right)}, z \neq \epsilon \\
\begin{aligned}
\left(\text { outgoing }^{2}\right)_{J}=\lim _{\epsilon \rightarrow 0^{+}}\left(U_{\epsilon}\right)_{J} & =\frac{1}{2 \pi i} \oint_{\text {「outgoing }} \frac{\mathcal{A}^{-1}\left(\kappa^{2} h^{2}, z\right) h z\left[Z_{\mathfrak{B}} F\right](z)}{z^{J+1}} d z \\
& =\frac{1}{2 \pi i} \oint_{\text {「outgoing }} \frac{Q\left(\kappa^{2} h^{2}, z\right)}{\delta\left(\kappa^{2} h^{2}\right)\left(z-e^{i \phi_{0}}\right)\left(z+e^{i \phi_{0}}\right)} \frac{h\left[Z_{\mathfrak{B}} F\right](z)}{z^{J+1}} d z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma_{\text {outgoing }}} \frac{W_{0}(z)}{z^{J+1}} d z .
\end{aligned}
\end{aligned}
$$

Numerical wavenumber (cnt) : Explicit expression for outgoing sol

RHS f having Supp $F \subset\left[N_{\min }, N_{\text {max }}\right], F=\left(f_{J, I}\right)$, write the integrand as

$$
z^{-J-1} W_{0}(z) d z=\frac{h Q\left(\kappa^{2} h^{2}, z\right)}{\delta\left(\kappa^{2} h^{2}\right) \mathbf{q}\left(\kappa^{2} h^{2}, z\right)} z^{-J-1} \sum_{j=N_{\min }}^{N_{\max }} z^{j}\left(f_{j, k}\right)_{0 \leq k \leq r-1} d z
$$

Deform $\Gamma_{\text {outgoing }}$ to Γ_{+}.
$\Gamma_{+}:=\Gamma_{\text {right }} \cup \gamma_{+,<} \cup \Gamma_{\text {left }} \cup \gamma_{-,<}$
Γ_{+}is homotopic to $\mathrm{C}_{r}, r<1$.

For $J<N_{\text {min }}: \frac{W_{0}(z)}{z^{J+1}}$ is analytic at $z=0$
($\left.U_{\text {outgoing }}\right) \mathrm{J}$
$=\frac{1}{2 \pi i}\left(\oint_{\Gamma_{+}}+\oint_{\gamma_{+,>} \cup-\gamma_{+},<}\right) \frac{W_{0}(z)}{z^{J+1}} d z$
$=\frac{1}{2 \pi i} \oint_{\mathrm{C}_{r}} \frac{W_{0}(z)}{z^{J+1}} d z+\operatorname{Res}\left(\frac{W_{0}(z)}{z^{J+1}}, e^{i \phi_{0}}\right), r<1$
$=\operatorname{Res}\left(\frac{W_{0}(z)}{z^{J+1}}, e^{i \phi_{0}}\right)$
$=\frac{h Q\left(\kappa^{2} h^{2}, e^{i \phi_{0}}\right)\left[Z_{\mathfrak{B}} F\right]\left(e^{i \phi_{0}}\right)}{\delta\left(\kappa^{2} h^{2}\right)\left(e^{i \phi_{0}}-e^{-i \phi_{0}}\right)}\left(e^{i \phi_{0}}\right)^{-J-1}$.

Numerical wavenumber (cnt) : Explicit expression for outgoing sol

$$
\text { For } \tilde{z}:=z^{-1}: z^{-J} W_{0}(z) \frac{d z}{z}=\frac{h}{\delta\left(\kappa^{2} h^{2}\right)} \frac{Q^{t}\left(\kappa^{2} h^{2}, \tilde{z}\right)}{\mathbf{q}\left(\kappa^{2} h^{2}, \tilde{z}\right)} \tilde{z}^{J} \sum_{j=N_{\min }}^{N_{\max }} \tilde{z}^{-j}\left(f_{j, k}\right)_{0 \leq k \leq r-1} \frac{d \tilde{z}}{\tilde{z}} .
$$

Conclusion

Thank you for your attention

[^0]: ${ }^{1}$ Inria Bordeaux Sud-Ouest, Project-Team Magique-3D, Univ. Pau, France ${ }^{2}$ Total E\&P, Houston.

