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Numerical Dispersion

Helmholtz equation gives the long-time
behavior of the wave equation

(∂2
t − c2∆) U(t, x) = f(x) e−iωt

where c = speed of propagation
ω
2π = time freq. of the excitation

Look for time-harmonic sol with the same freq
U(t, x) = u(x) e−i ω t

thus u solves the Helmholtz

(−∆− ω2

c2 ) u = f

κ := ω
c the wave number .

Fund. sols of (−∆− κ2) u = 0 are

ei κ x , e−i κ x .

corresponding to harmonic plane wave

ei(κ x−ωt) propagating from L to R
e−i(κ x−ωt) propagating from R to L

with phase velocity ω
κ

= constant speed c

depending only on material properties

and not ω

No dispersion behavior

for the exact solution.

The numerical solution associated
Finite Element or Finite Difference

uh = e−i(κhx−ωt)

with numerical wavenumber
κh = κh(κh) = κh(ωc h) 6= ω

c ,

depending on ω.

The numerical phase velocity
ω
κh

6= constant speed c

and depends on ω

Dispersive behavior of

the numerical solution
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Numerical Dispersion for Finite Difference Order 2
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Numerical Dispersion for Finite Difference Order 2
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Methodology and Results

Goal
Study the phase difference between

the analytic wavenumber κ and
the numerical one κh associated with the discretization of the variational
problem by Continuous Galerkin FEM for any order.

? Discretization is on R,
⇒ the pollution is studied in isolation with the
effect of spurious reflection at the boundary .

? Use blocking + Z-transform to transform
system of two-sided infinite recurrence relations
into one matrix-vector equation

A(κ2h2, z) W (κ, z) = h z H(z).

? Identity the numerical wavenumber κh
with the angle of the (analytic) poles of

[A(κ2h2, z)]−1

? For any order r , obtain dispersion
analysis in the form of an analytic
expansion,

κh h = κ h + κ h O
(

(κ h)2r
)
.

analytic
in κh

κh − κ
κ

≤ C(r) (κ h)2r .

? Use Guillaume’s algorithm to numerically
calculate the poles, and hence κh.
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Toy Example : Numerical Dispersion analysis for FD order 2

Uniform discretization of R with step size h by nodes

xn = n h , n ∈ Z .

Recurrence relation given by second order Finite
Difference

−un−1 + (2− κ2h2) un − un+1 = 0 , n ∈ Z.

The characteristic polynomial of the recurr. rela-
tion, z2 − (2− κ2h2) z + 1 = 0 ,

for 0 ≤ κh < 2, has conjugate complex roots of
norm 1:

ei γh , e−i γh .

Solution of the recurrence relation :

un = a+ ei γh n + a−e−i γh n .

(Analytic) wavenumber κ controls
the oscillatory behavior of uexact,

uexact(x) = a+ ei κ x + a−e−i κ x .

The numerical wave number

κh :=
γh
h

controls the oscillatory behavior of
numerical solution,

un = a+ei γh
h (nh) + a−e−i γh

h (nh)

= a+ ei κh x + a− e−i κh x ,

x = n h .
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A toy example (cnt)

e iγh solves z2 − (2− κ2h2)z + 1 = 0

⇒ e iγh satifies z−(2−κ2h2)+z−1 = 0
⇒ e iγh + e−iγh︸ ︷︷ ︸

2 cos(γh)

= 2− κ2h2

⇒ 2 (1− cos(γh)) = κ2h2

⇒ 4 sin2( 1
2γh) = κ2h2

κ > 0 and h is chosen small enough so
that sin( 1

2γh) > 0.

sin( 1
2γh) = 1

2κ h
⇒ γh = 2 arcsin( 1

2κ h)

κh = 2
h arcsin

(1
2κ h

)
.

For |κh| < 2,

κh = 2
h arcsin

(1
2κ h

)
= 2

h

∞∑
n=0

(2n)!
4n(n!)2(2n + 1)

1
2 · 4n (κ h)2n+1

Dispersion analysis

δh = κh − κ

= 1
24κ

3 h2 + Eh(κ h) , |κ h| < 2 .

Eh is analytic ,

Eh(κ h) = κ h
∞∑

n=2

(2n)!
42n(n!)2(2n + 1) (κ h)2n

= κ h O
(

(κ h)4) ; |κ h| < 2 .
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Results from literature

Theoretical proof that gives an upper bound of the phase difference :

Theorem (Ihlenburg-Babushka)

For r ≥ 1, if
h κ
r
< 1, for the CG FEM discretization of the BVP−u′′ − κ2 u = f , on (0, 1)

u(0) = 0 ; u′(1)− iκ u(1) = 0

the difference between the continous wave number κ and the numerical one κh is
bounded above by,∣∣κh − κ

∣∣ ≤ κC
( e

4

)2r (πr)−1/2

4

(
κh
2r

)2r
.

Here, C is a constant not depending on κ, h and r.

Other References :
By numerical results : Thompson-Pinsky , Harari-Hughes ...
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Functional Analysis view point

∆ is an unbounded op. on L2(R) with domain H2(R)
σ(−∆) = σcontinuous(−∆) = R+ : purely continuous.

Inverse of −∆− σ is a resolvent R(σ) of ∆.

(−∆− σ)−1 : L2(R)→ L2(R) bounded , σ ∈ C \ R+

No eigenvalue (no eigenfunction in L2(R)) .
(−∆− σ)u = 0 in L2(R) ⇒ (|ξ|2 − σ)̂u = 0

⇒ û = 0 ⇒ u = 0 in L2(R).

There are ‘generalized ’ eigenfunctions ∈ S′(R)
(−∆− σ)u = 0 in S′(R) ⇒ (|ξ|2 − σ)̂u = 0

⇒ û = a−δ−√σ + a+δ√σ ⇒ u = a−e−i
√
σx + a+ei

√
σx︸ ︷︷ ︸

/∈L2(R)

.

σ /∈ R+

The variational form is coerc. in L2(R)
Get ∃! of sol in L2(R) by Fourier transf.

(−∆− σ)u = f in L2(R)

⇒ u = F−1 1
|ξ|2−σ

F f

⇒ σ(∆) ⊂ R+
.

σ = κ
2
, κ ∈ R+

Construct a seq. wn of ’almost eigenf.’ (Weyl seq.)
‖(−∆− λ)wn‖L2(R) → 0 ; ‖wn‖L2(R) = 1.

This prevents the existence of bounded
(−∆− σ)−1 in L2(R) for σ ∈ [0,+∞).

⇒ R+ ⊂ σ(−∆).

Cσ

κ2

(κ + iε)2

(κ− iε)2

Highlighted reg. C \ R+ = resolv. set of −∆

Cλ

κ

κ + iε−κ + iε

−κ

Complex plane λ =
√
σ
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Limiting absorption principle

Explicit formula
By separation of variables, obtain

Gε(x) = ei
√
κ2+iε |x|

2 i
√
κ2+iε

as the fund. sol. to

(−∆− (κ2 + iε)) Gε = δ(y) , κ, ε ∈ R+.

The unique solution in L2(R) is given by
uε =

∫∞
−∞Gε(x − y) f (y) dy ;

For each x ,

Gε(x) point wise−−−−−−→
ε→0

Goutgoing(x) := ei κ |x|

2 i κ .

uε −−−→
ε→0

uoutgoing := Goutgoing ? f in H2
loc(R).

gives the outgoing solution to
(−∆− κ2)u = f , f ∈ L2

c (R).

The Sommerfeld radiation condition : The
outgoing solution satisfies{

limx→∞| 1
i u′(x)− ku(x)| = 0

limx→−∞| 1
i u′(x) + ku(x)| = 0

.

Analytic Continuation
For f ∈ C∞c (R), f̂ has an analytic extension to C.

For σ ∈ C with Reσ > 0 , Imσ > 0 , the
unique sol. in L2(R) to (−∆− σ)u = f is

u(x) = 1
2π

∫∞
−∞

eix·ξ f̂(ξ)

|ξ|2 − σ
dξ =

1
2π

(∫ 0

−∞
+
∫∞

0

)
. . .

=
1

2π

∫∞
0

[
eix·ξ f̂(ξ) + e−ix·ξ f̂(−ξ)

] 1

|ξ|2 − σ
dξ

Deform [0,∞) to C+, and get analytic
continuation to {σ : Reσ > 0}

uoutgoing(x) =
1

2π

∫
C+

eix·ξ f̂(ξ) + e−ix·ξ f̂(−ξ)
ξ2 − σ

dξ

Cξ
√
σ

−
√
σ C+ 13 / 41
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Discretization

The real line R is partitioned into
intervals of length h

IJ = [yJ , yJ+1] , J ∈ Z.

the geometrical nodes
yJ := J h

For a method of order r , the
intervals are further partitioned by
global interpolation nodes

xJ,k := (J + k
r )h

J ∈ Z , 0 ≤ k < r .

Discrete solution :

uh =
∑

J∈Z,0≤k<r

uJ,k φJ,k .

A global basis for

Pr = {p ∈ C0(R) | p |IJ ∈ Pr (IJ ) , ∀J ∈ Z}

is given by φJ,k -s defined on R by

k = 0 : φJ,0(x) :=

φ̂0(F−1
J x) , x ∈ IJ

φ̂r (F−1
J−1x) , x ∈ IJ−1

0 , otherwise
;

0 < k < r : φJ,k (x) :=
{
φ̂k (F−1

J x) , x ∈ IJ
0 , otherwise

.

Ref Lagragian poly of deg r on [0,1] :

φ̂i (x̂) :=
∏

0≤j≤r
j 6=i

(x̂ − x̂j )
(x̂i − x̂j )

.

Isomorphism between reference interval and IJ

FJ : [0, 1]→ IJ , x̂ 7→ hx + yJ , J ∈ Z.
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Variational problem

Bilinear form for v ,w ∈ H1(R),

a (v ,w) :=
∫ ∞
−∞

v ′(x) w ′(x) dx − κ2
∫ ∞
−∞

v(x) w(x) dx .

Discrete solution uh =
∑

I∈Z , 0≤`<r uI,` φI,` satisfies,

a (uh , φJ,k ) =
∫ ∞
−∞

f(x)φJ,k (x) dx , ∀φJ,k , J ∈ Z , 0 ≤ k < r .

Local mass matrix M̂ of size (r+1)×(r+1)

M̂ij = aM(φ̂i , φ̂j ) , 0 ≤ i , j ≤ r .

Local stiff matrix Ŝ of size (r + 1)× (r + 1)

Ŝij = aS(φ̂i , φ̂j ) , 0 ≤ i , j ≤ r .

Mij (w) := Ŝij − wM̂ij , 0 ≤ i , j ≤ r .

For f , g ∈ H1(0, 1)

aS(f , g) =
∫ 1

0
f ′(x̂) g ′(x̂) dx̂

For f , g ∈ L2(0, 1),

aM(f , g) =
∫ 1

0
f (x̂) g(x̂) dx̂ .
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Recurrence relations

uh =
∑

J∈Z,0≤k<r

uJ,k φJ,k a(uh, φJ,k ) = fJ,k

J ∈ Z , 0 ≤ k < r .
(1)

The coefficients uJ,k -s satify the following system of r recurrence relations:

Those at levels Jr , J ∈ Z come from applying (1) to φJ,0 (at geo. nodes)
r−1∑
`=0

Mr` uJ−1,` + 2M00 uJ,0 +
r−1∑
`=1

M0` uJ,` + M0r uJ+1,0 = h fJ,0;

The remaining types at levels Jr + k, with 0 < k < r , are obtained from
applying (1) to φJ,k (at interpolation nodes)

r−1∑
`=0

Mk` uJ,` + Mkr uJ+1,0 = h fJ,k ; 0 < k < r .

fJ,k :=
∫∞
−∞

f(x)φJ,k (x); J ∈ Z, 0 ≤ k < r .
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(Two-sided) Z-transforms for scalar sequence u = {un}n∈Z

Version θ Version z

Definition [Zu](θ) :=
∑∞

n=−∞ un e2πinθ [Zu](z) :=
∑∞

n=−∞ un zn

if the RHS converges if the RHS converges

u ∈ l2(Z) [Zu](θ) is periodic in θ
Z : l2(Z) −→ L2(0, 1) is an isometry Z : l2(Z) −→ L2(S1) is an isometry

un is the n-th coefficient
of Fourier series representing Zu l2(Z) =

{
(uk )k∈Z :

∑
k∈Z u2

k <∞
}

un =
∫ 1

0
[Zu](θ) e−2π i n θ dθ

u ∈ l2
−ε(Z) [Zu](θ) is periodic and analytic in [Zu](z) is analytic in

the horizontal strip {−ε < Im z < ε} the annulus {e−ε < |z| < eε}

un is the n-th coefficient
of Laurent series representing Zu

l2
−ε(Z) =

{
(uk )k∈Z :

∑
k∈Z e2ε|k|u2

k <∞
}

un =
1

2πi
∮

C1
[Zu](z)

dz
zn+1 ,

C1 a counter-clockwise simple closed curve parametrizing the unit circle
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Z transform (cnt) and Blocking

Z-transform converts the translation oper-
ator into a multiplication operator.

[Z τ±k u] (z) = z∓k [Zu](z) , k ∈ Z+.

Shift operator (τkU)J := UJ+k , k ∈ Z.

(order k) Constant coefficient
Recurrence relation

↓

(order k) Polynomial-typed
algebraic equation.

Advantage of Blocking :

Without blocking, have r reccurence relations, one of order
2r + 1, and r − 1 of order r + 1

With blocking, we have one recurrence relation of order 2

⇒ one vector-valued polynomial of order 2.
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Blocked recurrence relation (Example shown for order r = 3)

M30 M31 M32 2M00 M01 M02 M03 0 0 0 0 0

0 0 0 M10 M11 M12 M13 0 0 0 0 0

0 0 0 M20 M21 M22 M23 0 0 0 0 0

0 0 0 M30 M31 M32 2M00 M01 M02 M03 0 0

0 0 0 0 0 0 M10 M11 M12 M13 0 0

0 0 0 0 0 0 M20 M21 M22 M23 0 0

uJ−1,0

uJ−1,1

uJ−1,2

uJ,0

uJ,1

uJ,2

uJ+1,0

uJ+1,1

uJ+1,2

uJ+2,0

uJ+2,1

uJ+2,2

UJ−1

UJ

UJ+1

UJ+2

A B At
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Formal Z-transform of the Helmholtz recurrence relations

Block Z : 1 ≤ k ≤ r , πk
projection op. onto

k-th component[
πk ZB U

]
(z) =

∞∑
J=−∞

uJr+k zJ

Relation with the shift operator : k ∈ Z+,
[ZB τ±k U](z) = z∓k [ZBU](z) .

The ‘blocked’ recurrence relation at κ,w = κ2h2

A(w) UJ−1 + B(w) UJ + At (w) UJ+1 = h FJ

after formal ZB becomes ,

[A(w) z + B(w) + At (w) z−1]W (w , z) = h [ZBF ](z)

For z 6= 0, this is equivalent to[
A(w) z2+B(w) z+At (w)

]
W (w , z) = h z [ZBF ](z)

⇒ A(w , z) W (w , z) = h z [ZBF ](z)

If z is such that detA(w , z) 6= 0, then

W (w , z) = A−1(w , z) h z [ZBF ](z).

Sol of the recurrence solution is given by

Z−1
B

W (w , z)

For κ /∈ R+, in particular for

κε = κ (1 + iε) , κ ∈ R+ , ε > 0 ,

the above process is justified

The problem is l2(Z)-coercive
→ ∃ ! sol. in l2(Z) .
The unit circle C1 is in the region of
analyticity of W (κ2

εh, z)
Can take Z−1

B
transform

1
2πi

∮
C1

W (κ2
εh, z)

dz
zJ+1

For κ ∈ R+, the problem is not coer-
cive in L2(R) and the discretized one
in l2(Z).

Strategy : Limiting absorbing principle.
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Summary of analytic results (Part 1)

A−1(w , z) :=
Adj A(w , z)
detA(w , z)

.

Adjugate Adj A(w , z)

= z r−2 Q(w , z)

the entries of Q(w , z) are
polynomial of second order
in z and first order in w .

A(w , z)

= z2A(w)+z B(w)+At B(w).

det A(w , z)

= z r−1 δ(w) (z2 − 2ρ(w)z + 1)

= z r−1 δ(w) q(w , z) ,
with ρ(w) rational in w
δ(w) is polynomial in w .

For w small enough, δ(w) 6= 0 .
⇒ The non-zero poles of A−1(w , z) w.r.t z are the
zeros of the characteristic poly z 7→ q(w , z) .

For ε > 0 : obtain solution to the recurrence relation

(Uε)J =
1

2πi

∮
C1

A−1(κ2
εh2, z) h z [ZBF ](z)

zJ+1 dz

For ε→ 0 : by contour deformation
? show that the limit exists, giving a solution, and
? this resulting sol can be written as a contour integral

κε = κ
√

1 + iε , κ, ε > 0

Roots of q(κ2
εh2, z)

are denoted by z±,ε

C1

Cz

z+,ε

eiφ0

z−,ε

e−iφ0

For κ h , ε > 0 small enough,
|z+,ε| < 1 < |z−,ε|

z±,ε → e±iφ0 , ε→ 0
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Summary of analytic results (Part 2) : Dispersion Analysis

Consider (−∆− κ2) u = f with RHS f having Supp F ⊂ [Nmin,Nmax] , F = (fJ,l )

Outgoing solution of the reccurence relation at κ > 0, κ h < π

uoutgoing(κ2)J,0 =
h ei (J h)

φ0
h

2 i δ(κ2h2) sinφ0

∑
0≤l≤r−1

Nmin≤J′≤Nmax

ei(1−J̃)φ0 fJ′,l
[

Qt
(
κ

2h2
, e−iφ0

)]
(l+1)1

, J > Nmax ;

uoutgoing(κ2)J,0 =
h e−i (J h)

φ0
h

2 i δ(κ2h2) sinφ0

∑
0≤l≤r−1

Nmin≤J′≤Nmax

ei (J′−1)φ0 fJ′,l
[

Qt
(
κ

2h2
, ei φ0

)]
(l+1)1

, J < Nmin.

Analytic outgoing solution at x = xJ = J h so that x /∈ Supp f = [a, b]

uoutgoing(xJ ) =
1

2 i κ
ei (J sgn(J) h)κ f̂(sgn(J)κ).

The numerical wave number κh

is related to the argument φ0

of the analytic poles of e±iφ0 of (A(κ2h2, z))−1.

κh =
φ0
h

=
κh (1 + O( (κ h)2r )

h
.
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Guillaume’s Algorithm

At κε = κ
√

1 + iε, ε, κ > 0, the blocked recurrence
relation after ZB-transform gives

A(κ2
εh2, z) W (κ+ iε, z) = h z [ZBF ](z).

Take ε→ 0, obtain
A(κ2h2, z) W (κ, z) = h z [ZBF ](z).

The numerical wave number κh is related to the
argument of the nonzero poles of (A(κ2h2, z))−1.

Guillaume’s algorithm: to look for these poles,
we approximate those of x(z), which solves

A(κ2h2, z) x(z) = h z b
for arbitrary scalar vector b ∈ Cr .

Step 1: Expand b and x about an analytic point z0

z h b = h z0 b + h (z − z0) b

x(z) =
∞∑

k=0

xk (z0) (z − z0)k .

Step 2 : Expand A(z) about z0

A(z) = M0 +M1(z−z0)+M2(z−z0)2,

M0(z0) = z0B + At + z2
0 A ;

M1(z0) = 2z0A + B ; M2(z0) = A .

Step 3 : The coeff. xk solves

M0(z0) x0 = h z0 b ;
M0(z0) x1 = −M1(z0) x0 + h b ;
M0(z0) xk = −M1(z0) xk−1 −M2(z0) xk−2

k ≥ 2 .

If λ0 is the unique closest pole to z0,
πl xk
πl xk+1

−→ λ0 − z0 , k →∞.

with πl the projection on the l-th
component of a vector.

Reference : (Thm 2.4) P. Guillaume, Nonlinear
eigenproblems, Siam J. Matrix Anal. Appl. 20 (3)
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Pole locating algorithm

Since the poles we look for are close to the unit circle, we consider the region
Ω = [−2, 2]× [−2, 2] ⊂ C, and partition it into smaller squares of width δz > 0,

Ωk,l = [−2 + k δz , −2 + (k + 1) δz ] × [−2 + l δz , −2 + (l + 1) δz ] .

The operations carried out for each square Ωi,j .

1 Start : Choose initial data z0 6= 0 arbitrarily in Ωi,j

If cond M0(z0) > εcond, then z0 is an analytic point, and continue to
step 2;
If not, z0 is a pole numerically, and move onto the next square.

2 Choose x0 arbitrarily. Calculate x1(z0), . . . , xnder+1(z0), using
M0(z0) x1 = −M1(z0) x0 + z−1

0 M0(z0) x0

M0(z0) xk = −M1(z0) xk−1 −M2(z0) xk−2 , k ≥ 2.

The ratio r =
π1 xnder+1
π1 xnder

gives an approximation of λ0 − z0, where λ0 is the
closest pole to initial data z0 ⇒ r gives an approximation of the direction
to get from z0 to λ0.

3 Restart : Update the initial data z0 7−→ z0 + r .

4 Stop criteria :
the condition number of M0 , the number of iterations Niter
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Application of Guillaume’s Algorithm for Order 4
Notations :
zij : the numerical poles calculated with Guillaume’s
algorithm, using initial guess from square Ωij

κh,ij is obtained from zij by zij = eiκh,ij h

−2 −1 0 1 2
−2

−1

0

1

2

0.98

1

1.02

(a) Re zij

−2 −1 0 1 2
−2

−1

0

1

2

−0.2

−0.1

0

0.1

0.2

(b) Im zij

−2 −1 0 1 2
−2

−1

0

1

2

6 · 10−2
8 · 10−2

0.1

0.12

0.14

(c) |Im zij |

−2 −1 0 1 2
−2

−1

0

1

2

0.98

1

1.02

(d) Re κh,ij

−2 −1 0 1 2
−2

−1

0

1

2

0

2

4

6·10−10

(e) Im κh,ij

Parameters
Analytic wavenumber κ = 1
Discretization of R : h = 0.1
Size of square Ωij : δz = 0.2
Stop criteria

Niter = 5 ; εcond = 1.e − 13
Nb of derivatives for approx

nder = 20
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Application of Guillaume’s Algorithm for Order 9
Notations :
zij : the numerical poles calculated with Guillaume’s
algorithm, using initial guess from square Ωij

κh,ij is obtained from zij by zij = eiκh,ij h

a := min
1≤i,j≤21

Re zij ; b = min
1≤i,j≤21

|Im zij |.

−2 −1 0 1 2
−2

−1

0

1

2

0

1

2

3

4·10−8

(f) Re zij−a
a

−2 −1 0 1 2
−2

−1

0

1

2

−0.2

−0.1

0

0.1

0.2

(g) Im zij

−2 −1 0 1 2
−2

−1

0

1

2

0

2

4

·10−7

(h) |Img zij |−b
b

−2 −1 0 1 2
−2

−1

0

1

2

0

1

2

3

4·10−7

|κh,ij − 1|

Parameters
Analytic wavenumber κ = 1
Discretization of R : h = 0.1
Size of square Ωij partitioning [−2, 2]× [−2, 2] : δz = 0.2
Stop criteria : Niter = 5 ; εcond = 1.e − 13
Nb of derivatives for approx nder = 20
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Numerical Dispersion Result

10−1 100

10−13

10−11

10−9

10−7

10−5

10−3

10−1

κ h

Re
la

tiv
e

Ph
as

e
di

ffe
re

nc
e
|κ

h−
κ
|

κ

Order 2 - slope = 3.85
Order 3 - slope = 5.61
Order 4 - slope = 7.73

30 / 41



Introduction Analytic problem Discretization of the problem on R Summary of techniques and results Pole locating algorithm and Numerical Results More details of analytic results Conclusion

Numerical Dispersion Result

100.2 100.25 100.3 100.35 100.4 100.4510−13

10−12

10−11
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10−6

κ h
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la

tiv
e

Ph
as

e
di

ffe
re

nc
e
|κ

h−
κ
|

κ

Order 5 - slope = 9.78
Order 6 - slope = 11.82
Order 7 - slope = 14.67
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Plan

6 More details of analytic results
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Invertibility of the local matrices

The interior matrices Ŝint, M̂int are
symmetric and definite positive,
and thus invertible.

Consider g ∈ Pr (0, 1) (polynomial of
degree ≤ r) with g(0) = g(1) = 0.

Define v ∈ Rr−1 by

vi := g( i
r ) ; v = (vi )1≤i≤r−1

⇒ g(x̂) :=
r−1∑
i=1

vi φ̂i (x̂).

We have

v · Ŝint v = aS (g , g) =
∫ 1

0
(g ′(x̂))2 dx̂ ≥ 0 ;

v · M̂int v = aM (g , g) =
∫ 1

0
g2(x̂) dx̂ ≥ 0.

If v ·Ŝintv or v ·M̂intv , then g = 0 i.e v = 0.

For |w | < π2, Mint(w) is invertible. In
addition, its inverse is analytic in w with
expansion

M−1
int (w) = Ŝ−1

int +
∞∑

k=1

wk
(

Ŝ−1
int M̂int

)k
Ŝ−1

int

Invertibility :
v · Mintv =

∫ 1

0
g ′2 dx̂ − w

∫ 1

0
g2 dx̂

≥
Poincaré inequality for f∈H1

0 (0,1)
(π2 − w)‖g‖2

L2 .

Since Mint(w) = Ŝint − wM̂int is symmetric,
Mint is definite positive for w < π2

⇒ is invertible for such w .

Analyticity : Can show that

Spectral radius ρ
(

M̂int Ŝ−1
int
)
≤ π2.

Thus for |w | < π2, the Neumann series
converges, giving an analytic inverse.
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Structure of zeros of detA(w , z) = δ(w) q(w , z) = δ(w), (z2 − 2ρ(w)z + 1)

Goals - For small enough w : 1. ρ(w) = β(w)+det B(w)
−2δ(w) = cos w1/2 + wO(w r ) ; 2. δ(w) 6= 0

Part 1 : Show

β(w) + det B(w) = −2δ(w)− w detMint(w)
(

1 + wκ · M−1
int (w)κ

)
.

⇒ β(w)+det B(w)
δ(w) = −2− w detMint(w)

δ(w)

(
1 + wκ · M−1

int (w)κ
)

Part 2 : Show w κ · M−1
int κ = −1 + 2−2 cos w1/2

w1/2 sin w1/2 + O(w2[r/2]+1)

Part 3 : Show − δ(w)
detMint(w) = w1/2

sin w1/2 + w2[ r−1
2 ]+2 e(a, b).

2M00 M01 . . . M0(r−1) M0r

M10 M11 . . . M1(r−1) M1r

...
...

. . .
...

...
M(r−1)0 M(r−1)1 . . . M(r−1)(r−1) M(r−1)r

Mr0 Mr1 . . . Mr(r−1) Mrr

Mint(w)b(w) a(w)B(w)

κj =
∫ 1

0
φ̂j (x̂) dx̂.

κ = (κ1, . . . , κr−1)t

1 ≤ j ≤ r − 1
(a0)j = Ŝjr (a1)j = M̂jr

(b0)j = Ŝj0 (b1)j = M̂j0

a(w) = a0 − wa1

b(w) = b0 − wb1

B(w) =
(

2M00(w) bt (w)
b(w) Mint(w)

)
β(w) := det

(
0 at (w)

a(w) Mint(w)

)
δ(w) := det

(
M0r (w) bt (w)
a(w) Mint(w)

)
.
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Structure of zeros of q(w , z) = z2 − 2ρ(w)z + 1 (cnt)

Part 2 : Notation : [f ] = (f (j/r))0≤j≤r

κ · M−1
int (w)κ = M̂int,? [1] · M−1

int (w) M̂int,? [1]

= aw (f , f ) + O(w2[r/2]).

= −w−1 +
2− 2 cos w1/2

w3/2 sin w1/2
+ w2[r/2] e(κ),

where f is the unique solution to the BVP
−f ′′ − wf = 1 ; f (0) = f (1).

Part 3

Step 3a :

δ(w) = detMint(w)
[̂

Sr0−wM̂r0−a(w) · M−1
int (w) b(w)

]
Step 3b :

a(w) · M−1
int (w) b(w) = a0 · Ŝ−1

int b0

+ w
(̂

S−1
int a0 · Y − a1 · Ŝ−1

int b0
)

+ w2 X · M−1
int (w) Y .

with Y := M̂intŜ−1
int b0 − b1 ; X := M̂intŜ−1

int a0 − a1

Step 3c :

a0 · Ŝ−1
int b0 = aS(φ̂r , φ̂0 + x − 1) = Ŝr0 + 1.

Ŝ−1
int a0 · Y − a1 · Ŝ−1

int b0

= aM(φ̂r − x, x − 1)− aM(φ̂r , φ̂0 + x − 1) = 1
6 − M̂r0.

Step 3d :

X · M−1
int (w) Y

= M̂int,? [−x ] · M−1
int (w) M̂int,? [x − 1]

= a
(

f̃ ,−f ′′ − wf
)

+ w2[ r−1
2 ]e(a, b)

= −
1

w2 −
1

6w
+

1

w3/2 sin w1/2
+ w2[ r−1

2 ]e(a, b)

where f and f̃ are the unique solutions to

−f̃ ′′ − wf̃ = −x ; f̃ (0) = f̃ (1) = 0
−f ′′ − wf = x − 1 ; f (0) = f (1) = 0.

M00 M01 . . . M0(r−1) M0r

M10 M11 . . . M1(r−1) M1r

...
...

. . .
...

...
M(r−1)0 M(r−1)1 . . . M(r−1)(r−1) M(r−1)r

Mr0 Mr1 . . . Mr(r−1) Mrr

Mint(w)b(w) a(w)
Ŝint,? − wM̂int,?

M(w) = Ŝ − wM̂ ; Mint(w) = Ŝint − wM̂int

a(w) = a0 − wa1 ; b(w) = b0 − wb1 35 / 41
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Limiting absorption principle . Outgoing solution

q(w , z) = z2 − 2ρ(w)z + 1

ρ(w) = cos w1/2 + wO(w r ).

Discri. ∆(w) = −4 sin2(w1/2) (1+O(w r ))

C1

Cz

z+,ε

eiφ0

z−,ε

e−iφ0

z±,ε := ρ(κ2
εh2)± 1

2

√
∆(κ2

εh2).

z±,0 = e±iφ0 := ρ(κh)± 1
2 i
√
|∆(κ2h2)|.

cosφ0 = ρ(κ2h2) = cos(κh) + (κh)2 O((κh)2r )
⇒ φ0 = κh (1 + O( (κh)2r ) .

(Uε)J =
1

2πi
∮

C1

A−1(κ2
εh2, z) h z [ZBF ](z)

zJ+1 dz

=
1

2πi
∮

Γoutgoing

A−1(κ2
εh2, z) h z [ZBF ](z)

zJ+1 dz

(Uoutgoing)J = limε→0+ (Uε)J

=
1

2πi
∮

Γoutgoing

A−1(κ2h2, z) h z [ZBF ](z)
zJ+1 dz

Γleft

Γright

z+,ε

eiφ0

γ+,>

z−,ε

e−iφ0

γ−,<

C1 is deformed to Γoutgoing
Γoutgoing := Γright ∪ γ+,> ∪ Γleft ∪ γ−,<.36 / 41
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Numerical wavenumber (Part 1)

Goal : obtain the explicit formula for the outgoing solution
of the reccurence relation at κ > 0.

uoutgoing(κ2)J,0 =
h ei J φ0

2 i δ(κ2h2) sinφ0

∑
0≤l≤r−1

Nmin≤J′≤Nmax

ei(1−J̃)φ0 fJ′,l
[

Qt
(
κ2h2, e−iφ0

)]
(l+1)1

, J > Nmax;

uoutgoing(κ2)J,0 =
h e−i J φ0

2 i δ(κ2h2) sinφ0

∑
0≤l≤r−1

Nmin≤J′≤Nmax

ei (J′−1)φ0 fJ′,l
[

Qt
(
κ2h2, ei φ0

)]
(l+1)1

, J < Nmin.

After this step, by using : φ0 = κ h (1 + O( (κh)2r ), obtain

Dispersion Analysis

κ = φ0
h = κ + κO( (κ h)2r ) .
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Numerical wavenumber (cnt) : Explicit expression for outgoing sol

A−1(κ2h2, z) = r r−2Q(κ2h2, z)
z r−1 δ(κ2h2) q(κ2h2, z) = Q(κ2h2, z)

z δ(κ2h2) (z − e iφ0 )(z + e iφ0 ) , z 6= e±iφ0 .

(Uoutgoing)J = lim
ε→0+

(Uε)J = 1
2πi

∮
Γoutgoing

A−1(κ2h2, z) h z [ZBF ](z)
zJ+1 dz

= 1
2πi

∮
Γoutgoing

Q(κ2h2, z)
δ(κ2h2) (z − e iφ0 )(z + e iφ0 )

h [ZBF ](z)
zJ+1 dz

= 1
2πi

∮
Γoutgoing

W0(z)
zJ+1 dz .
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Numerical wavenumber (cnt) : Explicit expression for outgoing sol

RHS f having Supp F ⊂ [Nmin,Nmax] , F = (fJ,l ), write the integrand as

z−J−1W0(z) dz =
h Q(κ2h2, z)

δ(κ2h2) q(κ2h2, z)
z−J−1

Nmax∑
j=Nmin

z j
(

fj,k
)

0≤k≤r−1
dz

Γleft Γright

Cr

eiφ0

γ+,>

γ+,<

e−iφ0

γ−,<

Deform Γoutgoing to Γ+.

Γ+ := Γright ∪ γ+,< ∪ Γleft ∪ γ−,<

Γ+ is homotopic to Cr , r < 1.

For J < Nmin :
W0(z)
zJ+1 is analytic at z = 0

(Uoutgoing)J

=
1

2πi

(∮
Γ+

+
∮
γ+,> ∪ −γ+,<

)
W0(z)
zJ+1 dz

=
1

2πi

∮
Cr

W0(z)
zJ+1 dz + Res

(W0(z)
zJ+1 , eiφ0

)
, r < 1

= Res
(W0(z)

zJ+1 , eiφ0
)

=
h Q(κ2h2, eiφ0 ) [ZBF ](eiφ0 )
δ(κ2h2) (eiφ0 − e−iφ0 )

(eiφ0 )−J−1.
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Numerical wavenumber (cnt) : Explicit expression for outgoing sol

For z̃ := z−1 : z−J W0(z)
dz
z

=
h

δ(κ2h2)
Qt (κ2h2, z̃)
q(κ2h2, z̃)

z̃J
Nmax∑

j=Nmin

z̃−j
(

fj,k
)

0≤k≤r−1
dz̃
z̃
.

Cr

Γleft Γright

eiφ0

γ+,>

e−iφ0

γ−,>

γ−,<

Deform Γoutgoing to Γ− ;

Γ− := Γright ∪ γ+,> ∪ Γleft ∪ γ−,>

Γ− is homotopic to Cr , r > 1.

For J > Nmax : Nmin ≤ j ≤ Nmax ⇒ J−j−1 ≥ J−Nmax−1 ≥ 0

⇒ the integrand is analytic at z̃ = 0.

(Uoutgoing)J =
1

2πi

(∮
Γoutgoing

+
∮
γ−,<∪−γ−,>

)
W0(z)
zJ+1 dz

=
1

2πi

∮
Cr

W0(z)
zJ+1 dz − Res

(W0(z)
zJ+1 , e−iφ0

)
, 1 < r

=
1

2πi

∮
Cr−1

h z̃J

δ(κ2h2)
Qt (κ2h2, z̃)
q(κ2h2, z̃)

[ZBF ](z̃−1)
dz̃
z̃

− Res
(W0(z)

zJ+1 , e−iφ0
)

, 1 < r

= −Res
(

W0(z) z−(J+1), e−iφ0
)

= −
h

δ(κ2h2)
Q(κ2h2, e−iφ0 ) [ZBF ](e−iφ0 )

(e−iφ0 − eiφ0 )
(e−iφ0 )−J−1.
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Conclusion

Thank you for your attention
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