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Comp w MJ Solver's robustness comparison

Heterogeneities produced by obstacles

• Domains of size ≥ 100 incidence wavelength λ

• Obstacles of radius ≤ 0.3λ. Volume-discretization based methods lose their robustness in these settings : large linear systems, numerical pollution caused by dispersion, etc.

• I2M uses COMSOL (commercial software, finite-element based).

• Highly-optimized Software in Magique3D : MONTJOIE, HOU10NI. 

Multiple obstacle scattering as Exterior Boundary Value problems

Propagation of acoustic waves of freq. f in a hom. medium with sound speed c.

u total = u inc + uscatt.
1. PDE satisfied by uscatt outside of the obstacles:

(-∆ -κ 2 ) uscatt = 0 , κ = 2πf c . Motivation Properties of the outgoing Green kernel

Conditions on the boundary of the obstacles:

R 2 = Ω - bounded ∪ Γ ∪ Ω + v satisfies (-∆ -κ 2 )v = 0 in Ω - (-∆ -κ 2 )v = 0 in Ω + , v outgoing For x / ∈ Γ v (x ) = - Γ G κ (x , y ) [γ 1 v ](y ) ds(y ) + Γ ∂ ∂n(y ) G κ (x , y ) [γ 0 v ](y ) ds(y ) , S [γ 1 v ] D [γ 0 v ] G κ (x , y ) = i 4 H (1) 0 (κ|x -y |) [γ 0 u] = γ + 0 u -γ - 0 u ; [γ 1 u] = γ + 1 u -γ -
= 0 γ + 1 u total = 0 u| Ω -= u| Ω -= -S γ + 1 u + D γ + 0 u [γ 0 u] = u = -S [γ 1 u] Outer Apply γ + 0 → an equation = EFIE Apply γ + 1 Inner Null field method : Extend u total = 0 on Ω - γ - 0 → Electric Field IE (EFIE) γ - 1 → Magnetic Field IE (MFIE) γ - 1 + ηγ - 0 → Combined Field IE (CFIE) [γ 1 u] = u = D [γ 0 u] Outer Apply γ + 0 Apply γ + 0 Inner Null field method u total = 0 on Ω - γ - 1 → EFIE 2 γ - 0 → MFIE 2 ηγ - 1 + γ - 0 → CFIE 2 Brackhage Outer u| Ω + = (ηS + D)φ u| Ω + = (S + ηD)φ
G κ (x , y ) = i 4 H (1) 0 (κ|x -y |) is
smooth off the diagonal {x = y } weakly singular around the diagonal . Jump of single-layer potential

|Gκ(x , y )| ≤ C |x -y | -1+ 0 < < 1 . H (1) 0 (z) = 2i π ln |z| 2 + Euler constant -πi 2 + O |z| 2 ln 1 |z| , |z| → 0 . S : H s (Γ) → H s+ 3 2 loc (R 2 ) is bounded for -1 < s < 0 , Γ Lipschitz -1 < s , Γ C ∞ The definition Sφ := Γ G κ (x , y ) φ(y ) , ds(y ) , x / ∈ Γ , φ ∈ L 1 (Γ) extended to S := N γ 0 N is the Newton potential N f := R 2 Gκ(x , y ) f (y ) dy , f ∈ L 2 comp (R 2
Γ Lipschitz, φ ∈ H -1/2 (Γ) [γ0Sφ] = 0 , in H 1/2 (Γ) ; [γ1Sφ] = -φ , in H -1/2 (Γ)
Zero-th trace of single-layer potential

S := γ0S : H s (Γ) → H s+1 (Γ) is bounded for -1 < s < 0 , Γ Lipschitz -1 < s < r + 1 2 , Γ ∈ C r +1,1 Integral presentation (for Γ ∈ C 2 ) (Sφ)(x ) := Γ Gκ(x , y ) φ(y ) ds(y ) , x ∈ Γ , φ ∈ L ∞ (Γ) .
Conormal derivative of single-layer potential Single layer potential formulation for multi-scattering .

γ ± 1 S = ∓ 1 2 Id+D , D : H s (Γ) → H s (Γ) bounded for -1 < s < 0 , Γ Lipschitz -1 < s < r + 1 2 , Γ ∈ C r +1,1 Integral presentation (for Γ ∈ C 2 ) (D φ)(x ) := Γ φ(y ) ∂ ∂n(x ) Gκ(x , y ) ds(y ) , x ∈ Γ , φ ∈ L ∞ (Γ) .
Exterior Boundary Value Prob

u total = u inc + uscatt; uscatt = N J=1 u scatt,J ; u scatt,J := S J v J = Γ J Gκ(x , y ) v J (y ) ds(y ).
Integral Eqn : Find densities v J s.t. : Fourier Series Single Layer method.

For I = 1, ..., N N J=1 γ 0,I S J v J = -γ 0,I u inc ; Dirichlet N J=1 γ + 1,I S J v J = -γ 1,I u inc ; Neumann Choose finite- dim subspaces approximating H -1/2 (Γ I ) (Dir), H 1/2 (Γ I ) (Neu) 2π-periodic parametrization φ J : [0, 2π) θ → Boundary of obstacle J. Basis element w Jl (φ(θ)) = e i l θ , 1 ≤ J ≤ N , l ∈ Z.
The scattered and approx. wave

uscatt = N J=1 u scatt;J , u scatt,h = N J=1 u h,scatt;J .
The exact and app. wave scattered by Obs J u scatt;J = S J v J ; u h,scatt;J = S J v h,J .

In basis elements

w J,k (x ) = e i k θ J (x ) , u scatt;J = k∈Z V J,k S J w J,k u h,scatt;J = m k=-m V J,k S J w J,k .
The unknowns are the Fourier coefficients of

density v J V = (V J,k ) , k ∈ Z , 1 ≤ J ≤ N ,
and the truncated ones for the approx. v h,J .

V h = (V J,k ) , -m ≤ k ≤ m , 1 ≤ J ≤ N .
For α = D, N, Im, they solve Multi-scattering with circular obstacles.

Aα V = Fα , A h,α V h = F α,h . Aα =     A 11 A 12 ... A 1(N-1) A 1N A 21 A 22 ... A 2(N-1) A 2N . . . ... . . . ... . . . A (N-1)1 A (N-1)2 ... A (N-1)(N-1) A (N-1)N A N1 A N2 ... A N(N-1) A NN     A h,
Single-layer potential with density w J,k can be written in multipole expansions,

(S J w J,k ) (x ) = iπ r J 2 J k (κ r J ) H (1) k (κ r J (x )) e i k θ J (x )
multiple pole of order k placed at the center of O J .

Same obstacle interaction

(A I ) kl = iπ r I J k (κ r I ) δ kl H (1) k (κ r I ) Dirichlet κ H (1) k (κ r I ) Neumann , k, l ∈ Z . Interaction between two different obstacles I = J (A IJ ) kl = i π r J e i(l-k)θx J (x I ) H (1) l-k (κ d IJ ) J k (κ r I ) J l (κ r J ) Dirichlet κ J l (κr I ) Neumann , d IJ = |x I -x J | ; k, l ∈ Z.
Obstacle I of radius r I .

Relative polar coordinates (r J (•), θ J (•)) with respect to obstacle x J x = x J + r J (x )(cos θ J (x ), sin θ J (x )) Well-posedness

0 ≤ κ < ∞ ; λ ∈ R .
If κ 2 is not a Dirichlet eigenvalues (EV) of -∆ for O I for 1 ≤ I ≤ N, then the following maps are injective

A α : H 1/2 (Γ Obs ) -→ H 1/2 (Γ Obs ) , Impedance, Neumann A α : H -1/2 (Γ Obs ) -→ H 1/2 (Γ Obs ) , Dirichlet H s (Γ Obs ) = H s (Γ 1 ) × . . . × H s (Γ N ) Comp w MJ Solver's robustness comparison Inv Prob Num Exp Conclusion
Well-posedness and small obstacles

Circular obstacles

Dirichlet EV :

λ n,m = j n,m r 2 ,
jn,m m-th positive root of Jn(r ) = 0, r = radius of obstacle.

Injectivity : κ 2 e r 2 = j n,m .

General shape obstacles

Isoperimetric inequality gives

λ 1 (O) ≥ π Area (O) j 2 0,1 .
Injectivity for small obstacles

κ e r circumvent (O) < 2
The first 4 roots : j0,1 ∼ 2.40 , j1,1 ∼ 3.83 , j2,1 ∼ 5.13 , j1,2 ∼ 5.52.
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Multiple Scattering Literature 

Feature of Direct Simulation Codes

• Written in Fortran90.

• Parallelized using MPI,

• Runs on the platform Plafrim of Inria.

• Multi-frequency option.

• Choices of both direct and iterative linear system solvers.

Mumps , Lapack , Scalapack GMRES with restart 3 with various preconditioners

• Validated and compared with highly optimized Montjoie.

3 GMRES with restart without preconditioner was developped by Luc Giraud's team (Cerfacs). L. Giraud, et al. , A set of GMRES routines for real and complex arithmetics on high performace computers, Technical report, CERFACS, tR/PA/03/3 (1997).
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Calculation time costs (CPU time)

u h,scatt (x ) = iπ 2 N Obs J=1 r J m l=-m V J,l H (1) k (κ r J (x )) e i l θ J (x ) ( )
Pre-processing time = Time to resolve the linear system for V h .

Linear system is dense but small : N Obs × (2m + 1).

Post-processing time = Eval. time of LHS of ( ) at each point of visualization grid .

Evaluation of Hankel is costly (∼ 540 times more expensive than '+' operation).

Cost ∼ N Obs × ( points of visualization grid).

Reduce the cost (associated with second factor) by parallelization and interpolation e.g. Hermite interpolation ⊂ cubic spline . The phenomenon is approximated by the hard scattering of acoustic sound in fluid.

• The incident wave (from the transducer) is simulated by a PW of angle 90 • .

• Input pulse's central freq. = 500 kHz.

• The sound speed in water = 1478 m s -1 .

• The wavenumber κ = 2125.57 m -1 .

• The spatial wavelength λ = 2.96 × 10 -3 m. 

= b -A 0 .
No preconditioning : A p = r 0 .

• Use Arnoldi process, to find, approximate sol. p j in Krylov space K j (A, r 0 ), j ≤ m, minimizes

p j = argmin p ∈ Kj (A , r0)
A pr 0 2 ( * ).

• Stop if p j satisfies the residue error criteria.

If not, and if j = m, restart the process with initial guess r 0 = p m .

• Final stop criteria : NiterMax .

Right preconditioning : (AP -1 )(Pp ) = r 0 .

Left preconditioning : (P -1 A)p = P -1 r 0 . FSSL order 2 ; Size matrix = 10000 × 10000; Post-processing on 800× 800 regular grid; GMRES stop criteria (10 -7 , 5000,500).

Solver

Postproc (n16) 

Rel

Synthetic data

The positions of 128 equally-spaced receivers vary with the angle of incidence. Noise Vector is generated using Gaussian probability distribution. Inversion Literature

Reconstruction algos

Imaging-based methods

Time reversal

Probe and sampling methods

Music

Decomposition techniques

Iterative methods
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Quantitative gradient-based inversion

Find the minimizer of the (reduced) cost function J ,

J (m) = 1 2 Φ(m) -d obs 2 .
Trace operator at the receptors Rrec : u|receptor, ∂nu|receptor, etc.

Observed data at receptors : d obs .

Forward map Φ : model m → simulated data at receptors.

Main features

Use line-search optimization strategy.

Calculate gradient ∇ p J by adjoint method (with FSSL formulation).

Use frequency-hopping to escape from stagnation in local minima. 

Motivation

• Approximate f by second-order Taylor poly M.

f (m + s) = M(s) + o( s 2 ). M(s) := f (m) + s t ∇f (m) + 1 2 s t ∇ 2 f (m) s . • Rate of change of f along direction s at m is : s t ∇f (m). • Direction s is called a descent direction at m if s t ∇f (m) < 0.
Steepest descent s = -∇f (m) Pros : does not require second derivatives ; Cons: slow convergence.

Newton

Newton direction is defined by the minimum of M (Assuming ∇ 2 f k pos def.) 

∇M = 0 ⇔ ∇f + ∇ 2 f s = 0 ⇔ s k , Newton := -(∇ 2 f k ) -1 ∇f k . Search Dir. s k , Newton is a descent direction, if ∇f k = 0

Search directions

Do not need the Hessian ; faster than Steepest Descent.

Quasi-Newton

Use an approximation B k (positive and definite) of the Hessian ∇ 2 f k

s k = -B -1 k ∇f k .
A popular formula is by BFGS (Broyden, Fletcher, Goldfarb and Shannon)

require storage of matrix.

Nonlinear Conjugate gradient

s k+1 = -∇f k + β k s k A popular formula for β k is by Polak-Ribière β k = ∇f t k (∇f k -∇f k-1 ) ∇f t k-1 ∇f k-1
. storage of matrix not required. Adjoint method for calculating the gradient Adjoint method for calculating the gradient (cnt)

u h,scatt (x ) = i π 2 N Obs J=1 r J n l=-n V J,l H (1) k (κ r J (x )) e i l θ J (x ) ( ) = T (m) t V (m) . Forward map Φ : Model space -→ Simulated data space m → u h,scatt | receivers Φ(m) = R rec u h,scatt = R rec T (m) t V (m) = R(m) V (m). ∇ m J = Re [ ∂ m Φ ( Φ(m) -d obs ) ]
• Avoid calculating the Jacobian ∂ m Φ

• Avoid calculating ∂ m A -1 . Optimization algorithm at a frequency Initial guess m 1 Initial computation: J 1 , ∇ J 1 

Forward linear system

| J i | ≤ 1 or ∇ J i ≤ 2 or i > N iter max m i , J i , ∇ J i • Calculate Search direction s i • Carry out Line search algorithm α i m i+1 = m i + α i s i , J i+1 , ∇ J i+1 | J i -J i-5 | < 3 or m i+1 -m i ≤

Features of Inverse Problem codes

Latest version

• written in Fortran90

• offers choices of different optimization schemes.

• currently uses Mumps.

• integrates a copy of the principal part of the direct simulation codes.
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Group 1 -Exp 1 -6 obstacles with 30dB data

Run time = 2.27s .

Nb of iter = 224.

2 incidence angles: 90 

Group 1 -Exp 2 -6 obstacles with 30dB data

Run time = 0.30s .

Nb of iter =57 .

2 incidence angle: 90 Inversion exp 3 results.

Run time = 7.7 s .

Nb of iter = 317.

4 incidence angles:

10 wavenumbers used: 0.08-0.09, 0.1-0.8.

Quasi-Newton and strong Wolfe linesearch.

Err Pos scaled Err Pos Initial guess 39.7 79.4% Final position 0.17 0.3% 57 / 60

• FSSL is robust in simulating the multi-scattering by small circular obstacles in large homogeneous media.

• Direct Solvers (Lapack and Scalapack) are more efficient when the obstacles are close together.

• Iterative solvers are more preferable when the obstacles are far apart.

In particular, GMRES with LUSGS and SGS are faster than Lapack and as fast as Scalapack.

• LUSGS and SGS are the most robust among the preconditioners considered.

• Direct problem resolution using FSSL and direct solvers are robust in FWI.

• Successful reconstruction in presence of noise.

• Although NL conjugate gradient with cheaper linesearch can be faster in some cases, the more reliable method is Quasi-Newton with strong Wolfe linesearch. Future directions

• Compare with other optimization, e.g. Newton-like methods, 2nd order.

• Compare with imaging-based methods, in particular MUSIC.

• Use in combination with such methods for a good initial guess (even without knowledge of the number of obstacles), and then use the current method for precise reconstruction.

• Other inverse problems: determining material parameters within the obstacles.

• Extension to elastic inclusions.

Stag Pos = 0.5 for run 1-6 0.001 for run 7-9 , J = ∇J = Stag LS = 0.00001 Stag J = 0.1

• Wolfe Line search parameters : c 1 = 0.0001.

• Iter Max = 300 , Iter Linesearch Max = 30.

• Order FSSL = 3. 

  + iλγ + 0 u total = 0 3. (Outgoing) Sommerfeld radiation condition at ∞: lim r →∞ √ r (∂r uscatti κuscatt) = 0 ; r = |x | ∃! solution for the exterior BVPs (all parameters > 0). References: Hettlich, Fréchet derivatives in inverse obstacle scattering. Colton, Kress, Integral equation methods in scattering theory. Time-harmonic Planewave : upw(x ) exp(-i 2π ft) upw(x ) = exp (κ x • ( cos α inc sin α inc )) α inc = 0 • , 2πf = 1.0 , κ = 1.0.

  Small obstacles on medium domain Soft-scattering of PW with angle 90 • of wavelength κ = 10, λ ∼ 0.63 by 200 obstacles of radius = 0.03, with distanced by 0.3. Domain size : 31λ × 23λ κ × (Obs Rad) = 0.3, λ Obs Rad ∼ 21 , λ Obs. Dist. ∼ 2 , Obs. Dist. Obs. Rad. ∼ 10. Montjoie initial mesh has mesh size of 0.13. Montjoie (montjoie.gforge.inria.fr) Bases: Curved finite element (FE) with Lagrange polynomials based on Gauss-Lobatto points. Q-n denotes the n th order FE on quadrangular meshes. Domain truncation: Perfectly Matched Layers. solutions Soft-scattering of 200 obstacles on domain of size : 31λ × 23λ κ × (Obs Rad) = 0.3 Abs. difference compared with Montjoie Q17. Relative L 2 err. = 3.38 × 10 -8 .

  stop criteria : Residue error tolerance, Niter Max, Size of Krylov.

  a planewave coming from the south by 10 4 obstacles. κ × r = 0.03 , λ r ∼ 21 , d r = 10 , λ d ∼ 2. Preprocessing uses FSSL order 2 + Scalapack. Dense matrix of size 50000 × 50000. Post-processing on 800 × 800 grid of size 79λ × 57λ uses Hermit inter Total simulation time = 24 mins 40 secs on 48 processors (of Plafrim).

  noise is added by Matlab routine awgn(data , SNR dB , 'measured').

SNRdB

  = signal-to-noise ratio per sample in decibel.SNRdB = 10 log 10Data Vector Noise Vector .

  ) = J m k + α s k .Strategy : Adequate reduce in J with minimal cost.Make a 'trade off'Choose α k so that φ reduces substantially

  1 u

		Comp w MJ	Solver's robustness comparison	Inv Prob	Num Exp	Conclusion
	Choices of solution representation and trace operators	
			u total = u + u inc		
	Choice of	Choice of	Dirichlet			Neumann
	ext. for u	trace op.	γ + 0 u total		

  Hermite interp. precision is 10 -6 .

	Comp w MJ Comp w MJ Comp w MJ	Solver's robustness comparison Solver's robustness comparison Solver's robustness comparison	Inv Prob Inv Prob Inv Prob	Num Exp Num Exp Num Exp	Conclusion Conclusion Conclusion
	Experiment 1: Convergence curve Experiment 1: Comparison at precision 10 -3 Experiment 2: sizable obstacles on a large domain	
	5 Acoustic vibration, produced by 10 10 -8 10 -4 10 0 Montjoie order Rel. L 2 error (c) Rel. consecutive err. : Montjoie 5 10 15 20 FSSL Order x (m) 0 0.1 0.2 0.3 10 -12 10 -6 10 0 0 less than MJ. Rel. H At precision 10 -3 , FSSL using Hermite interpolation takes 7 times 15 Candidates for comparison at precision 10 -3 FSSL are Mumps. Solvers for both Montjoie and FSSL 2 Inter MJ Q6 6.85 × 10 -4 0.1 1/2 err. Compare between Rel. L 2 error FSSL 14 FSSL 2 Pre-processing FSSL a block transducer , MJ by Mumps Order 2 Q6 Evaluation on 400 × 400 grid is diffracted by 35 thin aluminum 4.65 × 10 -5 MJ Q17 MJ Q6 6.52 × 10 -4 MJ Q6 FSSL2 Size of lin. sys. 1000 842677 Task Time (s) Exact Inter. MJ eval eval wires (of radius 0.5 mm) Q6 immersed in water. 6.84 × 10 -4 Compare between Rel. L 2 error FSSL 2 Inter FSSL 2 1.76 × 10 -5 Construction 0.055 1.97 Factorization 0.44 Post-proc. 26.2 4.30 0.72 29.8 Resolution 0.003 Pre-proc. + 0.35 Total time 0.498 Post-proc. 0.2 26.70 4.80 33.82 32.12 y(m)
	Horizontal-view cut.				

(d) Rel. consecutive err : FSSL densities

Regarding the value of the diffracted wave at 128 receptors,

  Rel. L 2 error : FSSL 12 and FSSL 4 = 2.82 × 10 -6 , Rel. L 2 error : MJ Q12 and MJ Q8 Ref 2 = 1.42 × 10 -4 . Rel. L 2 error : FSSL 4 and MJ Q8 Ref 2 = 1.48 × 10 -4 .

		Comp w MJ Comp w MJ	Solver's robustness comparison Solver's robustness comparison	Inv Prob Inv Prob	Num Exp Num Exp	Conclusion Conclusion
	Exp 2: Computational time comparison at precision 10 -4 Exp 2: Candidates for comparison at precision 10 -4
	Restart with Krylov space size m.	Initial guess x 0 .
						Initial residue r 0	Q8 Ref 2 = Q8
						with one time
			Size		Pre-proc.	Post-proc.	mesh refinement. Total
	0.2	of LS 3 Solver's robustness comparison Time (s) Closely spaced obstacles Far away obstacles	Time at 128 receivers (s)	time (s)
		FSSL 4	315		0.024	6.58 × 10 -3	0.031
	0	MJ Q8			
		Ref 2	993870	61.27	Domain size = 117λ × 87λ . 0.13 61.4
	κ × (Obs Rad) ∼ 1.1 , Receiver 60 80 λ Obs Rad ∼ 5.91 , Real of part of diffracted wave at 128 receptors : FSSL 4 -0.2 20 40 Q8 Ref2 . FSSL (with exact evaluation) is 2046 times faster than MJ. Obs Dist ∼ (23, 19) , 100 120 Obs Rad Obs. Dist. ∼ 0.3 . λ and MJ

  and ∇ 2 f k pos. def.

	Comp w MJ	Solver's robustness comparison	Inv Prob	Num Exp	Conclusion

Pros: fast rate of local convergence ; Cons: needs Hessian.

  Real part of data for 270 • incidence. Total relative error in l 2 = 5.43

		Comp w MJ Comp w MJ	Solver's robustness comparison Solver's robustness comparison	Inv Prob Inv Prob	Num Exp Num Exp	Conclusion Conclusion
	Noisy Data at 25dB Inversion result for data with 25dB noise
	0.4						
	0.2						
	0						
	-0.2							White Gaussian noise
	50	60		70	80	90	100	is added by using wgn
				x (in mm)				in Matlab.
	(j) % and l ∞ = 9.92 %.					
	0.6							Rel. error in norm
	0.4							l 2 : 4.9 -6.2% , l ∞ : 7.3 -15.4 %
	0.2						
	0						
	40	50	60	70	80	90	100
								Err Pos scaled Err Pos
						Initial guess	20.49	53.9%
						Final position	0.125	0.33%. 50 / 60

• , 0 • NL Conjugate gradient and Sufficient decrease Backtracking. y (k) Imag. part for 180 • . Rel. error in l 2 5.24 % and in l ∞ = 10.95%. Run time = 17.2s . Nb of iter = 552. Four angles of acquisitions: 90

  • , 180 • , 270 • . , 0 • , 180 • , 270 •128 receivers for each angle of incidence, equally on a corresponding side of the domain. 7% ≤ l 2 rel. err ≤ 3.6%, 3.9% ≤ l ∞ ≤ 8.8%.

	Err Pos scaled Err Pos Four angles of acquisitions: 90 • , 0 Niter total = 552; Use 9 freqs : 0.08, 0.09, 0.1, . . . , 0.6, 0.8 Run time: 17.2 s Num Exp Conclusion Numerical exp 3: 12 ran Obs and data w/ 30 dB noise 0 100 200 300 400 500 10 0 10 1 10 2 Iteration Cost function J Initial J =93.45 at κ = 0.08 ; Final J = 0.83 at κ = 0.8 0 100 200 300 400 500 10 0 10 1 Iteration Position Eror. Comp w MJ Solver's robustness comparison Inv Prob 50 60 70 80 90 100 Locate 12 hard-scattering obstacles of radius 0.5 on domain [50, 100]x × [40, 100]y . Ratios 0.04 ≤ κr ≤ 0.25 0.34 ≤ κdmin ≤ 2.12 1.56 ≤ κdmax ≤ 9.75 Four angles of acquisitions: 90 • Noise : 2.Comp w MJ Solver's robustness comparison Inv Prob Num Exp Conclusion
	Initial Guess	37.6	67.15%
	Final position	0.14	0.25% 54 / 60

• , 270 • 9 wavenumbers used: 0.08, 0.09,0.1-0.6, 0.8. Quasi-Newton and strong Wolfe linesearch. Initial guess: Err Pos = 37.6; rel. err. = 67.15%; Final construction: Err Pos = 0.14; Rel. err = 0.25%.

Comparison with Montjoie

Thank you for your attention !

Questions?

GMRES Preconditioners

L = strictly lower part of matrix A D = diagonal of matrix A U = strictly upper part of A

Splitings of A :

The backward Gauss-Seidel (BGS) preconditioner is P = Mu.

The Jacobi preconditioner is P = D.

The 2nd-order Jacobi (2Jacobi) preconditioner is

The 2nd-order Forward Gauss-Seidel (2FGS) preconditioner is

Formally, P -1 is the 2nd approx. of the Neumann

The forward Gauss-Seidel (FGS)

The Symmetric Gauss-Seidel (SGS) preconditioner is

The Lower-Upper Symmetric Gauss-Seidel (LUSGS) preconditioner is For each angle of incidence:

128 receivers on one corresponding side of [46,102] x × [36, 108] y .

Stag Pos = 0.00005 for run 1-6 0.0005 for run 7-9

• Order FSSL = 3.

• Niter max = 50 ; Niter LS max = 10. Parameters of experiment : 12 structured Obs 25dB

• Error tolerance and stagnation parameters

• Wolfe Line search parameters : c 1 = 0.0001 , c 2 = 0.4.

• Iter Max = 300 , Iter Linesearch Max = (30 , 30). Parameters of experiment : 12 rand obs 30dB

• Error tolerance and stagnation parameters J = 0.05 ∇J = 5.0 × 10 -4 Stag LS = 0.05

Stag J = 0.1 Stag Pos = 1.0 × 10 -8

• Wolfe Line search parameters : c 1 = 0.0001 , c 2 = 0.4.

• Iter Max = 300 , Iter Linesearch Max = (30 , 30). 

Run κ