Numerical Robustness of Single Layer method with Fourier basis in 2D multiple obstacle scattering.

Hélène Barucq¹ <u>Ha Pham</u>¹ Juliette Chabassier¹ Sébastien Tordeux¹

Wave 2017 Conference, University of Minnesota, May 2017.

¹Inria SudOuest Research Center - Magique 3D team project, Pau, France.

Overview

- Introduction of method
- 2 Comparison with Finite Element Method
- 3 Solver's robustness comparison
 - Closely spaced obstacles
 - Far away obstacles
- 4 Application to inversion: initial results
 - No noise
 - 23dB Noise

Plan

Introduction of method

Propagation of acoustic waves of freq. f in a hom. medium with sound speed c.

$$u_{\text{total}} = u_{\text{inc}} + u_{\text{scatt}}$$

1. PDE satisfied by u_{scatt} outside of the obstacles:

$$\left(-\Delta - \kappa^2\right)$$
 $u_{\text{scatt}} = 0$, $\kappa = \frac{2\pi f}{c}$.

For transmission prob, $(-\Delta - \kappa_{int})u_{int} = 0$ inside obstacles.

2. Conditions on the boundary of the obstacles:

Dirichlet

$$u_{\text{total}} = 0$$

Neumann

$$\partial_n u_{total} = 0$$

Impedance

$$\partial_n u_{\text{total}} + i \lambda u_{\text{total}} = 0$$

Transmission

$$u_{\text{total}} - u_{\text{int}} = 0$$
; $\partial_n u_{\text{total}} - \mu u_{\text{int}} = 0$

3. (Outgoing) Sommerfeld radiation condition at ∞ :

$$\lim_{r \to \infty} \sqrt{r} \left(\partial_r \, \mathbf{u}_{\text{scatt}} - i \, \kappa \mathbf{u}_{\text{scatt}} \right) = 0 \quad ; \quad r = |x|$$

 \exists ! solution for the exterior BVPs (all parameters > 0).

Time-harmonic Planewave:

$$u_{pw}(x) \exp(-i 2\pi \mathbf{f} t)$$

$$u_{pw}(x) = \exp\left(\kappa x \cdot \begin{pmatrix} \cos \alpha_{inc} \\ \sin \alpha_{inc} \end{pmatrix}\right)$$

$$\alpha_{\rm inc} = 0^{\circ} \,, \, 2\pi f = 1.0 \,, \, \kappa = 1.0.$$

References: Hettlich, Fréchet derivatives in inverse obstacle scattering. Colton, Kress, Integral equation methods in scattering theory.

Single layer potential formulation.

```
Ext. Dir. Prob : u_{total} = u_{inc} + u_{scatt};
                                                                                        Variational IE: Find v_I so that
     (-\Delta - \kappa^2)u_{\text{scatt}} = 0 outside of Obs;
                                                                          \sum_{I=1}^{N_{\text{Obs}}} (S_{IJ} v_J, \phi) = \left\langle -u_{i,I}, \phi \right\rangle_{H^{1/2}(\Gamma_I) \cdot H^{-1/2}(\Gamma_I)}
         uscatt satisfies Som. rad. cond;
                                                                             \forall I = 1, \dots, N_{\text{Obs}} and test func \phi \in H^{-1/2}(\Gamma_I).
                  u_{\text{scatt}}|_{\Gamma_{\text{Obs}}} = -u_{\text{inc}}.
                                                                                                                     Boundary Element
                                                                                      Variational
                                    Integral Equation (IE)
                                                                                                                           (BEM)
                                                                                      formulation
              u_{\text{scatt}} = \sum_{i=1}^{N_{\text{Obs}}} u_{\text{scatt}, j};
                                                                                          Variational IE for test func in
u_{\text{scatt},J} := \tilde{S}_J v_J = \int_{\Gamma_J} G_{\kappa}(x,y) \, v_J(y) \, ds(y).
                                                                                            finite-dim subspaces \{V_{l,m}\}
                                                                                              approximating H^{-1/2}(\Gamma_I)
   IE Problem: Find densities v_i so that
                                                                                                                              Curved BEM
 \sum_{I=1}^{N_{\text{Obs}}} S_{IJ} v_J = -\gamma_{0,I} u_{\text{inc}}, I = 1,...,N_{\text{Obs}};
                                                                                                                                  Galerkin
                                                                                                Fourier Series
                                                                                                 Single Lave
  S_{IJ} = \gamma_{0,I} \tilde{S}_J; \gamma_{0,I} 0-th trace along \Gamma_I.
                                                                                                                   V_{\rm m} given by piecewise
                                                                                                                          P_m functions
                                                V_{\mathbf{m}} is given by \left\{\sum_{k=-\mathbf{m}}^{\mathbf{m}} a_k e^{ik\theta}\right\}
                                                                                              Oth order approximation
                  Disc-shaped obstacles
                                                          0th order approximation
                                                                                                        Foldy isotropic
                             Multipole
                                                                                                       point scattering
                                                                                                                                                    5/34
```

Fourier Series Single Layer method.

The scattered and approx. wave

$$u_{ ext{scatt}} = \sum_{J=1}^{N_{ ext{Obs}}} u_{ ext{scatt};J} \,, \ u_{ ext{scatt},h} = \sum_{J=1}^{N_{ ext{Obs}}} u_{h, ext{scatt};J} \,.$$

The exact and app. wave scattered by Obs J $\,$

$$u_{\text{scatt};J} = \tilde{S}_J v_J \; ; \; u_{h,\text{scatt};J} = \tilde{S}_J v_{h,J} \, .$$

In basis elements

$$\mathbf{w}_{J,k}(x) = e^{i k \theta_J(x)},$$

$$u_{\mathsf{scatt};J} = \sum_{k \in \mathbb{Z}} V_{J,k} \, \tilde{S}_J \, \mathbf{w}_{J,k}$$

$$u_{h,\text{scatt};J} = \sum_{l=-\infty}^{\mathbf{m}} V_{J,k} \, \tilde{S}_J \, \mathbf{w}_{J,k} \,.$$

The unknowns are the Fourier coeff. of density v_J

$$V = (V_{J,k}), k \in \mathbb{Z}, 1 \leq J \leq N_{Obs},$$

and the truncated ones for the approx. $v_{h,J}$.

$$V_h = (V_{J,k}), -\mathbf{m} \le k \le \mathbf{m}, \ 1 \le J \le N_{\mathrm{Obs}}.$$

For $\alpha = \mathrm{D}$, N, Im, T, they solve

$$\mathbf{A}_{\alpha} V = F_{\alpha} \quad , \quad \mathbf{A}_{h,\alpha} V_h = F_{\alpha,h} \, .$$

$$\mathbf{A}_{\alpha} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \dots & \mathbf{A}_{1(N-1)} & \mathbf{A}_{1N} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \dots & \mathbf{A}_{2(N-1)} & \mathbf{A}_{2N} \\ \vdots & & \ddots & & \vdots \\ \mathbf{A}_{(N-1)1} & \mathbf{A}_{(N-1)2} & \dots & \mathbf{A}_{(N-1)(N-1)} & \mathbf{A}_{(N-1)N} \\ \mathbf{A}_{N1} & \mathbf{A}_{N2} & \dots & \mathbf{A}_{N(N-1)} & \mathbf{A}_{NN} \end{pmatrix}$$

 $\mathbf{A}_{h,\alpha}$ square matrix of size $(2\mathbf{m}+1) \times N_{\mathrm{Obs}}$. $\mathbf{A}_{\alpha,I}$ self-interaction of obstacle I

 $\mathbf{A}_{\alpha,IJ}^{-}$ diffraction by obs. I of wave emitted by obs. J

Multi-scattering matrix coefficient for circular obstacles.

For circular obstacles, single-layer densities $\tilde{S}_J \mathbf{w}_{J,k}$ can be written in multipole expansions,

$$\left(\tilde{S}_{J} \, \mathbf{w}_{J,k} \right) (x) = \frac{i \pi \, \mathbf{r}_{J}}{2} \, J_{k} (\kappa \, \mathbf{r}_{J}) \, \underbrace{H_{k}^{(1)} (\kappa \, r_{J}(x)) \, e^{i \, k \, \theta_{J}(x)}}_{ \text{multiple pole of order k placed at the center of } \mathcal{O}_{J} .$$

For Dirichlet : Same obstacle interaction

$$(\mathbf{A}_{D;l})_{kl} = i\pi \, \mathbf{r}_l \, H_k^{(1)}(\kappa \, \mathbf{r}_l) \, J_k(\kappa \, \mathbf{r}_l) \, \delta_{kl} \quad , \quad k,l \in \mathbb{Z} \, .$$

Interaction between two different obstacles $I \neq J$ $(\mathbf{A}_{D:IJ})_{kl} = i\pi \, \mathbf{r}_J \, e^{i(l-k)\theta_{\mathbf{x}_J}(\mathbf{x}_l)} \, H_{l-k}^{(1)} \, (\kappa \, \mathbf{d}_{IJ}) \, J_k(\kappa \, \mathbf{r}_l) \, J_l(\kappa \, \mathbf{r}_J) \, ,$

$$\mathbf{d}_{II} = |\mathbf{x}_I - \mathbf{x}_I| \quad ; \quad k, I \in \mathbb{Z}.$$

Right-hand-side corresponding to planewave

$$u_{pw}(x) = \exp(i \kappa x \cdot (\cos \alpha_{inc}, \sin \alpha_{inc})),$$

$$(\mathbf{F}_{D:l})_k = -2 u_{pw}(\mathbf{x}_l) i^k e^{-ik \alpha_{inc}} J_k(\kappa \mathbf{r}_l).$$

N_{Obs} circular obstacles.

Obstacle \mathcal{O}_I centered at \mathbf{x}_I with radius \mathbf{r}_I

Relative polar coordinates

$$(r_J(\cdot), \theta_J(\cdot))$$

with respect to x,

$$x = \mathbf{x}_I + r_I(x)(\cos\theta_I(x), \sin\theta_I(x))$$

$$\mathbf{x}_I = \mathbf{x}_I + \mathbf{d}_{II}(\cos\theta_{II}, \sin\theta_{II})$$

Well-posedness

$$0 \le \kappa_e < \infty$$
 ; $\lambda \in \mathbb{R}$; $0 \le \kappa_{int} < \infty$, $0 < \mu < \infty$, $\mu \ne 1$.

If κ_e^2 is not a Dirichlet eigenvalues (EV) of $-\Delta$ for \mathcal{O}_I for $1 \leq I \leq N_{\mathrm{Obs}}$, then \mathbf{A}_{α} is injective for $\alpha = \mathrm{D}$, N, Imp, T.

Circular obstacles

$$\mathsf{Dirichlet}\;\mathsf{EV}:\lambda_{n,m}=\left(\frac{j_{n,m}}{\mathsf{r}}\right)^2\!,$$

 $j_{n,m}$ m-th positive root of $J_n(r) = 0$, $\mathbf{r} = \text{radius of obstacle}$

Injectivity :
$$\kappa_e^2 \mathbf{r}^2 \neq j_{n,m}$$
.

General shape obstacles

Isoperimetric inequality gives

$$\lambda_1(\mathcal{O}) \geq \frac{\pi}{\mathsf{Area}\left(\mathcal{O}\right)} \, j_{0,1}^2 \, .$$

Injectivity small obs. : κ_e $\mathbf{r}_{circumvent}(\mathcal{O}) < 2$.

The first 4 roots:

$$j_{0,1} \sim 2.40$$
 , $j_{1,1} \sim 3.83$, $j_{2,1} \sim 5.13$, $j_{1,2} \sim 5.52$.

Plan

2 Comparison with Finite Element Method

Calculation time costs

$$u_{h,\text{scatt}}(x) = \frac{i\pi}{2} \sum_{J=1}^{N_{\text{Obs}}} \mathbf{r}_J \sum_{I=-\mathbf{m}}^{\mathbf{m}} V_{J,I} \quad H_k^{(1)}(\kappa \, r_J(x)) \quad e^{i \, I \, \theta_J(x)} \quad (\star)$$

Unknowns
$$V_h = (V_{J,l})$$
 , $1 \le J \le N_{Obs}$, $-\mathbf{m} \le l \le \mathbf{m}$.

Pre-processing time = Time to resolve the linear system for V_h .

Linear system is dense but small : $N_{\text{Obs}} \times (2\mathbf{m} + 1)$.

Post-processing time = Eval. time of LHS of (\star) at each point of visualization grid.

Evaluation of Hankel is costly.

- Cost increases with $N_{\rm Obs}$ and \sharp points of visualization grid.
- Can reduce the cost by parallelization and interpolation (e.g. Hermite interpolation).

Experiment 1: Small obstacles on medium domain

Soft-scattering of PW with angle 90° of wavelength $\kappa=10,\,\lambda\sim0.63$ by 200 obstacles of radius = 0.03, with distanced by 0.3.

 $\begin{array}{c} \text{Domain size}: \ 31\lambda \times 23\lambda \\ \\ \kappa \times \text{(Obs Rad)} = 0.3, \\ \\ \frac{\lambda}{\text{Obs Rad}} \sim 21 \quad , \quad \frac{\lambda}{\text{Obs. Dist.}} \sim 2 \, , \\ \\ \frac{\text{Obs. Dist.}}{\text{Obs. Rad.}} \sim 10. \end{array}$

Montjoie initial mesh has mesh size of 0.13.

Montjoie

(montjoie.gforge.inria.fr)

Bases: Curved finite element (FE) with Lagrange polynomials based on Gauss-Lobatto points.

Q-n denotes the n^{th} order FE on quadrangular meshes.

Domain truncation: Perfectly Matched Layers.

Experiment 1: Reference solutions

Soft-scattering of 200 obstacles on domain of size : $31\lambda \times 23\lambda$

$$\kappa \times \text{(Obs Rad)} = 0.3 \; , \; \frac{\lambda}{\text{Obs Rad}} \sim 21 \; , \; \frac{\lambda}{\text{Obs. Dist.}} \sim 2 \; , \; \frac{\text{Obs. Dist.}}{\text{Obs. Rad.}} \sim 10.$$

Experiment 1: Convergence curve

(c) Rel. consecutive err. : Montjoie

(d) Rel. consecutive err: FSSL densities

Candidates for comparison at precision 10^{-3}

Compare	between	Rel. L ² error
FSSL 14	FSSL 2	4.65×10^{-5}
MJ Q17	MJ Q6	6.52×10^{-4}
MJ Q6	FSSL2	6.84×10^{-4}

Hermite interp. precision is 10^{-6} .

Compare be	etween	Rel. L ² error
FSSL 2 Inter	FSSL 2	1.76×10^{-5}
FSSL 2 Inter	MJ Q6	6.85×10^{-4}

Solvers for both Montjoie and FSSL are Mumps.

Experiment 1: Comparison at precision 10^{-3}

Pre-processing by Mumps	FSSL Order 2	MJ Q6	Evaluation	on
Size of lin. sys.	1000	842677		E
Task	Time	e (s)	:	
Construction	0.055	1.97	Daat	2
Factorization	0.44	29.8	Post-proc. Pre-proc. +	_
Resolution	0.003	0.35	Post-proc. +	2
Total time	0.498	32.12	i ost proc.	-

Evaluation on 400 $ imes$ 400 grid							
	Exact	Inter.	MJ				
	eval	eval	Q6				
Post-proc.	26.2	4.30	0.72				
Pre-proc. $+$							
Post-proc.	26.70	4.80	33.82				

At precision 10^{-3} , FSSL using Hermite interpolation takes 7 times less than MJ.

Experiment 2: sizable obstacles on a large domain

Acoustic vibration, produced by a block transducer; is diffracted by 35 thin aluminum wires • (of radius 0.5 mm) immersed in water.

The phenomenon is approximated by the hard scattering of acoustic sound in fluid.

The incident wave (from the transducer) is simulated by a PW of angle 90° .

Input pulse's central freq. = 500 kHz.

The speed of sound in water $c = 1478 \text{ m s}^{-1}$.

The wavenumber $\kappa = 2125.57 \text{ m}^{-1}$.

The spatial wavelength $\lambda = 2.96 \times 10^{-3}$ m.

Domain size = $117\lambda \times 87\lambda$.

$$\kappa \times \text{(Obs Rad)} \sim 1.1 \; , \; \frac{\text{Obs Dist}}{\text{Obs Rad}} \sim \text{(23,19)} \, ,$$

$$\frac{\lambda}{\text{Obs Rad}} \sim 5.91$$
 , $\frac{\lambda}{\text{Obs. Dist.}} \sim 0.3$.

Horizontal-view cut.

Exp 2: Computational time comparison at precision 10^{-4}

Regarding the value of the diffracted wave at 128 receptors,

Rel. L^2 error : FSSL 12 and FSSL 4 = 2.82×10^{-6} ,

Rel. L^2 error : MJ Q12 and MJ Q8 Ref 2 = 1.42×10^{-4} .

Rel. L^2 error : FSSL 4 and MJ Q8 Ref 2 = 1.48×10^{-4} .

Q8 Ref 2 = Q8 with one time mesh refinement.

Real of part of diffracted wave at 128 receptors : FSSL 4 \cdots and MJ Q8 Ref2 \circ

Exp 2: Candidates for comparison at precision 10^{-4}

	Size of LS	Pre-proc. Time (s)	Post-proc. Time at 128 receivers (s)	Total time (s)	
FSSL 4	315	0.024	6.58 × 10 ⁻³	0.031	
MJ Q8 Ref 2	993870	61.27	0.13	61.4	

FSSL using Hermite interpolation is 2046 times faster than MJ.

Plan

- 3 Solver's robustness comparison
 - Closely spaced obstacles
 - Far away obstacles

Restart GMRES (generalized minimal residual method)

Consider Ax = b, A matrix of size $N \times N$.

$$ext{Minimal poly} \Rightarrow A^{-1}b \in \mathcal{K}_n(A,b) := \operatorname{span}\{b,Ab,\ldots,A^{n-1}y\}.$$
 $\operatorname{Krylov space}$

For d < m, Arnoldi process constructs

$$A\ Q_d = \underbrace{Q_{d+1}}_{ ext{orthonormal}}, \ N imes d \ \ \overline{H}_d \ ; \ \overline{H}_n = \left(egin{array}{c} H_d \ 0_{1 imes (d-1)} \ h_{(d+1)d} \end{array}
ight).$$

$$||Ax - b||_2 = ||A Q_d y - b||_2 = ||\overline{H}_d y - ||b||_2 \mathbf{e}_1||_2.$$

A sequence of approx. sol.

$$x_d = \underset{z \in K_d(A, b)}{\operatorname{argmin}} ||Az - b||_2.$$

$$\Leftrightarrow y_d \text{ with } x_d = Q_d y_d$$

$$y_d = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\| \overline{H}_d y - \|b\|_2 \mathbf{e}_1 \right\|_2.$$

Fixed Krylov size m. Initial guess (IG) x_0 . Initial residue $r_0 = b - A_0$.

No preconditioning : $A p_{\star} = r_0$.

Final stop criteria: NiterMax.

For $j \leq m$, approximate sol. $p_j \in K_j(A, r_0)$ minimizes

$$p_j = \underset{p \in K_i(A, r_0)}{\operatorname{argmin}} ||Ap - r_0||_2 \quad (*).$$

Stop if p_i satisfies the residue error criteria.

If not, and if i = m, restart the process with IG $r_0 = p_m$.

Right preconditioning

$$(A\mathcal{P}^{-1})(\mathcal{P}p_{\star})=r_0.$$

Left preconditioning

$$(\mathcal{P}^{-1}A)p_{\star}=\mathcal{P}^{-1}r_{0}.$$

U = strictly upper part of A

L = strictly lower part of matrix A $M_{ii} = U + D$. $N_{ii} = -L$ D = diagonal of matrix A

 $M_1 = I + D$ $N_2 = -U$ R = -1 - 11

Splitings of A:

 $A = I + D + IJ = M_{ii} - N_{ii}$ $= M_I - N_I = D - R$.

The backward Gauss-Seidel (BGS) preconditioner is $\mathcal{P} = M_{\mu}$.

The **Jacobi** preconditioner is $\mathcal{P} = \mathcal{D}$.

The 2nd-order Jacobi (2Jacobi) preconditioner is

 $\mathcal{P} = D(R+D)^{-1}D$.

Formally, \mathcal{P}^{-1} is the 2nd approx. of the Neumann series of $A^{-1} = (D - R)^{-1}$.

The 2nd-order Forward Gauss-Seidel (2FGS) preconditioner is

$$\mathcal{P} = M_I (N_I + M_I)^{-1} M_I.$$

Formally, \mathcal{P}^{-1} is the 2nd approx. of the Neumann series of $A^{-1} = (M_l - N_l)^{-1}$.

The forward Gauss-Seidel (FGS) preconditioner is $\mathcal{P} = M_I$.

The Symmetric Gauss-Seidel (SGS) preconditioner is

$$\mathcal{P}=M_u\,D^{-1}\,M_I\,.$$

Interpretation: $u = \mathcal{P}^{-1}f$ solves

$$M_u \tilde{u} = f$$
, $M_l u = N_l \tilde{u} + f$.

The Lower-Upper Symmetric Gauss-Seidel (LUSGS) preconditioner is

$$\mathcal{P} = M_I D^{-1} M_{II}$$
.

Interpretation: $u = \mathcal{P}^{-1}f$ solves

$$M_I \tilde{u} = f$$
, $M_u u = N_u \tilde{u} + f$.

Solvers in comparison

- Direct solvers: MUMPS, LAPACK, SCALAPACK.
- Code for GMRES solver is obtained from :
 - L. Giraud, et al. , A set of GMRES routines for real and complex arithmetics on high performace computers, Technical report, CERFACS, tR/PA/03/3 (1997).

The code allows user to define

- multiplication by the coefficient matrix.
- multiplication by a preconditioner with choices of positions.
- Parallel tests are run on cluster plafrim (www.plafrim.fr).

Closely-spaced obstacles comparison

GMRES stop criteria: Residue error tolerance, Niter Max, Size of Krylov.

Exp 4: Closely-spaced obstacles comparison (Dirichlet)

		Case 200 o	bstacle	s	Case 1616 obstacles			
Name	Cv	δ_{err} in	#	Time	Cv	δ_{err} in	#	Time
Method		$\mathbb{H}_{1/2}$	Iter	(s)		$\mathbb{H}_{1/2}$	Iter	(s)
Mumps	n/a	0	n/a	0.05	n/a	0	n/a	130
Lapack	n/a	10^{-12}	n/a	0.01	n/a	10^{-10}	n/a	42.7
		GMRES sto	p criter	ia		GMRES sto		a
		$(10^{-6}, 200)$	00,100)			$(10^{-6}, 20)$	00,150)	
NoPreCond	Y	5×10^{-3}	820	0.09	N	n/a	n/a	n/a
L_Jacobi	Y	5×10^{-3}	656	0.08	N	n/a	n/a	n/a
L_FGS	Υ	2×10^{-3}	239	0.05	N	n/a	n/a	n/a
L_BGS	Υ	4×10^{-3}	197	0.04	N	n/a	n/a	n/a
L_2Jacobi	Y	5×10^{-3}	594	2.21	N	n/a	n/a	n/a
L_2FGS	Υ	1×10^{-3}	169	0.1	N	n/a	n/a	n/a
L_SGS	Υ	2×10^{-3}	76	0.03	Υ	4×10^{-1}	757	274
L_LUSGS	Υ	1×10^{-3}	77	0.03	Υ	$1 imes 10^{-1}$	897	325
R_Jacobi	Y	4×10^{-3}	660	1.05	N	n/a	n/a	n/a
R_FGS	Υ	3×10^{-3}	199	0.05	N	n/a	n/a	n/a
R_BGS	Y	3×10^{-3}	198	0.04	N	n/a	n/a	n/a
R_2Jacobi	Y	4×10^{-3}	600	1.70	N	n/a	n/a	n/a
R_2FGS	Υ	3×10^{-3}	155	0.09	N	n/a	n/a	n/a
R_SGS	Υ	3×10^{-3}	75	0.03	Υ	2×10^{-1}	886	321
R_LUSGS	Y	3×10^{-3}	74	0.03	Y	2×10^{-1}	897	325

Exp 5: Closely-spaced obstacles comparison (Dirichlet)

FSSL order =2; Size matrix = $10^4 \times 10^4$; GMRES stop criteria (10^{-6} , 5000, 400)

Solver	Post-	Rel	Rel L ²	#	Preproc.	Postproc.	Total
	proc	$\mathbb{H}_{1/2}$	diff	iter	time	time	(s)
	(n16)	diff			(s)	(s)	
Mumps (n16)	Exact	3×10^{-10}	8×10^{-14}	n/a	242	96.0	338
Mumps (n16)	Inter	3×10^{-10}	9×10^{-6}	n/a	242	36.0	278
Lapack (n1)	Exact	0	0	n/a	80.4	96.0	176
Lapack (n1)	Inter	0	9×10^{-6}	n/a	80.4	37.5	118
R_LUSGS (n1)	Exact	1×10^{-1}	4×10^{-5}	1146	573	95.8	669
R_LUSGS (n1)	Inter	1×10^{-1}	4×10^{-5}	1146	573	36.2	609
R_SGS (n1)	Exact	1×10^{-1}	4×10^{-5}	1151	598	95.8	694
R_SGS (n1)	Inter	1×10^{-1}	4×10^{-5}	1151	598	36.2	635
Scala (n16)	Exact	3×10^{-10}	8×10^{-14}	n/a	34.6	95.6	130
Scala (n16)	Inter	3×10^{-10}	9×10^{-6}	n/a	34.6	36.1	70.9

PW of
$$90^{\circ}$$
 ; $\kappa=10.0$; $\textit{N}_{\textrm{Obs}}=2000$; Obs. Rad. $=0.03$; Obs. Dist. $=0.30$;

$$\kappa \times (\mathsf{Obs}\;\mathsf{Rad}) = 0.3\;,\; \frac{\lambda}{\mathsf{Obs}\;\mathsf{Rad}} \sim 21\;,\; \frac{\lambda}{\mathsf{Obs}\;\mathsf{Dis}} \sim 2\;,\; \frac{\mathsf{Obs}\;\mathsf{Dist}}{\mathsf{Obs}\;\mathsf{Rad}} = 10.$$

Exp 6: Far apart obstacles (Dirichlet)

FSSL order 2 ; Size matrix = 10000×10000 ; GMRES stop criteria (10^{-7} , 5000,500).

Solver	Post- proc (n16)	Rel ^{III} 1/2 diff	Rel <i>L</i> ² diff	‡ iter	Pre- proc. time (s)	Post- proc. time (s)	Total (s)
Mumps (n1)	Exact	0.0	0.0	n/a	251	96.0	347
Mumps (n1)	Inter	0.0	1×10^{-5}	n/a	251	37.5	289
Lapack (n1)	Exact	4×10^{-12}	2×10^{-15}	n/a	79.9	96.0	176
Lapack (n1)	Inter	4×10^{-12}	1×10^{-5}	n/a	79.9	37.5	118
R_LUSGS (n1)	Exact	3×10^{-4}	1×10^{-7}	57	37.5	96.0	134
R_LUSGS (n1)	Inter	3×10^{-4}	1×10^{-5}	57	37.5	37.5	75.3
R_SGS (n1)	Exact	4×10^{-4}	1×10^{-7}	56	37.0	96.0	133
R_SGS (n1)	Inter	4×10^{-4}	1×10^{-5}	56	37.0	37.5	74.6
Scala (n16)	Exact	1×10^{-11}	4×10^{-15}	n/a	34.9	96.0	131
Scala (n16)	Inter	1×10^{-11}	1×10^{-5}	n/a	34.9	37.5	72.5

PW of 90.0°; $\kappa=10.0$; \sharp obs = 2000; Obs. Rad. = 0.01; Obs. Dist. = 2.00;

$$\kappa \times (\text{Obs Rad}) = 0.1 \; , \; \frac{\lambda}{\text{Obs Rad}} \sim 63 \; , \; \frac{\lambda}{\text{Obs Dist}} \sim 0.3 \; , \; \frac{\text{Obs Dist}}{\text{Obs Rad}} = 200.$$

Plan

- 4 Application to inversion : initial results
 - No noise
 - 23dB Noise

Full waveform inversion

Minimize

$$J := \frac{1}{2} \|\mathcal{H}_{rec} u_{scatt} - d_{obs}\|^2 \; ; \; \widehat{J}(p) = \frac{1}{2} \|\Phi(p) - d_{obs}\|^2 .$$

Optimization method : nonlinear conjugate gradient with Polak-Ribière coefficient.

Calculate **gradient** $\nabla_{\rho} \hat{J}$ by adjoint method (with FSSL formulation).

Trace operator at the receptors \mathcal{H}_{rec} : $u|_{receptor}$, $\partial_n u|_{receptor}$, etc.

Observed data at receptors : d_{obs} .

Forward map Φ : parameters \mapsto values at receptors.

Acquisition Data

Inversion problem: Retrieve the position of 6 hard-scattering obstacles of radius 0.5 (distanced 3 and 4) placed at

$$(68, 68)$$
, $(68, 72)$, $(72, 68)$, $(72, 72)$, $(76, 68)$, $(76, 72)$.

The position of 128 equally spaced receivers vary with the angle of incidence.

Data is produced by FSSL order 12 with solver Lapack.

Reconstruction results using data with no noise.

- \star One angle of acquisitions: 90° \star FSSL order 3 using Mumps .
- ★ Error Tolerance 10⁻⁵.
- * Initial guess rel. error. : 115%
- (relative to size of domain). Final position's rel. error : 1.3% \star Initial J : 0.002 at $\kappa = 0.08$
- Final J : 0.002 at $\kappa = 1.5$ * Run time : 7.92 secs
- ★ Nb max linesearch (LS) 30.
 Nb LS used in each run ≤ 11.

Run	κ	♯ Niter Max	Step size	Run	κ	♯ Niter Max	Step size	Run	κ	♯ Niter Max	Step size
1	0.08	300	8	7	0.5	200	5	13	1.10	200	2
2	0.09	300	8	8	0.6	200	5	14	1.20	200	2
3	0.1	200	8	9	0.7	200	5	15	1.30	200	2
4	0.2	200	8	10	0.8	200	5	16	1.40	200	2
5	0.3	200	7	11	0.9	200	5	17	1.50	100	2
6	0.4	200	7	12	1.0	200	2				20 / 34

Noise Data at 23dB

White Gaussian noise is added by using wgn in Matlab.

(a) Real part of total wave at 128 receivers at $\kappa = 0.8$ with PW 90°

norm $I^2 = 7\%$, $I^{\infty} = 18\%$

Rel. error in

Inversion result for data with 23dB noise

- * Three angles of acquisitions: 90° . 0° . 180°
 - * FSSL order 3 using Mumps .
- \star Error Tolerance 10^{-5} . \star Initial guess rel. error. : 115%

(relative to size of domain). Final position's rel. error: 0.38%

- \star Initial J 1.00 at $\kappa=0.08$
 - Final J: 0.79 at $\kappa = 0.7$ * Run time: 2.79 secs

Run	κ	♯ Niter Max	Step size	Run	κ	♯ Niter Max	Step size
1	0.08	300	5	6	0.4	200	2
2	0.09	300	4	7	0.5	200	2
3	0.1	200	2	8	0.6	200	2
4	0.2	200	2	9	0.7	200	1
5	0.3	200	2				

Nb max linesearch (LS) 30. Nb LS used in each run \leq 10.

Inversion result for data with 23dB_noise (cnt)

 \star Three angles of acquisitions: 90°, 0°, 180°

* FSSL order 3

using Mumps;

* Err. Tol. = 10^{-5} ;

 \star Niter total = 161;

* Use 9 κs: 0.08, 0.09, 0.1, ..., 0.7

* Run time: 2.79 s

Initial guess rel. err. = 115% (rel. to domain size); Final err. = 0.8%.

Conclusion

- * FSSL is robust in simulating the multi-scattering by small circular obstacles in large homogeneous media.
- \star Its linear systems have simple expressions \Rightarrow Easy coding and implementation.
- Direct Solvers (Lapack and Scalapack) are more efficient when the obstacles are close together.

- * Iterative solvers are more preferable when the obstacles are far apart. In particular, GMRES with LUSGS and SGS are faster than Lapack and as fast as Scalapack.
- \star LUSGS and SGS are the most robust among the preconditioners considered.
- ⋆ In both settings, Scalapack is fastest.
- * Using shared memory architecture, Scalapack can handle the largest Nb of obstacles.

Further advantages of direct solvers, regarding application to inverse problem using Full waveform inversion

- multi-RHS, high precision
- the forward and adjoint problem use the same factorization.

Thank you for your attention