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Multiple obstacle scattering as Exterior Boundary Value problems

Propagation of acoustic waves of freq. f in a hom. medium with sound speed c.

utotal = uinc + uscatt.

1. PDE satisfied by uscatt outside of the obstacles:
(−∆− κ2) uscatt = 0 , κ = 2πf

c .

For transmission prob, (−∆−κint)uint = 0 inside obstacles.

2. Conditions on the boundary of the obstacles:
Dirichlet utotal = 0
Neumann ∂nutotal = 0

Impedance ∂nutotal + iλutotal = 0
Transmission utotal − uint = 0 ; ∂nutotal − µuint = 0

3. (Outgoing) Sommerfeld radiation condition at ∞:
lim

r→∞

√
r (∂r uscatt − i κuscatt) = 0 ; r = |x |

∃! solution for the exterior BVPs (all parameters > 0).

References: Hettlich, Fréchet derivatives in inverse obstacle scattering.
Colton, Kress, Integral equation methods in scattering theory.

Time-harmonic Planewave :

upw(x) exp(−i 2π ft)

upw(x) = exp (κ x · (cosαinc
sinαinc ))

αinc = 0◦ , 2πf = 1.0 , κ = 1.0.
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Single layer potential formulation.
Ext. Dir. Prob : utotal = uinc + uscatt;
(−∆ − κ2)uscatt = 0 outside of Obs;

uscatt satisfies Som. rad. cond;
uscatt |ΓObs = −uinc.

uscatt =
∑NObs

J=1 uscatt,J ;

uscatt,J := S̃J vJ =
∫

ΓJ
Gκ(x , y) vJ (y) ds(y).

IE Problem: Find densities vJ so that∑NObs
J=1 SIJ vJ = −γ0,I uinc, I = 1,...,NObs;

SIJ = γ0,I S̃J ; γ0,I 0-th trace along ΓI .

Variational IE : Find vJ so that∑NObs
J=1 (SIJ vJ , φ) =

〈
−ui,I , φ

〉
H1/2(ΓI ) ,H−1/2(ΓI )

∀ I = 1, . . . ,NObs and test func φ∈H−1/2(ΓI ).

Variational IE for test func in
finite-dim subspaces {VI,m}

approximating H−1/2(ΓI )

Vm is given by {
∑m

k=−m ak eikθ}

Vm given by piecewise
Pm functions

Multipole Foldy isotropic
point scattering

Disc-shaped obstacles

Integral Equation (IE) Variational
formulation

Fourier Series
Single Layer

Curved BEM
Galerkin

Boundary Element
(BEM)

0th order approximation

0th order approximation
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Fourier Series Single Layer method.
The scattered and approx. wave

uscatt =
NObs∑
J=1

uscatt;J ,

uscatt,h =
NObs∑
J=1

uh,scatt;J .

The exact and app. wave scat-
tered by Obs J
uscatt;J = S̃J vJ ; uh,scatt;J = S̃J vh,J .

In basis elements
wJ,k (x) = e i k θJ (x),

uscatt;J =
∑
k∈Z

VJ,k S̃J wJ,k

uh,scatt;J =
m∑

k=−m

VJ,k S̃J wJ,k .

The unknowns are the Fourier coeff. of density vJ

V = (VJ,k ) , k ∈ Z , 1 ≤ J ≤ NObs ,

and the truncated ones for the approx. vh,J .

Vh = (VJ,k ) ,−m ≤ k ≤ m , 1 ≤ J ≤ NObs .

For α = D, N, Im, T, they solve

Aα V = Fα , Ah,α Vh = Fα,h .

Aα =


A11 A12 ... A1(N−1) A1N
A21 A22 ... A2(N−1) A2N

... ...
. . . ...

...
A(N−1)1 A(N−1)2 ... A(N−1)(N−1) A(N−1)N

AN1 AN2 ... AN(N−1) ANN


Ah,α square matrix of size (2m + 1)× NObs.
Aα,I self-interaction of obstacle I
Aα,IJ diffraction by obs. I of wave emitted by
obs. J
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Multi-scattering matrix coefficient for circular obstacles.
For circular obstacles, single-layer densities S̃J wJ,k can
be written in multipole expansions,(

S̃J wJ,k
)

(x) = iπ rJ

2 Jk (κ rJ ) H(1)
k (κ rJ (x)) e i k θJ (x)︸ ︷︷ ︸
multiple pole of order k

placed at the center of OJ

.

For Dirichlet : Same obstacle interaction

(AD;I )kl = iπ rI H(1)
k (κ rI ) Jk (κ rI ) δkl , k, l ∈ Z .

Interaction between two different obstacles I 6= J

(AD;IJ )kl = iπ rJ e i(l−k)θxJ (xI ) H(1)
l−k (κ dIJ ) Jk (κ rI ) Jl (κ rJ ) ,

dIJ = |xI − xJ | ; k, l ∈ Z.

Right-hand-side corresponding to planewave

upw(x) = exp(i κ x · (cosαinc, sinαinc)) ,

(FD;I )k = −2 upw(xI ) ik e−ik αinc Jk (κ rI ) .

NObs circular obstacles.

Obstacle OI centered at xI with
radius rI

Relative polar coordinates

(rJ (·), θJ (·))

with respect to xJ

x = xJ +rJ (x)(cos θJ (x), sin θJ (x))

xI = xJ + dIJ (cos θJI , sin θJI )
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Well-posedness

0 ≤ κe <∞ ; λ ∈ R ; 0 ≤ κint <∞ , 0 < µ <∞, µ 6= 1.

If κ2
e is not a Dirichlet eigenvalues (EV) of−∆ forOI for 1 ≤ I ≤ NObs,

then Aα is injective for α = D, N, Imp, T.

Circular obstacles

Dirichlet EV : λn,m =
(

jn,m
r

)2
,

jn,m m-th positive root of Jn(r) = 0,

r = radius of obstacle.

Injectivity : κ2
e r2 6= jn,m .

General shape obstacles

Isoperimetric inequality gives

λ1(O) ≥ π

Area (O) j2
0,1 .

Injectivity
small obs. : κe rcircumvent(O) < 2.

The first 4 roots :

j0,1 ∼ 2.40 , j1,1 ∼ 3.83 , j2,1 ∼ 5.13 , j1,2 ∼ 5.52.
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Calculation time costs

uh,scatt(x) = iπ
2

NObs∑
J=1

rJ

m∑
l=−m

VJ,l H(1)
k (κ rJ (x)) ei l θJ (x) (?)

Unknowns Vh = (VJ,l ) , 1 ≤ J ≤ NObs , −m ≤ l ≤ m .

Pre-processing time = Time to resolve the linear system for Vh.
Linear system is dense but small : NObs × (2m + 1).

Post-processing time = Eval. time of LHS of (?) at each point of
visualization grid.
Evaluation of Hankel is costly.

Cost increases with NObs and ] points of visualization grid.
Can reduce the cost by parallelization and interpolation (e.g.
Hermite interpolation).
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Experiment 1: Small obstacles on medium domain

Soft-scattering of PW with angle 90◦

of wavelength κ = 10, λ ∼ 0.63

by 200 obstacles

of radius = 0.03, with distanced by 0.3.

Domain size : 31λ× 23λ
κ× (Obs Rad) = 0.3,

λ
Obs Rad ∼ 21 , λ

Obs. Dist. ∼ 2 ,
Obs. Dist.
Obs. Rad. ∼ 10.

Montjoie initial mesh has mesh size of 0.13.

Montjoie
(montjoie.gforge.inria.fr)

Bases: Curved finite element (FE) with
Lagrange polynomials based on
Gauss-Lobatto points.

Q-n denotes the nth order FE on
quadrangular meshes.

Domain truncation: Perfectly Matched
Layers.
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Experiment 1: Reference solutions

Soft-scattering of 200 obstacles on domain of size : 31λ× 23λ

κ× (Obs Rad) = 0.3 , λ

Obs Rad ∼ 21 , λ

Obs. Dist. ∼ 2 , Obs. Dist.
Obs. Rad. ∼ 10.

0 5 10 15
0

5

10

−1

0

1

(a) Real part of FSSL 14 total wave
0 5 10 15

0

5

10

0

0.2

0.4

0.6

0.8

1·10−7

(b) Abs. difference compared with Mon-
tjoie Q17. Relative L2 err. = 3.38× 10−8.
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Experiment 1: Convergence curve

5 10 1510−8

10−4

100

Montjoie order
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(c) Rel. consecutive err. : Montjoie

5 10 15 2010−12

10−6

100

FSSL Order

Re
l.

H
1/

2
er

r.

(d) Rel. consecutive err : FSSL densities

Candidates for comparison at
precision 10−3

Compare between Rel. L2 error
FSSL 14 FSSL 2 4.65× 10−5

MJ Q17 MJ Q6 6.52× 10−4

MJ Q6 FSSL2 6.84× 10−4

Hermite interp. precision is 10−6.

Compare between Rel. L2 error
FSSL 2 Inter FSSL 2 1.76× 10−5

FSSL 2 Inter MJ Q6 6.85× 10−4

Solvers for both Montjoie and
FSSL are Mumps.
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Experiment 1: Comparison at precision 10−3

Pre-processing FSSL MJ
by Mumps Order 2 Q6

Size of lin. sys. 1000 842677
Task Time (s)

Construction 0.055 1.97
Factorization 0.44 29.8

Resolution 0.003 0.35
Total time 0.498 32.12

Evaluation on 400 × 400 grid
Exact Inter. MJ

eval eval Q6

Post-proc. 26.2 4.30 0.72
Pre-proc. +
Post-proc. 26.70 4.80 33.82

At precision 10−3, FSSL using Hermite interpolation takes 7 times
less than MJ.
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Experiment 2: sizable obstacles on a large domain

Acoustic vibration, produced by
a block transducer ,

is diffracted by 35 thin aluminum
wires (of radius 0.5 mm)

immersed in water.

0 0.1 0.2 0.3
0

0.1

0.2

x (m)

y(
m

)

Horizontal-view cut.

The phenomenon is approximated by the hard
scattering of acoustic sound in fluid.
The incident wave (from the transducer) is
simulated by a PW of angle 90◦.
Input pulse’s central freq. = 500 kHz.
The speed of sound in water c = 1478 m s−1.
The wavenumber κ = 2125.57 m−1.
The spatial wavelength λ = 2.96× 10−3 m.
Domain size = 117λ× 87λ .

κ× (Obs Rad) ∼ 1.1 , Obs Dist
Obs Rad ∼ (23, 19) ,

λ

Obs Rad ∼ 5.91 ,
λ

Obs. Dist. ∼ 0.3 .
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Exp 2: Computational time comparison at precision 10−4

Regarding the value of the diffracted wave at 128 receptors,

Rel. L2 error : FSSL 12 and FSSL 4 = 2.82× 10−6,
Rel. L2 error : MJ Q12 and MJ Q8 Ref 2 = 1.42× 10−4.
Rel. L2 error : FSSL 4 and MJ Q8 Ref 2 = 1.48× 10−4.

Q8 Ref 2 = Q8
with one time
mesh refinement.

20 40 60 80 100 120

−0.2

0

0.2

Receiver

Real of part of diffracted wave at 128 receptors : FSSL 4 and MJ
Q8 Ref2 .
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Exp 2: Candidates for comparison at precision 10−4

Size Pre-proc. Post-proc. Total
of LS Time Time time

(s) at 128 receivers (s) (s)

FSSL 4 315 0.024 6.58× 10−3 0.031

MJ Q8
Ref 2 993870 61.27 0.13 61.4

FSSL using Hermite interpolation is 2046 times faster than MJ.
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Restart GMRES (generalized minimal residual method)
Consider Ax = b, A matrix of size N × N.

Minimal
poly ⇒ A−1b ∈ Kn(A, b)

Krylov space
:= span {b,Ab, . . . ,An−1y}.

For d ≤ m, Arnoldi process constructs

A Qd = Qd+1︸︷︷︸
orthonormal ,N×d

Hd ; Hn =
(

Hd
01×(d−1) h(d+1)d

)
Hd Hessenberg of size d×d

.

‖Ax − b‖2 = ‖A Qd y − b‖2 =
∥∥Hd y − ‖b‖2e1

∥∥
2
.

A sequence of approx. sol.

xd = argmin
z ∈Kd (A , b)

‖A z − b‖2.

⇔ yd with xd = Qd yd

yd = argmin
y∈Rd

∥∥Hd y−‖b‖2e1
∥∥

2
.

Fixed Krylov size m. Initial guess (IG) x0. Initial residue r0 = b − A0.
No preconditioning : A p? = r0.
For j ≤ m, approximate sol. pj ∈ Kj (A, r0) minimizes

pj = argmin
p ∈Kj (A , r0)

‖A p − r0‖2 (∗).

Stop if pj satisfies the residue error criteria.
If not, and if j = m, restart the process with IG r0 = pm.
Final stop criteria : NiterMax .

Right preconditioning

(AP−1)(Pp?) = r0.

Left preconditioning

(P−1A)p? = P−1r0.
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GMRES Preconditioners
L = strictly lower part of matrix A
D = diagonal of matrix A
U = strictly upper part of A

Mu = U + D , Nu = −L
Ml = L + D , Nl = −U,

R = −L− U.

Splitings of A :
A = L + D + U = Mu − Nu

= Ml − Nl = D − R.

The backward Gauss-Seidel (BGS) preconditioner
is P = Mu .

The Jacobi preconditioner is P = D.

The 2nd-order Jacobi (2Jacobi) preconditioner is
P = D(R + D)−1D.

Formally, P−1 is the 2nd approx. of the Neumann
series of A−1 = (D − R)−1.

The 2nd-order Forward Gauss-Seidel (2FGS)
preconditioner is

P = Ml (Nl + Ml )−1 Ml .

Formally, P−1 is the 2nd approx. of the Neumann
series of A−1 = (Ml − Nl )−1.

The forward Gauss-Seidel (FGS)
preconditioner is P = Ml .

The Symmetric Gauss-Seidel (SGS)
preconditioner is

P = Mu D−1 Ml .

Interpretation: u = P−1f solves
Mu ũ = f , Ml u = Nl ũ + f .

The Lower-Upper Symmetric Gauss-Seidel
(LUSGS) preconditioner is

P = Ml D−1 Mu .

Interpretation: u = P−1f solves
Ml ũ = f , Mu u = Nu ũ + f .
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Solvers in comparison

Direct solvers : MUMPS, LAPACK, SCALAPACK.

Code for GMRES solver is obtained from :

L. Giraud, et al. , A set of GMRES routines for real and complex
arithmetics on high performace computers, Technical report,
CERFACS, tR/PA/03/3 (1997).

The code allows user to define

multiplication by the coefficient matrix.
multiplication by a preconditioner with choices of positions.

Parallel tests are run on cluster plafrim (www.plafrim.fr).
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Closely-spaced obstacles comparison

0 5 10 15 20
0

10

20

−1

0

1

2

FSSL order 2 with Mumps for 2000 obstacles.

Planewave (PW) with 90◦.
Wavenumber κ = 10.
Radius of obstacle 0.03.
Distance btwn obs 0.3.

κ× (Obs Rad) = 0.3;

λ

Obs. Rad ∼ 21 ; λ

Obs Dis ∼ 2

Obs Dist
Obs Rad = 10.

GMRES stop criteria : Residue error tolerance, Niter Max, Size of Krylov.
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Exp 4: Closely-spaced obstacles comparison (Dirichlet)

Case 200 obstacles Case 1616 obstacles
Name

Method
Cv δerr in

H1/2

]
Iter

Time
(s)

Cv δerr in
H1/2

]
Iter

Time
(s)

Mumps n/a 0 n/a 0.05 n/a 0 n/a 130
Lapack n/a 10−12 n/a 0.01 n/a 10−10 n/a 42.7

GMRES stop criteria GMRES stop criteria
(10−6, 2000,100) (10−6, 2000,150)

NoPreCond Y 5× 10−3 820 0.09 N n/a n/a n/a
L Jacobi Y 5× 10−3 656 0.08 N n/a n/a n/a
L FGS Y 2× 10−3 239 0.05 N n/a n/a n/a
L BGS Y 4× 10−3 197 0.04 N n/a n/a n/a

L 2Jacobi Y 5× 10−3 594 2.21 N n/a n/a n/a
L 2FGS Y 1× 10−3 169 0.1 N n/a n/a n/a
L SGS Y 2× 10−3 76 0.03 Y 4× 10−1 757 274

L LUSGS Y 1× 10−3 77 0.03 Y 1× 10−1 897 325
R Jacobi Y 4× 10−3 660 1.05 N n/a n/a n/a

R FGS Y 3× 10−3 199 0.05 N n/a n/a n/a
R BGS Y 3× 10−3 198 0.04 N n/a n/a n/a

R 2Jacobi Y 4× 10−3 600 1.70 N n/a n/a n/a
R 2FGS Y 3× 10−3 155 0.09 N n/a n/a n/a
R SGS Y 3× 10−3 75 0.03 Y 2× 10−1 886 321

R LUSGS Y 3× 10−3 74 0.03 Y 2× 10−1 897 325
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Exp 5: Closely-spaced obstacles comparison (Dirichlet)
FSSL order =2 ; Size matrix = 104 × 104 ; GMRES stop criteria (10−6, 5000, 400)

Solver Post-
proc
(n16)

Rel
H1/2
diff

Rel L2

diff
]

iter
Preproc.

time
(s)

Postproc.
time
(s)

Total
(s)

Mumps (n16) Exact 3× 10−10 8× 10−14 n/a 242 96.0 338
Mumps (n16) Inter 3× 10−10 9× 10−6 n/a 242 36.0 278
Lapack (n1) Exact 0 0 n/a 80.4 96.0 176
Lapack (n1) Inter 0 9× 10−6 n/a 80.4 37.5 118
R LUSGS (n1) Exact 1× 10−1 4× 10−5 1146 573 95.8 669
R LUSGS (n1) Inter 1× 10−1 4× 10−5 1146 573 36.2 609
R SGS (n1) Exact 1× 10−1 4× 10−5 1151 598 95.8 694
R SGS (n1) Inter 1× 10−1 4× 10−5 1151 598 36.2 635
Scala (n16) Exact 3× 10−10 8× 10−14 n/a 34.6 95.6 130
Scala (n16) Inter 3× 10−10 9× 10−6 n/a 34.6 36.1 70.9

PW of 90◦ ; κ = 10.0 ; NObs = 2000 ; Obs. Rad. = 0.03 ; Obs. Dist. = 0.30 ;

κ× (Obs Rad) = 0.3 , λ

Obs. Rad ∼ 21 , λ

Obs Dis ∼ 2 , Obs Dist
Obs Rad = 10.
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Exp 6: Far apart obstacles (Dirichlet)
FSSL order 2 ; Size matrix = 10000× 10000; GMRES stop criteria (10−7, 5000,500).

Solver Post-
proc
(n16)

Rel
H1/2
diff

Rel L2

diff
]

iter
Pre-
proc.
time
(s)

Post-
proc.
time
(s)

Total
(s)

Mumps (n1) Exact 0.0 0.0 n/a 251 96.0 347
Mumps (n1) Inter 0.0 1× 10−5 n/a 251 37.5 289
Lapack (n1) Exact 4× 10−12 2× 10−15 n/a 79.9 96.0 176
Lapack (n1) Inter 4× 10−12 1× 10−5 n/a 79.9 37.5 118
R LUSGS (n1) Exact 3× 10−4 1× 10−7 57 37.5 96.0 134
R LUSGS (n1) Inter 3× 10−4 1× 10−5 57 37.5 37.5 75.3
R SGS (n1) Exact 4× 10−4 1× 10−7 56 37.0 96.0 133
R SGS (n1) Inter 4× 10−4 1× 10−5 56 37.0 37.5 74.6
Scala (n16) Exact 1× 10−11 4× 10−15 n/a 34.9 96.0 131
Scala (n16) Inter 1× 10−11 1× 10−5 n/a 34.9 37.5 72.5

PW of 90.0◦; κ = 10.0; ] obs = 2000; Obs. Rad. = 0.01; Obs. Dist. = 2.00;

κ× (Obs Rad) = 0.1 , λ
Obs. Rad. ∼ 63 , λ

Obs Dist. ∼ 0.3 , Obs Dist
Obs Rad. = 200.
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4 Application to inversion : initial results
No noise
23dB Noise
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Full waveform inversion

Minimize

J := 1
2‖Hrecuscatt − dobs‖2 ; Ĵ(p) = 1

2‖Φ(p)− dobs‖2 .

Optimization method : nonlinear conjugate gradient with Polak-
Ribière coefficient.
Calculate gradient ∇p Ĵ by adjoint method (with FSSL formulation).

Trace operator at the receptors Hrec : u|receptor, ∂nu|receptor, etc.

Observed data at receptors : dobs .

Forward map Φ : parameters 7→ values at receptors.
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Acquisition Data
Inversion problem : Retrieve the position of 6 hard-scattering obstacles
of radius 0.5 (distanced 3 and 4) placed at

(68 , 68) , (68 , 72) , (72 , 68) , (72 , 72) , (76 , 68) , (76 , 72) .

50 60 70 80 90
50

60

70

80

90

? ? ?

? ? ?

(a) αinc = 90o
50 60 70 80 90

? ? ?

? ? ?

(b) αinc = 0o
50 60 70 80 90

? ? ?

? ? ?

(c) αinc = 180o

The position of 128 equally spaced receivers vary with the angle of
incidence.

Data is produced by FSSL order 12 with solver Lapack.
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Reconstruction results using data with no noise.
? One angle of acquisitions: 90◦

? FSSL order 3 using Mumps .

? Error Tolerance 10−5.

? Initial guess rel. error. : 115%
(relative to size of domain).
Final position’s rel. error : 1.3%

? Initial J : 0.002 at κ = 0.08
Final J : 0.002 at κ = 1.5

? Run time : 7.92 secs

? Nb max linesearch (LS) 30.
Nb LS used in each run ≤ 11.

] Niter Step
Run κ Max size

1 0.08 300 8
2 0.09 300 8
3 0.1 200 8
4 0.2 200 8
5 0.3 200 7
6 0.4 200 7

] Niter Step
Run κ Max size

7 0.5 200 5
8 0.6 200 5
9 0.7 200 5

10 0.8 200 5
11 0.9 200 5
12 1.0 200 2

] Niter Step
Run κ Max size
13 1.10 200 2
14 1.20 200 2
15 1.30 200 2
16 1.40 200 2
17 1.50 100 2
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Noise Data at 23dB

55 60 65 70 75 80 85 90
−1.4

−1.2

−1

−0.8

x (in mm)

(a) Real part of total wave at 128 receivers at κ = 0.8 with PW 90◦

55 60 65 70 75 80 85 90
−0.2

−0.1

0

0.1

0.2

(b) Imaginary part .

White
Gaussian noise
is added by
using wgn in
Matlab.

Rel. error in
norm

l2 = 7% ,
l∞ = 18 %
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Inversion result for data with 23dB noise
? Three angles of acquisitions:

90◦, 0◦, 180◦

? FSSL order 3 using Mumps .

? Error Tolerance 10−5.

? Initial guess rel. error. : 115%
(relative to size of domain).

Final position’s rel. error: 0.38%

? Initial J 1.00 at κ = 0.08

Final J: 0.79 at κ = 0.7

? Run time: 2.79 secs

] Niter Step
Run κ Max size

1 0.08 300 5
2 0.09 300 4
3 0.1 200 2
4 0.2 200 2
5 0.3 200 2

] Niter Step
Run κ Max size

6 0.4 200 2
7 0.5 200 2
8 0.6 200 2
9 0.7 200 1

Nb max linesearch (LS) 30.
Nb LS used in each run ≤ 10.
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Inversion result for data with 23dB noise (cnt)
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Initial J =1.0 at κ = 0.08 ; Final J = 0.79 at κ = 0.7
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10−1

100
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Re
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Initial guess rel. err. = 115% (rel. to domain size); Final err. = 0.8%.

? Three angles of
acquisitions:

90◦, 0◦, 180◦

? FSSL order 3
using Mumps;

? Err. Tol. = 10−5;

? Niter total = 161;

? Use 9 κs:
0.08, 0.09,

0.1, . . . , 0.7

? Run time: 2.79 s
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Conclusion
? FSSL is robust in simulating the
multi-scattering by small circular
obstacles in large homogeneous
media.

? Its linear systems have simple
expressions ⇒ Easy coding and
implementation.

? Direct Solvers (Lapack and
Scalapack) are more efficient when
the obstacles are close together.

? Iterative solvers are more preferable when
the obstacles are far apart.
In particular, GMRES with LUSGS and SGS
are faster than Lapack and as fast as
Scalapack.

? LUSGS and SGS are the most robust among
the preconditioners considered.

? In both settings, Scalapack is fastest.

? Using shared memory architecture, Scalapack
can handle the largest Nb of obstacles.

Further advantages of direct solvers, regarding application to inverse
problem using Full waveform inversion

multi-RHS, high precision

the forward and adjoint problem use the same factorization.
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Thank you for your attention
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