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aUniversité Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 61, avenue du
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Abstract

Wave propagation in architectured materials, or materials with microstructure, is known to be dependent
on the ratio between the wavelength and a characteristic size of the microstructure. Indeed, when this ratio
decreases (i.e. when the wavelength approaches this characteristic size) important quantities, such as phase
and group velocity, deviate considerably from their low frequency/long wavelength values. This well-known
phenomenon is called dispersion of waves. Objective of this work is to show that strain-gradient elasticity can
be used to quantitatively describe the behaviour of a microstructured solid, and that the validity domain (in
terms of frequency and wavelength) of this model is sufficiently large to be useful in practical applications.
To this end, the parameters of the overall continuum are identified for a periodic architectured material, and
the results of a transient problem are compared to those obtained from a finite element full field computation
on the real geometry. The quality of the overall description using a strain-gradient elastic continuum is
compared to the classical homogenization procedure that uses Cauchy continuum. The extended model of
elasticity is shown to provide a good approximation of the real solution over a wider frequency range.

1. Introduction

The description of the wave propagation in a medium having an inner architecture poses a methodological
problem. One is facing the following alternatives: either the internal architecture is ”infinitely” small with
respect to the wavelengths of the solicitation, or it is not. In the first case, the effects linked to the internal
structure are negligible and the architectured material can be replaced by an equivalent standard Cauchy
elastic medium1. In the second case, structural effects can not be neglected and all the geometrical details
of the architecture must be taken into account for computing the wave propagation. The numerical cost of
this last option can be prohibitively high. Structural effects related to heterogeneous wave propagation are
well illustrated with a dispersion diagram. An example of such a diagram for a hexagonal lattice material is
provided on Fig.1.

∗Corresponding author:giuseppe.rosi@univ-paris-est.fr
1By Cauchy continuum we simply mean the classical formulation of elasticity.
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Wavenumber in the reciprocal lattice along the 
boundary of the half Irreducible Brillouin zone

Figure 1: Characteristic dispersion curve of a periodic architectured material (Image extracted from Rosi and Auffray (2016)).

Characteristics of wave propagation in heterogeneous continuum are:

• optical branches : some modes that have cut-off frequencies;

• dispersivity : the phase velocity depends on frequency;

• directivity : depending on the frequency, energy can flow towards preferred directions.

For practical applications, an intermediate strategy would be valuable. Such a way would consist in defining
an equivalent elastic medium retaining certain features of the heterogeneous propagation. But, as it is well-
known, these features cannot be captured by the classical theory of Cauchy elasticity. This observation,
among others, motivated during the 1960s the construction and study of enriched continuous media, also
known as generalized continua (Mindlin, 1964; Mindlin and Eshel, 1968). See also dell’Isola and Steigmann
(2015) for recent developments and dell’Isola et al. (2017) for a historical and theoretical overview of the
subject.
As commented in dell’Isola et al. (2015), the research on generalized continua is not new and dates back
to 1848 with Gabrio Piola, at the origin of continuum mechanics dell’Isola et al. (2014). There are many
options for extending classical elasticity and picking a model among another depends on the nature of the
architectural effects that are desired to be maintained at the continuous scale. This choice is application
dependent.

In full generality, overall generalized media can either be local or non-local2. Despite their interests related
to Willis elastodynamics and cloaking theory, non-local aspects will not be discussed here (Willis, 1985, 1997;
Norris and Shuvalov, 2011; Nassar et al., 2015c,b,a). Concerning local continua, there are two approaches to
extend classical elasticity (Toupin, 1962; Mindlin, 1964, 1965; Eringen, 1967; Mindlin and Eshel, 1968):

2A material is said to be non-local if its constitutive law is integro-differential. At the opposite, a constitutive law that is only
differential it is said to be local. Since for higher-grade materials the constitutive laws are still defined within an infinitesimal
neighborhood of a material point, higher-grade materials are local. Even if, in the literature, the denomination of “non-local”
can be encountered associated to higher-grade continua this qualification is, from a mathematical point of view, clearly abusive
.
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Higher-order continua: the number of degrees of freedom is extended. The Cosserat model (also known as
micropolar), in which local rotations are added as degrees of freedom, belongs to this family (Cosserat
and Cosserat, 1909). This enhancement can be extended further to obtain the micromorphic elasticity
(Green and Rivlin, 1964; Mindlin, 1964; Eringen, 1967; Germain, 1973). This approach allows optical
branches to be described.

Higher-grade continua: the degrees of freedom are kept identical but higher-order gradients of the dis-
placement field are involved into the elastic energy. Within this framework dispersivity and directivity
can be described but not optical branches. Strain-gradient elasticity (Mindlin, 1964, 1965; Mindlin and
Eshel, 1968; dell’Isola and Seppecher, 1995, 1997) belongs to this family. It is worth to note that strain-
gradient elasticity can be retrieved as a Low Frequency (LF), Long Wave-length (LW) approximation
of the micromorphic kinematic (Mindlin, 1964). As a consequence, the parameters needed to set up
this model are limited compared to a complete micromorphic continuum.

The domains of validity of these extended theories are roughly estimated in Fig.1, where it can be observed
that in higher-grade continua, due to the absence of internal degrees of freedom, all optical branches are lost3

Besides, in LW limit, the dispersion relation becomes linear, and hence dispersive effects vanish. It should be
emphasized that the use of a local generalized continuum provides a good description of the local dynamics
only for a short window of wavelengths. Formulated differently, there will always be a limit beyond which
the substitution medium, as rich as it is, will fail to accurately describe the real dynamics4. But, and despite
of its importance with respect to practical applications, the precise value of this limit is rather unclear.

In the present paper, and following some previous works (Auffray et al., 2015; Rosi and Auffray, 2016;
Placidi et al., 2015, 2016), attention will be focused on Strain-Gradient Elasticity5 (SGE). Our goal is to
propose a general procedure for the identification of the constitutive parameters of the SGE model, and to
define criteria to assess its validity range. The procedure has been sketched in general, and then applied to
a case study of a material having a squared mesostructure. Although a numerical approach is followed, the
procedure can be applied experimentally.

Organization of the paper:
The paper is organized as follows. In section §.2, the basic equations of strain-gradient elasticity are re-
capped. In §.3 a general identification procedure is introduced. Then, in §.4 this procedure is conducted in
the particular case of a tetragonal lattice. The strain-gradient elasticity model is evaluated for this specific
situation. Finally, §.5 is devoted to some conclusions.

Notations:
In this work tensors of order ranking from 0 to 6 are denoted, respectively, by a, a, a

∼
, a
'

, a
≈

, a
u

and a
≈
∼

. The

simple, double and fourth contractions are written ., : and :: respectively. In index form, with respect to an
orthonormal Cartesian basis, these notations correspond to:

a · b = aibi, a
∼

: b
∼

= aijbij , a
≈

:: b
≈

= aijklbijkl, 1 ≤ i, j, k, l ≤ d

where repeated indices are summed up. Spatial gradient will classically be denoted, in index form, by a
comma:

Grad a = (a⊗∇)ij = ai,j

When needed index symmetries are expressed as follows: (..) indicates invariance under permutations of the
indices in parentheses, while .. .. denotes invariance with respect to permutations of the underlined blocks.
Finally, a superimposed dot will denote a partial time derivative.

3As shown in (Metrikine, 2006), adding a fourth order derivatives with respect to time allows for the description of optic
branches. However, since this form is obtained rewriting the coupled system of equation of a micromorphic continuum into a
single vector equation for the macroscopic displacement, these models have to be considered as micromorphic continua.

4Formulated in a third way, local continua can not describe accurately the entire first Brillouin zone, to achieve such a goal
non-local continua should be used.

5For other modeling options devoted to the description of band-gaps, the reader can refer, among others, to Liu et al. (2012);
Chen et al. (2014); Neff et al. (2014).
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2. Strain-gradient elasticity in a nutshell

In this section equations of strain-gradient elasticity are recalled. To that aim the setting introduced by
Mindlin (type II formulation) (Mindlin and Eshel, 1968) is used.

2.1. Energy

As usual in field theory of conservative system, the Lagrangian density L is defined as the difference
between the kinetic and potential energy densities, respectively, K and P.

L = K − P

In the case of Mindlin’s strain gradient theory those quantities are function of the displacement and its
gradients as follows:

K =
1

2
pivi +

1

2
qijvi,j , P =

1

2
σijεij +

1

2
τijkηijk. (1)

The following quantities are involved in these definitions:

• pi and qij , the momentum and the hypermomentum tensors;

• vi and vi,j , the velocity (vi = u̇i) and its gradient;

• σij and τijk, the Cauchy stress and the hyperstress tensors;

• εij and ηijk = εij,k, the infinitesimal strain tensor (εij = (ui,j + uj,i)/2) and its gradient.

From the static quantities we can define the following total quantities:

• the total stress
sij = σij − τijk,k (2)

• the total momentum
πi = pi − qik,k (3)

This form is postulated here on phenomenological basis following Mindlin (1964). It can be noted that
the enrichment in the definition of the kinetic energy he introduced in this work has been discarded in its
following papers (Mindlin and Eshel, 1968). Higher inertia terms were indeed proved to be necessary in
more recent publications (Askes and Aifantis, 2006; Berezovski et al., 2011), and can be justified by direct
asymptotic homogenization approaches (Bacigalupo and Gambarotta, 2014), or by localizing Willis equation
(Nassar et al., 2015b). It can be observed that this Lagrangian is of order one in time and two in space,
hence introducing space-time asymmetry (Metrikine, 2006). Despite of its interest, the consequence of this
observation will not be discussed hereafter.

By application of the least action principle on the action functional (Mindlin, 1964; Mindlin and Eshel,
1968), and using the total static quantities previously defined, the following bulk equations are obtained

sij,j + fi = π̇i (4)

Bulk equations are supplemented with the boundary conditions on edges:{
ti = (sij + q̇ij)nj − Pml(Pmjτijknk),l

Ri = τijknjnk
(5)

and on vertexes
νi = [[τijknjmk]] (6)

where the quantities t,R, ν, n and m are, respectively, the traction (i.e. a force per unit length), the double-
force per unit length, the vertex-force, the outward normal and the outward tangent. It is a matter of fact
that on each vertex, we have two edges and therefore two outward normals and two outward tangents; the
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symbol [[·]] means that the quantity · is evaluated first on one edge, then on the other edge and then the sum
of the two quantities is calculated. The quantity P

∼
, which is the projector onto the tangent plane, is defined

as follows:
P
∼

= I
∼
− n⊗ n

The boundary conditions (5)1 and (6) are the dual of the displacement u and the boundary condition (5)2
is the dual of the normal displacement gradient ∇u · n. Thus, a well-posed boundary value problem is given
once displacement and normal displacement gradient (or their duals) are imposed at the boundary.

2.2. Constitutive equations

For the mechanical model to be closed, constitutive equations relating primal and dual quantities are
mandatory. In the present situation, those relations will assumed to have the following structure:

p
q
∼
σ
∼
τ
'

 =


ρ I
∼

K
'

0 0

K
'

T J
≈

0 0

0 0 C
≈

M
u

0 0 M
u

T A
≈
∼




v
∇v
∼
ε
∼
η
'

 (7)

where

• ρI(ij) is the macroscopic mass density;

• Kijk is the coupling inertia tensor;

• Jijqr is the second order inertia tensor.

• C(ij) (lm) is the classical elasticity tensor;

• M(ij)(lm)n is a fifth-order coupling elasticity tensor;

• A(ij)k (lm)n a six-order tensor.

In the case of centrosymmetric continuum6, odd-order tensors vanish and Eq.(7) simplifies to
p
q
∼
σ
∼
τ
'

 =


ρ I
∼

0 0 0

0 J
≈

0 0

0 0 C
≈

0

0 0 0 A
≈
∼




v
∇v
∼
ε
∼
η
'

 (8)

Centrosymmetry will be assumed for the rest of the paper. In 2D space, this assumption is not too restrictive
since M

u
and K

'
are null in many common situations (Auffray et al., 2015, 2016). The substitution of the

constitutive equations (8) into Eq.(2) and Eq.(3) gives:

sij = Cijlmεlm −Aijklmnεlm,kn,

πi = ρvi − Jipqrvq,pr.

Hence, for null body force, the bulk equilibrium (4) expressed in terms of the displacement field yields

Cijlmul,jm −Aijklmnul,jkmn = ρüi − Jipqrüq,pr. (9)

This expression will now be used to introduce a generalized acoustic tensor.

6A periodic lattice is said to be centrosymmetric if its unit cell is invariant under the inversion operation (− I
∼
∈ O(2)). In

2D this is equivalent for the unit cell to be invariant with respect to a rotation of angle π (Olive and Auffray, 2014).
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2.3. Plane wave solution and generalized acoustic tensor
To obtain the different velocities of a plane wave in the framework of strain-gradient elasticity, let us

consider the following plane wave solution:

ui = UiA exp [ı (ωt− kixi)] (10)

where ı denotes the imaginary unit, ω the angular frequency and k the wave vector. Moreover, Ui is a real
valued unitary vector representing the polarization (direction of motion) and A is a complex amplitude.
These quantities are both independent of xi and t. The wave vector can be also expressed:

ki =
ω

V
ξ̂i. (11)

where V = ‖vp‖ = ‖u̇‖ is the norm of the phase velocity of the wave-front, ξ̂ the unit vector pointing toward
the direction of propagation, i.e. the normal to the wave-front. The relation (10) can be rewritten in the
following form

ui = UiA exp

[
ıω

(
t− 1

V
ξ̂ixi

)]
(12)

The substitution of this ansatz (12) into the balance equation (9) yields((
Cijlm − ω2Jijlm

)
ξ̂j ξ̂m +

ω2

V 2
Aijklmnξ̂j ξ̂k ξ̂mξ̂n

)
Ul = ρV 2Ui, (13)

which can be conveniently rewritten as
Q̂ilUl = ρV 2Ui, (14)

where the generalized acoustic tensor Q̂il is defined as follows:

Q̂il =
(
Cijlm − ω2Jijlm

)
ξ̂j ξ̂m +

ω2

V 2
Aijklmnξ̂j ξ̂k ξ̂mξ̂n. (15)

As can be noticed, the classic definition of the acoustic tensor is retrieved (i. e. Qil = Cijlmξ̂j ξ̂m) in the
following situations:

• when the tensors Aijklmn and Jijlm vanish, that is for a classic continuum;

• when ω → 0, that is for low frequencies.

It can further be observed that, since the expression of the generalized acoustic tensor Q̂il is quadratic in ω,
it admits a horizontal tangent at the origin (ω = 0). This remark has two implications:

1. It allows the Cauchy elasticity model to be valid in a neighbourhood of ω = 0. In case of a linear
dependence, this domain would have been restricted to a single point;

2. It gives information on the initial tangent of derived quantities like the phase and the group velocity.
Such information is important for curve fitting perspective.

From the solution of the eigenvalue problem associated to Eqn.(14), it is possible to obtain useful information
concerning phase velocity and polarization of plane waves propagating with a wavefront perpendicular to a
given direction ξ̂. Another important quantity is the group velocity, which is defined as

vg =
∂ω

∂k
. (16)

From equation (15) it can be shown that

vgj =
Q]

ijlUlUi

V ρ]ikUkUi

(17)

where

Q]
ijl =

(
Cijlm − ω2Jijlm

)
ξ̂m +

ω2

V 2
A]

ijklmnξ̂k ξ̂mξ̂n, with A]
ijklmn = (Aikjlmn +Aijklmn)

and

ρ]ik = ρδik +
ω2

V 2
Jijklξ̂j ξ̂l.

As it can be verified from (17), group velocity depends explicitly on the polarization vector.
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3. General identification procedure

Now that the strain gradient elasticity has been presented, we aim at introducing a procedure to estimate
its quality as a substitution continuum. To provide a good overall description of true wave propagation,
quantities of interest such as phase and group velocities should be correctly described7. Hence the quality of
strain-gradient model will be evaluated by comparing these quantities with their exact values obtained by a
Bloch analysis conducted on a periodic cell. Our procedure involves the following steps:

1. Computation of the Bloch solution over a periodic cell of the real structure:
(a) Plot of the dispersion diagram;
(b) Determination of the phase and group velocity curves.

2. Evaluation of the SGE parameters:
(a) Static identification of the elastic tensors C

≈
and A

≈
∼

using numerical experiments;

(b) Dynamic identification of the micro inertia tensor J
≈

using results of Bloch analysis.

3. Evaluation of the discrepancy between the SGE model and the complete one with respect to the wave
number k.

Let us detail the dynamic part of the identification processes, which is based on the computation of the
dispersion curves for the unitary cell by using Bloch analysis (Dresselhaus et al., 2007; Farzbod and Leamy,
2011; Gazalet et al., 2013).

For the sake of simplicity, and without losing generality, attention will be restricted for the rest of the
paper on unidirectional wave propagation. This case corresponds to a plane wave propagating towards a
specific direction, that we suppose fixed. This is justified by the fact that we suppose the microinertia tensor
J
≈

isotropic. Thus only two coefficients have to be determined, and one direction is sufficient. Depending on

the number of coefficients of the microinertia tensor, multiple directions could be considered.
Let us denote by ξ̂ this fixed direction, the wave vector is a vector field along this direction:

k(i) = k(i)ξ̂

with k(i), the wave number. For our need, this function will be sampled in the first Brillouin zone, hence
provided a discrete set of wavenumbers:

k(i) =
i

Np − 1

π

a
for i = 0, ..., Np − 1

where a is the size of the unit cell and Np the number of points used in the discretization of the first Brillouin
zone (Brillouin, 2003).

The corresponding angular frequencies are denoted ωn(k(i)). Since we are only interested in the acoustic
branches, and we are in 2D, n = 1, 2. From this, values of the phase velocities for the first and the second
mode can be computed. Referring to the low frequency identification, the first mode is denoted as S- while
the the second as P-8, so that:

V̂S(k(i)) =
ω1(k(i))

k(i)
, V̂P (k(i)) =

ω2(k(i))

k(i)

where we used the notation ·̂ for quantities computed from Bloch analysis. Next, by using a finite difference
approximation of the first derivative, we can compute the group velocities:

v̂gS(k(i)) =
ω1(k(i+1))− ω1(k(i))

k(i+1) − k(i)
, v̂gP (k(i)) =

ω2(k(i+1))− ω2(k(i))

k(i+1) − k(i)
.

7The comparison is not only be made on the dispersion curve, but also on the phase and group velocity. The reason is that
the domain of validity could be smaller for group velocity rather than for the dispersion curve. This can be explained by the
fact that a good description of the dispersion curve does not imply that the associated mode are well described. This point has
been demonstrated in the context of Willis equation by Nassar et al. (2015c).

8For anisotropic continuum, in a generic direction, modes are neither pure S- nor pure P-. Hence, this notation is a bit
abusive since, but consistent with the case study in section 4
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These values will be compared with those obtained from the solution of the eigenvalue problem (14) and from
(17). The following isotropic form is considered for the micro-inertia tensor:

J
≈

=

 JP JP − JS 0
JP 0

JS

 . (18)

In the identification procedure, it is crucial to choose the correct quantity for performing the fitting. Indeed,
three choices are possible: i) dispersion curves; ii) phase velocity; iii) group velocity. Since group velocity
is obtained from the derivative of the dispersion curve, it is reasonable to consider that this will be the
first quantity to deviate when increasing the wavenumber. Then, group velocity will be used in the fitting
procedure, that involves the following minimization:

JOpt
P = arg min

JP∈R+

Nl∑
i=1

(
vgP (k(i), JP )− v̂gP (k(i))

)2
, JOpt

S = arg min
JP∈R+

Nl∑
i=1

(
vgS(k(i), JS)− v̂gS(k(i))

)2
(19)

where Nl corresponds to a given discrete limit value for the wavenumber and vgP (k, JP ) and vgS(k, JP ) are
group velocities solution of the eigenvalue problem (14). The choice of Nl deserves particular attention, and
its introduction is based on the following remarks:

• a dispersion curve computed for a generalized continuum cannot fit the dispersion curve on the whole
first Brillouin zone

• more weight must be given to points corresponding to low wavenumbers, to ensure a good continuity
with the static model.

In this paper, we fixed this limit to that Nl corresponding to the one that maximises the validity range. Such
a validity range is defined as the region of the k-axis for which the error in the fitting is less than 1%.

This procedure will now be applied on a specific situation, that is the objective of the section 4.

4. A case study: square microstructure

Let us begin by fixing an orthonormal base B = (e1; e2) of R2. In this section, a rectangular shape domain
will be considered.

This domain contains a material having an inner square architecture, as depicted on Figure 2. In terms
of group language, the unit cell of this lattice is said to have a [D4] symmetry9.

a

th

Figure 2: [D4]-invariant inner geometry

This architectured plate will be homogenized as a strain-gradient elastic continuum. The matrices as-
sociated to the homogenized constitutive law are extracted from Auffray et al. (2015). For any orientation

9[Dn], refers to the dihedral group which is generated by a n-fold rotations and mirrors perpendicular to the rotation axis.
[Dn]-invariant objects are achiral.
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for which e1 is collinear to a mirror lines of the architecture the matrix representations of the constitutive
tensors have the following shape10:

CD4 =

c11 c12 0
c11 0

c33


B

; AD4 =


a11 a12 a13 0 0 0

a22 a23 0 0 0
a33 0 0 0

a11 a12 a13
a22 a23

a33


B

(20)

Since those matrices are symmetrical only half of each are defined. Solutions of strain-gradient elasticity for
this anisotropic system have been studied in Placidi et al. (2016). For a general displacement field:

u(x) = u1(x1, x2)e1 + u2(x1, x2)e2

the PDE system associated to the bulk equation (9) is, in the static case,{
c11u1,11 + c̃12u2,12 + c33u1,22 + f1 = a11u1,1111 + ã1(u2,1112 + u2,1222) + ã2u1,1122 + a33u1,2222

c11u2,22 + c̃12u1,12 + c33u2,11 + f2 = a11u2,2222 + ã1(u1,1222 + u1,1112) + ã2u2,1122 + a33u2,1111

where the following simplifications have been used

• c33 = 1
2c33;

• a33 = 1
2a33;

• c̃12 = c12 + 1
2c33;

• ã1 = a12 +
√
2
2 (a13 + a23) + 1

2a33;

• ã2 = a22 +
√

2(a13 + a23) + 1
2a33.

Those equations have to be supplemented by appropriate boundary conditions and depend on some specific
combinations of 9 constitutive parameters c11, c12, c33, a11, a13, a23, a22, a12, a33. In the following situation,
which corresponds to the investigated one, the PDE system is simplified:

1. the domain is finite along e1 and infinite along e2. As a consequence the domain is constituted of a
unique row of square lattice and periodic boundary conditions are considered along horizontal edges;

2. Boundary conditions along vertical edges are independent of x2.

Under these hypotheses, the displacement field can be looked under the following form:

u(x) = u1(x1)e1 + u2(x1)e2

and the PDE associate to bulk equilibrium reduce to:{
c11u1,11 − a11u1,1111 + f1 = 0

c33u2,11 − a33u2,1111 + f2 = 0
(21)

Supplemented by the boundary conditions:

t(0) =

(
−σ11(0) + τ111,1(0) = −c11u1,1(0) + a11u1,111(0)
−σ12(0) + τ121,1(0) = −c33u2,1(0) + a33u2,111(0)

)
; R(0) =

(
−τ111(0) = −a11u1,111(0)
−τ121(0) = −a33u2,111(0)

)
, (22)

and

t(L) =

(
σ11(L)− τ111,1(L) = c11u1,1(L)− a11u1,111(L)
σ12(L)− τ121,1(L) = c33u2,1(L)− a33u2,111(L)

)
; R(L) =

(
τ111(L) = a11u1,111(L)
τ121(L) = a33u2,111(L)

)
. (23)

The displacement field solution to the boundary value problem now depends only on four material parameters:
c11, c33, a11, a33. The aim of the static tests will be to identify those parameters.

10Due to the [D4] symmetry there are two inequivalent orientation associated with this requirement. Consider a square, the
first orientation corresponds to align e1 with the line connecting the middle of opposite edges, while the second is associated
with the line connecting opposite vertices. In these two orientations the shape of the matrices will be identical, but not their
values.
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4.1. Static identification

To extract the strain-gradient elasticity parameters, 4 independent numerical experiments should be
realized. In Section 4.1.1 the general setting of that 4 experiments and in Section 4.1.2 their explicit definitions
will be given.

4.1.1. Settings of the experiments

The numerical experiments (Finite Element simulations) are conducted on a 2D architectured material
with the assigned BCs indicated on Fig.4(a) and Fig.4(c), and whose properties are listed in Table.1). Analyt-
ical solutions on a 1D SG material with assigned BCs, as indicated on Fig.4(b) and Fig.4(d), are determined.
Next, the SG material parameters are estimated by fitting the numerical solution following the micro macro
identification described in Fig. 3.

Periodic condition

Periodic condition

(a) 2D
Equivalent points

(b) 1D

Figure 3: Micro-macro identification.

Notations associated to the geometry description of the 1D strain-gradient elastic rod are represented in
Fig. 4b:

• Ω =]0;L[;

• ∂Ω = {0} ∪ {L};
• Ω = Ω ∪ ∂Ω.

a L ρm Em νm
(cm) (cm) (kg m−3) (GPa) (-)

1 100 2000 200 0.3

Table 1: Parameters used in the 2D numerical simulations.

This identification procedure has been applied to different thicknesses th (cf Fig.2), and the results are
summarized in Table.2.

4.1.2. Numerical experiments

The 4 experiments to be conducted are:

• 2 classical testings: Extension and Shear test;

• 2 generalized testings: Hyper-Extension and Hyper-Shear test.

Extension test The displacement field associated to the extension experiment (Fig.4b) is solution of the
following ODE: 

c11u1,11 − a11u1,1111 = 0, ∀x ∈ Ω,

u1(0) = 0, u1(L) = δx,

R1(0) = 0, R1(L) = 0

(24)

10



BCs correspond to prescribed horizontal displacement and free double force. By the constitutive law, the
conditions of free double force, because of (22) and (23), on the boundaries are equivalent to:

u1,11(0) = 0, u1,11(L) = 0

The analytic solution to this boundary value problem (BVP) is:

u1(x) =
δx
L
x. (25)

Thus, the traction t1, at the right-hand side (t1(L)) of the boundary ∂Ω, because of (22) and (23), is

t1(L) = c11u
′
1(L) = c11

δx
L
⇒ c11 = t1(L)

L

δx
(26)

The corresponding numerical test on the 2D structure, that is represented in Figure 4a, is realized by imposing
the following boundary conditions:

u1(0, x2) = 0, u1(L, x2) = δx (27)

Partial differential equations are those for a standard Cauchy linearly elastic material with those material
parameters exposed in Table 1. The reaction corresponding to the kinematic constraint (27)2 is identified
with t1(L) and the identification of the material coefficient c11 is done via eq. (26).

Periodic condition

u1(−a, x2)

u2(−a, x2) u2(L+ a, x2)

u1(L+ a, x2)

u1(L, x2)
u2(L, x2)

u1(0, x2)
u2(0, x2)

u1(L+ a, x2)

(a) 2D test

u1(0)
u1,1(0)

u1(L)
u1,1(L)

(b) 1D test

Periodic condition

u1(0, x2)

u2(0, x2)

u1(L, x2)

u2(L, x2)

(a) 2D test

u2(0)
u2,1(0)

u2(L)
u2,1(L)

(b) 1D test

Figure 4: Schematic representation of static (a) 2D and (b) 1D extension tests, (c) 2D and (d) 1D shear test. The 2D problems
are numerically solved, while the 1D ones are analytically solved.

Hyper-Extension test In this case the ordinary differential equation is the same as in the previous test,
Eq. (24)1, but the boundary conditions are:

u1(0) = 0, u1(L) = δx, u1,1(0) = 0, u1,1(L) = 0,

that correspond to both displacement and gradient of displacement prescriptions. Thus, the analytic solution,
for the scheme represented in Fig.4b) is now more complicated:

u1(x) =

(
Sinh

[
Lr1
2

]
− Sinh

[
r1(L−2x)

2

]
− xr1Cosh

[
Lr1
2

])
δx

2Sinh
[
Lr1
2

]
− Lr1Cosh

(
Lr1
2

) (28)
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where the material parameter r1 is defined as follows: r1 =
√

c11
a11 .

The corresponding test on the 2D structure, Figure 4a, is realized by imposing the following boundary
conditions:

u1(−a, x2) = 0, u1(0, x2) = 0, u1(L, x2) = δx, u1(L+ a, x2) = δx,

where the normal gradient of the displacement has been prescribed by enlarging the domain in the x1 direction
to guarantee that at x1 = 0 and at x1 = L the normal gradient is zero as prescribed in the continuous model.
The value of the constitutive parameter a11 is therefore determined by fitting the horizontal displacement
field u1 computed for the 2D model in the periodicity line with the analytic solution (28).

Shear test The displacement field associated to the extension experiment (Fig.4b) is solution of:
c33u2,11 − a33u2,1111 = 0 ∀x ∈ Ω,

u2(0) = 0, u2(L) = δx

R2(0) = 0, R2(L) = 0

(29)

BCs correspond to those obtained with the prescription of the displacement and of free double force.
Using the constitutive law, because of (22) and (23), free double force on boundaries is equivalent to:

u2,11(0) = 0, u2,11(L) = 0

The analytic solution is therefore

u2(x) =
δy
L
x. (30)

The corresponding test on the 2D structure, Figure 4a, is realized by imposing the following boundary
conditions:

u2(0, x2) = 0, u2(L, x2) = δx.

As for the extension test, the constitutive coefficient (in this case c33) is computed using the traction t2 at
the right-hand side of the domain:

c33 = t2(L)
L

δx
.

Hyper-Shear test Even in this case the ordinary differential equation is the same as in the previous test,
Eq. (29), and the boundary conditions are

u2(0) = 0, u2(L) = δx, u2,1(0) = 0, u2,1(L) = 0

that corresponds to the prescriptions of both displacement and gradient of displacement. The solution is here
given analytically,

u2(x) =

(
Sinh

[
Lr2
2

]
− Sinh

[
r2(L−2x)

2

]
− xr2Cosh

[
Lr2
2

])
δy

2Sinh
[
Lr2
2

]
− Lr2Cosh

(
Lr2
2

) (31)

with the material parameter r2 =
√
c33/a33. The corresponding test on the 2D structure, Figure 4c, is

realized by imposing the following boundary conditions :

u1(0, x2) = 0, u2(0, x2) = 0, u1(L, x2) = 0, u2(L, x2) = δy.

The value of the constitutive parameter a33 is determined by fitting the vertical displacement field u2 com-
puted for the 2D model in the periodicity line with the analytic solution (31).
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4.2. Dynamic identification

The phase velocities computed from Equation (14) are:

vP (k, c11, ρ, a11, JP ) =

√
c11 + a11k

2

ρ+ JP k2
, vS(k, c33, ρ, a33, JS) =

√
c33 + a33k

2

ρ+ JSk2

These expressions are used in the minimization procedure (Equations (19)), considering the values of ρ, c11,
c33, a11, a33 obtained from the static identification. The results of the procedure are resumed in Table 2.
As can be seen, effect of the micro inertia is more important for P-modes, while it is vanishing for S-waves.
Indeed, this effect can be related to the inertia of the vertical bars in the microstructure.

th ρ c11 c33 a11 c33 JP JS `P `S hP hS
(mm) (kg/m3) (MPa) (MPa) (Pa m2) (Pa m2) (kg/m) (kg/m) (mm) (mm) (mm) (mm)

1. 380. 22.37 0.12 0.11 1.06 0.0257 0 0.07 2.95 20.16 0
2. 720. 45.79 1.09 0.62 8.71 0.0107 0 0.12 2.83 9.44 0
3. 1020. 70.67 4.1 1.36 25.53 0.0075 0 0.14 2.49 6.63 0
4. 1280. 97.6 10.63 1.85 41.3 0.0057 0 0.14 1.97 5.17 0
5. 1500. 127.54 21.74 1.57 37.8 0.0042 0 0.11 1.32 4.1 0
6. 1680. 161.46 36.72 0.7 17.16 0.0027 0 0.07 0.68 3.12 0
7. 1820. 198.3 52.55 0.14 3.18 0.0013 0 0.03 0.25 2.09 0
8. 1920. 233.52 65.75 0.01 0.17 0.0002 0 0.01 0.05 0.84 0
9. 1980. 259.61 74.13 0 0 0 0 0 0 0 0
10. 2000. 269.23 76.92 0 0 0 0 0 0 0 0

Table 2: Table of the coefficients identified for different thicknesses. The size of the unit cell is a = 1cm

The characteristic lengths of the strain-gradient model are defined as follows:

`P =

√
a11
c11

, `S =

√
c33
c33

, hP =

√
JP
ρ
, hS =

√
JS
ρ

It is worth noting that these characteristic lengths depend on the geometry of the unit cell through the wall
thickness. This dependence is depicted on Figure 5.
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`S
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hS

Figure 5: Characteristic lengths for P- and S- waves

In Figure 6 we can observe the result of the identification procedure by plotting the superposition of the
dispersion curves, phase velocity and group velocity for the strain-gradient model (solid lines) and the FEM
model (points). The result of the identification procedure for unit cell having wall thickness of for th = 4mm
is plotted on Figure 6. On associated subfigures the dispersion curves, phase velocity and group velocity
for the strain-gradient model (solid lines), Cauchy model (dashed gray lined) and the FEM model (black
points) have been drawn. As can be observed, a good fit is achieved in the first third of the Brillouin zone,
while the model clearly loses accuracy for high values of k. As previously discussed, it can be observed that
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group velocity is diverging faster than the other quantities. This illustrate the fact that the quality of the
approximation should not only be assessed on the accurate description of the dispersion curves.
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(a) Dispersion relations
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Figure 6: Dispersion curves, phase velocity and group velocity for the Strain gradient model (solid black lines), Cauchy model
(dashed gray lines) compared with the results of FEM Bloch computation (black points) in the case of a = 1cm and th = 4mm.

4.3. Estimation of the error

In this section we estimate the error between the FEM computation (Bloch analysis) and the overall
strain-gradient model. Results are then compared with a classical Cauchy overall continuum. This error
computation is performed for different thicknesses th of the microstructure walls. The abscissas of each
subplot represent the wavelength λ over the size of the unit cell a, while the ordinates represent the thickness
of the walls th with respect to a. This means that in the upper part of each subplot, where th/a = 1, the
microstructure is completely homogeneous, while in the lower part the walls are very thin. In the case of
th/a = 1, as the medium is not dispersive we do expect that both model perform correctly. In figures 7 and 8
the first row represent the P-waves, the second raw the S-waves. The left, the central and the right columns,
represent the errors in terms of dispersion, phase velocity and group velocity, respectively. By comparing the
errors shown in Figure 7 and 8 for classical and strain-gradient approximation, respectively, we can see that
the strain-gradient model behaves better in the case of thin walls, down to values of wavelength around six
times the size of the unit cell. In this zone, the SG model has less than 1% error for almost all configurations,
while the first gradient model has, in the same zones up to 10-20% errors. The first gradient plots for S-waves
have a slightly better behavior in a narrow zone for lower values of λ/a. But this is only due to the fact that
the dispersion curves, as well as the phase and group velocity, change concavity and cross the first gradient
curves, as it can be observed in Figure 6.

Another remark can be made about the decrease of performances of the strain-gradient model when the
ratio th/a becomes very small.
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Figure 7: Contour plots of the error (in %) between the Cauchy overall solution and the Bloch analysis for the dispersion curves,
phase velocity and group velocity.

Figure 8: Error (in %) between the SGE overall solution and the Bloch analysis for the dispersion curves, phase velocity and
group velocity.

4.4. Time domain validation

In this last subsection we compare the transient time domain response (i.e. we solve the boundary value
problem) of a 2D FEM simulations with the equivalent homogeneous 1D strain-gradient model (add figure)
whose equations of motion in the [D4] case are the following:
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Periodic condition

Periodic condition

(a) 2D test
sensorsource

(b) 1D test

Figure 9: Schematic description of the time domain test.

{
c11u1,11 − a11u1,1111 = ρü1 − JP ü1,11
c33u2,11 − a33u2,1111 = ρü2 − JS ü1,22

The numerical configuration is the following: a displacement source placed at x = 0 is exciting a transient
wave with a given central frequency fc. The central frequency for each test, as well as the corresponding unit
cells per wavelength ratio, are resumed in Table 3.

P-waves S-waves
fc (kHz) λ/a(-) fc (kHz) λ/a (-)

1 27.5 0.2 45.6
4 6.8 1.5 6.2

Table 3: Central frequencies and corresponding unit cells per wavelength ratio.

The results are presented in two forms:

• displacement field measured at x = 50 cm (Figures 10 and 11);

• displacement field on a longitudinal cut line (symmetry line) of the 2D model compared to the result
for the 1D model (Figures 12 and 13.).

A schematic description of the tests is presented in Figure . The results show that a quantitative agreement
is observed with the strain-gradient model and on the contrary a Cauchy model looses accuracy whenever
the frequency is raised. In particular, Figure 10 shows that the strain-gradient model is able to account
for back scattering effects. This effect is due to the fact that, as it can be seen in Figure 6 and 12, small
wavelengths travel slower in the case of P-waves. The opposite effect can be remarked for S-waves, where
the so called anomalous dispersion (i.e. group velocity higher than phase velocity) can be observed. In the
case of normal dispersion (Figure 12) the Cauchy solution is aligned with the head of the traveling signal,
while for anomalous dispersion it is aligned with the tail (Figure 13). This latter remark can be important
when considering the velocity of the first arriving signal, used in quantitative ultrasonic characterization, as
in Rosi et al. (2016).

5. Conclusions

In this paper we presented a quantitative estimation of the validity domain of the overall description of
wave propagation by the strain gradient elasticity model. The results are obtained for a unidirectional wave
propagation, but the extension to multidirectional situations is possible. The challenge for such an extension,
is based on the estimation of the overall coefficients necessary to set up the model.

The main innovative results of the paper are the following:
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Figure 10: Time domain response P-waves evaluated at x = 50 cm.
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Figure 11: Time domain response S-waves evaluated at x = 50 cm.
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Figure 12: Longitudinal cut at different time instants for P-waves or fc = 4 kHz and for th = 4mm.
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Figure 13: Longitudinal cut at different time instants for S-waves for fc = 1.2 kHz and for th = 4mm.
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• A novel mixed static-dynamic identification procedure for the identification of the coefficients is intro-
duced. The procedure involves a static analysis for the identification of the coefficients of the first and
second order elastic tensors (i.e C

≈
and A

≈
∼

) based on structural type tests ans a dynamic analysis based

on Bloch theorem for the identification of the microinertia tensor J
≈

.

• the identification procedure is applied to a pseudo-1D case involving a microstructure with [D4]-invariant
inner geometry, with the wave-vector parallel to a main direction of symmetry.

• the domain of validity is evaluated in term of wavelength. For the present case, and considering a
maximum error of 1%, the limit of the SGE model is evaluated at a ratio wavelength over size of
the microstructure equal to six. It should be note that in the same situation the limit of the Cauchy
elasticity is evaluated at a ratio wavelength over size of the microstructure equal to 20.

• the time domain transient response of the strain gradient elasticity model is compared with the response
of the 2D plane strain finite element computation of the actual structure. Within the validity range
of the model, the solution of strain gradient elasticity fits very well the 2D solution while a standard
Cauchy description loses accuracy as the wavelength decreases.
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tion Francilienne de Mécanique, CNRS FR2609”. Giuseppe Rosi has been supported by the Université Paris-
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