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RIEMANN SURFACES:

RECEPTION BY THE FRENCH SCHOOL

ATHANASE PAPADOPOULOS

La vérité réside dans l’imaginaire

Eugene Ionesco,

(Lectures at Brown University, Sept. 1984)

Abstract. Riemann introduced in his doctoral dissertation (1851) the con-

cept of Riemann surface as a new ground space for meromorphic functions and

in particular as a domain for a multi-valued function defined by an algebraic
equation such that this function becomes single-valued when its is defined on

its associated Riemann surface. It took several years to the mathematical

community to understand the concept of Riemann surface and the related ma-
jor results that Riemann proved, like the so-called Riemann existence theorem

stating that on any Riemann surface – considered as a complex one-dimensional

manifold – there exists a non-constant meromorphic function. In this chapter,
we discuss how the concept of Riemann surface was apprehended by the French

school of analysis and the way it was presented in the major French treatises on

the theory of functions of a complex variable, in the few decades that followed
Riemann’s work. Several generations of outstanding French mathematicians

were trained using the treatises. At the same time, this will allow us to talk
about the remarkable French school that started with Cauchy and expanded

in the second half of the nineteenth century. We also comment on the relations

between the French and the German mathematicians during that period.
The final version of this paper appears as a chapter in the book From

Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and

S. Yamada, ed.) Berlin: Springer, 647 p., 2017.
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1. Introduction

The notion of Riemann surface, discovered by Riemann and introduced in his
doctoral dissertation (1851), is the culmination of a series of investigations done
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2 ATHANASE PAPADOPOULOS

before him, by Cauchy and others, on the theory of functions of a complex vari-
able. With this discovery, Riemann made a complete transformation of the field of
complex analysis, merging it with topology and algebraic geometry. He also paved
the way to the methods of hyperbolic geometry combined with group theory that
gave rise to automorphic forms, developed by Poincaré, Klein and others, and to
many other developments.

In Chapter 7 of the present volume (cf. [76]), we discuss the results of Cauchy
and Puiseux on line integrals and their dependence on homotopy classes of paths,
and we also mentioned other related results that were available to Riemann when
he wrote his doctoral dissertation. Although the problems he addressed were in
the continuity of the works of his predecessors, the complete novelty of his ideas,
with proofs that rely largely on geometric intuition, sometimes with arguments
from physics, led to the fact that these ideas were sometimes poorly understood by
Riemann’s contemporaries and immediate successors. In particular, this led Klein
to spend a substantial part of his life explaining Riemann’s work and trying to
make it more accessible. He did this in numerous lectures and books, including the
well-known treatise Über Riemanns Theorie der algebraischen Funktionen und ihrer
Integrale (On Riemann’s theory of algebraic functions and their integrals) (1882)
[?].

France, in the few years preceding the publication of Riemann’s first memoir,
saw the rise of a remarkable school of analysis whose major representative was
Cauchy. Among the immediate followers of Cauchy, one has to mention Liouville,
Puiseux, Hermite, Briot, and Bouquet, and then came another generation of ana-
lysts, including Jordan, Halphen, Goursat, Appell, Tannery, Lacour, Molk, Picard,
Darboux, Simart, Fatou, and there are others. All these mathematicians had a
great admiration for Riemann and had no doubt about the importance of his ideas,
even if they did not fully make use of them in their works. Riemann’s collected
papers, translated into French, appeared in 1889, with a preface by Hermite [97],
who starts with the following:1

The work of Bernhard Riemann is the most beautiful and greatest one
in analysis in our epoch. It has been consecrated by a unanimous admi-
ration and will leave an imperishable mark in Science. [...] Never before
that, in any mathematical publication, the gift of invention appeared
with more power, never had anybody asked for such beautiful conquests
in the most difficult questions in analysis.2

One notion which was particularly painful to accept by the French analysts is
that of Riemann surface. Most of the treatises on the theory of functions of a
complex variable that were used in teaching in the French universities or at the
École Polytechnique, in the few decades that followed Riemann’s death, were based
exclusively on the methods of Cauchy, missing the essential relevance of Riemann
surfaces. As a general rule, Riemann’s ideas were absorbed very slowly, and it was
only around the turn of the twentieth century that the French treatises included
the theory of Riemann surfaces in their full strength.

In the present chapter, we review this fascinating page of the history of complex
analysis. This will also give us the occasion of surveying briefly the lives and works
of several prominent mathematicians from this exceptional period, and of discussing
the relations between the French and the German mathematical schools.

1In the present chapter, the translations from the French are mine.
2L’œuvre de Bernhard Riemann est la plus belle et la plus grande de l’Analyse à notre

époque: elle a été consacrée par une admiration unanime, elle laissera dans la Science une trace
impérissable. [...] Jamais, dans aucune publication mathématique, le don de l’invention n’était
apparu avec plus de puissance, jamais on n’avait demandé autant de belles conquêtes dans les
plus difficiles questions de l’analyse.
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The plan of the rest of this chapter is the following.
In §2, we comment on the notion of Riemann surface and on Riemann’s existence

theorem and how these concepts were received when Riemann introduced them.
In §3, we review the way Riemann’s ideas on this subject are presented in

the famous French treatises on analysis, including those of Briot-Bouquet, Briot,
Hermite, Jordan, Appell-Goursat, Goursat, Picard, Picard-Simart, Appel-Goursat-
Fatou, Halphen, Tannery-Molk and Appell-Lacour. Elliptic functions constitute
the central theme of several of these treatises. At the same time, we give some
biographical information on the authors of these treatises, highlighting relations
among them. The overall picture is that of a coherent group, forming a “school,”
which was probably the first French school of mathematics. Several doctoral dis-
sertations were written under the same advisor, and the dissertation committees
often consisted of the same persons: Darboux, Hermite, Bouquet, with some small
variations.

In §4, we review the content of the doctoral dissertation of Georges Simart, which
is entirely dedicated to a presentation of Riemann’s work on Riemann surfaces and
Abelian functions. To complete the picture, we have included a section, §5, in
which we review a few French doctoral dissertations and other works of the period
considered which contributed to the diffusion of other major ideas of Riemann: the
zeta function, minimal surfaces and integration.

In §6, we take the opportunity of the topic discussed in this chapter to say
a few words on the relationship between the French and the German schools of
mathematics, in particular in the few years that followed the 1870 devastating
French-German war.

The concluding section, §7, contains some additional notes on the relationship
between the French and the German schools at the period considered.

2. Riemann surfaces

In his doctoral dissertation [91], Riemann introduced Riemann surfaces as rami-
fied coverings of the complex plane or of the Riemann sphere. He further developed
his ideas on this topic in his paper on Abelian functions [93]. This work was moti-
vated in particular by problems posed by multi-valued functions w(z) of a complex
variable z defined by algebraic equations of the form

(1) f(w, z) = 0,

where f is a two-variable polynomial in w and z.
Cauchy, long before Riemann, dealt with such functions by performing what he

called “cuts” in the complex plane, in order to obtain surfaces (the complement
of the cuts) on which the various determinations of the multi-valued functions are
defined. Instead, Riemann assigned to a multi-valued function a surface which is
a ramified covering of the plane and which becomes a domain of definition of the
function such that this function, defined on this new domain, becomes single-valued
(or “uniform”). Riemann’s theory also applies to transcendental functions. He also
considered ramified coverings of surfaces that are not the plane.

Together with introducing Riemann surfaces associated with algebraic functions,
Riemann considered the inverse problem: Given a Riemann surface obtained geo-
metrically by gluing a certain finite number of pieces of the complex plane along
some curves (which are equivalent to the “cuts” in the sense of Cauchy), can we
find an algebraic relation such as (1) with which this Riemann surface is associated?
This can also be formulated as the problem of finding on an arbitrary Riemann sur-
face a meromorphic function with prescribed position and nature of its singularities
(poles and branch points). The idea, contained in Riemann’s 1851 dissertation [91],
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is natural, since a polynomial is described by its roots, and a rational function by
its zeros and poles. Riemann showed that the general question has a positive an-
swer, and in his solution to the problem, he proved that a meromorphic function is
determined by its singularities. This result is one form of what is usually called the
Riemann existence theorem, a theorem that had a tremendous impact on complex
geometry. For instance, it was the main motivation for what became known as the
Riemann–Roch theorem. In his paper on Abelian functions [93], Riemann proved
one part of that theorem, namely, that given m points on a closed Riemann surface
of genus p, the dimension of the complex vector space of meromorphic functions on
this surface having at most poles of first order at the m points is ≥ m−p+1. In his
paper [100] (1865), Gustav Roch, a student of Riemann, transformed this inequality
into an equality, which became known as the Riemann–Roch theorem. Riemann’s
result relies on his existence theorem, the description of a meromorphic function by
its singularities allowing a dimension count. The proof that Riemann gave of his
inequality relies on the Dirichlet principle and it was considered non-rigorous. This
initiated works by several mathematicians, some of them with the aim of finding
alternative proofs Riemann’s results that are based on this principle, and others
with the goal of giving a solid foundation to the Dirichlet principle. Thus, an im-
portant activity was generated as an indirect consequence of Riemann’s existence
theorem.

The discussion around Riemann’s existence theorem is spread in several sections
of Riemann’s doctoral dissertation [91] and his paper on Abelian function, [93], in
particular in Section III of the preliminary part of the latter, entitled Determination
of a function of a complex variable magnitude by the conditions it fulfills relatively
to the boundary and to the discontinuities. Later in the same paper, an existence
result is given in the case of functions defined by integrals of algebraic functions.

Riemann’s use of the Dirichlet principle was harshly criticized by Weierstrass
[108], and these critiques spread a doubt not only on the validity of Riemann’s proof
of his existence theorem but also of other theorems. It is important to emphasize
this fact, because it explains in part why Riemann’s results on Riemann surfaces
were not used by his immediate followers. Klein writes in his Development of
mathematics in the 19th century ([58] p. 247 of the English translation):

With this attack by Weierstrass on Dirichlet’s principle, the evidence to
which Dirichlet, and after him, Riemann, had appealed, became fragile:
Riemann’s existence theorems3 were left in the air.

It is interesting to observe the positions mathematicians took with
respect to Riemann’s existence theorem and Weierstrass’s critique.

The majority of mathematicians turned away from Riemann; they
had no confidence in the existence theorems, which Weierstrass’s critique
had robbed of their mathematical supports. They sought to salvage
their investigations of algebraic functions and their integrals by again
proceeding from a given equation F (ζ, z) = 0 [...] Riemann’s central
existence theorem for algebraic functions on a given Riemann surface
fell from its place, leaving only a vacuum.

It is also interesting to note Riemann’s attitude toward Weierstrass’s critique as
recorded by Klein in the same book ([58] p. 247–48 of the English translation):

Riemann had a quite different opinion. He fully recognized the justice
and correctness of Weierstrass’s critique; but he said, as Weierstrass once
told me “that he appealed to the Dirichlet principle only as a convenient
tool that was right at hand, and that his existence theorems are still
correct.”

3The plural will be explained later, when we shall talk about Picard’s work.
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Concerning the notion of Riemann surface, Klein writes, in the same work ([58]
p. 245 of the English translation):

The most important point is that, according to Riemann’s considera-
tions, to any given Riemann surface there corresponds one (and only one)
class (a “field”) of algebraic functions (with their Abelian integrals). For
Riemann a “class” of algebraic functions means the totality of functions
R(ζ, z) that can be rationally expressed in terms of ζ and z; the term
“field” was introduced later by Dedekind. This is a theorem that could
not have been obtained in another way. At this point Riemann’s theory
remained, for the time being, ahead of all the others which started from
the equation F (ζ, z) = 0.

Riemann not only considered Riemann surfaces as associated with individual
multi-valued functions or with meromorphic function in general, but he also con-
sidered them as objects in themselves, on which function theory can be developed in
the same way as the classical theory of functions is developed on the complex plane.
Riemann’s existence theorem for meromorphic functions with specified singularities
on a Riemann surfaces is also an important factor in this setting of abstract Rie-
mann surfaces. Riemann conceived the idea of an abstract Riemann surface, but
his immediate followers did not. During several decades after Riemann, mathemati-
cians (analysts and geometers) perceived Riemann surfaces as objects embedded in
three-space, with self-intersections, instead of thinking of them abstractly. They
tried to build branched covers by gluing together pieces of the complex plane cut
along some families of curves, to obtain surfaces with self-intersections embedded
in three-space. In his 1913 book Idee der Riemannschen Fläche (The concept of a
Riemann surface), [109] (p. 16 of the English translation), Weyl writes about these
spatial representations:

In essence, three-dimensional space has nothing to do with analytic
forms, and one appeals to it not on logical-mathematical grounds, but
because it is closely associated with our sense-perception. To satisfy our
desire for pictures and analogies in this fashion by forcing inessential
representations on objects instead of taking them as they are could be
called an anthropomorphism contrary to scientific principles.

Hilbert, in his 1903 paper [50], considers surfaces that are not embedded in a
Euclidean space.4

The example of a Riemann surface in Figure 1 is extracted from the treatise
Théorie des fonctions algébriques (Theory of algebraic functions) by Paul Appell
and Edouard Goursat (1895) in which the authors explain Riemann’s ideas and on
which we shall comment later in the present chapter. The authors explain that in
the picture, the “sheets traverse each other,” but that the reader should imagine
that these “sheets are infinitely close to each other.” We shall survey the treatise
by Appell and Goursat in §3 below.

In 1909, Hadamard, in his survey on topology entitled Notions élémentaires sur
la géométrie de situation (Elementary notions of geometry of situation),5 talking
about Riemann surfaces, still considers lines along which the leaves cross each other
(cf. [39] p. 204).

It was difficult to conceive these surfaces without the intersections of the sheets
in 3-dimensional space. One had to wait for several years before these surfaces were
freed from their three-dimensional prison. Weyl, writes in his 1913 book ([109] p. 16
of the English translation): “The concept of ‘two-dimensional manifold’ or ‘surface’
will not be associated with points in three-dimensional space; rather it will be a

4I thank K. Ohshika for this reference.
5“Geometry of situation” was one of the various names given to topology, before the

word“topology” became universally accepted.
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Figure 1. A drawing of a Riemann surface, from the treatise Théorie
des fonctions algébriques (1895) by Goursat and Appell.

much more general abstract idea.” Figure 2 represents a more abstract drawing in
the tradition of Riemann. It is extracted from the French version of Riemann’s
works [97].

Figure 2. A drawing from Riemann’s paper on Abelian functions.

Klein considers that around the year 1881, at least some of Riemann’s impor-
tant ideas were already understood in France. He writes in his Development of
mathematics in the 19th century [58] p. 258:

Working on the subject of automorphic functions, from 1881 on, I came
into close touch with Poincaré; this was also the time when Riemann’s
modes of thoughts were transplanted to France and there found firm
ground.
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In the next section, we review the way Riemann surfaces are treated in some of the
major French treatises on complex analysis that were published in the few years
that followed Riemann’s work.

3. The nineteenth-century French treatises on analysis

In this section, we review some of the nineteenth-century French treatises on
analysis, in relation with the notion of Riemann surface and some associated notions
like elliptic and Abelian integrals and their periods. As we shall see, there was a
great variety of important treatises of various levels of difficulty, covering a large
spectrum of topics. Let us note that independently of the work of Riemann, it
is interesting to review these treatises, because these were the textbooks in which
the French mathematicians of that epoch were trained. These mathematicians
constituted a consistent and very strong school of analysis whose imprint is still
felt today. The next table is a list of the treatises that we shall mention, in an
approximate chronological order. It is difficult to make a precise chronological
order, because several of these treatises consist of several volumes, with a time
lapse of several years between the first and the last volume. In the commentary
that follows this table, the order takes into account the connections between the
ideas rather than the chronology.

Author Title Year
(1st ed.)

Ch.-A. Briot Théorie des fonctions doublement 1859
and J.-C. Bouquet périodiques et, en particulier,

des fonctions elliptiques
Ch. Hermite Cours d’analyse 1873

de l’École Polytechnique
Ch.-A. Briot Théorie des fonctions Abéliennes 1879
C. Jordan Cours d’analyse 1882–

de l’École Polytechnique 1897
Ch. Hermite Cours à la faculté 1882

des sciences de Paris
G.-H. Halphen Traité des fonctions elliptiques 1886–

et de leurs applications 1891

É. Picard Traité d’analyse 1891–
1896

J. Tannery Éléments de la théorie 1893–
and J. Molk des fonctions elliptiques 1902
P. Appell Théorie des fonctions algébriques 1895

and É. Goursat et de leurs intégrales

É. Picard Théorie des fonctions algébriques 1897–
and G. Simart de deux variables indépendantes 1906
P. Appell Principes de la théorie 1897

and É. Lacour des fonctions elliptiques
et applications

É. Goursat Cours d’analyse mathématique 1902–
1905

P. Appell, Étude des fonctions analytiques 1929

É. Goursat sur une surface de Riemann
and P. Fatou
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3.1. Briot and Bouquet. We start with the treatise Théorie des fonctions dou-
blement périodiques et, en particulier, des fonctions elliptiques (Theory of doubly
periodic functions, and in particular, of elliptic functions) [17] by Briot and Bou-
quet. This treatise, whose first edition appeared in 1859, became one of the major
references on the theory of functions of a complex variable in France during the
second half of the nineteenth century. As the name of the treatise indicates, the
stress is on elliptic functions and their generalizations to doubly periodic functions.
We recall that elliptic functions have (at most) two independent periods ; they are
essentially functions defined on the torus. We start by recalling a few facts about
these functions. For a glimpse into the history of elliptic integrals, which are at the
origin of the general theory of elliptic functions, the reader is referred to Chapter
1 of the present volume [74].

Before Riemann, elliptic functions had occupied the greatest mathematicians:
Euler, Gauss, Dirichlet, Legendre and others. In France, the first mathematician
who made a thorough study of these functions is Legendre, who wrote treatises
comprising several volumes on the subject, cf. [62] and [63]. The subject became
fashionable in France only after his death. It is interesting in this respect to quote
a letter from Legendre to Jacobi, dated February 9, 1828, in which Legendre com-
plains that in France, mathematicians, at his time, were not enough interested in
elliptic functions. Responding to a letter in which Jacobi makes for him a sum-
mary of Abel’s article Recherches sur les fonctions elliptiques (Researches on elliptic
functions) [1] published in 1827, Legendre writes ([54], t. 1, p. 407):

I was already aware of the beautiful work of Mr. Abel inserted in Crelle’s
Journal. But I was very pleased by the analysis you have given me in your
own language, which is closer to mine. For me, it is a big satisfaction
to see two young geometers, as you and him, cultivating with success
a branch of analysis which has been for such a long time my favorite
subject of study, and which is not as much welcome in my own country
as it deserves to be.6

By the time of Briot and Bouquet published their treatise, that is, thirty years after
this letter was written, the study of elliptic functions was already a very active field
in France. Cauchy has already introduced line integrals in the field of functions of
a complex variable, and elliptic integrals constituted a new class of functions with
interesting properties. The known functions of a complex variable, before this class,
were limited to polynomials exponentials, logarithms, trigonometric functions, and
some other special functions introduced by Euler. Several questions concerning
these functions, motivated by the work of Legendre, Abel and Jacobi, constituted
the basis of several research topics. Furthermore, elliptic functions were known to
have numerous applications in geometry, number theory, mechanics and physics.

A few words about Briot and Bouquet may be useful, before talking about their
treatise. Although they were great analysts and remarkable teachers, their names
are rather unknown today.

In 1842, Charles-Auguste Briot (1817–1882) submitted at the Faculté des Sci-
ences de Paris, a dissertation on mechanics whose title was Sur le mouvement d’un
corps solide autour d’un point fixe (On the motion of a solid body around a fixed
point) [15]. The aim of this dissertation was to provide complete proofs of re-
sults on mechanics that were stated by Poinsot in his memoir Théorie nouvelle de
la rotation des corps (A new theory for the rotation of bodies) [90]. Briot then

6J’avais déjà connaissance du beau travail de M. Abel inséré dans le Journal de Crelle. Mais
vous m’avez fait beaucoup de plaisir de m’en donner une analyse dans votre langage qui est plus
rapproché du mien. C’est une grande satisfaction pour moi de voir deux jeunes géomètres, comme

vous et lui, cultiver avec succès une branche d’analyse qui a fait si longtemps l’objet de mes études
favorites et qui n’a point été accueillie dans mon propre pays comme elle le méritait.
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taught at the Sorbonne and at the École Normale Supérieure, but also, for several
years, in two lycées7 in Paris: Bourbon and Saint-Louis. These were among the
famous lycées preparing élèves for the highly competitive entrance examination of
the École Polytechnique and the École Normale Supérieure. Having good teachers
in such lycées was a tradition in France, and some of these teachers were excellent
mathematicians.9 Briot, like Riemann, Cauchy and many mathematicians of his
generation, was highly interested in physics, in particular, heat, light and electric-
ity, three topics which were particularly dear to Riemann. Briot’s research in these
fields was based on his theories of aether, and in his research on these topics he was
strongly influenced by Louis Pasteur. He wrote a large number of textbooks for stu-
dents, encompassing analysis, algebra, analytic geometry, mechanics and physics.
Having textbooks written by outstanding and devoted teachers was traditional in
France in that period.

Jean-Claude Bouquet (1819–1885) defended his doctoral dissertation in 1842,
the same year as Bouquet. The subject was the calculus of variations, and the title
was Sur la variation des intégrales doubles (On the variation of double integrals)
[14]. Bouquet first taught at a lycée in Marseille and then became, at the age of 26,
professor at the University of Lyon. Seven years later he moved to Paris where he
became professor at Lycée Bonaparte, and then Lycée Louis-le-Grand. In 1868, he
became the successor of Puiseux at the École Normale Supérieure, and in 1885 the
successor of Serret at the Chair of differential and integral calculus of the Faculté
des Sciences de Paris. Bouquet’s successor at that chair was Émile Picard.

Briot and Bouquet published, separately and as co-authors, several important
articles and treatises on the theory of functions of a complex variable and on elliptic
and Abelian functions. It might be useful to recall that in the period considered,
joint mathematical works were rare, and for this reason the long-term collaboration
of Briot and Bouquet stands as a singular spot in the history of mathematics. In
1856, Briot and Bouquet published a joint paper entitled Étude des fonctions d’une

7The lycées where Briot (and several other mathematicians we encounter in the present chap-

ter) taught are high-schools whose curricula included an additional year of study after the high-

school diploma (baccalauréat). During that year, called Mathématiques spéciales, the élèves
(pupils) are prepared for the entrance examinations (concours d’entrée) to some highly com-

petitive schools which, in the period we are interested in, were essentially the École Polytechnique

and the École Normale Supérieure. In principle, only gifted and hard-working élèves were admit-

ted in such classes. Only a small percentage of the élèves were accepted into these schools (2 to
5 per cent) at the first trial. The others usually returned to the lycée and spent another year in

the class of Mathématiques spéciales where they deepen their knowledge and their training. The

chances of entering one of the two schools after this second year were about 25 per cent. Some of
the élèves, after a second failure, repeated a third time the class of Mathématique spéciale, and

the chances of success, for those who tried the concours d’entrée after a third year, were about

50 per cent.8 These classes still exist today in France, they are called Classes préparatoires aux

Grandes Écoles, and include two years, Mathématiques supérieures and mathématiques spéciales.

They prepare to the entrance examinations of a large number of schools.
9The list includes Briot, Bouquet, Darboux, Bertrand, Hoüel, Valiron, Châtelet, Tannery,

Boutroux, Émile Lacour, Lucas, Lichnerowicz, and there are others. The following story is related
by Picard, in his Eulogy of Jules Tannery [83]: “Bouquet used to relate that after he graduated

from the École [Normale Supérieure], and while he was in charge of the class of “mathématiques
spéciale” at Marseille’s lycée, he received the visit of the father of one of his élèves, who wanted

that his son be prevented from working in mathematics, because they lead to noting good. He
asked for a professor who would give a course which is enough bad so that his son does not enter

the École Polytechnique, after which one gains less money than in business. [Bouquet aimait

à raconter que, chargé à sa sortie de l’École, du cours de mathématiques spéciales au Lycée de

Marseille, il avait eu la visite du père d’un de ses élèves, qui voulait qu’on empêchât son fils de
travailler les mathématiques qui ne mènent à rien de bon. Il demandait que le professeur fit un

assez mauvais cours pour que son fils n’entrât pas à l’École Polytechnique au sortir de laquelle on

gagne moins d’argent que dans le commerce.]
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variable imaginaire (Study of functions of an imaginary variable) [16] in which they
present in a comprehensive way Cauchy’s theory of functions of a complex variable.
In the introduction to that memoir, they write:

This first memoir contains the principles of Cauchy’s theory of an imag-
inary variable. We shall adopt the definition given by Mr. Cauchy, and
we shall explain it by examples. We then study the properties of the
functions defined by series ordered according to the increasing integer
powers of the variable. This will allow us to establish, in a clear and
precise manner, the necessary and sufficient conditions for a function to
be expanded as a convergent series according to the increasing integer
powers of the variable. In this way, we shall get rid of the clouds that
still obfuscate the beautiful theorem of Mr. Cauchy.10

This paper, together with two other papers by Briot and Bouquet, became the bulk
of their famous treatise Théorie des fonctions doublement périodiques et, en parti-
culier, des fonctions elliptiques which we consider now. In that treatise, Cauchy’s
work is at the forefront. This treatise became famous especially by its second edi-
tion (1875), which carried the simpler name Théorie des fonctions elliptiques, cf.
[19]. In the preface, the authors start by pointing out the importance of tran-
scendental functions, recalling that Legendre spent almost all his life in trying to
understand them. They then mention the works of Abel and Jacobi, declaring that
Abel, around the year 1826, was the first to consider elliptic functions from the right
point of view and to realize that these functions are doubly periodic. According
to their account, Jacobi’s Fundamenta nova theoriæ functionum ellipticarum [52],
published three years later, contains nothing essential which Abel had not discov-
ered before. They declare that the difference between the two mathematicians is
that Abel tried to prove the main results on the theory of elliptic functions from
their double periodicity prorperty, whereas Jacobi did the same using algebraic rea-
sonings which have the disadvantage of hiding the reason behind the results and
which do not lead to interesting developments. Briot and Bouquet then write ([19]
p. xviii of the Preface):

Despite the remarkable works of these two great geometers, the theory
of elliptic functions was still in the dark, and very complicated. Neither
the double periodicity was recognized clearly, not the function itself was
defined rigorously. To shed light on this theory, one had to introduce a
new mathematical idea, and it is to the famous Cauchy that we owe this
important progress.11

In this treatise, single-valued functions are called monotropic (monotropes) and
multi-valued ones are called polytropic (polytropes). This terminology is introduced
in the first pages of the second edition of the treatise (p. 9 and 11 of the 1875
edition). It indicates clearly that the authors think of these functions in terms of
paths. (The word “tropos” in Greek means path.) Riemann’s work (or, at least, its

10Ce premier mémoire contient les principes de la théorie des fonctions d’une variable imagi-
naire. Nous adoptons la définition donnée par M. Cauchy, et nous l’expliquons par des exemples.

Nous étudions ensuite les propriétés des fonctions définies par des séries ordonnées suivant les
puissances entières et croissantes de la variable. Ceci nous permet d’établir, d’une manière nette
et précise, les conditions nécessaires et suffisantes pour qu’une fonction se développe en série con-
vergente suivant les puissances entières et croissantes de la variable. Nous faisons disparâıtre ainsi
les nuages qui obscurcissent encore le beau théorème de M. Cauchy.

11Malgré les remarquables travaux de ces deux grands géomètres, la théorie des fonctions
elliptiques restait fort obscure et très-compliquée ; ni la double périodicité n’avait été reconnue
d’une manière nette, ni la fonction elle-même définie d’une manière rigoureuse. Il fallait, pour
éclairer cette théorie, l’introduction d’une idée nouvelle en mathématiques, et c’est à l’illustre

Cauchy que l’on doit cet important progrès.
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existence) is known to the authors, but they prefer to rely on Cauchy, completed
by Puiseux. They write in the preface of the 1875 edition:

In Cauchy’s theory, the excursion of the imaginary variable is represented
by the motion of a point in the plane. To represent the functions which
acquire several values for the same value of the variable, Riemann used to
look at the plane as composed of several sheets which are superposed and
joined by weldings, in such a way that the variable can pass from a sheet
to another by passing a junction line (“ligne de raccordement”). The
conception of many-sheeted surfaces presents some difficulties; in spite of
the beautiful results that Riemann reached by this method, it appeared
to us that it has no advantage regarding the object we have in mind.
Cauchy’s idea is very well fit to the presentation of multiple functions;
it suffices to attach to the value of the variable the corresponding value
of the function, and, when the variable describes a closed curve and the
value of the function changes, to indicate this change by an index.12

The authors acknowledge in the preface that they were influenced by Liouville’s
course at the Collège de France on elliptic functions, based on the double periodicity
of these functions. A set of notes by Liouville on lectures he gave in 1847 on
doubly periodic functions were published 33 years later,13 cf. [65]. It seems that
Liouville considered that Briot and Bouquet stole his ideas, and he treated them
as “unworthy robbers,” see [77], p. 232.

Bottazzini reports in [55] (p. 244) that in 1861, Riemann lectured on complex
function theory following Cauchy’s point of view as contained in Briot and Bou-
quet’s treatise. A German translation of this treatise was published in 1862 [18].

3.2. Briot. In 1879, Briot published a treatise entitled Théorie des fonctions abéliennes
(Theory of Abelian functions) [20]. His goal in this new book is to explain Rie-
mann’s theory of Abelian functions. These are integrals of algebraic differentials on
Riemann surfaces that generalize elliptic functions (which are defined on surfaces
of genus one, that is, tori), and they played a major role in the development of
complex analysis and of algebraic geometry. In the introduction to his treatise,
Bouquet recalls that Riemann was the first to study these functions, and that he

12Dans la théorie de Cauchy, la marche de la variable imaginaire est figurée par le mouvement
d’un point sur un plan. Pour représenter les fonctions qui acquièrent plusieurs valeurs pour

une même valeur de la variable, Riemann regardait le plan comme formé de plusieurs feuillets
superposés et réunis par des soudures, de manière que la variable puisse passer d’un feuillet à un

autre en traversant une ligne de raccordement. La conception des surfaces à feuillets multiples
présente quelques difficultés; malgré les beaux résultats auxquels Riemann est arrivé par cette

méthode, elle ne nous a pas paru présenter aucun avantage pour l’objet que nous avions en vue.

L’idée de Cauchy se prête très bien à la représentation des fonctions multiples ; il suffit de joindre
à la valeur de la variable la valeur correspondante de la fonction, et, quand la variable a décrit une

courbe fermée et que la valeur de la fonction a changé, d’indiquer ce changement par un indice.
13The notes were taken by C. W. Borchardt, the editor of the Journal für die reine und

angewandte Mathematik. In a footnote to the article, Borchardt writes about these notes:“When,

in the first half of the year 1847 I stayed in Paris at the same time of my late friend Ferdinand
Joachimstahl, Mr. Liouville accepted to give, at his home, for the two of us, a few lessons on his

method for treating the theory of doubly periodic functions. I collected Mr. Liouville’s lessons,

and when, back in Berlin, I have completed writing them up, I sent him a copy of my manuscript
which he authorized me to communicated to Jacobi and Lejeune-Dirichlet. [...] In communicating

to the geometers a work done more than thirty years ago and without the intention of publishing

it, I think nevertheless that I can assure that in general my redaction reproduces faithfully the
lessons of Mr. Liouville. [Lorsque dans la première moitié de l’année 1847 j’ai fait un séjour à

Paris en même temps que mon ami bien regretté Ferdinand Joachimstahl, M. Liouville a bien

voulu nous faire chez lui à nous deux quelques leçons sur sa méthode de traiter la théorie des
fonctions doublement périodiques. [...] En communiquant aux géomètres un travail fait il y a plus

de trente ans et sans l’intention de le faire imprimer, je crois néanmoins pouvoir assurer qu’en

général ma rédaction reproduit fidèlement les leçons de M. Liouville.
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found beautiful theorems concerning them. He nevertheless declares that the meth-
ods of Riemann present enormous difficulties and he describes them as lacking of
clearness and rigor. He announces that, in his treatise, he relies on the works of
Clebsch and Gordan,14 but leaving aside some of their geometric considerations.
Sofia Kovalevskaya did not like Briot’s treatise. In a letter to Mittag-Leffler, sent
on January 8, 1881 quoted by the latter in his 1900 Paris ICM talk [66], she writes:

Isn’t it surprising how, at the time being, the theory of Abelian functions
with all the particularities of its own method and which make it rightly
one of the most beautiful branches of analysis, is still poorly studied
and poorly understood everywhere else than in Germany? I was really
outraged in reading, for instance, the Traité des fonctions abéliennes by
Briot, which I had not seen before. How can one present such beautiful
material in such a dry and with so little benefits for the students? I am
almost not surprised any more that our Russian mathematicians, who
know this theory only through Neumann’s15 book and that of Briot,
profess such a profound indifference to the study of these functions.16

This book by Briot is the only treatise that he authored alone. The book won
the Poncelet prize.

The works of Briot and Bouquet were influential on Poincaré who, in his Analysis
of his own works (Analyse des travaux scientifiques de Henri Poincaré faite par lui-
même), [87], declares that the starting point of his research on differential equations
– which was his first topic of investigation – were the works of Cauchy, Fuchs, Briot,
Bouquet and Kovalevskaya.

3.3. Appell and Goursat. We now consider the treatise Théorie des fonctions
algébriques et de leurs intégrales (Theory of Abelian functions and their integrals)
by Appell and Goursat, [4]. This treatise was published in 1895, that is, thirty-six
years after the first edition of Briot and Bouquet’s Théorie des fonctions doublement
périodiques et, en particulier, des fonctions elliptiques. The treatise carries the
subtitle Étude des fonctions analytiques sur une surface de Riemann (A study of
analytic functions on a Riemann surface). A few biographical notes on the authors
are in order; both of them are important representatives of the nineteenth century
French school of analysis.

Paul Appell (1855–1930) was born in Strasbourg. He started studying mathe-
matics at the University of this city, but had to flee from there, in order to remain
French, after the annexion of Alsace by Germany, in 1870.17 His brother, who

14The work of Clebsch and Gordan which was a major reference at that time is their treatise
Theorie der Abelschen Funktionen (Theory of Abelian functions), 1866 [24]. One of the major

results of Clebsch is a classification of algebraic curves using Riemann’s theory of Abelian functions

and based on his notion of birational transformation. Clebsch’s ideas were further developed by
Brill and Noether.

15The book by Neumann which is referred to in this quote is certainly his treatise Vorlesun-
gen über Riemann’s Theorie der Abel’schen Integrale (Lectures on Riemann’s theory of Abelian

integrals), published in 1865, [68]. Unlike the French treatises, Neumann’s book was written in

the spirit of Riemann.
16N’est-il pas étonnant vraiment comme, à l’heure qu’il est, la théorie des fonctions abéliennes

avec toutes les particularités de la méthode qui lui sont propres et qui en font justement une des

plus belles branches de l’Analyse, est encore peu étudiée et peu comprise partout ailleurs qu’en
Allemagne ? J’ai été vraiment indignée en lisant, par exemple, le Traité des fonctions abéliennes

par Briot, qui jusqu’à présent ne m’était pas tombé sous les yeux. Peut-on exposer une aussi
belle matière d’une manière aussi aride et aussi peu profitable pour l’étudiant ? Je ne m’étonne

presque plus que nos mathématiciens russes, qui ne connaissent toute cette théorie que par le

livre de Neumann et celui de Briot, professent une indifférence aussi profonde pour l’étude de ces
fonctions.

17In a chronicle on Appell which appeared in Le petit parisien (18/02/1929) it is reported that
when he came back to Strasbourg, after the Second World War, he whispered: “I thought I was
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stayed in occupied Alsace, was later convicted for “anti-German activities.” Ap-
pell wrote his doctoral dissertation under Chasles, on projective geometry. The
title of this dissertation is Sur la propriété des cubiques gauches et le mouvement
hélicöıdal d’un corps solide (On the properties of skew cubics and on the helocoidal

motion of a solid body) [2]. The thesis was published in the Annales de l’École
Normale Supérieure, [3]. Besides being a mathematician, Appell was the rector
of the Académie de Paris from 1920 to 1925, and he became secretary general of
France at the League of Nations. He is also the founder of the Paris Cité Universi-
taire Internationale. He married a niece of Bertrand and Hermite, and his daughter
became the wife of Emile Borel. Appell, like many other French mathematicians
of his generation (see Chapter 7 of the present volume, [76]), was profoundly reli-
gious.18 There is an interesting correspondence between Appell and Poincaré, see
[85].

Édouard Goursat (1858–1936) had as teachers Briot, Bouquet and Darboux.

Goursat started as a teaching assistant (“agrégé préparateur”) at the École Normale
Supérieure in 1879, and one year later he was appointed at the Faculté des Sciences
de Paris, taking over the position of Picard who was appointed at Toulouse. In 1881
he submitted a doctoral dissertation bearing the title Sur l’équation différentielle
linéaire qui admet pour intégrale la série hypergéométrique (On the linear differen-
tial equation that admits as integral the hypergeometric series), [32]. The thesis
committee consisted of Bouquet, Darboux and Tannery. It was published in the
Annales de l’École Normale Supérieure [33]. This dissertation, written under Dar-
boux, is based on results of Jacobi and Riemann, and it uses Cauchy’s theory.
Among other things, Goursat simplifies a proof of a theorem given by Riemann in
his memoir of the hypergeometric function [96] (Second part of Goursat’s disser-
tation). After his dissertation, he took a position at the Faculté des Sciences de
Toulouse, as the successor of Picard who returned to Paris. In 1885, he came back
to the École Normale Supérieure, replacing Bouquet. In 1897, he took over again
Picard’s position at the Chair of Differential and Integral Calculus at the Faculté
des Sciences de Paris. The name of Goursat is attached to a theorem in complex
function theory, which is usually referred to as the Cauchy-Goursat theorem. It
says that given a holomorphic function on a simply connected domain in the plane,
the integral of this function over a loop contained in the interior of the domain is
zero. The first step of the proof is a lemma, called the Goursat lemma, which is
a particular case of the theorem in which the loop bounds a rectangle. The result
is contained in the 1814 paper of Cauchy [23] but under some unnecessary strong
hypotheses on the function. Goursat’s proof, which appeared in Acta Mathematica,
is entitled “Proof of Cauchy’s theorem” [36].

Unlike the case of the treatise of Briot and Bouquet, Riemann’s theory is well
present in the treatise Théorie des fonctions algébriques et de leurs intégrales by
Goursat and Appell. Hermite wrote the preface of that treatise. In this preface, he
starts by giving an overall summary of the work of Puiseux on algebraic functions,
which, he says “opened the field of research which led to the great discoveries of
our epoch.” He declares that this work transformed the field of analysis by giving

becoming crazy when I saw the French flag fleeting on our old cathedral. On that day, my life

was filled. I could well have died.” [Je croyais devenir fou en voyant le drapeau tricolore flotter
sur notre chère cathédrale, murmure-t-il. Ce jour-là, ma vie était comblée. J’aurais pu mourir.]

18In a biography of Hermite, written by his grand-daughter (the manuscript, kept in the

Archives of the Académie des Sciences de Paris), is quoted in [48] p. 79, we read that Hermite
told Appell once, “Can you imagine, my dear Appell, that after our death, we shall at last

contemplate, face to face, the number π and the number e?” [Songez-vous, mon cher Appell,
qu’après la mort nous contemplerons enfin face à face le nombre π et le nombre e ?]
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it new bases.19 Hermite, in his introduction, also mentions the influence of Cauchy.
After that, he passes to the work of Riemann, praising this work and announcing
that the treatise is based on the latter’s ideas. Hermite writes in this introduction:

The works of Puiseux were followed, in 1857, by those of Riemann, re-
ceived with a unanimous admiration, as the most considerable event of
our times in analysis. The present treatise is dedicated to the exposi-
tion of the work of this great geometer, and to the researches and the
discoveries to which it led.

A remarkably original concept is at their foundation. These are the
surfaces to which is attached the name of their discoverer. They are
constituted of superposed planes, whose number is equal to the degree
of an algebraic equation, connected among themselves by crossing lines,
which we obtain by joining in a certain manner the critical points. The
establishment of these lines is a first question of great importance, which
later on was made much simpler and easier by a beautiful theorem of Mr.
Lüroth. After that, we are offered the notion of connected surfaces, their
order of connection, the theorems on the lowering, using cuts, which lead
the surface to a simply connected one. From these profound and delicate
considerations follows a geometric representation, which is an element of
the greatest power for the study of the algebraic functions. It would be
too long to recall all these discoveries that carry the seal of the greatest
mathematical genius, to which it led Riemann. [...]20

In their treatise, Goursat and Appell present Riemann’s topological theory of
surfaces and their dissection, his theory of the complex-analytic Riemann surfaces,
and his theory of Abelian integrals. Cauchy’s calculus of residues is used, as well
as Puiseux’ method of dealing with multiple branch points of algebraic functions.
The treatise also contains an exposition of Riemann–Roch’s theorem, of the Brill-
Noether law of reciprocity, of Abel’s theorem and of the theory of moduli of algebraic
curves. Jacobi’s inversion problem of Abelian integrals, and a problem of Briot
and Bouquet on the uniformization of solutions algebraic differential equations are
addressed. W. F. Osgood published an extensive review of Appell and Goursat’s
treatise in the Bulletin of the AMS, see [71].

3.4. Goursat. Goursat is mostly known today for his Cours d’analyse mathématique
(A course in mathematical analysis) [34], a treatise which became a reference for
all French students in mathematics. The first edition of that book, in two vol-
umes, was published in 1902 and 1905. A second edition, in three volumes, ap-
peared between 1910 and 1915, a third edition in 1917–1923, a fourth edition in
1923–1927, a fifth edition in 1933–1942, and there were several later editions after

19The reader may find details on the work of Puiseux, and its relations to the works of Cauchy,

Hermite and others, in Chapter 7 of the present volume [76].
20Aux travaux de Puiseux succèdent, en 1857, ceux de Riemann accueillis par une admira-

tion unanime, comme l’événement le plus considérable dans l’analyse de notre temps. C’est à

l’exposition de l’œuvre du grand géomètre, des recherches et des découvertes auxquelles elle a
donné lieu qu’est consacré cet ouvrage.

Une conception singulièrement originale leur sert de fondement, celle des surfaces auxquelles
est attaché le nom de l’inventeur, formées de plans superposés, en nombre égal au degré d’une
équation algébrique, et reliés par des lignes de passage, qu’on obtient en joignant d’une certaine
manière les points critiques. L’établissement de ces lignes est une première question de grande

importance, rendue depuis beaucoup plus simple et plus facile par un beau théorème de M.
Lüroth. S’offre ensuite la notion des surfaces connexes, de leurs ordres de connexion, les théorèmes

sur l’abaissement par des coupures qui ramènent la surface à être simplement connexe. De ces
considérations profondes et délicates résulte une représentation géométrique, qui est un instrument
de la plus grande puissance pour l’étude des fonctions algébriques. Il serait trop long de rappeler
toutes les découvertes portant l’empreinte du plus grand génie mathématique, auxquelles elle
conduit Riemann. [...]
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Goursat’s death in 1936. The treatise was translated into English, cf. [35]. The
whole treatise is a systematic treatment of analysis, including integration and dif-
ferential equations. The subtitles of the various volumes of Goursat’s Cours give
an idea of the content. They are (in the final three-volume version): Volume I:
Dérivées et différentielles. Intégrales définies. Développements en séries. Appli-
cations géométriques. (Derivatives and differentials. Definite integrals. Series ex-
pansions. Geometrical applications). Volume II: Théorie des fonctions analytiques.
Equations différentielles. Equations aux dérivées partielles du premier ordre. (The-
ory of analytic functions. Differential equations. First order partial differential
equations). Volume III: Intégrales infiniment voisines. Équations aux dérivées par-

tielles du second ordre. Équations intégrales. Calcul des variations (Infinitely close
integrals. Second order partial differential equations. Integral equations. Calculus
of variations).

In his treatise, Goursat, in presenting the theory of functions of a complex vari-
able, relies on Cauchy’s methods on the theory of complex integration and on the
existence of solutions for ordinary and partial differential equations. Weierstrass’s
methods are also presented, in particular for what concerns singular points and
series of analytic functions, and the calculus of variations. Riemann’s theories are
briefly addressed in Volume III, Chapter XXVII, in relation with the Laplace equa-
tion. The author discusses, besides the methods of Riemann, those of Neumann,
Schwarz and others, in relation with conformal mappings.

Osgood wrote two reviews for the Bulletin of the AMS, [72] and [73], on Goursat’s
first edition (two volumes) of his treatise. As a conclusion to his review of Volume
I , Osgood writes the following:

When the future historian inquires how the calculus appeared to the
mathematicians of the close of the nineteenth century, he may safely
take Professor Goursat’s book as an exponent of that which is central in
the calculus conceptions and methods of this age.

Goursat’s treatise lost its prestige with the advent of Bourbaki, and it was replaced
in the French university curricula by the more rigorous (in the modern standards)
treatises of Dieudonné, Cartan, Schwartz, etc.

3.5. Picard. Emile Picard (1856–1941) was one of those mathematicians whose
work, encompassing a period straddling the nineteenth and the twentieth centuries,
exerted an important influence on mathematics by giving it a new direction. In
1877, he submitted a doctoral dissertation on the geometry of Steiner surfaces,
written under the guidance of Darboux. The title of the dissertation is Application
de la théorie des complexes linéaires à l’étude des surfaces et des courbes gauches
(Application of the theory of linear complexes to surfaces and skew curves) [79].

Picard’s thesis was also published in the Annales de l’École Normale, [80]. Picard
had a long career during which he worked on ordinary and partial differential equa-
tions, algebraic geometry, algebra, mechanics, elasticity, heat, electricity, relativity,
astronomy and on other subjects of mathematics and theoretical physics. But he
was above all an analyst. His name is attached in particular to two theorems he
obtained in 1879 which exerted a tremendous influence on analysis. One of these
theorems says that a non-constant entire function takes every complex value an
infinite number of times, possibly with one exception. Picard’s proof of this re-
sult uses Hermite’s theory of elliptic modular functions. It is short, elegant but
indirect. Giving simpler proofs and generalizations of that theorem gave rise to a
large number of works done by several generations of mathematicians, including
Borel, Hadamard, Montel, Julia, Bloch, Carathéodory, Landau, Lindelöf, Milloux,
Schottky, Valiron, Nevanlinna, Ahlfors and several others. These works resulted
in a thorough investigation of the nature of holomorphic functions and they led
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to a whole field of mathematics called value distribution theory. When the young
Picard (he was 23) published his two theorems, he attracted the attention of Her-
mite, and they soon became friends. Two years later (in 1881), Picard married
the daughter of Hermite. Between 1895 and 1937, Picard taught mechanics at an
engineering school in Paris, the École Centrale des Arts et Manufactures. Picard
was also a philosopher and a historian of science. In 1917, Picard lost his son (who
was therefore the grand-son of Hermite) at the war.

In 1891, Picard published the first volume of his Traité d’analyse (Treatise on
analysis) [78], a treatise in three volumes (the second volume was published in 1893
and the third one in 1896). This treatise was acclaimed as one of the important
writings of its epoch. In a 27-page review of the first two volumes published by T.
Craig in the Bulletin of the AMS, the author writes:

One of the ablest of American mathematicians said to the writer not
long ago, ‘we have waited fifty years for the book!’

Cauchy’s theory and all the introductory material on functions of a complex
variable are presented in Volume I of Picard’s Traité (1891). Riemann’s ideas play
a central role in Volume II (1893). Picard writes in the introduction to that volume:

This volume contains the lessons I gave at the Sorbonne during the last
two years. It is primarily dedicated to harmonic and to analytic func-
tions. Without leaving aside Cauchy’s point of view on the theory of
analytic functions, I mainly dwell on a thorough study of harmonic func-
tions, i.e., of the Laplace equation; a large section of this volume is
dedicated to that famous equation, on which depends all the theory of
analytic functions. I also dwell at length on the principle of Dirichlet,
which plays such a big role in the works of Riemann, and which is as
much important for mathematical physics as for analysis.

Among the particular functions I study, I note the algebraic func-
tions and the Abelian integrals. A chapter deals with Riemann surfaces,
whose study has been too much left over in France. It is possible, by a
convenient geometric representation, to make intuitive the main results
of this theory. Once this clear view of the Riemann surface is obtained,
all the applications are conducted with the same facility as the classical
Cauchy theory relative to the ordinary plane. But it is important to
judge according to its real value the beautiful conception of Riemann.
It would be an incomplete view to regard it only as a simplified method
of presenting the theory of algebraic functions. No matter how impor-
tant is the simplification brought in this study by the consideration of
surfaces with many leaves, it is not there that the interest of Riemann’s
ideas lies. The essential point of his theory is the a priori conception of
the connected surface formed by a finite number of plane leaves, and in
the fact that to such a surface conceived in full generality corresponds a
class of algebraic curves. Thus, we did not want to mutilate the profound
thought of Riemann, and we have dedicated a chapter to the capital and
difficult question of the existence of analytic functions on an arbitrarily
given Riemann surface. The problem itself is susceptible of generaliza-
tion, if we take an arbitrary closed surface in space and if we consider
the corresponding Beltrami equation.21

21Ce second volume contient les leçons que j’ai faites à la Sorbonne ces deux dernières années.

Il est principalement consacré aux fonctions harmoniques et aux fonctions analytiques. Sans
négliger le point de vue de Cauchy dans la théorie de ces dernières fonctions, je me suis surtout

attaché à une étude approfondie des fonctions harmoniques, c’est-à-dire de l’équation de Laplace
; une grande partie de ce volume est consacrée à cette équation célèbre, dont dépend toute la
théorie des fonctions analytiques. Je me suis arrêté longuement sur le principe de Dirichlet, qui
joue un si grand rôle dans les travaux de Riemann, et qui est aussi important pour la physique

mathématique que pour l’analyse.
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Riemann surfaces are introduced in Chapter XIII of Volume II. They are asso-
ciated with algebraic equations of the form f(u, z) = 0 where f is a polynomial in
the two variables u and z. Their construction uses the method of paths and the
analysis of permutations of roots that were described by Puiseux which we describe
in Chapter 7 of the present volume [76]. On the resulting Riemann surface, we
have a single-valued function u of z. Picard writes that “the algebraic function u is
uniform: to each point on that surface is associated a single value of u, which is the
value corresponding to the leaf on which we find the point that we consider.” He
proves that the surface obtained by this construction is connected, and he spends
some time explaining how one obtains a simply-connected surface from an arbi-
trary Riemann surface by performing a certain number of cuts. Picard refers to
Riemann’s article on Abelian functions [93], to Simart’s dissertation [102] which we
consider below, and to papers by Clebsch and Lüroth. Chapter XIV of Volume II
of Picard’s treatise concerns periods of Abelian integrals, another topic which was
dear to Riemann. Chapter XVI contains several results on meromorphic functions
on Riemann surfaces, including the Riemann–Roch theorem. These are the famous
Riemann existence theorems.22 The title of this chapter is: “General theorems rel-
ative to the existence of functions on Riemann surfaces.” Picard summarizes first
the work he did in the previous chapters ([78], Vol. II, beginning of Chapter XVI).
To an algebraic equation f(x, y) = 0 as above, a Riemann surface is associated,
and on that surface, functions and integrals are studied. The problem addressed
now is the converse: one starts with a connected Riemann surface which, Picard
says, is defined a priori and “in a purely geometrical manner.” Taking a certain
number of leaves and joining them by a certain number of “intersection curves”
(lignes de croisement). One wishes to associate with such an abstract surface a
class of algebraic curves, and to show a priori the existence of the functions of the
type considered before. After formulating this problem, Picard writes: “We thus
enter in the profound thought of Riemann.” He declares that the previous chapters
diverged from Riemann’s ideas, in that one started there from a curve, or from
an algebraic relation, whereas now, “the starting point is the m-sheeted Riemann
surface.” He adds (p. 459):

Unfortunately, Riemann’s method, which was so simple for establishing
general existence theorems, does not have the rigor which we require
today in the theory of functions. It relies on the consideration of the
minimum of certain integrals which are very similar to those we already
studied in the Dirichlet problem, and the same objections were addressed

Parmi les fonctions particulières que j’étudie, je signalerai les fonctions algébriques et les intégrales
abéliennes. Un chapitre traite des surfaces de Riemann, dont l’étude a été laissée un peu trop de
côté en France ; on peut, par une représentation géométrique convenable, rendre intuitifs les princi-

paux résultats de cette théorie. Cette vue claire de la surface de Riemann une fois obtenue, toutes
les applications se déroulent avec la même facilité que dans la théorie classique de Cauchy relative

au plan simple. Mais il importe de juger à sa véritable valeur la belle conception de Riemann. Ce

serait une vue incomplète que de la regarder seulement comme une méthode simplificative pour
présenter la théorie des fonctions algébriques. Si importante que soit la simplification apportée
dans cette étude par la considération de la surface à plusieurs feuillets, ce n’est pas là ce qui fait

le grand intérêt des idées de Riemann. Le point essentiel de sa théorie est dans la conception
a priori de la surface connexe formée d’un nombre limité de feuillets plans, et dans le fait qu’à

une telle surface conçue dans toute sa généralité correspond une classe de courbes algébriques.
Nous n’avons donc pas voulu mutiler la pensée profonde de Riemann, et nous avons consacré un

chapitre à la question difficile et capitale de l’existence des fonctions analytiques sur une surface
de Riemann arbitrairement donnée ; le problème même est susceptible de se généraliser, si l’on
prend une surface fermée arbitraire dans l’espace et que l’on considère l’équation de Beltrami qui
lui correspond.

22Picard indeed uses the plural for Riemann’s existence theorems.
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to him. Another way had to be found, and Mr. Neumann and Mr.
Schwarz reached it independently.23

Picard mentions the references [68] (p. 388-471) and [101] (p. 303), and from there
he reconstructs completely the proof. In §§6–13 of this chapter, the author studies
the existence of harmonic functions on Riemann surfaces. These functions are used
in the proof of the existence theorem. We note incidentally that for several decades,
all the proofs of Riemann’s existence theorem were based, like the one of Riemann,
on potential theory. Picard states the main result of that chapter as a “fundamental
theorem” ([78] Tome II, Chapter XVI, §18):

To an arbitrary Riemann surface there corresponds a class of alge-
braic curves.

Another “fundamental theorem” is stated in §28 of the same chapter:

To a surface in space having p holes, corresponds uniformly an
algebraic curve of genus p.

Without entering into the technical definition of the genus of an algebraic curve,
let us simply say that this is a birational invariant and that the equality between a
notion from birational geometry and a topological notion is one of the major ideas
of Riemann. It is interesting to read Picard’s footnote to the theorem:

This theorem was stated by Mr. Klein in his work which we quoted
several times on the Theory of Riemann surfaces. The method of proof
of Mr. Klein is extremely interesting, even though it does not pretend
to be rigorous from the analytical viewpoint. The author borrows the
elements of his proof to a fictive electrical experience performed on the
surface. Thus, the existence of potential functions together with their
various singularities is, in some way, proved experimentally.24

Section V of Chapter XVI concerns moduli of algebraic curves. Picard starts
by addressing a preliminary question raised by Riemann: Suppose we are given
in the complex plane of the variable z, the 2(m + p − 1) ramification points of
a Riemann surface of genus p with m sheets. (The count was carried on in §19
of Chapter XIII of Picard’s treatise.) The question is to find the number of such
surfaces. Picard notes that this number is finite, and that Hurwitz found it for
small values of m. The question then is to find the number of arbitrary parameters
on which a Riemann surface of some fixed genus p “essentially” depends. This is
the famous moduli problem raised by Riemann and solved in a satisfactory manner
by Teichmüller in his seminal paper [107]. Picard describes two methods, which
are both due to Riemann, for computing these moduli. One of them relies on the
Riemann–Roch theorem, and the other one uses a conformal representation of a
Riemann surface onto a polygon, using an integral of the first kind, and a count
of the number of periods of such integrals. The result of each of these methods is
Riemann’s count of the number of moduli, that is, 3p − 3, for a closed surface of
genus p.

23Malheureusement, la méthode si simple de Riemann pour établir les théorèmes généraux
d’existence ne présente pas la rigueur qu’on exige aujourd’hui dans la théorie des fonctions. Elle

repose sur la considération du minimum de certaines intégrales tout à fait analogues à celles que
nous avons déjà étudiées dans le problème de Dirichlet et on lui a adressé les mêmes objections.
Il a donc fallu chercher dans une autre voie. M. Neumann et M. Schwarz y sont parvenus, chacun
de son côté.

24Ce théorème a été énoncé par M. Klein dans son ouvrage déjà bien des fois cité sur la

Théorie des surfaces de Riemann. Le mode de démonstration de M. Klein est extrêmement
intéressant, quoi qu’il ne prétende pas à être rigoureux au point de vue analytique. C’est à une
expérience électrique fictive faite sur la surface que l’illustre auteur emprunte les éléments de ses
démonstrations. L’existence des fonctions potentielles avec leurs singularités diverses se trouve

ainsi démontrée en quelque sorte expérimentalement.
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Picard concludes this important chapter by explaining how these ideas are used
in the conformal representation of multiply-connected surfaces.

3.6. Picard-Simart. We now consider Picard and Simart’s Théorie des fonctions
algébriques de deux variables indépendantes (Theory of algebraic functions of two
independent variables) [82], a treatise in two volumes, published in 1897 and 1906
respectively. The level of difficulty is higher than most of the other French treatises
of the same period on the same subject, and the topics treated are more specialized.
The introduction in each volume is written by Picard. In the introduction to the
first volume, Picard declares that since a long time he had the intention to resume
his ancient research on algebraic functions of two variables and to present them in
a didactical form. He writes that he realized that, for more clarity, it was necessary
to take into account the classical work of Mr. Noether as well as several works
done in Italy on the same subject. The book contains indeed sections on invariants
of algebraic surfaces and integrals of total differentials, including a study of the
invariants introduced by Clebsch and Noether, and an exposition of the works of
Castelnuovo and Enriques. Picard declares that his co-author and himself by all
means “do not have the pretentiousness of going deeply into all the questions that
are addressed in this “very difficult theory,” but that their unique goal is “to give
the state of the art on a question that deserves the effort of several researches.”25

In the first volume, the authors develop Riemann’s ideas on integrals of Abelian
differentials and on Riemann surfaces, from the topological viewpoint. The title
of the first chapter is On multiple integrals of functions of several variables. The
theories of multiple integrals and integrals of total differentials constitute a link
between several questions addressed in this treatise. They are generalizations of the
Abelian integrals that were studied by Riemann, and they lead Picard and Simart
to study hypersurfaces in a five-dimensional space. This is why the authors are
led, in Chapter 2, to questions of topology in an n-dimensional space. Indeed, the
second chapter is dedicated to geometry of situation (topology). By the time Picard
and Simart’s treatise was written, Poincaré had already published his famous paper
with this title, two years before, in the Journal de l’École Polytechnique [86]. Picard
and Simart show in particular that the genus of a Riemann surface is determined
by the number of linear independent integrals of the first kind on such a surface.
At the beginning of this chapter, they write (p. 19):

This theory was founded by Riemann, who gave the name. In his study
of Abelian functions, the great geometer considers only two-dimensional
spaces, but later on he generalized his researches to an arbitrary number
of dimensions, as is shown by his notes published after his death in
the volume containing his Complete Works. Independently of Riemann,
Betti studied various orders of connectivity in n-dimensional spaces, and
he published a fundamental memoir on this subject.26 In his memoir on
algebraic functions of two variables, Mr. Picard showed the usefulness of
such considerations in the study of algebraic surfaces. Very recently, Mr.
Poincaré27 took up in a general manner this question of Analysis situs,
and after completing it and making more precise the results obtained by
Betti, he drew attention to the considerable differences that the theories
present, the two-dimensional and the higher-dimensional ones.28

25Nous n’avons certes pas la prétention d’approfondir toutes les questions qui se posent dans

cette théorie difficile ; notre seul but est de donner une idée de l’état actuel de la science sur un
sujet dont l’étude mérite de tenter l’effort de nombreux chercheurs.

26Annali di Mathematica, t. IV (1870–71).
27Journal de Mathématiques (1899).
28Cette théorie a été fondée par Riemann, qui lui a donné ce nom ; dans ses études sur les

fonctions abéliennes, le grand géomètre ne considère que les espaces à deux dimensions, mais il a
ensuite généralisé ses recherches pour un nombre quelconque de dimensions, comme le montrent les
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Figure 3. Simple closed curves on surfaces, from the treatise by Picard
and Simart [82].

On p. 22 of the same volume, the authors consider a Riemann surface as “a
2-dimensional manifold in 3-dimensional space,” allowing the surfaces to traverse
each other. The authors show that a surface defined by algebraic equations and
inequalities is necessarily orientable. They introduce boundaries, Betti numbers,
and their relations with multiple integrals. Homotopy classes of simple closed curves
on orientable topological surfaces are drawn (cf. Figure 3). The authors prove, at
the end of Chapter 2, that for a general closed “multiplicity” (a word used by
Riemann), the first and the last Betti numbers are equal, which is a special case
of the result of Poincaré saying that two Betti numbers which are equidistant from
the extreme ones are equal.

The third chapter is dedicated to the extension of Cauchy’s theorem to double
integrals of functions of two variables, an extension due to Poincaré, and to residues
of double integrals of rational functions. The fourth chapter concerns the reduction
of singularities of an algebraic surface, and the study of its topological invariants.
The authors prove in particular that any algebraic surface is birationally equivalent
to a nonsingular surface embedded in the 5-dimensional space. Chapters 5 and 6
concern integrals of total differentials, and Chapter 7, double integrals.

In Volume II of the treatise, published nine years after the first one, the authors
present the recent results, obtained by Picard, Castelnuovo, Enriques and others, on
questions that were already addressed in the first volume and their extensions. In
particular, the reduction theory for singularities of an algebraic surface is revisited,
as well as the theory of double integrals of the second kind, in particular, their
invariants and their periods.

3.7. Appel-Goursat-Fatou. Riemann surfaces are also thoroughly studied in the
first volume of the treatise Théorie des fonctions algébriques et de leurs intégrales

notes publiées après sa mort dans le volume renfermant ses œuvres complètes. Indépendamment

de Riemann, Betti avait de son côté étudié les divers ordres de connexion dans les espaces à n
dimensions, et publié un mémoire fondamental sur ce sujet. Dans son mémoire sur les fonctions

algébriques, M. Picard avait montré l’intérêt que présentent des considérations de ce genre dans
l’étude des surfaces algébriques. Tout récemment, M. Poincaré a repris d’une manière générale
cette question dans l’Analysis situs, et, après avoir complété et précisé les résultats obtenus par
Betti, a appelé l’attention sur les différences considérables que présentent ces théories, suivant

qu’il s’agit d’un espace à deux dimensions ou d’un espace à un plus grand nombre de dimensions.
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et des transcendantes qui s’y rattachent (Theory of algebraic functions and their
integrals, and their related transcendentals ) [6] by Appell, Goursat and Fatou,
which appeared in 1929. In reality, the treatise is a revised edition, by Fatou, of the
treatise [4] by Appell and Goursat. Fatou was at the same time a mathematician
and an astronomer. In 1906, he defended a thesis entitled Séries trigonométriques
et séries de Taylor (Trigonometric series and Taylor series), [29] [30], whose subject
is Lebesgue’s integration theory, which in some sense is a refinement of Riemann’s
integration theory (see §5 below). It is in this thesis that we find the famous Fatou
Lemma (also called the Fatou-Lebesgue Lemma) on the comparison between the
integral of a lower limit of positive measurable functions and the lower limit of their
integrals. The lemma is a key element in the proof of the Dominated Convergence
Theorem. In the same year, Fatou started his work on the iteration of rational
maps of the plane, a work that was revived in the last two decades of the twentieth
century by Sullivan, Thurston and others. Fatou also worked on the dynamics of
transcendental functions.

The title of the first volume of the treatise by Appell, Goursat and Fatou is Étude
des fonctions analytiques sur une surface de Riemann (Study of analytic functions
on a Riemann surface) [6]. In that treatise, Riemann surfaces are still represented,
like in the 19th-century treatises, in an anthropomorphic fashion, (using Weyl’s
expression; see §2 of the present article). Figure 4 is extracted from that volume,
and is already contained in the first edition by Appell and Goursat (Figure 1 in §2
above). The authors declare, concerning the surface considered: “This surface is
analogous to that represented in Figure 10, with the difference that, in reality, the
two leaves are infinitely close and the apertures are infinitely narrow.

Figure 4. A picture from the treatise by Appell, Goursat and Fatou
[6]. One can read in the text above the figure: “This surface is analogous
to the one presented in Figure 10, with the difference that, in reality, the
two sheets are infinitely close, etc.,” and, below the figure: “We have
represented the surface in the way an observer standing on the upper
sheet would see it.”
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Chapter III of this volume is entitled Connexion des surfaces à deux feuillets.
Périodicité des intégrales hyperelliptiques (Connectivity of two-sheeted surfaces and
periodicity of hyperelliptic integrals). The authors start by saying (p. 99) :

In what follows, we consider surfaces as leaves without thickness, in such
a way that a point or a line drawn on that surface will be visible for
a observer situated on one side or the other. These surfaces will be
considered as perfectly elastic and rip-stop.29

3.8. Halphen. Among the other treatises that are related to Riemann surfaces,
we mention Halphen’s Traité des fonctions elliptiques et de leurs applications (A
treatise on elliptic fonctions and their applications) in 3 volumes, published in 1886,
1888 and 1891 [41]. This treatise had a certain impact on students in algebra and

analysis. Georges-Henri Halphen, was a graduate of the École Polytechnique,30 and
he started with a career in the army. He submitted a doctoral dissertation on 1878,
titled Sur les invariants différentiels (On differential invariants) [40], in which he
determined the invariants of planar skew curves under projective transformations.
His thesis committee consisted of Hermite, Bouquet and Darboux. Haplhen par-
ticipated to the 1870 French-German war. In 1872, he was appointed répétiteur31

at the École Polytechnique. He was a specialist, among other things, of differen-
tial invariants, elimination theory, and singularities of algebraic curves. Picard, in
biography of Halphen [81], writes the following (p. x of the Introduction):

Riemann, in his theory of Abelian functions, had introduced the major
notion of genus of elliptic curves, and he classified them into different
classes, two curves being in the same class whenever there is a uniform
correspondence between them. The famous geometer, who liked the
great horizons, passed quickly on more than one difficult point, in par-
ticular, for what concerns higher singularities. Halphen gave a general
formula, which applies to all cases, for the determination of the genus
of an algebraic curve. Then, passing to the study of curves belonging
to the same class, he went deeper into a remarkable proposition of Mr.
Nœther according to which one may find in every class curves that have
only ordinary singularities [...]32

The first part of Halphen’s treatise concerns the general theory of elliptic func-
tions. The second part makes this treatise special compared to the other treatises
on the same subject: it concerns the applications of elliptic functions to various
branches of mathematics and physics. The subtitle of that volume is Applications
à la mécanique, à la physique, à la géodésie, à la géométrie et au calcul intégral
(Applications to mechanics, physics, geodesy, geometry and integral calculus). It
was known since the eighteenth century, that is, since the birth of the theory of
elliptic functions, that these functions have many applications in physics. It suf-
fices to recall in this respect that these functions are in some sense generalizations
of the familiar trigonometric functions, and that they can be used to represent a

29Dans ce qui suit, nous considérons des surfaces comme des feuillets sans épaisseur, de sorte

qu’un point ou une ligne tracée sur la surface seront visibles pour un observateur placé d’un côté ou
de l’autre. Les surfaces seront en outre regardées comme parfaitement élastiques et indéchirables.

30We remind the reader that the École Polytechnique is a military school.
31A kind of a teaching assistant.
32Riemann, dans sa théorie des fonctions abéliennes, avait introduit la notion capitale du

genre des courbes algébriques, et partagé celles-ci en différentes classes, deux courbes étant de
la même classe quand elles se correspondent uniformément. L’illustre géomètre, qui aimait les
grands horizons, avait peu insisté sur plus d’un point difficile, en particulier sur ce qui concerne

les singularités élevées. Halphen donne une formule générale, applicable à tous les cas, pour la
détermination du genre d’une courbe algébrique ; puis, passant à l’étude des courbes d’une même

classe, il approfondit une proposition remarquable donnée par M. Noether, d’après laquelle on

peut trouver dans toute classe des courbes n’ayant que des singularités ordinaires [...]
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large class of periodic phenomena. For instance, whereas the small oscillations of
a pendulum are represented by the sine functions (which is the inverse function

of the elliptic integral

∫ x

0

dt√
1− t2

), for large oscillations, one needs (inverses of)

more general elliptic integrals. By the time of Riemann, elliptic integrals were used
in problems of gravitation and electromagnetism. We recall in this respect that
the famous treatise of Legendre, Exercices de calcul intégral (Exercises of integral
calculus) [62] contains a substantial part on elliptic integrals and their applications
to problems in geometry and mechanics. We also note that the subtitle of the first
volume of Legendre’s Traité des fonctions elliptiques et des intégrales eulériennes
(Treatise on elliptic functions and Eulerian integrals) [63] is: Contenant la théorie
des fonctions elliptiques et son application à différents problèmes de géométrie et de
mécanique (Containing the theory of elliptic functions and its application to various
problems of geometry and mechanics). One may also mention in this respect that
expressions of the lengths of arcs of an ellipse (which are precisely given by elliptic
integrals) are obviously useful in celestial mechanics, since Kepler’s first law says
that orbits of planets in the solar system are ellipses with the Sun at one of their
two foci. His second law says that a segment joining a planet and the Sun sweeps
out equal areas during equal intervals of time. We also recall that Gauss was also an
astronomer, and his interest in elliptic functions was motivated by his work on the
trajectories of planets. Finally, Abel’s 1827 famous paper on elliptic functions that
we already mentioned, starts by mentioning the “beautiful properties” of Abelian
functions “and their applications.” He writes ([1] p. 101):

Since a long time, the logarithmic functions, and the exponential and
circular functions were the only transcendental functions that attracted
the attention of the geometers. It is only in recent times that some other
functions started to be considered. Among them one has to distinguish
the so-called elliptic functions, at the same time because of their beauty
and of their use in the various branches of mathematics.”33

The applications to geodesy mentioned by Halphen concern the geodesics on an
ellipsoid of revolution whose ratio of major to small axis is close to 1. Such a body
is a representation of the shape of the Earth. It is also well known that Gauss was
highly interested in geodesy. The applications of elliptic functions to geodesy were
also considered by Jacobi in his paper [53]. In that paper, Jacobi solves a problem
in geodesy which was addressed by Gauss. More details on elliptic functions are
given in Chapter 1 of the present volume [75].

The third volume of Halphen’s treatise contains fragments on elliptic functions
which were collected after Halphen’s death and published by Stieltjes.34 The volume
also contains Picard’s biography of Halphen [81] which we already quoted. Picard
declares there that Halphen was “one of the most eminent geometers in Europe.”

33Depuis longtemps les fonctions logarithmiques, et les fonctions exponentielles et circulaires
ont été les seules fonctions transcendantes qui ont attiré l’attention des géomètres. Ce n’est que

dans les derniers temps qu’on a commencé à en considérer quelques autres. Parmi celles-ci il faut
distinguer les fonctions, nommées elliptiques, tant pour leurs belles propriétés analytiques que

pour leur application dans les diverses branches des mathématiques.
34Thomas Johannes Stieltjes (1856–1894) was Dutch but he decided to live in France. He

acquired the French citizenship and in 1886 he became professor at the Faculté des Sciences de

Toulouse. Stieltjes is known for several works on analysis and number theory, in particular on
the so-called Stieltjes integral, elliptic functions, Dirichlet series, and is considered as the founder

of the analytic theory of continued fractions. Stieltjes is also remembered for a failed attempt to

prove the Riemann hypothesis, which he announced in his paper [103].
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3.9. Tannery and Molk. We now review the 4-volume treatise Éléments de la
théorie des fonctions elliptiques (Elements of the theory of elliptic functions) [106]
by Tannery and Molk. A few words on the authors are in order.

Jules Tannery (1848–1910) was a geometer, philosopher and writer. He edited
the correspondence between Lagrange and d’Alembert.

In 1874, Tannery defended a doctoral dissertation whose title is Propriétés des
intégrales des équations différentielles linéaires à coefficients variables (Properties
of the integrals of linear differential equations with variable coefficients) [104] and
[105]. The thesis committee consisted of Hermite, Briot and Bouquet. The disser-
tation starts with the following:

The study of functions of an imaginary variable defined by an equation,
a study which was substituted to the research, often unworkable, of the
explicit form of these functions, profoundly renewed analysis in this cen-
tury. It is well known that the glory of having shown this new way goes
to Cauchy. The works of Mr. Puiseux on the solutions of algebraic equa-
tions, those of Messrs. Briot and Bouquet on doubly periodic functions
and on differential equations, have largely proved the fertility of the idea
of Cauchy in France. In Germany, the beautiful discoveries of Riemann
have accelerated the scientific movement which, since that time, did not
slow down.

Those who love science and who have too many reasons for distrusting
their invention capacities, still have a useful role to play, that of clarifying
the others’ researches and disseminating them. This is what I tried to
do in the present work.35

There is a beautiful report on Tannery’s life by Picard [83]. The latter, as
the secrétaire perpétuel of the Académie des Sciences had to write several such
biographies and reports, and many of them give us a lively image of the French
mathematical life in France at his epoch. In his report on Tannery, describing his
teachers – Puiseux, Bouquet and Hermite – at the École Normale, Picard writes,
concerning the latter:

What stroke Tannery above all in the teaching of Hermite is that he was
able to give to mathematical abstractions color and life. He used to show
how functions transform into one another, like a naturalist would do, in
recounting the evolution of human beings.36

Jules Tannery was the thesis advisor of Hadamard. His brother, Paul Tannery,
(1843-1904) was also a mathematician and (probably the most important French)
historian of mathematics.

Jules Molk was Alsacian. He was born in 1857 in Strasbourg, where he studied
at the Protestant Gymnasium founded by Jean Sturm in 1538. From 1874 to 1877
he studied at Zürich’s Eidgenössische Technische Hochschule. His teachers there
included Méquet, Geiser and Frobenius. After obtaining his diploma he went to

35L’étude des fonctions d’une variable imaginaire définies par une équation, étude qui s’est
substituée à la recherche, souvent impraticable, de la forme explicite de ces fonctions, a, dans

notre siècle, profondément renouvelé l’analyse. C’est, comme on le sait, à Cauchy que revient la
gloire d’avoir frayé cette voie nouvelle. Les travaux de M. Puiseux sur la recherche des racines des

équations algébriques, ceux de Messrs. Briot et Bouquet sur les fonctions doublement périodiques
et sur les équations différentielles ont, en France, amplement prouvé la fécondité de l’idée de
Cauchy. En Allemagne, les belles découvertes de Riemann ont accéléré un mouvement scientifique
qui, depuis lors, ne s’est pas ralenti.

Ceux qui aiment la science et qui ont trop de raisons pour se défier de leurs facultés d’invention,
ont encore un rôle utile à jouer, celui d’élucider les recherches des autres et de les répandre : c’est

ce que j’ai essayé de faire dans ce travail.
36Ce qui frappa surtout Tannery dans l’enseignement d’Hermite, c’est qu’il donnait aux ab-

stractions mathématiques la couleur et la vie ; il montrait les fonctions se transformant les unes

dans les autres, comme l’eût fait un naturaliste retraçant l’évolution des êtres vivants.
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Paris, where he followed courses by Hermite, Bouquet, Bonnet, Tisserand and Tan-
nery. In 1882, he moved to Berlin, where he followed the courses of Weierstrass,
Helmholtz, Kirchhoff and Kronecker. He obtained his doctorate in 1884 in Berlin
under Kronecker. The title of his doctoral dissertation is: Sur une notion qui com-
prend celle de la divisibilité et sur la théorie générale de l’élimination (On a notion
which included that of divisibility and on the general theory of elimination). The
dissertation was published in Acta Mathematica, [67]. In the introduction, Molk
writes that his goal is to unravel some points of Kronecker’s memoir Gründzüge
einer arithmetischen Theorie der algebraischen Grössen (Principles of an arith-
metic theory of algebraic magnitudes) [51] published in 1882. He declares that this
memoir seems to have been designed to give a new direction to algebra, and that his
aim in his thesis is to call the geometers to go thoroughly into Kronecker’s difficult
memoir. Molk died in Nancy in 1914. He was a specialist of elliptic functions, but
he is mostly known for his collaboration with Klein to the edition of an encyclopedia
of mathematics, which appeared in two versions, a German and a French one. The
first volume of the German edition appeared in 1898 (Teubner, Leipzig) and the
first volume of the French one in 1904 (Gauthier-Villars, Paris). The German name
of the encyclopedia is Encyklopädie der mathematischen Wissenschaften mit Ein-
schluss ihre Anwendungen (Encyclopedia of mathematical sciences including their
applications). The French title is Encyclopédie des sciences mathématiques pures
et appliquées (Encyclopedia of the pure and applied mathematical sciences). The
French version comprises 22 volumes. More than a hundred mathematicians and
physicists from Germany, France, Italy and England collaborated to the project.
Their names include Abraham, Appell, Bauer, Borel, Boutroux, É. Cartan, Darwin,
Ehrenfest, Enriques, Esclangon, Fano, Fréchet, Furtwängler, Goursat, Hadamard,
Hilbert, Klein, Langevin, Montel, Painlevé, Pareto, Perrin, Runge, Schoenflies,
Schwarzschild, Sommerfeld, Steinitz, Study, Vessiot, Zermelo, and there are others.
The publication of the encyclopedia is a remarkable example, at the turn of the
twentieth century, of a trans-border collaboration between mathematicians, espe-
cially French and German. The publication date also corresponds to the period
where the International Congresses of Mathematicians started. The French edition
is modeled on the German one, but it is not an exact translation of it. It contains
several original articles, and several of the German articles, in the French version,
are expanded. It is interesting to quote some excerpts from a letter from Molk to
Poincaré, sent on December 12, 1901; cf. [89] p. 188–189, in which he describes
the project. This is also a testimony of the collaboration between mathematicians
of the two countries.

Our Encyclopedia will not be a translation of the German edition; it
will be a new edition of that encyclopedia. We shall be free to insert
new articles, to present the German articles according to our French
habits, to add to them notes and complements. Each article will be
published with the mark: exposed by (the French author) following (the
German author), and the notes [or complemets] added by the French
author will be, furthermore, mentioned in a special way, with the goal of
reserving our rights, in the case where the French edition will be followed
– which is most probable – by an English-American one, or a German
one, or even other editions. [...] The Germans have very remarkable
qualities in careful scholarship; we shall take advantage of those that
they highlight in their German edition. Their exposition qualities may
be less remarkable; we shall try to do our best in this regard. We shall
may be succeed in helping them: this would be something! In any case,
it would be dangerous to not to have in our country a research tool
which is analogous to the one which is spreading more and more rapidly
in their country [...] But there are also articles which manifestly are
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missing in the German edition. For instance, researches on the law of
great numbers are hardly mentioned. Here, an additional article seems
to be appropriate; the researches of Mr. Darboux, your own researches,
those of Hadamard, should find their place in our edition. You will tell
me if it is convenient for you to talk yourself about this subject, or if you
find it appropriate to entrust this article to others.37

Unfortunately, the French edition was interrupted during the First World War and
the project was never resumed. We refer the reader who wishes to know more about
this project to the article [31] by H. Gispert.

We now review the four volumes of the treatise Éléments de la théorie des fonc-
tions elliptiques by Tannery and Molk [106]. They appeared in 1893, 1896, 1898
and 1902.

In the introduction, the authors explain why they “dared writing a book on el-
liptic functions, such a short time after the publication of Halphen’s treatise.” They
say that they do not have any pretension of replacing or equating the work of the
Master. But the point is that Halphen’s work remained incomplete after his early
death, and the missing part was long-awaited from the public. Tannery and Molk
declare that the fragments edited by Stieltjes are difficult to be read by students
and that their treatise is meant to compensate this fact. They write that their aim
is that the student, after reading this treatise, becomes able to work on the appli-
cations – in particular those contained in the second volume of Halphen’s treatise,
and of reading without difficulty Schwarz’s Formeln und Lehrsäte zum Gebrauche
der elliptischen Functionen (Formulae and propositions for the use of elliptic func-
tions)38 which is based on the lessons and notes of Weierstrass, the fundamental
memoirs of Abel and Jacobi, and the rest of the “rich and admirable literature on
elliptic functions,” in particular the researches of Kronecker and Hermite.

The first volume of the treatise by Tannery and Molk contains an exposition of
infinite series and sums, with details on results of Weierstrass. The authors declare
right at the beginning that they assume that Cauchy’s theory of line integrals is
known. The second volume is an exposition of ϑ functions and the general results
on doubly periodic functions, deduced from the work of Hermite. The third volume
is concerned with the problem of inversion of elliptic functions. One may recall
here that the inverse functions of elliptic integrals are considered in some sense as
a generalization of the familiar trigonometric functions. (The reader might recall

37Notre Encyclopédie ne sera pas une traduction de l’édition allemande ; ce sera une nouvelle
édition de cette encyclopédie. Nous serons libres d’intercaler de nouveaux articles, d’exposer,

d’après nos habitudes françaises, les articles allemands, d’y ajouter des notes, des compléments.

Chaque article sera publié avec la mention : exposé par (l’auteur français) d’après (l’auteur alle-
mand), et les notes [ou compléments] ajoutées par l’auteur français seront, en outre, mentionnées

d’une façon spéciale, afin de réserver nos droits, dans le cas où à l’édition française succéderait,

ce qui est fort probable, une édition anglo-américaine, une nouvelle édition allemande, ou d’autres
éditions encore. [...] Les Allemands ont des qualités d’érudition minutieuses très remarquables ;

nous profiterons de celles qu’ils ont mises en évidence dans leur édition allemande. Leurs qualités
d’exposition sont peut-être moins remarquables ; nous essayerons de faire mieux à cet égard. Nous
parviendrons peut-être ainsi à leur rendre service ; c’est quelque chose. Il serait en tous cas dan-

gereux de ne pas avoir chez nous un instrument de recherche analogue à celui qui se répand de

plus en plus rapidement chez eux. [...] Mais il y a aussi des articles qui manquent manifestement
dans l’édition allemande. C’est à peine si l’on mentionne, par exemple, les recherches sur les lois

des grands nombres. Là un article additionnel semblerait peut-être indiqué ; les recherches de M.
Darboux, les vôtres, celles d’Hadamard devraient trouver place dans notre édition. Vous me direz

s’il vous convient d’en parler vous-même, ou si vous croyez bon de confier à d’autres cet article.
38Schwarz’s treatise was also published in French, under the title Formules et propositions

pour l’emploi des fonctions elliptiques, d’après des leçons et des notes manuscrites de M. K.

Weierstrass, translated by Henri Padé, Gauthier-Villars, Paris, 1894. The translation was offered
to Charles Hermite at the occasion of his seventieth birthday.
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that the the integral

∫ x

0

dt√
1− t2

represents the inverse sine function.) The fourth

chapter of that volume is concerned with the applications. The authors declare
in the introduction to Volume I (which serves as an introduction to the whole
series) that the notation they use is that of Weierstrass. The fourth volume ends
with a reprint of a long letter (9 pages), dated September 24, 1900, from Hermite
to Tannery, preceded by a commentary (12 pages) by the authors on that letter.
Hermite, in his letter, explains to the authors (at their demand) a result which he
had published without proof in 1858, in two articles both entitled Sur la résolution
de l’équation du cinquième degré [42] [43]. The authors refer to Hermite’s result
in their treatise, but they rely there on proofs by Weber and Dedekind, instead of
the one of Hermite which apparently was difficult to follow. They declare in their
commentary that the reason for which they reproduce Hermite’s proof is its beauty,
and this explains the inclusion of that letter.

3.10. Jordan. We shall review Jordan’s Cours d’analyse de l’École Polytechnique
(Course in analysis of the École Polytechnique) [57] in three volumes, entitled re-
spectively Calcul différentiel (Differential calculus), Calcul intégral (Integral cal-
culus) and Equations différentielles (Differential equations). The first edition was

published in 1882, 1883 and 1887 respectively. The courses given at the École Poly-
technique had a large impact, because several French mathematicians were trained
at that school. On the other hand, the Cours were intended to the students and
had to comply with a specific official program, therefore they cannot be considered
as a testimony of the research in mathematics that was conducted at that time.
Still, the Cours by Jordan, like that by Hermite which we also consider below,
contains enough interesting material related to the ideas of Riemann.

Jordan has been himself a student of the École Polytechnique (graduating in
1855). In 1860, he defended a doctoral dissertation entitled Sur le nombre des
valeurs des fonctions (On the number of values of functions) [56]. The jury consisted
of Duhamel, Serret and Puiseux. His second thesis39 is entitled Sur les périodes des
fonctions inverses des intégrales des différentielles algébriques. (On the periods of
inverse functions of integrals of algebraic differentials). The subject was proposed
to him by Puiseux. Jordan is mostly known for his results on topology and and
group theory, but he also worked on the theory of functions of a complex variable,
and he was well aware of Riemann’s work. Furthermore, he was among the first
mathematicians to understand the impact of Galois’ ideas, and he was also among
the first who introduced group theory in the study of differential equations. Jordan
was appointed examiner at the École Polytechnique in 1873, and then professor, at
the chair of analysis, in 1876. His last years were saddened by the loss of three of
his sons in World War I.

Part of Jordan’s Cours d’analyse de l’École Polytechnique is related to Riemann’s
theory. In fact, Jordan’s treatise is concerned essentially with the (new) foundations
of real analysis, but half of Volume II is on complex analysis. This volume is
entitled Calcul intégral (Integral calculus). Chapter V (p. 305–376) is on complex
integration, Chapter VI (p. 378–621) is on elliptic functions, and Chapter VIII (p.
619–693) is on Abelian integrals.

Chapter V is an exposition of Cauchy’s theory of integration, included in the new
rigorous setting of analysis, with applications to algebraic functions. The theory

39The French doctorate (until a reform which took place at the end of the 1980s) always
involved a second thesis, on a subject which was proposed by the jury, about 3 months before the
date of the thesis defense. The work done for that second thesis was not necessarily original, but
it was an occasion for the student to familiarize himself with a subject which was not his main
research subject.
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is developed in the complex plane, and Riemann surfaces are not introduced. We
refer the reader to Chapter 7 [76] of the present volume for a discussion of the
relation between Cauchy’s and Riemann’s theories.

In Chapter VI, Jordan studies elliptic functions. He starts with the fact they
have at most two (independent) periods. Group theory (in the language of “sub-
stitutions”) is introduced in the study of linear transformations, and the language
of determinants is used. Elliptic functions are considered, as in the modern point
of view, as defined on the torus. Hermite’s decomposition of elliptic functions into
elementary functions is presented. This is an analogue of the decomposition theory
of rational functions, and it is used in integration. Operations on elliptic functions
(multiplication and division) are discussed in detail.

We now review Chapter VIII, on Abelian integrals. Jordan starts with a propo-
sition which he attributes to Lüroth, concerning a canonical way of associating to
an algebraic function a cut system of curves in the plane. He then introduces the
connectivity of a Riemann surface in terms of such a canonical cut systems. The
curves of such a system are called retrosections. The fact that a simple closed curves
on a simply connected surface is homotopic to a point (Jordan says: “is equivalent
to zero”) is presented as a theorem. The definition of the genus of a surface is
also given. The adjective monodromic (“one-path”) for functions on a piece of a
Riemann surface is introduced. A synectic function is monodromic with no critical
point. A function is said to be uniform if it is synectic on the whole surface. In-
tegrals of functions on Riemann surfaces are then introduced and studied. Using
integrals, a function which is synectic on the whole Riemann surface is shown to
be constant. A general expression is given for functions which are uniform on a
Riemann surface and whose only critical points are poles. Abelian integrals are
then studied, as integrals of the form

∫
Fdz where F is a rational function of two

variables. Periods of these integrals are introduced, as integrals along certain paths.
The number of times a rational function F takes a given value is independent of
that value and is equal to the number poles of the function. From that, a proposi-
tion, called Abel’s theorem, on the determination of Abelian integrals along some
paths, is proved. Jordan gives then a theorem saying that an Abelian integral is
determined up to a constant by some periods he calls the first p cyclic periods, and
the location of its critical points together with some finite part of its expansion at
each such point. Integrals of the first, second and third kind are introduced, and a
strong form of Riemann’s existence theorem, which Jordan calls the Riemann–Roch
theorem, is obtained. ϑ functions and the inversion problem are introduced, and
the solution of the inversion problem is presented. In particular, an expression of
elementary integrals of second and third type in terms of ϑ functions are given.

3.11. Appell and Lacour. In the treatise Principes de la théorie des fonctions
elliptiques et applications (Principles of the theory of elliptic functions and applica-
tions) [5] (1897) by Appell and Lacour, the ideas of Riemann are hardly mentioned,
but we include it in our series of commentaries because this treatise complements
naturally those that we considered before.

Émile Lacour (1854-1913) was one of those good mathematicians who taught in
the French lycées, namely, at the famous lycée Saint-Louis and at the fancy Parisian
lycée Janson-de-Sailly. In 1895, he defended a thesis entitled Sur des fonctions d’un
point analytique à multiplicateurs exponentiels ou à périodes rationnelles (On func-
tions of an analytic point with exponential multipliers or with rational periods) [59].
The second thesis concerns the heat equation. The theory of Riemann surfaces of
algebraic curves is used in this dissertation. The “analytic points” that are men-
tioned in the title are points on the Riemann surfaces of the functions considered.
The “multipliers” are related to Riemann’s theory of Abelian integrals, and they
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refer to the factors with which such an integral is multiplied when one traverses the
cuts of a Riemann surface on which it is defined. In other words, they are periods.
The functions considered (those that are referred to in the title) are generalizations
of functions introduced by Appell which are analogues of the so-called doubly pe-
riodic functions of the third type. On of the simply connected surfaces obtained –
in the tradition of Riemann – by cutting the Riemann surface along 2p arcs called
“cuts”, the multiplicative constants of the functions along the cuts are exponential,
with an exponent being a linear function of p Abelian integrals of the first kind.
The thesis contains results that make relations between, on the one hand, theorems
of Abel on the zeros and singularities of algebraic functions and of Appell on the
so-called “functions with multipliers,” and on the other hand, results of Riemann
on ϑ functions. We recall by the way that Riemann’s solution of the inversion
problem, given in his paper on Abelian functions, is based on the properties of the
ϑ function in which the variables are replaced by the corresponding integrals of the
first kind. The resulting functions become uniform when they are defined on their
Riemann surfaces. In the last part of his dissertation, Lacour shows that the new
functions he introduces are solutions of certain linear differential equations whose
coefficients are rational functions.

In 1886, Lacour had Élie Cartan among his students, at the lycée Janson-de-
Sailly. At the same time, he taught at the Faculté des Sciences de Paris. In 1901,
he held the chair of differential and integral calculus at the University of Nancy,
and he later moved to the University of Rennes. After Lacour left Nancy, he was
replaced there by his former student Élie Cartan.

Appell and Lacour conceived their treatise as an elementary introduction to the
subject, and as a preparation for the more advanced treatises (they refer to them as
the “great treatises”) of Briot-Bouquet, Halphen and Tannery-Molk. The treatise
of Appell and Lacour also includes simple applications to geometry, mechanics and
mathematical physics. The authors consider the theory of elliptic functions as a
“higher-order trigonometry,” in reference to the generalizations of the complex sine
and cosine functions.

3.12. Hermite. To end this sequence of treatises, we say a few words on a treatise
of Hermite, who was already mentioned several times in this chapter. This is his
Cours d’analyse de l’École Polytechnique. We first mention a few biographical
facts on Hermite, extracted from the Preface to Volume I of his collected works
[49], written by Picard.

Charles Hermite (1822–1901) studied at the famous lycées Henri IV and Louis-
le-Grand. His teacher at Louis-le-Grand was Richard, who, fifteen years before, had
the young Galois as élève. Hermite, while he was still at Louis-le-Grand, used to go
to the nearby library, the famous Bibliothèque Sainte-Geneviève, to read Lagrange’s
Traité de la résolution des équations numériques. He bought with his savings, in
French translation, Gauss’s Recherches arithmétiques. Later on, Hermite used to
say that it was mainly in these two works that he learned algebra. In 1842, at the
age of 20, Hermite entered the École Polytechnique, and the same year he published
two papers in the new journal Nouvelles annales de mathématiques. One of these
papers is on the impossibility of solving the fifth degree equation. A few months
later, in January 1843, Hermite wrote to Jacobi, presenting his work on Abelian
functions in which he extends results of Abel on the division of the argument of
elliptic functions.The next year he sent another letter to Jacobi, on transformations
on elliptic functions which included results on ϑ functions. Jacobi was so pleased
by the letters of the young Hermite that he inserted them in his Collected Works.
Later on, Hermite became mostly interested in number theory, but the theories
of elliptic and Abelian functions continued to occupy his mind for the rest of his
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life. Jacobi’s Fundamenta nova were always on his worktable. According to Picard,
Hermite used to say that he will be until his last day a disciple of Gauss, Jacobi
and Dirichlet.

Hermite taught at the École Polytechnique and he wrote, like many other pro-
fessors at that school, a Cours d’analyse de l’École Polytechnique (1873) [44]. He
also taught at the University of Paris, and lecture notes from his teaching, for the
year 1882–1883, exist [45]. A large part of his course at the university is on elliptic
integrals. The topics include the rectification of the parabola, ellipse and hyper-
bola, results of Fagnano, Graves and Chasles on arcs of ellipses whose difference
is rectifiable (see Chapter 1 in the present volume for the work done on the recti-
fiability of these curves), and hyperelliptic integrals. Several results of Chebyshev
are also presented together with Cauchy’s theory on the dependence of a path inte-
gral on the homotopy class of the path. Riemann’s method for the construction of
holomorphic functions is also discussed, together with Green’s theorem. Hermite
also included in his course Riemann surfaces associated to multi-valued functions,
periods of elliptic functions, doubly periodic functions, the transformation theory
of elliptic functions, the ϑ function and other functions introduced by Jacobi.

4. Simart’s dissertation

Georges Simart (1846–1921) studied at the École Polytechnique. After that, he
became a mathematician but he also worked as an officer in the Navy.40 On the
cover page of his doctoral dissertation, he is described as Capitaine de vaisseau.41

On the one of his book with Picard, he is described as Capitaine de frégate42 et
répétiteur43 à l’École Polytechnique. His dissertation is entitled Commentaire sur
deux mémoires de Riemann relatifs à la théorie générale des fonctions et au principe
de Dirichlet (A commentary on two memoirs of Riemann relative to the general
theory of functions and to the principle of Dirichlet). It was defended on May 1,
1882, with a jury consisting of Hermite (acting as the president), Darboux and Bou-
quet. Simart had personal relations with Picard. In the introduction to Volume I of
his Traité d’analyse [78], Picard writes that the volume was proof-read by Simart,
“a dedicated friend and an invaluable collaborator” (un ami dévoué et un précieux
collaborateur). We already mentioned the treatise that Picard and Simart wrote
together, the Théorie des fonctions algébriques de deux variables indépendantes
(§3.6). In the introduction to that work, Picard writes that he wrote that book
“with his friend, Georges Simart, who had helped him a lot in his Traité d’analyse.”

Simart’s thesis is a commentary on the two memoirs of Riemann on functions
of a complex variable, namely, his doctoral dissertation [91] and his memoir on
Abelian functions [93].

The first sentences of the thesis give us some hints on the status of Riemann’s
work among the French mathematicians at that epoch:

We know the magnificent results obtained by Riemann in his two mem-
oirs on the general theory of functions and on the theory of Abelian
functions; but the methods he used, may be too briefly presented, are
poorly known in France. On the other hand, reading these memoirs is
particularly difficult and requires a heavy amount of work. Furthermore,
the methods used by the famous geometer, and in particular his use of the

40We remind the reader that the École Polytechnique is primarily a military school.
41A Captain in the Navy.
42A Frigate Captain. The progress is unusual because the rank of Capitaine de frégate is lower

than that of Capitaine de vaisseau.
43See Footnote 31. From 1900 to 1906, Simart worked as a répétiteur at the École

Polytechnique.
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Dirichlet principle, gave rise to several criticisms, whether in Germany
or in France.44

The author then declares that his exposition is based on the works published
in Germany by Königsberger, Neumann, Klein, Dedekind, Weber, Prym, Fuchs
and a few others.45 He declares that “reading these memoirs requires a knowledge
of the so-called Riemann surfaces, whose use became classical in some German
universities.” He writes, at the end of the introduction, that at the moment he
was achieving his work, he learnt about the existence of a booklet by Klein46 in
which the latter develops Riemann’s ideas. Simart declares that Klein explains in
that booklet that it is not necessary that Riemann surfaces be coverings of the
plane (“des surfaces à plusieurs feuillets étendues sur le plan”), but that complex
functions may be studied on arbitrary curved surfaces, in the same way as we do
it on the plane. Simart also uses the work of Puiseux. We refer the reader to the
description of the work of Puiseux given in Chapter 7 of the present volume, [76].

At the beginning of the dissertation, Simart shows how a Riemann surface is
associated with an irreducible algebraic equation F (s, z) = 0 defining implicitly an
algebraic function s of z. This surface is obtained using the distribution of the crit-
ical points and the poles, and it depends on the combinatorics of the (multi-)values
of the function s(z) at these points. This is considered as “the Riemann surface of
the function s.” This is the new domain on which the function s becomes uniform
(that is, no more multi-valued). The construction of the surface is described on p.
5–7 of the thesis. To the critical points (points z for which the given equation has
multiple roots s) are associated products of cyclic transformations (permutations)
obtained by winding around these values, in the tradition of Cauchy and Puiseux
(see the review in [76]). The Riemann surface is obtained by gluing pieces of the
complex plane using this combinatorial data. The pieces constitute the various
“sheets” of the Riemann surface, which becomes a branched covering of the sphere.
Each critical point gives rise to a certain number of ramification points of the cov-
ering, their number depending on the number of cyclic systems associated with the
critical point. A ramification point of order µ corresponds to a cyclic permutation
of µ+1 roots of the algebraic equation. Examples of gluing patterns for the various
sheets are represented in Figure 5. In this figure, the surface to the left (called Fig.
1 in the original drawing) represents a critical point of order 3, having a unique
cycle. It corresponds to a unique ramification point of order 2. The surface in the
middle (called Fig. 2) represents a critical point of order 4 having two cycles. It
corresponds to two ramification points of order 1 each. The surface to the right
(called Fig. 3) represents a critical point of order 4 having three cycles. It cor-
responds to three ramification points, one of order 1, and two others of order 0.
The Riemann surface associated with the algebraic equation satisfies the following
properties:

(1) Any rational function of s and z, when it is defined on the Riemann surface,
is also a uniform function of z.

(2) The various integrals of the function s on this surface differ by a constant.

44On connâıt les maginifques résultats auxquels Riemann est parvenu dans ses deux mémoires
relatifs à la théorie générale des fonctions et à la théorie des fonctions abéliennes; mais les méthodes
qu’il a employées, peut-être trop succinctement exposées, sont peu connues en France. La lecture
de ces mémoires est d’ailleurs singulièrement difficile et demande un travail approfondi. De plus,

les procédés employés par l’illustre géomètre, en particulier l’application qu’il a faite du principe
de Dirichlet, ont donné lieu à de nombreuses critiques tant en Allemagne qu’en France.

45Klein, in his Development of mathematics in the 19th century [58], gives a concise report on
the contribution of these authors to the diffusion of Riemann’s work.

46This should be Klein’s Über Riemanns Theorie der algebraischen Funktionen und ihrer
Integrale [?].
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Figure 5. Picture from Simart’s thesis [102].

The rest of Part I of the dissertation is also purely topological. Simart recalls
Riemann’s definition and classification of surfaces according to their connectivity,
and how an n+1-connected surface may be transformed into an n-connected one by
performing cuts. He declares that this theory was outlined by Riemann, but that
the details were worked out by Königsberger. Simart then proves that a connected
(n + 1)-connected surface is transformed by an arbitrary cut into an n-connected
surface.

Part II of the dissertation concerns the study of the Laplace equation. We
recall that Riemann, at the beginning of his doctoral dissertation, showed that if
a function w = u + iv of a complex variable z = x + iy has the property that
its derivative is independent of direction, then its real and imaginary parts satisfy
the Laplace equation. This is one of the major tools that Riemann uses in the
rest of his work. Using a system of coordinates that Riemann introduced in his
dissertation and his memoir on Abelian functions, Simart proves an extension of
Green’s theorem to a region contained in an arbitrary Riemann surface bounded by
an arbitrary finite number of curves. Riemann’s use of the Dirichlet principle relies
on that theorem. Simart gives the precise hypotheses on the functions which are
concerned by Green’s theorem, taking into account points of discontinuity and the
points at infinity. The points of discontinuity of a function u are arranged, following
Riemann’s classification in §10 of his dissertation, into two species, according to
whether the surface integral ∫ ∫ (

(
∂u

∂x
)2(

∂u

∂y
)2
)
dT

is finite or not on a piece of surface containing this point.
Simart proves the following theorem, which he attributes to Riemann (§10 of

Riemann’s dissertation):
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Let u be a function defined on a simply connected Riemann surface
with boundary satisfying the differential equation

∂2u

∂x2
+
∂2u

∂y2
= 0

and suppose that the function satisfies furthermore the following
conditions:
(1) The set of points where this differential equation is not satisfied

has dimension ≤ 1.
(2) The number of points where u, ∂u∂x ,

∂u
∂y are discontinuous is fi-

nite.
(3) At these discontinuity points, the magnitudes ρ∂u

∂x , ρ
∂u
∂y are in-

finitely small compared with ρ, where ρ is the distance to the
singular point.

(4) There are no isolated discontinuities of u which correspond to
an instantaneous change in value.

Then u as well as its partial derivatives are necessarily finite and
continuous.

Simart then proves (§11 of Riemann’s dissertation) the uniqueness of a function
u satisfying the Laplace equation on the interior of a domain, with a given value
on the boundary.

Part III of Simart’s dissertation concerns the Dirichlet principle (§16–18 of Rie-
mann’s disssertation), in connection with Riemann’s determination of the functions
discussed in Part II. We recall that Riemann uses this principle in his proof of the
so-called Riemann mapping theorem, stated as follows (§21 of Riemann’s disserta-
tion and p. 78 of Simart’s dissertation):

Given a simply connected Riemann surface T with boundary, there
exists a function ζ(z) defined on this surface such that the image
by ζ of T is the unit disc.

Part IV concerns Abelian integrals, as an approach to the Riemann existence
problem: “To determine a function knowing its ramification points, its discontinuity
points and the way in which it is discontinuous.” The analytic forms of the so-called
integrals of the first kind are given as well as the Riemann–Roch theorem.

More precisely, Simart addresses in this part the following two problems, for
which he gives a complete solution:

Problem 1.— (p. 80) Given an irreducible algebraic equation F (s, z) = 0 defining
a multi-valued algebraic function s of z, find the associated Riemann surface, that
is:

(1) determine the critical points of the function s, the number of ramification
points that are above these critical points, and the order of each of these
ramification points;

(2) transform this surface, using Riemann’s “cuts,” into a simply connected
surface, evaluate the number of cuts, and then determine the connection of
the surface.

Problem 2.— (p. 97) Let T be the closed surface associated with the function
s(z) defined in Problem 1, and assume it is 2p+ 1-connected. Let T ′ be the simply
connected surface obtained from s using 2p cuts. Find a function w(z) which is
uniform on T , continuous on T ′ except at certain points and along certain lines,
and satisfying the following:

(1) Along each cut, the difference of the function from one side of the cut to the
other is a constant; the real parts of these constants are given in advance.
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(2) The function is discontinuous at a certain finite number of points, and at
such points it has a finite expression of the form

A log r +Br−1 + Cr−2 + . . .

where the constants A,B, . . . are given and r is an arbitrary function of z
which at the given point is infinitely small of the first order.

(3) With the set of points in (2), the surface is no more closed, and one has to
draw new cuts joining these points to the boundary of the surface T ′. The
difference of the function w along both sides of each of these new cuts is
constant for each such cut and equal to 2πA.

In the solution of Problem 1, the Puiseux expansions and the techniques of the
Puiseux-Newton polygon are thoroughly used.

The second problem is one of the main problems that were addressed by Riemann
in his memoir on Abelian functions. The proof that Simart gives uses, in the
tradition of Riemann, the Dirichlet principle.

To each critical point corresponds a certain number of ramification points which
are determined by the system of circular points formed around that point. A
ramification point of order µ is a point around which µ+ 1 roots are permuted. A
ramification point of order 1 is a point around which 2 roots are permuted, and it
is called a simple ramification point. There is a relation between the order and the
degree of a critical point, and the orders of the corresponding ramification points
above it. These considerations are in the tradition of the work of Puiseux; cf. the
exposition in Chapter 7 of the present volume [76].

Simart’s dissertation is one of the important French writings that contributed to
the understanding of Riemann’s ideas by the French mathematicians.

5. Other French dissertations and other works of Riemann

In this section, we review briefly a few other works done in France in which
the authors explain some major ideas of Riemann, including his work on the zeta
function, on minimal surfaces, and on integration.

5.1. The zeta function. Eugène Cahen, defended in 1895, at the Faculté des Sci-
ences de Paris, a doctoral dissertation titled Sur la fonction ζ(s) de Riemann et sur
des fonctions analogues (On Riemann’s ζ(s) function and on analogous functions)
[21]. The dissertation is dedicated to a generalization of Riemann’s zeta function to

functions of the form
∑ αn

ns
, in particular for sequences αn which are periodic, and

to the development of a theory of Dirichlet series. The dissertation was criticized as
being faulty, but it contains the kind of mistakes which were a ferment for further
research. For instance, Cahen gives, with an incomplete proof, an asymptotic value
of the sum of the logarithms of prime numbers which are smaller than x. In his
paper [38], Hadamard writes:

In his memoir which was previously quoted, Mr. Cahen presents a proof
of the theorem stated by Halphen: The sum of the logarithms of the
prime numbers which are at most x is asymptotic to x. However, his
reasoning depends on Stieltjes’ proposition concerning the realness of
the roots of ζ( 1

2
+ ti) = 0. We shall see that by modifying slightly the

author’s analysis, we can establish the same result in all rigor.47

47Dans son mémoire précédemment cité, M. Cahen présente une démonstration du théorème
énoncé par Halphen: La somme des logarithmes des nombres premiers inférieurs à x est asymp-

totique à x. Toutefois son raisonnement dépend de la proposition de Stieltjes sur la réalité des
racines de ζ( 1

2
+ ti) = 0. Nous allons voir qu’en modifiant légèrement l’analyse de l’auteur on

peut établir le même résultat en toute rigueur.
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The mistakes in Cahen’s dissertation are analyzed in E. Landau’s review [60].
Landau corrected some of them. Cahen’s dissertation was published in the Annales
de l’École Normale, [22].

It is interesting to recall that in 1891, the Paris Académie des Sciences an-
nounced a prize for a competition whose subject was: “The determination of the
number of prime numbers smaller than a given quantity.” When the competition
was announced, it was thought that the prize would be attributed to Stieltjes, who
had claimed a proof of the Riemann hypothesis, but his proof turned out to be
wrong. The prize went in 1892 to Hadamard, for completing Riemann’s proof of
the prime number theorem. Here is how Hadamard relates his discoveries, in his
report on his own works [37]:

The last ring in the chain of deductions which started in my thesis and
continued in my crowned memoir led to the clarification of the most
important properties of Riemann’s ζ(s) fonction.

By considering this function, Riemann determines the frequency as-
ymptotic law of prime numbers. But his reasoning assumes: 1) that
the function ζ(s) has finitely many zeros; 2) that the successive mod-
uli of these zeros grow roughly like n logn; 3) that, in the expression
of the auxiliary function ξ(t) in prime factors, no exponential factor is
introduced.

Since these propositions remained without proof, Riemann’s results
remained completely hypothetical, and it was not possible to find others
in the same trend. As a matter of fact, no effort has been attempted in
this respect since Riemann’s memoir, with the exception of: 1) Halphen’s
note which I mentioned earlier, which was, after all, a research project
for the case where Riemann’s postulates would be established; 2) a note
by Stieltjes in which this geometer announced a proof of the realness of
the roots of ζ(t), a proof which was never produced since.

Nevertheless the propositions whose statements I recalled before are
only a trivial application of general theorems contained in my memoir.

Once these propositions are established, the analytic theory of prime
numbers was able, after a break which lasted thirty years, to take a new
boom; since that time, it continued to grow rapidly.

This is how the knowledge of the genus48 of ζ(s) allowed, first, Mr. von
Mangoldt to establish in all rigor the final result of Riemann’s memoir.
Before that, Mr. Cahen had made a first step towards the solution of the
problem addressed by Halphen; but he was not able to attain completely
his goal: indeed, it was necessary, in order to achieve in an irrefutable
way Halphen’s reasoning, to prove once again that the ζ function has no
zero on the line R(s) = 1.

I was able to overcome this difficulty in 1896, while Mr. de la Vallée-
Poussin reached independently the same result. But the proof which I
gave is much quicker and Mr. de la Vallée-Poussin adopted it in his later
publications. It uses only the simple properties of ζ(s).

At the same time, I extended the reasoning to Dirichlet series and,
consequently, I determined the distribution law for prime numbers in an
arbitrary arithmetic progression, then I showed that this reasoning may
be used as such for quadratic forms with negative determinant. Since
then, the same general theorems on entire functions allowed Mr. de la

48Hadamard was studying, at the same period, a notion of genus for entire functions. In
particular, he gave a formula for the growth of the moduli of the roots of such functions in terms
of their power series expansion.
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Vallée-Poussin to complete this cycle of proofs by treating the case of
forms with positive b2 − ac.49

49Le dernier anneau de la châıne de déductions commencée dans ma Thèse et continuée dans

mon Mémoire couronné aboutit à l’éclaircissement des propriétés les plus importantes de la fonc-
tion ζ(s) de Riemann.

Par la considération de cette fonction, Riemann détermine la loi asymptotique de fréquence des

nombres premiers. Mais son raisonnement suppose : 1) que la fonction ζ(s) a des zéros en nombre
infini ; 2) que les modules successifs de ces zéros croissent à peu près comme n logn ; 3) que,

dans l’expression de la fonction auxiliaire ξ(t) en facteurs primaires, aucun facteur exponentiel ne

s’introduit.
Ces propositions étant restées sans démonstration, les résultats de Riemann restaient

complètement hypothétiques, et il n’en pouvait être recherché d’autres dans cette voie. De fait,

aucun essai n’avait été tenté dans cet ordre d’idées depuis le Mémoire de Riemann, à l’exception
: 1) de la Note précédemment citée d’Halphen, qui était, en somme, un projet de recherches pour
le cas où les postulats de Riemann seraient établis ; 2) d’une Note de Stieltjes, où ce géomètre
annonçait une démonstration de la réalité des racines de ξ(t), démonstration qui n’a jamais été

produite depuis.

Or les propositions dont j’ai rappelé tout à l’heure l’énoncé ne sont qu’une application évidente
des théorèmes généraux contenus dans mon Mémoire.

Une fois ces propositions établies, la théorie analytique des nombres premiers put, après un

arrêt de trente ans, prendre un nouvel essor ; elle n’a cessé, depuis ce moment, de faire de rapides
progrès.

C’est ainsi que la connaissance du genre de ζ(s) a permis, tout d’abord, à M. von Mangoldt
d’établir en toute rigueur le résultat final du Mémoire de Riemann. Auparavant, M. Cahen avait
fait un premier pas vers la solution du problème posé par Halphen ; mais il n’avait pu arriver

complètement au but : il fallait, en effet, pour achever de construire d’une façon inattaquable

le raisonnement d’Halphen, prouver encore que la fonction ζ n’avait pas de zéro sur la droite
R(s) = 1.

J’ai pu vaincre cette dernière difficulté en 1896, pendant que M. de la Vallée-Poussin parvenait
de son côté au même résultat. La démonstration que j’ai donnée est d’ailleurs de beaucoup la plus

rapide et M. de la Vallée-Poussin l’a adoptée dans ses publications ultérieures. Elle n’utilise que

les propriétés les plus simples de ζ(s).
En même temps j’étendais le raisonnement aux séries de Dirichlet et, par conséquent,

déterminais la loi de distribution des nombres premiers dans une progression arithmétique quel-

conque, puis je montrais que ce raisonnement s’appliquait de lui-même aux formes quadratiques à
déterminant négatif. Les mêmes théorèmes généraux sur les fonctions entières ont permis, depuis,

à M. de la Vallée-Poussin d’achever ce cycle de démonstrations en traitant le cas des formes à

b2 − ac positif.
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5.2. Minimal surfaces. Regarding Riemann’s work on minimal surfaces (see [94]
and [95] cf. also Chapter 5 of the present volume [110]), we mention the thesis de-
fended at the Faculté des Sciences de Paris on May 27, 1880, by Boleslas-Alexandre
Niewenglowski [70]. The title is Exposition de la méthode de Riemann pour la
détermination des surfaces minima de contour donné (Exposition of Riemann’s
method for the determination of minimal surfaces with a given contour). The the-
sis committee consisted of Hermite, Bonnet and Tannery. The author declares there
that Riemann, in his work on minimal surfaces, was inspired by Bonnet. He writes,
in his introduction:

I would like to clarify, if I can, a remarkable memoir of Riemann, relative
to minimal surfaces. The famous author had briefly indicated most of
the results he obtained; I hope that I established them in a satisfactory
way.

Riemann makes use of imaginary variables which we immediately re-
duce to the variables that were used before him by Mr. O. Bonnet, in
several important memoirs on the general theory of surfaces. Indeed, the
logarithm of the variable µ, chosen by Riemann, is equal to y−x

√
−1 and,

therefore, the logarithm of the conjugate variable µ′ is equal y + x
√
−1,

where x et y are the independent variables adopted by Mr. O. Bonnet.
I think that I am not exaggerating at all in claiming that the scholarly
research of Mr. O. Bonnet inspired that of Riemann.50

In §6 of his dissertation, Niewenglowski recalls the partial differential equation
that Riemann obtains to show that a surface is minimal (that is, has zero mean
curvature), and he shows that this equation is contained in Bonnet’s memoir [7].
We note by the way that Bonnet wrote several other articles on minimal surfaces; cf.
e.g. [8], [9], [10], [11], [12]. In the first section of the second part of his dissertation,
titled Applications, Niewenglowski considers the special case of minimal surfaces
that contain two non-planar surfaces. He notes that the only such surface that
Riemann indicates in his article is a surface that was known since a long time (a
surface Niewenglowski calls “hélicöıde gauche à plan directeur.”) Niewenglowski
notes that Serret showed that there are other surfaces that satisfy this requirement
and he describes them. Other examples of minimal surfaces given by Riemann are
described from a new point of view. Niewenglowski’s dissertation was published in
the Annales de l’École Normale Supérieure, [69].

5.3. The Riemann integral. Finally, we talk about the fate of the Riemann
integral in the French treatises on analysis of the period considered. It seems that
it is only in the second edition of Jordan’s Cours d’analyse, published in 1893, that
this topic was considered for the first time. We note by the way that this second
edition contains Jordan’s theorem saying that a simple closed curve in the plane
separates the plane into two regions.

Riemann introduced his theory of integration in his habilitation memoir on
trigonometric series, Über die Darstellbarkeit einer Function durch eine trigonometrische
Reihe (On the representability of a function by a trigonometric series) [92]. The
text was written in 1853 but was published only after Riemann’s death. Darboux,

50Je me propose d’élucider, s’il m’est possible, un mémoire remarquable de Riemann, relatif
aux surfaces minima. L’illustre auteur a brièvement indiqué la plupart des résultats qu’il a obtenus

; j’espère les avoir établis d’une manière satisfaisante.
Riemann se sert de variables imaginaires que l’on ramène immédiatement aux variables em-

ployées avant lui par M. O. Bonnet, dans plusieurs mémoires importants sur la théorie générale
des surfaces. En effet, le logarithme népérien de la variable µ, choisie par Riemann, est égal à
y+x

√
−1 et le logarithme de la variable conjuguée µ′ est égal, par suite, à y−x

√
−1, x et y étant

les variables indépendantes adoptées par M. O. Bonnet. Je pense ne rien exagérer en affirmant
que les recherches savantes de M. O. Bonnet ont inspiré celles de Riemann.
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in a letter to Hoüel, who had just translated Riemann’s memoir into French, dated
March 30, 1873 and quoted in [28], writes the following:

It is very kind of you to have finished the Riemann. There is a pearl
which everybody will discover there, I hope. This is the definition of
the definite integral. It is from here that I extracted a large quantity of
functions which do not have a derivative.51

Darboux and Hoüel were the two editors of the Bulletin des sciences mathématiques
et astronomiques, and we mention incidentally that Hoüel translated into French,
and published, other memoirs of Riemann, including his two Habilitation works,
Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe (On the

representability of a function by a trigonometric series) [92] and Über die Hypothe-
sen, welche der Geometrie zu Grunde liegen (On the hypotheses that lie at the
bases of geometry) [98].

Two years after he wrote that letter, Darboux published a memoir on discon-
tinuous functions [25] in which he uses Riemann’s ideas. His memoir starts as
follows:

Until the appearance Riemann’s memoir on trigonometric series, no
doubts were raised on the existence of a derivative for continuous func-
tions. Excellent and famous geometers, among whom one must count
Ampère, had tried to provide rigorous proofs for the existence of a de-
rivative. These attempts were without doubt far from being satisfying.
But I repeat it: no doubt was even formulated on the existence of a
derivative for continuous functions.

The publication of Riemann’s memoir concluded the question in the
opposite way. At the occasion of trigonometric series, the famous geome-
ter presents his ideas on the principle of infinitesimal calculus: he gener-
alizes, with one of these views that belong only to first order minds, the
notion of definite integral; he shows that it applies to discontinuous func-
tions on any interval, and he states the necessary and sufficient conditions
under which a function, continuous or discontinuous, can be integrated.
As we shall see, the sole fact that there exist discontinuous functions that
can be integrated suffices to prove that there are discontinuous functions
that have no derivative, and this consequence of Riemann’s works was
soon admitted by the German geometers.

[...] In the work that will be read, I resume, providing all the nec-
essary developments, the definitions of Riemann’s definite integral after
Riemann, and I show how this definition must lead to infinitely many
continuous functions which have no derivative.52

51Vous êtes bien aimable d’avoir fini le Riemann. Il y a une perle que tout le monde y

découvrira, je l’espère. C’est la définition de l’intégrale définie. C’est de là que j’ai tiré une foule
de fonctions qui n’ont pas de dérivées.

52Jusqu’à l’apparition du mémoire de Riemann sur les séries trigonométriques aucun
doute ne s’était élevé sur l’existence de la dérivée des fonctions continues. D’excellents,

d’illustres géomètres, au nombre desquels il faut compter Ampère, avaient essayé de donner des

démonstrations rigoureuses de l’existence de la dérivée. Ces tentatives étaient loin sans doute
d’être satisfaisantes ; mais je le répète, aucun doute n’avait été formulé sur l’existence même

d’une dérivée pour les fonctions continues.

La publication du mémoire de Riemann a décidé la question en sens contraire. À l’occasion des
séries trigonométriques, l’illustre géomètre expose ses idées sur le principe du Calcul Infinitésimal:

il généralise, par une de ces vues qui n’appartient qu’aux esprits de premier ordre, la notion
d’intégrale définie ; il montre qu’elle est applicable à des fonctions discontinues dans tout intervalle,

et il énonce les conditions nécessaires et suffisantes pour qu’une fonction, continue ou discontinue,

soit susceptible d’intégration. Ce seul fait, qu’il existe des fonctions discontinues susceptibles
d’intégration, suffit à prouver, comme on le verra, qu’il y a des fonctions continues n’ayant pas

de dérivée, et cette conséquence des travaux de Riemann n’a pas tardé à être admise par les

géomètres allemands.
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Picard, in his Notice on Darboux, reports that the latter declared later on that
his memoir “was poorly received by several among those who usually are interested
by his works. They had dissuaded him to cultivate more this unproductive field of
functions which do not have a derivative.”53

Lebesgue, in a letter to Borel dated April 28, 1909, writes ([64] p. 189):

I appreciate the last works of Riemann (I think he died young) as much
as his dissertation on functions of a complex variable, whose importance,
it seems to me, was exaggerated.54

One may mention here that the main idea that Lebesgue wanted to convey in
that letter is that, from his point of view, the work of a mature mathematician is
generally more important than the work he did when he was young. It is also true
that Lebesgue found in Riemann’s memoir on trigonometric functions [92], which
was written three years after his doctoral dissertation [91] (that is, he was more
mature, in Lebesgue’s wording), the bases of his integration theory, the work for
which the name of Lebesgue is mostly remembered.

Lebesgue is the founder of measure theory, and he was inspired by Riemann’s
integration theory. In the introduction to his famous Leçons sur l’intégration et la
recherche des fonctions primitives (Lessons on integration theory and on the search
for primitive functions) [61], Lebesgue writes:

[...] It is for the resolution of these problems, and not by love of compli-
cations, that I introduced in this book a definition of the integral which
is more general than that of Riemann and which includes the latter as a
special case.

I think that those who will read me carefully, even if they regret that
things are not simpler, will grant me that this definition is necessary
and natural. I dare say that in a certain sense it is simpler than that of
Riemann, as much easy to grasp, and that only some previously acquired
mental habits can make it appear more complicated. It is simple because
it highlights the most important properties of the integral, whereas Rie-
mann’s definition only highlights a computational mechanism. For this
reason, it is almost always as much easy, and even easier, using the gen-
eral definition of the integral, to prove a property for all the functions
to which this definition applies, that is, the summable functions, than to
prove it for all the integrable functions, relying on Riemann’s definition.
Even if one is only interested to the results relative to simple functions,
it is therefore useful to be familiar with the notion of summable function
because it suggests fast methods of proof.55

[...] Dans le travail qu’on va lire, je reprends, en donnant tous les développements nécessaires,
les définitions de l’intégrale définie d’après Riemann, et je montre comment cette définition doit

conduire à une infinité de fonctions continues n’ayant pas de dérivée.
53Ce Mémoire avait été froidement accueilli par plusieurs de ceux qui habituellement

s’intéressaient à ses travaux. Ils l’avaient dissuadé de labourer plus longtemps le champ stérile des

fonctions qui n’ont pas de dérivée.
54J’apprécie autant les derniers travaux de Riemann (mort jeune je crois) que sa dissertation

sur les fonctions de variable complexe dont l’importance m’a semblé parfois exagérée.
55[...] C’est pour la résolution de ces problèmes, et non par amour des complications, que

j’ai introduit dans ce livre une définition de l’intégrale plus générale que celle de Riemann et
comprenant celle-ci comme cas particulier.

Ceux qui me liront avec soin, tout en regrettant peut-être que les choses ne soient pas plus

simples, m’accorderont, je le pense, que cette définition est nécessaire et naturelle. J’ose dire
qu’elle est, en un certain sens, plus simple que celle de Riemann, aussi facile à saisir que celle-ci et
que, seules, des habitudes d’esprit antérieurement acquises peuvent faire parâıtre plus compliquée.

Elle est plus simple parce qu’elle met en évidence les propriétés les plus importantes de l’intégrale,
tandis que la définition de Riemann ne met en évidence qu’un procédé de calcul. C’est pour cela

qu’il est presque toujours aussi facile, parfois même plus facile, à l’aide de la définition générale

de l’intégrale, de démontrer une propriété pour toutes les fonctions auxquelles s’applique cette
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Chapter II of Lebesgue’s treatise is entirely dedicated to Riemann’s theory.

6. On the relations between the French and German mathematicians

The impact of Riemann’s work on the French mathematical school naturally
leads to the question of the relation between the French and German schools of
mathematics. We already addressed this issue, in particular in §3 above. The
question has several sides, ranging from the attitude towards the so-called German
tendency to abstraction, to the political aspect, taking into account the ravaging
war that broke out 20 years after Riemann defended his dissertation. We recall that
in 1870, a devastating war erupted between France and Germany, which resulted
in the German annexion of the French provinces of Alsace and Moselle. This war
clearly affected the relations between the two countries, but the French kept the
great admiration they had for Riemann, Weierstrass and the German school of
function theory. One must add that despite this admiration, some of Riemann’s
methods remained foreign to the French geometers. Darboux, in a letter to Hoüel,
dated March 5, 1870, complains of the fact that the French mathematicians were
still relying on the old methods. He writes ([26] p. 109):

All our geometers, although very distinguished, seem to belong to an-
other age. They are eminent scientists, belonging to a science which is
twenty or thirty years old which they improve and develop with a lot of
success, but all the modern branches remain inaccessible to them.56

One may naturally address the question of quoting the German mathematical
literature by the French, and vice-versa, independently of the question of the dif-
ficulty of Riemann’s ideas. Darboux, in another letter to Hoüel, complains about
the fact that the Germans never quote Cauchy. In a letter written around the year
1870 (the letter does not carry a date), he writes (see [26] p. 89, Letter No. 3):

People in France start studying extensively complex variables. It is odd
that this theory, born in France with the work of Cauchy, received its
most beautiful developments abroad, but, I don’t know if you will be of
the same opinion as me, I find that the Germans are not fair for what
regards Cauchy. They take advantage of his work but never quote him.57

In another letter to Hoüel, talking again about the Germans ([26] p. 96, Letter No.
7, again with no date), Darboux writes:

Their behavior concerning Cauchy is unworthy. All the copies of Cauchy[’s
writings] leave for Germany. Gauthier-Villars quite rightly said this to
me. Nevertheless his work is never quoted.58

How was the situation in France? It is sometimes claimed that Poincaré was not
keen on quoting the Germans. In a letter to Hermite (August 20, 1881), Mittag-
Leffler ([46] p. 251, also quoted in Dugac [28], p. 156–157), writes:

définition, c’est-à-dire pour toutes les fonctions sommables, que de la démontrer pour toutes les
fonctions intégrables, en s’appuyant sur la définition de Riemann. Même si l’on ne s’intéresse

qu’aux résultats relatifs aux fonctions simples, il est donc utile de connâıtre la notion de fonction

sommable parce qu’elle suggère des procédés rapides de démonstration.
56Tous nos géomètres, quoique tous fort distingués, semblent appartenir à un autre âge. Ce

sont des savants éminents restés à la science d’il y a vingt ou trente ans qu’ils perfectionnent,
développent avec beaucoup de succès, mais toutes les branches modernes sont pour eux très

accessoires.
57[...] on commence à s’occuper beaucoup en France des variables complexes. Il est singulier

que cette théorie née en France par le travail de Cauchy ait reçu les plus beaux développements

à l’étranger, mais je ne sais si vous serez de mon avis, je trouve que les Allemands ne sont pas
justes envers Cauchy. Ils profitent de ses travaux mais ne le citent presque jamais.

58Leur conduite vis à vis de Cauchy est indigne. Tous les exemplaires de Cauchy partent pour
l’Allemagne. Gauthier-Villars me l’a bien dit et cependant il n’est jamais cité.
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Weiserstrass’s work is prior to that of Merss. Briot and Bouquet, but
Mr. Poincaré, who should have known this from the memoir of Mme
Kowalewski – if ever he did not know about the work Analytische Fac-
ultäten – never said a word about it. Monsieur de Ramsey told me that
he heard from Mr. Molk – the French student following Weierstrass’s
course in Berlin – that Mr. Poincaré hates the Germans, which I find
very natural, and that he made it a principle to never quote any German
author, which I find very bad if it were true.59

It is possible that Poincaré’s passing over the German literature is simply due to
his general ignorance about others’ writings. Dieudonné, writes, in his article on
Poincaré in the Dictionary of Scientific Biography ([27] Vol. 11, pp. 51–61):

Poincaré’s ignorance of the mathematical literature, when he started
his researches, is almost unbelievable. He hardly knew anything on the
subject beyond Hermite’s work on the modular functions; he certainly
had never read Riemann, and by his own account had not even heard of
the Dirichlet principle.

This may also be due to Poincaré’s lack of time, although the contrary may
also be supported, that is, Poincaré had so much energy that it is unlikely that he
could not find time to read others’ writings, especially on topics on which he was
working. The explanation may come from the fact that Poincaré belongs to this
small category of a mathematician who reconstructs his background by himself,
without reading others’ works.

As we already mentioned, despite the war, the French mathematicians had an
immense admiration for German mathematics, even though they considered it too
abstract. Let us quote a few passages on this subject from the correspondence
between Hermite and Mittag-Leffler. Hermite writes in a letter dated October 6,
1884, [47]:

Abstraction, which is a charm for the Germans, is bothering us; it draws
a kind of veil on the consequences which stays hidden to us in part, until
we have taken, to attain it, a path which is more adapted to us.60

In other letters, Hermite expresses his highest esteem for the German mathe-
maticians. For example, on January 14, 1892, he writes [48]:

History of science keeps for ever the memory of the relations between
Legendre and Jacobi; something good and affectionate emerges from the
correspondence between these great geometers, which exerted its influ-
ence on their heirs.61 No division ever emerged among mathematicians
of these two countries. It is in entertaining friendly relations that they
followed the same path in their works, and Appell’s mémoire couronné62

is a shining example, by its exceptional merit, by the new light it sheds

59Le travail de Weierstrass est antérieur à celui de Messieurs Briot et Bouquet, mais M. Poincaré
qui devait savoir ça par le mémoire de Madame Kowalewski – s’il n’a pas connu le travail Analytis-

che Facultäten – n’en dit pas un mot. Monsieur de Ramsey m’a raconté qu’il a entendu par M.

Molk – l’étudiant français qui suit le cours de M. Weierstrass à Berlin – que M. Poincaré déteste
les Allemands, ce que je trouve fort naturel, et qu’il a pour principe de ne jamais citer un auteur
allemand ce qui serait fort mal si c’était vrai.

60L’abstraction, qui est un charme pour les Allemands, nous gêne et jette sur les conséquences

comme un voile qui nous dérobe une partie jusqu’à ce que nous ayons fait pour y parvenir un

chemin plus à notre convenance.
61The correspondence is reproduced in Jacobi’s Collected Works, [54] t. I, p. 385–461, and in

Crelle’s Journal, 80 (1875), p. 205–279.
62This is Paul Appell’s memoir Sur les intégrales de fonctions à multiplicateurs et leur appli-

cation au développement des fonctions Abéliennes en séries trigonométriques (mémoire couronné
par S. M. le roi Oscar II, le 21 janvier 1889).
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on Riemann, of the ultimate alliance of the genius of the two nations,
for the advancement of science.”63

In another letter to Mittag-Leffler, dated July 10, 1893, Hermite writes [48]:

I wrote to the French ambassador a letter which Appell read, at my
request, with great care, and to which he gave his complete assessment.
I was expressing, in a natural way, the sympathy and the admiration
that all of us vow to the geometers that are the pride and the glory of
German science.64

We quote, as a last example (there are many others) a letter from Hermite to
Poincaré, dated November 27, 1880. We already mentioned that Poincaré was not
keen on reading other’s mathematical papers. Hermite writes ( [88] p. 169-170):

[...] Allow me to urge you most of all to familiarize yourself with the
works of Mr. Kronecker who infinitely surpassed me in this kind of re-
search and to whom we owe the most remarkable and the most productive
discoveries. The notions of class and of genus in the theory of quadratic
forms were entirely linked to analysis by the eminent geometer [...] Some
of the beautiful results discovered by Mr. Kronecker, and published
in the Monatsbericht, were translated into French, at my request, and

they appeared, around 1859 or 1860 in the Annales de l’École Normale
Supérieure. But you must read in the same issue of the Monatsbericht
of the Academy of Sciences of Berlin, and without omitting anythings of
them, everything written by the hand of the great geometer.65

It is well known that Klein, at several places of his published talks, classifies
mathematicians into logicians, formalists, and intuitives, and he claims that this
has to do with the fact they are of Latin, Hebraic or German descent. Jules Tannery,
whom we mentioned several times in this chapter, says that “Klein modestly related
the gift of envisioning, which was so generously allocated to him, to the Teutonic
race, whose natural power for intuition is supposed to be a pre-eminent attribute.”66

(quoted by Picard in [83] p. xxviii). This is an indication of the admiration that
the French had for Klein. There are many other examples. Thus, to the question
of whether French and German mathematicians ignored each other because of that
war, the answer is clearly no.

63L’histoire de la science garde à jamais le souvenir des relations de Legendre et de Jacobi;
quelque chose de bon et d’affectueux se dégage de la correspondance entre ces grands géomètres,

qui a exercé son influence sur leurs successeurs. Aucune division ne s’est jamais montrée entre

les mathématiciens des deux pays ; c’est en entretenant des relations d’amitié qu’ils ont suivi la
même voie dans leurs travaux, et le mémoire couronné d’Appell est un témoignage éclatant, par
son mérite hors ligne, par le lustre nouveau qu’il jette sur Riemann, de l’intime alliance des génies

des deux nations, pour la marche en avant de la science.
64[...] J’ai écrit à l’ambassadeur de France une lettre qu’Appell a lue avec grande attention à

ma demande, et à laquelle il a donné son plus complet assentiment. J’exprimais naturellement les
sentiments que nous éprouvons tous de sympathie et d’admiration pour les géomètres qui sont à

l’honneur et la gloire de la science allemande.
65[...] Permettez-moi de vous engager à prendre surtout connaissance des travaux de Mr.

Kronecker qui m’a infiniment dépassé dans ce genre de recherches et à qui l’on doit les découvertes

les plus remarquables et les plus fécondes. Les notions de de classes et de genres dans la théorie
des formes quadratiques ont été entièrement rattachées à l’analyse par l’éminent géomètre [...]

Quelques uns des beaux résultats découverts par Mr. Kronecker, et publiés dans les Monatsbericht,

ont été à ma demande traduits en français et ont paru, vers 1859 ou 1860, dans les Annales

de l’École Normale Supérieure. Mais il faut lire dans ce même recueil des Monatsbericht de

l’Académie des Sciences de Berlin, et sans en rien omettre, tout ce qui est sorti de la plume du
grand géomètre.

66Le don de voir, qui lui a été départi si généreusement, M. Klein le rapporte modestement à
la race teutonique, dont la puissance naturelle d’intuition serait un attribut prééminent.
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7. In way of conclusion

In this chapter, we tried to convey the idea that it took a certain amount of
time for the notion of Riemann surface to be understood and used by French math-
ematicians. We also wanted to give a broad picture of the French mathematical
community, especially the branch on analysis, in the few decades following Rie-
mann’s work, and of the relations between the French mathematicians and their
German colleagues. Let us quote again Hermite, from his preface to the French
edition of Riemann’s works [97], published in 1898. This is an interesting passage
in which he summarizes the passage from Cauchy’s ideas to Riemann’s notion of
Riemann surface.

The notion of integration along a curve has been presented, in its sim-
plest and easiest form, with numerous and important applications which
showed their scope, since 1825, in a memoir by Cauchy entitled Sur les
intégrales définies prises entre des limites imaginaires (On the definite
integrals taken between imaginary limits). But it stays a property of the
famous author. One had to wait for twenty-five years, until the works of
Puiseux, Briot and Bouquet, so that it soars up and shines in Analysis.
The profound notion of Riemann surface, whose access is very difficult,
was soon introduced and it dominated Science, so as to remain there for
ever.67

It is important to recall that in Germany, although Riemann’s ideas were in-
vestigated since the beginning by several pre-eminent mathematicians, these ideas
remained, to many, very cryptic. We may add that in Germany, Riemann’s ideas
were not always unanimously praised, and they were even subject to criticism.
Bottazzini, in his ICM 2002 communication [13], reports on some notes written
by Casorati during a visit he made to Berlin in 1864, at the time when Riemann
was staying, for health reasons, in Italy (Pisa). Casorati writes ([13] p. 919) that
“Riemann’s things are creating difficulties in Berlin [...]” Bottazini quotes Casorati:

Weierstrass claimed that “he understood Riemann, because he already
possessed the results of his [Riemann’s] research.” As for Riemann sur-
faces, they were nothing other than “geometric fantasies.” According to
Weierstrass, “Riemann’s disciples are making the mistake of attributing
everything to their master, while many [discoveries] had already been
made by and are due to Cauchy, etc.; Riemann did nothing more than
to dress them in his manner for his convenience.”

The mathematician and historian of science Leo Könisbsberger, who taught at
the University of Heidelberg, recalls in his autobiography, Mein Leben (My life)
published in 1919, that at the time he was a student in Berlin, the mathematics
taught by Weierstrass was considered as the only mathematics that was rigorous.
He writes: “All of us, the younger generation, had the impression that the ideas and
methods of Riemann were not part of the rigorous mathematics of Euler, Lagrange,
Gauss, Jacobi and Dirichlet” (p. 59). In his last course at the University of Berlin
(1866), Weierstrass also declared that the theory of Riemann surfaces was a “pure
fantasy.” (From the manuscript course in the Humbolt-University in Berlin, quoted
in [89], p. 131.) Regarding the same theory, Klein writes in his Development of
mathematics in the 19th century (1926 )([58] p. 241):

67La notion de l’intégration le long d’une courbe avait été exposée, sous la forme la plus simple
et la plus facile, avec de nombreuses et importantes applications qui en montraient la portée, dès

1825, dans un Mémoire de Cauchy ayant pour titre Sur les intégrales définies prises entre des
limites imaginaires ; mais elle reste dans les mains de l’illustre Auteur ; il faut attendre vingt-
cinq ans, jusqu’aux travaux de Puiseux, de Briot, de Bouquet, pour qu’elle prenne son essor et
rayonne dans l’Analyse. La notion profonde des surfaces de Riemann, qui est d’un accès difficile,
s’introduit sans retard et domine bientôt la Science pour y rester à jamais.
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Even today, the beginning student of Riemann surfaces faces great diffi-
culties: The “winding points,” around which the various “sheets” hang
together, are essential; the curves proceeding from these points along
which the sheets intersect, are not – they can be arbitrarily shifted, as
long as their ends remain fixed, and in any case, they occur only because
we involuntarily make the construction in three-dimensional space.

Riemann visited Paris in April 1860, on the invitation of French mathematicians.
In a letter to his sister Ida, he describes a social atmosphere that was not in accord
with his restrained character. He writes:68

In general I am satisfied with the results of my trip, even if my expecta-
tions which I had earlier attached to the journey must remain unfulfilled,
necessitated by the shortness of time. In this regard it would have been
of little value if I had remained one or two weeks longer in Paris. And
so I preferred to return to Göttingen at the right time.

I can not complain at all about a lack of friendliness on the part of
the Parisian scholars. The first social occasion, in which I took part, was
a tea at Herr Serret’s, who had become a member of the institute a few
weeks before. Such a tea or “Réunion” contrasts sharply with our socials.
It begins at 9:00 pm, really gets going at 10:00 and goes till 1 o’clock
in the morning. During this time guests continually come and go; many
come right from the theatre, which in Paris seldom closes before 12:30.
They consist of nothing but teal ice cream and a variety of sweet-meats
(?), namely, glazed fruits and other sweets of that sort. It cannot be
denied that this unrestrained manner has perverted many.

The social gathering at Serret’s consisted of 30 to 40 ladies and gen-
tlemen, among whom were also several Germans or rather speakers of
German. I conversed chiefly with them.

Bottazzini declares in [55] p. 244 that during that stay in Paris, Riemann met,
among others, Hermite, Puiseux, Briot and Bouquet.

The German mathematicians had in general a great consideration for the French.
We quote a passage from a letter from Weierstrass to Kovalevskaya, sent on June
14, 1882, after the latter informed him that she met Hermite (the letter is repro-
duced in Mittag-Leffeler’s ICM lecture [66]): “You should now also enter into a
relationship with other mathematicians: the young ones, Appell, Picard, Poincaré
will be extremely interesting for you.”

Acknowlegements.— The author would like to thank Vincent Alberge, Marie Pas-
cale Hautefeuille and Ken’ichi Ohshika for reading a preliminary version of this
chapter.
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mathématiques 8 (1987), 67-202.
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Théorie générale. Journal für die reine und angewandte Mathematik, 88 (1880), 277–310.



RIEMANN SURFACES 47

[66] M. G. Mittag-Leffler, Une page de la vie de Weierstrass, Proceedings of the Second ICM,

Paris, 1900, Gauthiers-Villars, Paris, 1902, 131–153.

[67] J. Molk, Sur une notion qui comprend celle de la divisibilité et sur la théorie générale de
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9 (1880), 227–300.
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