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Abstract In this paper we present a new patch-based empirical Bayesian video denoising algo-
rithm. The method builds a Bayesian model for each group of similar space-time patches. These
patches are not motion compensated, and therefore avoid the risk of inaccuracies caused by mo-
tion estimation errors. The high dimensionality of spatio-temporal patches together with a limited
number of available samples, poses challenges when estimating the statistics needed for an em-
pirical Bayesian method. We therefore assume that groups of similar patches have a low intrinsic
dimensionality, leading to a spiked covariance model. Based on theoretical results about the es-
timation of spiked covariance matrices, we propose estimators of the eigenvalues of the a priori
covariance in high dimensional spaces as simple corrections of the eigenvalues of the sample covari-
ance matrix. We demonstrate empirically that these estimators lead to better empirical Wiener
filters. A comparison on classic benchmark videos demonstrates improved visual quality and an
increased PSNR with respect to state-of-the-art video denoising methods.

1 Introduction

Advances in video sensor hardware have steadily improved the acquisition quality. However, due to
the reduction in the price of cameras and data storage, video cameras are being used increasingly
often in unfavorable conditions, such as low lighting. This results in high levels of noise, which
negatively affects the visual quality of the video and hinders its use for any application.
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The denoising of videos has received less attention than still image denoising in the literature. In
principle, denoising videos should be easier than still images, since the strong temporal redundancy
along motion trajectories favours the denoising task. However, this additional form of redundancy
creates challenges. On the one hand, the amount of data is much larger than for still images,
and efficient ways of navigating through this data are needed. On the other hand, the output of
the denoising algorithm should be temporally consistent with the unknown motion of the original
sequence, which is an essential quality criterion [37,55].

Early works proposed temporal or spatio-temporal filters which either compensate for motion
using estimated motion trajectories or used some kind of mechanism to adapt to the temporal
changes in the video signal at a fixed location. We refer the reader to [5] and references therein for
more details. Other video denoising works apply temporal filtering to the wavelet coefficients of
the frames [27,62]. Some methods do not distinguish between the temporal and spatial dimensions,
and treat the video as a volume, which is denoised in a transformed domain [51,54].

Until the advent of patch-based approaches, methods without motion compensation failed
in the presence of moderate motion, and their main interest resided in their simplicity and low
computational cost. The first state-of-the-art results obtained without motion estimation were
reported in [6], with the non-local means algorithm. The authors argued that for their method,
based on averaging similar patches, motion estimation was not only unnecessary but counterpro-
ductive: while self-similar regions are problematic for motion estimation, they are a source of a
large number of similar patches across different frames. Even if the motion trajectory could be
reliably estimated, it makes more sense to use all similar patches, rather than using only the ones
on the trajectory. A similar approach was followed by the authors of [14]. This method is based on
collaborative filtering of similar patches in a spatio-temporal neighborhood. The methods in [6]
and [14] are extensions to video of still-image patch-based denoising algorithms (non-local means
[7] and BM3D [15] respectively). They are based on filtering similar 2D patches searched for in a
3D spatio-temporal neighborhood. These methods exploit both spatial and temporal redundancy.
However, since each 2D patch is processed independently, there is no mechanism to impose coher-
ence along trajectories. This results in flickering artifacts which become noticeable for high levels
of noise.

An interesting alternative was proposed in [37], based on non-local means. To denoise a target
2D patch, its forward and backward trajectories are estimated using an optical flow algorithm.
The patch is denoised as a weighted average of the patches along the trajectory and their nearest
neighbors. The weight considers the patch similarity like in the non-local means method, multiplied
by a coefficient that decreases smoothly with the temporal distance to the target patch. In this
way, 2D patches in the same trajectory are denoised using a smoothly varying non-local average
of similar 2D patches, resulting in a video with a high temporal consistency.

A natural next step is to consider 3D spatio-temporal patches. This has two main advantages.
First it provides a mechanism to impose some temporal consistency on the result, since then, the
temporally contiguous 2D temporal slices of a spatio-temporal patch are filtered jointly. Second, a
3D patch has a higher number of pixels resulting in a reduction of the noise in the distance between
patches. To get the same reduction in the distance noise with 2D patches one needs to increase their
spatial size which typically leads to a smaller number of similar patches. Two types of 3D patches
have been used in the literature: rectangular and motion-compensated. Motion-compensated 3D
patches follow a motion trajectory previously estimated.

Motion-compensated patches have the benefit that their temporal slices are highly correlated.
As a consequence, temporal filtering can be easily performed by filtering inside the patch in the
temporal direction. Because of this, methods that use motion-compensated 3D patches only look
for similar motion-compensated 3D patches starting in the same frame.
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In [38, 39] the authors introduced V-BM4D, an extension of BM3D to video by collabora-
tive filtering of similar motion compensated 3D patches. Trajectories are computed with a block
matching strategy based on the sum of squared differences (SSD) and a temporal regularization
term, which favours trajectories with small velocity and low acceleration. Recently, Buades et al.
[8] proposed to denoise each frame by warping the neighboring frames to match the target frame
via an optical flow method. This defines a 3D volume with almost identical frames (in the ideal
case). A patch-based denoising method is then used to denoise the central frame in the warped
volume. Patch similarity is determined using 3D patches in the warped volume, which is equiva-
lent to consider motion compensated patches. The denoising of each 2D patch in the target frame
results from a PCA model learnt from the 2D frames of the similar 3D patches.

The main difficulty in using motion-compensated patches is obtaining an accurate motion
estimation in the presence of noise. An alternative which does not require motion estimation is
to consider rectangular 3D patches. Each rectangular 3D patch results from the combination of
a 2D texture and a motion pattern. For arbitrary motion it would seem that each combination
of texture and motion is unlikely to repeat across the video. Thus rectangular 3D patches should
have less repeatability in the video compared to motion compensated patches. This objection is
mitigated in two ways. First, if the motion is uniform, rectangular 3D patches will be similar along
the trajectory. Second, if the motion pattern is spatially homogeneous in a region of the image,
then the image self-similarity still extends to space-time patches starting at the same frame.

Indeed, many authors have considered rectangular 3D patches. An improved version of non-
local means, which adaptively controls the shape and size of the spatio-temporal search region is
proposed in [3]. The authors compare the performance obtained with 2D and 3D patches. Sutour
et al. [56] proposed to add an adaptive spatial regularization to non-local means, and to apply it
to images and videos, also with 3D patches. In [49, 50] the authors extend the K-SVD [20] image
denoising method to video by learning a dictionary of spatio-temporal rectangular 3D patches.
A multi-scale version was proposed in [42]. Ghoniem et al. [23] model non-local interactions in a
video as a weighted graph where nodes are associated to 3D patches and the weights on the edges
are given by patch similarity. A graph regularization framework is then proposed and applied to
several inverse problems. In [41] a version of V-BM4D, called BM4D, using rectangular 3D patches
is applied to the restoration of volumetric images. The authors report results on video denoising
as well, with a performance inferior to that of V-BM4D, particularly in sequences with motion. A
similar approach, using shape adaptive patches was proposed in [36] for grayscale sequences.

In this work we present a new empirical Bayesian patch-based video denoising method using
3D rectangular patches. The proposed method assumes that similar patches can be modelled as
independent, identically distributed (IID) samples from an unknown a priori distribution. Each
patch is denoised by computing the linear minimum mean square error estimator (LMMSE) with
the estimated first and second order moments of the prior. Equivalently, the proposed approach can
be described as a maximum a posteriori (MAP) under the assumption that the prior distribution
is Gaussian.1

In recent years several works have proposed Gaussian models (or Gaussian mixture models)
as priors for image patches, achieving state-of-the-art results in image denoising and other in-
verse problems. However, the potential of these techniques for video restoration remains mostly
unexplored.

1 We refer to our method as an empirical Bayesian approach because although it is based on a Bayesian model
for patches, the parameters of the prior are determined from the data using frequentist estimators. The empirical
(or data-driven) Bayesian approach is a usual choice when the parameters of the prior are unknown, but it is a
departure from a strict Bayesian methodology which would require a hyperprior to estimate the parameters (see
[1] for a closely related method considering a Bayesian estimation of the parameters of the prior).
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A Gaussian mixture model was proposed in [63] as a fixed prior for image patches. The mixture
comprising hundreds of Gaussians, is learnt off-line from a large patch database. In [11, 59] an
image dependent mixture is learnt for each image. These works consider a single GMM for the
whole image. Extending these approaches to video is challenging because of the high variability
of spatio-temporal patches. Thus we shall stick to the idea of using video redundancy to build
a local Gaussian model for each patch from its most similar patches as in [1, 32, 61]. Such an
approach is applied in [8] to video denoising, but restricted to 2D patches. The authors argue that
the main limitation for considering 3D patches is that, as the dimensionality of the patch grows,
the number of similar patches required to estimate the covariance matrix grows larger than the
number of similar patches available.

However, we can expect that similar patches have only a few modes of variation, resulting in a
low intrinsic dimensionality, or equivalently a low-rank covariance matrix. Under this assumption
we propose estimators of a low-rank a priori covariance matrix in high dimensional spaces, which
are motivated by recent theoretical results and supported by an empirical analysis. We apply
these estimators to derive empirical Wiener filters adapted to sets of similar 3D patches. We
tested with 3D patches of dimensionality d = 100 and d = 200 and different combinations of
spatial and temporal sizes. The proposed approach produces results which compare favourably to
the current state-of-the-art, both quantitatively and qualitatively, specifically in terms of temporal
consistency.

A preliminary version of this work using 2D patches was presented in [2]. Here we generalize it
by considering 3D patches together with an improved estimation of the eigenvalues of the low-rank
covariance matrices.

The rest of the paper is organized as follows: in §2 we describe the proposed algorithm. In §3
we address the problem of estimating a low-rank covariance matrix in high dimensional spaces
and propose two simple estimators derived from the asymptotic results of [18]. In §4 we explain
the selection of the parameters. Some results, including a comparison with the state-of-the-art
methods, are shown in §5. Concluding remarks are given in §6.

Fig. 1: Examples of sets of 200 nearest neighbors of two reference spatio-temporal patches, of size
9× 9× 4. The images in each row show the five frames of a 37× 37× 5 search region. In red we
show the positions of the 5 nearest neighbors (one of them, in the center of the middle frame is
the reference patch), in green the next 40 and in blue the rest. The points shown correspond to
the top-left pixel of the first spatial slice of each patch. To highlight the position of the patches,
the color of the images has been attenuated.
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2 Bayesian video denoising

Our main assumption, following [32], is that video patches similar to a given patch are independent
random samples drawn from some a priori distribution. The problem of denoising each patch can
then be formulated as a problem of optimal Bayesian inference, where the parameters of the prior
are learnt from the noisy data.

2.1 A non-local Bayesian principle

Consider a grayscale video u : Ω × {1, · · · , T} → R, where Ω is the spatial domain (a rectangular
discrete grid). We assume that v is a noisy version of u, contaminated with additive, Gaussian,
white noise (AGWN) z of known variance σ2,

v = u+ z.

We denote a rectangular 3D patch of size sx × sx × st of the noisy video v as q, and the
corresponding patch in the clean video u as p. We consider the patches as vectors in Rd, with
d = s2xst. We have q = p + z, where z ∼ N (0, σ2Id) is a patch of AGWN (Id denotes the d × d
identity matrix).

For a noisy patch q, we select the n closest 3D patches q1 = q, q2, . . . , qn according to the
Euclidean distance in Rd. The search is conducted in a spatio-temporal region centered at q.
The spatial section of the search region is of size wx × wx and it extends for wt frames. The
main assumption justifying a Bayesian method is that the corresponding patches in the clean
video, p1,p2, . . . ,pn, are independent random samples from an a priori distribution with mean
E{p} = µ and covariance E{(p− µ)(p− µ)T } = C.

We can then estimate the clean patches pi using the linear estimator minimizing the expected
mean square error (MSE), or LMMSE:

p̂i = µ+ C(C + σ2Id)
−1(qi − µ) (1)

If we assume that the a priori distribution is Gaussian, then this estimator minimizes the MSE
across all estimators, and coincides also with the maximum-a-posteriori (MAP) estimator.

The matrix C(C + σ2Id)
−1 in the above equation is the known Wiener filter and can be

diagonalized in the basis of principal directions of the covariance matrix C. Let C = UΛUT

denote the spectral decomposition of C, where U is the orthogonal matrix of eigenvectors and
Λ = Diag(λ1, λ2, . . . , λd) is a diagonal matrix with the eigenvalues sorted in non-increasing order.
The eigenvalue λi is the variance of the a priori distribution along the ith principal direction.
Then we have that

UT (p̂− µ) = Λ(Λ+ σ2Id)
−1 UT (q − µ).

The diagonal operator S = Λ(Λ+ σ2Id)
−1 has the coefficients

sii =
λi

λi + σ2
= (1 + snr−1

i )−1 (2)

which apply a linear shrinkage of the principal components depending on the signal-to-noise ratio
snri = λi/σ

2 of each component.
The LMMSE estimator requires the knowledge of the mean and covariance of the a priori

distribution, which have to be estimated from the data. The resulting data-dependent filter is
sometimes referred to as empirical Wiener filter.
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The mean and covariance from the a posteriori distribution can be estimated from the data.
Since the noise has zero mean and is independent from u, we have that

E{q} = E{p} = µ, E{(q − µ)(q − µ)T } = Cq = C + σ2Id.

These can be estimated as the sample mean and sample covariance matrix

µ̂ =
1

n

n∑
i=1

qi and Ĉq =
1

n

n∑
i=1

(qi − µ̂)(qi − µ̂)T . (3)

These correspond to the maximum likelihood estimators (MLE) if the a priori is Gaussian (in
which case the a posteriori distribution is Gaussian as well, since the noise is also Gaussian).2

The above method is used in [32] for still image denoising, where the a priori covariance matrix

is estimated as Ĉ = Ĉq −σ2Id. This may lead to a matrix which is not positive semi-definite (and
therefore not a valid covariance matrix). We will address this issue later in Section 3 where we
propose a more principled estimator, valid in cases in which the space dimensionality is high.

Fig. 2: For the two reference patches displayed in Fig. 1 we show the 10 nearest neighbors (top
four rows), the corresponding MAP estimates (middle four rows) and the sample mean and first 9
principal directions (bottom four rows). The four rows in each case correspond to the four frames
of the 9× 9× 4 patches displayed vertically.

Figures 1 and 2 show two examples of sets of similar 9× 9× 4 patches. Figure 1 displays the
positions of the similar 200 patches found in a local search region and Figure 2 shows the 10 nearest
neighbors in more detail. Each patch is displayed by vertically stacking its four 9×9 temporal slices.
For the two examples the figure shows the noisy patches, the result of the LMMSE estimation

2 In [32] the unbiased estimator for the covariance matrix is used, which differs from the MLE in that the sum
is divided by n− 1 instead of n. In practice, except for small values of n, the choice between these two estimators
has little effect on the results. Here we prefer to use the MLE because it is the one studied by Paul in [18]. Later,
in §3.2 we will exploit Paul’s results to derive estimators for the eigenvalues of the covariance matrix.
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and the mean patch together with the leading 9 principal directions. The Gaussian models were
learnt from the n = 200 similar patches shown in Figure 1. The temporal slices of the principal
directions show oscillatory patterns, with increasing frequency, oriented in the direction of the
dominant edges in the patches. In some cases these patterns are localized in a smaller region. Note
that even if the temporal slices of the patch may seem unrelated (particularly for the example
on the left), the model captures the correlations between them, and in this sense it differs from a
decoupled model in which the frames are independent. Taking into consideration these temporal
correlations is crucial for the temporal consistency of the result.

2.2 Description of the algorithm

The pseudo-code of the proposed video denoising method is described in Algorithms 1 and 2. As
in [14,15,32,39] we perform two stages. The first stage computes a basic estimate û(1). The second
stage computes the final estimate û(2) using the basic estimate as an oracle: patches from the
basic estimate are used to compute the patch distances and to estimate the mean and covariance
matrix of the a priori distribution. For the latter, we consider the residue of the basic estimate as
white Gaussian noise with variance σ(1). This of course is not true, but it is a rough approximation
useful to set the parameters of the 2nd step. A similar approximation is done in [63] also to control
a parameter in an iterative denoising method.

Note that all the patches of each group are denoised, and these estimates are aggregated via
averaging to form the denoised image. There are two aggregation levels. On the one hand, the
value of a pixel in the denoised image is computed as the average of all denoised patches that
overlap the pixel. In addition, if a patch belongs to several groups, it will be denoised multiple
times and these estimates are averaged as well. The aggregation is a key element of patch-based
denoising methods [13,34].

Algorithm 1 Video NL-Bayes

Require: Noisy video v, noise σ

Ensure: Final estimate of noiseless video û(2)

1: û(0) = v, σ(0) = σ

2: û(1) = video_nlbayes_step(v, σ, û(0), σ(0))

3: σ(1) = estimate_noise(û(1))

4: û(2) = video_nlbayes_step(v, σ, û(1), σ(1))

2.3 Implementation details

Handling of color. We express the video in a luminance-chrominance color space, by applying
the opponent color transform (see [15]). In the first step, patch distances are computed using the
luminance only, in the second step the three channels are used. Using the n most similar patches,
a group is built for each channel. These groups are filtered independently (a Gaussian model is
learnt for each of them).

This differs from [32], where for the second step a joint a priori Gaussian model is used for
the color patches. In principle this should allow for a better treatment of color by capturing the
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Algorithm 2 Video NL-Bayes step

Require: Noisy video v, noise σ, basic estimate û(1), basic noise σ(1)

Ensure: Final estimate of noiseless video û(2)

1: Set P = {q : q patch of v} // eligible reference patches

2: while P 6= ∅ do

3: Get a patch q from P // reference patch

4: Retrieve the n nearest neighbors to q in a spatio-temporal volume around q. The distance

is computed between the basic estimates p̂(1).

5: Estimate µ̂(2) and Ĉ(2) from the basic estimates p̂
(1)
i (see §3).

6: for all n neighbors qi of q do

7: Compute LMMSE estimate p̂
(2)
i , Eq. (1).

8: Aggregate p̃
(2)
i on û(2).

9: Remove qi from P. // for speed-up

10: end for

11: end while

correlations between the color channels. We found that this option leads to slightly better results
(an improvement of 0.2dB up to 0.4dB), but at a much higher computational cost. This is due to
the fact that if the channels are treated independently the patch dimensionality is s2xst, whereas
a joint treatment requires a single Gaussian model of tripled dimensionality. As we show in the
next section, the processing of a group of patches scales with the patch dimensionality d as O(d2)
.

Patch distance threshold. When building the group of similar patches during the second stage,
more than n patches are allowed if their distances with respect to the reference patch are smaller
than a threshold ρ. As in [33], we set ρ = 4. The distance between patches is normalized by the
number of elements in the patch, the number of channels, and the values of each channel are in
the range [0, 255]. 3 Thus ρ can be interpreted as the maximum average pixel difference between
two similar patches. It is a small value to guarantee that only very similar patches are considered.

In the same way the distance threshold ρ is used to include a larger number of similar patches,
some methods have mechanisms to exclude patches if they are too far away from the reference
patch. In [46] a Gaussian is estimated using a fixed number of nearest neighbors. Then a weighted
aggregation is performed which gives small weights to the patches that are not likely according to
the learnt model. In this work we did not explore such options.

Sample mean in the second step. In the second step if the sample mean µ̂(2) is computed using
the patches from the basic estimate, the result tends to be too smooth. Textures and details are
better preserved if the noisy patches are used instead. In doing so, however, some noise is kept in
flat areas, particularly if the number of similar patches n is small and the noise is high. To balance
these two phenomena we perform a simple to determine if a region is flat. Specifically, we compute
the sample variance of all pixels of all the patches in the group (we use for this the noisy patches).

3 The distance threshold ρ is applied in the second step, where the distance is computed using patches from the
basic estimate. For this reason (as in [30]) we do not consider a noise dependent threshold.
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If this variance is lower than σ2, then the area is considered flat. This test is essentially a χ2 test
for the variance. For flat patches we compute the sample mean using the basic estimate, whereas
for non-flat ones we use the noisy patches. In [32] flat patches are also given a special treatment,
and are estimated as the average of all the pixel values of all patches in the set.

2.4 Computational complexity and speed-ups

Processing each group of patches requires (1) searching for the nearest neighbors, (2) estimating
the a priori covariance matrix and (3) computing the LMMSE estimates. The search for the
nearest neighbors is of asymptotic order O(w2

xwtd). To estimate the covariance matrix and the
LMMSE estimates it is convenient to work on the basis of principal directions. As we will see
in Section 3 it is usually enough to consider only the r < d leading principal directions. This
requires nd2 operations to compute the sample covariance matrix, rd2 to compute its r leading
eigenvectors and eigenvalues, and nrd operations to apply the Wiener filter on the r principal
components. Therefore the computational complexity of processing each group of similar patches
is of asymptotic order O(w2

xwtd+ nd2 + rd2 + nrd).
The most expensive operations are the computation of the covariance matrix and of its principal

directions. There are methods for approximating the r principal directions of a set of points that do
not require computing the covariance matrix [26]. Instead these methods efficiently approximate
a truncated SVD of the data matrix, and would allow to improve the computational complexity
to O(w2

xwtd+ drn).
The computation can be substantially accelerated by reducing the number of groups of patches

that are jointly processed. Each group of patches is associated to the reference patch from which
the nearest neighbors are computed. We apply two tricks considered in [15,33] in order to reduce
the number of reference patches. The first one consists in visiting only those patches on a coarser
spatial grid with vertical and horizontal separation of sx/2. This reduces the number of reference
patches by a factor of s2x/4. The second acceleration trick is to give up taking as reference patch
the patches that have been already once filtered in another group (step 9 in Algorithm 2). The
actual number of aggregated estimates for each pixel remains anyway high.

Due to these speed-ups, the actual number of groups of similar patches processed depends on
the patch size sx, st and n. In practice, for the found optimal parameters (see §4 it ranges roughly
from 1% to 5% of the total number of pixels in the sequence.

The running time depends on the patch size. The following table shows the running times of
our non-optimized C++ implementation for different patch sizes. The patch size is indicated as
s2x × st and the time is expressed in seconds per 106 pixels (s/MPx):

patch size 32 × 2 42 × 3 72 × 2 102 × 1 V-BM4D-mp
running time 18 65 450 740 350.

These times were computed by averaging the running times obtained for 5 color test sequences
for several noise levels. For comparison we also show the running time of V-BM4D [39] using the
implementation available online [40] with the “modified profile”, which is the one with the highest
complexity.

2.5 Related works

Using a Gaussian patch model for image denoising has several antecedents. The BLS-GSM method
[48] (Bayes Least Square estimate of Gaussian Scale Mixture) models noiseless “wavelet coefficient
neighborhoods” with a Gaussian scale mixture defined as a random scaling of a zero-mean Gaussian
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density. The wavelet coefficient neighborhood turns out to be a patch of an oriented channel of the
image at a given scale. In [59], the authors introduce a framework for solving inverse problems,
based on the assumption that the patches of an image are distributed according to a Gaussian
Mixture Model (GMM) which is learnt from the image with an EM-like algorithm. A related
approach is proposed in [11], where the patches of the image are clustered according to their
“structural similarity” and a Gaussian model is fit to each cluster. A GMM is also used in [63],
but it is trained from a database of 2 · 106 patches randomly sampled from the Berkeley database.
A hierarchical covariance data structure termed the covariance tree was introduced in [25]. The
structure captures the covariance of image patches at several scales. The covariance tree can be
learnt from a noisy image in the case of denoising, or from a database of images, in which case it
can be applied to other inverse problems.

Instead of learning a GMM (or covariance tree) for the whole image in [32] a Gaussian model
is fit to each patch and its nearest neighbors. Aguerrebere et al. [1] extended this approach to
an hyper-Bayesian model for similar image patches by considering priors on the mean and the
covariance matrix. This allows handling more complex inverse problems, where the mean and
covariance matrix cannot be directly estimated from the observed data.

Other related approaches are those that use PCA on groups of patches. In [44] a PCA model
is learnt for the patches contained on a window sliding over the image. A version of the BM3D
algorithm using shape adaptive patches and PCA as a transformed domain was proposed in [16].
In [61] an algorithm that applies PCA on groups of similar patches is introduced. PCA models
of patches are is also studied in [19], where the authors compare the performance of different
estimators (linear and non-linear) in the domain of the principal components.

Although most of these works focus on white Gaussian noise, PCA models have also been
extented to Poisson noise in [52]. This requires a specific PCA model suitable for that type of
noise. A multiscale version of [32] was proposed in [35] to handle structured noise, focusing on
JPEG compression artifacts. The authors in [31] propose an extension of [32] for the denoising of
images taking values on Riemannian manifolds.

Gaussian/PCA models for patches lead to several successful image restoration methods. Yet,
their application to video denoising has been limited. In [36], the PCA model of [16] was adapted
to video denoising by considering 3D shape-adaptive patches. Buades et al. [8] denoise 2D patches
by using a PCA model (in a first step) or a Gaussian prior (in a second step) learnt from similar
patches. The similar patches are taken as the 2D slices of 3D motion compensated patches.

All these works assume that the patch point density function can be locally approximated with
Gaussians (locally in the patch space). Related ideas of local Gaussian approximations can also
be found applied to manifold learning, where a manifold of dimensionality r is approximated as
a mixture of Gaussians of rank r [29, 57]. Their success does not necessarily mean that similar
patches (or nearby points) do follow Gaussian distributions. Nevertherless, regardless of the exact
shape of the distribution of a group of similar patches, the best linear estimator in the MSE sense
is still the Wiener filter.

This being said, other models for local patches have been proposed recently. For example the
authors in [24] propose to penalize a weighted nuclear norm of the matrices formed by stacking
a fixed number of similar patches. The resulting estimator is similar to the Wiener filter, in the
sense that it is a shrinkage operator on the principal directions.

3 Empirical Wiener filters in high dimensions

Wiener filters have been used extensively for image and video restoration, and denoising in par-
ticular. Here we consider the case of a random vector x ∈ Rd contaminated with additive white
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Gaussian noise y = x + z with z ∼ N(0, σ2Id). The signal of interest x can be a patch of an
image or the image itself. In practice, the mean µ and covariance matrix Cx of x are unknown
and have to be estimated as well. Suppose a set of n noisy observations y1, . . . ,yn is available.

In this section we discuss principled ways to estimate the eivengalues of the covariance matrix
Cx, based on results by Paul [18] about the asymptotic behaviour of the spectral decomposition
of the sample covariance matrix when both d and n tend to infinity at the same rate, for Gaussian
distributions with spiked covariances. These results fit well the video denoising setting due to the
high dimensionality d of spatio-temporal patches.

The resulting asymptotic estimator defines a threshold below which the a priori eigenvalue
and the corresponding eigenvector cannot be recovered from the noise. In the asymptotic regime,
the value of the threshold can be computed from the noise and the ratio between dimensionality
and the number of samples. However, for a finite sample size, the resulting threshold turns out
to be too conservative. This will motivate the use of a simple thresholded estimator, where the
threshold now is manual parameter which is set during a training stage.

3.1 Empirical Wiener filters for denoising

Often in the denoising literature, there is a single observation available (n = 1), which makes the
estimation of the a priori parameters µ and Cx highly ill-posed. The available observation can
be the whole noisy image (as in some Bayesian wavelet shrinkage methods [22]), a noisy patch
(as in block DCT methods [47, 58]), or a 3D stack of noisy patches, as in BM3D [15]. These
works restrict µ and Cx, by assuming that µ = 0 and that the eigenvectors u1, . . . ,ud of Cx are
given by a fixed orthonormal basis (such as wavelets, or DCT). In doing so, only the variances
λi have to be estimated. A common strategy is to estimate them from the unique observation
available as λ̂i = max{〈y,ui〉2−σ2, 0}. In addition, some works use a two-step approach. The first
step consists in obtaining a rough estimate of x with non-Bayesian methods, such as universal
wavelet thresholding. This so-called pilot or basic estimate is used in the second step to learn the
parameters of the a priori distribution [15,22].

More interesting is the case in which several samples are available. Some works fit a Gaussian
model (or a mixture of Gaussian models) to a set of n patches [11,32,63]. The estimation problem
is now “better posed”, and estimates of the mean and the covariance matrix (both eigenvectors
and eigenvalues) can be provided, at least when n is sufficiently large compared to the dimension
d. In our setting, similar to [32], we estimate the mean and covariance from n patches given by a
reference patch and its n− 1 nearest neighbors.

Since Cy = Cx + σ2Id the authors in [32] proposed to estimate Cx as Ĉx = Ĉy − σ2Id, where

Ĉy is the sample covariance matrix of the set of observed noisy patches. While the eigenvalues of

Cy are larger or equal than σ2, the estimation errors on Ĉy due to the finite sample size cause
small eigenvalues to appear below σ2.

Denoting by ξ̂i the eigenvalues of Ĉq, the eigenvalues of Ĉ are λ̂i = ξ̂i−σ2. The resulting filter
coefficient ŝii is given by

ŝii =
λ̂i

λ̂i + σ2
= 1− σ2/ξ̂i,

and can be negative and of arbitrarily large magnitude as ξ̂i approaches 0. These large negative
weights will amplify the components on the directions of smaller variance, which mostly capture
noise, resulting in a poor estimate. To avoid this, it seems reasonable to clip the negative a priori
variances as λ̂i = (ξ̂i − σ2)+. Such estimate of the covariance matrix has been also used on the
context of patch-based denoising in [11].
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Under the assumption than the a priori distribution is Gaussian a natural estimator is the
maximum likelihood (ML) estimator. Assuming that the mean is known, the ML estimator of the
inverse covariance matrix Qy = C−1

y results from the following convex semidefinite program (for
a derivation see [4], §7.1.1):

max log detQy − tr(QyĈy)
subject to 0 ≺ Qy � σ−2Id.

The inequalities in the constraint force the eigenvalues of Sy to be on the interval (0, σ−2]. The
ML estimator for Cx, results from inverting the solution of the above SDP and subtracting σ2Id,
and is guaranteed to be positive semidefinite. Although there are efficient algorithms for solving
such an SDP, they are still prohibitive for the present application.

The covariance matrix estimation has of course many applications other than image restoration,
and there is a vast literature in statistics about the topic. Most methods focus on classes of
matrices with some sparsity constraint, either on the covariance matrix itself or on its inverse,
the precision matrix. See [10] for a recent survey. Among these matrix classes, the one that fits
more naturally our local patch models is the spiked covariance, which expresses the covariance
matrix as a low-rank signal component plus noise (AGWN). Several authors [18, 28, 45] studied
the relation between the sample covariance matrix and the population one, showing that the
sample eigenvectors and eigenvalues are inconsistent estimators. Cai et al. [9], impose additionally
a group-sparsity constraint on the signal eigenvectors, and proposed estimators with an optimal
minimax risk convergence rate. The proposed estimators are mainly of theoretical interest, since
require a global search for the support of the eigenvectors.

Here we focus on the simpler problem of estimating the eigenvalues, and propose two estima-
tors derived from the asymptotic results of [18] that leads to improved reconstruction results in
comparison to other estimators used previously in the denoising literature, with the same compu-
tational cost.

In the remainder of the section we focus our attention on the estimation of the covariance
matrix and assume that the mean µ is zero and it is known or can be well estimated.

3.2 Convergence of the sample covariance matrix

We start by reviewing the results of Paul [18] on the asymptotic behaviour of the spectral decom-
position of the sample covariance matrix for spiked covariance models. We consider that samples
x1, . . . ,xn are Gaussian random variables with 0 mean and covariance

Cx = U Diag(λ1, . . . , λm, 0, . . . , 0)UT ,

with the eigenvalues sorted in non-increasing order. The noisy observations y1, . . . ,yn are contam-
inated with white Gaussian noise of standard deviation σ2. The following result can be obtained
from Theorems 1 and 2 in [18] via a change of variables.

Theorem 1 (Almost sure limit of the sample eigenvalues) Suppose that d/n→ γ ∈ (0, 1)

as n→∞. Let ξ̂i be the ith largest eigenvector of the sample covariance matrix Ĉy, with 1 6 i 6 m.

Then ξ̂i converges almost surely to

ξ̂i →


σ2(1 +

√
γ)2 if λi 6

√
γσ2,

f(λi) := (λi + σ2)

(
1 +

γσ2

λi

)
if λi >

√
γσ2.
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Furthermore, if λi has multiplicity one, the scalar product between the corresponding sample eigen-
vector ûi and the population eigenvector ui converges almost surely to

〈ûi,ui〉2 →


0 if λi 6

√
γσ2,

1− γσ4/λ2i
1 + γσ2/λi

if λi >
√
γσ2.

The interesting fact here is that there is a threshold
√
γσ2 below which the eigenvalue-

eigenvector pair cannot be recovered from the noise. The squared root of the ratio γ between
the dimensionality and the number of samples acts as a noise amplifier in the threshold. As intu-
ition suggests, the lower the number of samples in relation to the dimensionality, the higher the
threshold for recoverability.

Additionally, it is shown in [18] that the recoverable sample eigenvalues and eigenvectors are
asymptotically normal.

3.3 Estimators for the eigenvalues of Cx

We can derive an estimator for λi by assuming that the asymptotic regime holds. The population
eigenvalue λi and the corresponding eigenvector are recoverable if and only if ξ > σ2(1 +

√
γ)2.

This gives us a recoverability threshold on the sample eigenvalue. If a sample eigenvalue is below
that threshold, it is reasonable to set the population eigenvalue to zero, since the corresponding
eigenvector is essentially noise.

The function f is invertible when restricted to [
√
γσ2,∞). Therefore, if ξ̂i is above the recov-

erability threshold, we can estimate it as λ̂i = f−1(ξ̂i). We thus propose the following estimator

λ̂S:

λ̂S(ξ̂) =

{
0 if ξ̂ 6 σ2(1 +

√
γ)2,

f−1(ξ̂i) if ξ̂ > σ2(1 +
√
γ)2.

where

f−1(ξ̂i) =
1

2

(
1 +

√
1− 4γσ4

(ξ̂ − σ2(1 + γ))2

)
.

Figure 3 shows a plot of λ̂S(ξ) for σ = 5 and γ = 1. When ξ̂ � σ2(1 +
√
γ)2, the estimator

approaches ξ̂ − σ2(1 + γ). As the estimator approximates a linear function of ξ̂, the bias reduces,
since

E{λ̂S(ξ̂)} ≈ E{f−1(ξ̂i)} ≈ f−1(E{ξ̂i}) = f−1(f(λi)) = λi.

The first approximation is because when λi is large enough, the probability that ξ̂ falls below the
recoverability threshold is negligible. And the second approximation is due to the approximate
linearity of the estimator.

The proposed estimator is valid if the asymptotic regime holds, but we have no optimality
guarantees for a finite size sample. Nadler [45] provides finite sample size bounds but only for the
case m = 1. In practice for our video denoising application, we use patches with dimensionality
between d = 100 and d = 200 (for example for a patch of 5× 5× 4 or 7× 7× 4). Typical sample
sizes are of the same order.

In Figure 4 we show results of experiments with simulated data. We consider m = 20 eigen-
values λ1 = 20, λ2 = 19, . . . , λm = 1, and noise with σ = 2. We show the estimated eigenvalues
(averaged over 400 simulations) for different values of the dimensionality d and the ratio γ. As
expected, both estimators perform better for smaller γ, since the number of samples is higher. The
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Fig. 3: Proposed variance estimator λ̂S as a function of the sample eigenvalue ξ̂, for γ = 1 and
σ = 5. If ξ � σ2(1 +

√
γ)2, then λ̂S approximates ξ̂ − σ2(1 + γ).

estimator (ξ̂ − σ2)+ has a positive bias. When γ increases the bias increases for the first eigenval-
ues. Although it drops faster to zero, it still largely overestimates many zero eigenvalues, resulting
in a filter which allows many noise components to pass. When d increases, the bias on the m first
eigenvectors reduces, but on the other hand, a larger number of zero eigenvalues are estimated
as positive. The estimator λ̂S is much more accurate. The results in the first row confirm that
when the asymptotic regime applies, the estimator behaves well. For larger values of γ and lower
dimensionality, the estimation accuracy degrades, and many positive eigenvalues are estimated as
close to zero, even if they are above the recoverability threshold.

In the light of this, we propose an additional estimator by hard thresholding the difference
ξ̂ − σ2. The value of the threshold is given by a parameter τ :

λ̂Hi = Hτ (ξ̂i − σ2) =

{
ξ̂ − σ2 if ξ̂ > τσ2

0 if ξ̂ < τσ2.

For τ = 0 we recover (ξ̂ − σ2)+. In this way, varying τ we can balance between overestimating
zero eigenvalues and underestimating signal components. Determining the optimal value for τ for
a finite sample size is a difficult task. Instead, we shall include it as an additional parameter of
the denoising algorithm and tune it over a training dataset.

Our final objective is not estimating the eigenvalues of the a priori covariance matrix, but the
clean data vectors from the noisy ones. Therefore, we evaluate the performance of each estimator
by measuring the denoising MSE obtained by the resulting empirical Wiener filter. Figure 5 shows
the denoising MSE obtained by different estimators of the spectrum of Cx: (ξ̂− σ2)+, λ̂S and λ̂Hτ ,
varying the value of τ > 0. The MSE is estimated as an average of the denoising errors obtained
for 400 realizations of the noisy dataset. The obtained MSE is normalized by the minimum MSE
and is plotted as a function of τ . Each plot corresponds to a different value of the dimensionality
d and the ratio γ as in Figure 4. Additionally, we also show the MSE of an oracular empirical
Wiener filter built from the true population variances λ but using the eigenvectors ûi of the sample
covariance matrix.

The best MSE attained by the empirical Wiener filters depends mainly on the ratio γ. As
expected, when n decreases in relation with the dimensionality, the denoising MSE increases. In
most cases, the eigenvalues λ̂S yield the best results, close to the ones obtained with the oracular
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Fig. 4: Estimated variances when varying the dimensionality d and the ratio γ. Each plot shows the
true variances, and the ones estimated from the sample covariance matrix of the noisy data using
two estimation methods. The horizontal axis corresponds to the eigenvalue index i = 1, . . . , 60,
and the vertical axis to the value of the estimated eigenvalue using the different estimators. From
left to right, results with d = 100, 200 and 400. From top to bottom, γ = 0.4, 0.8, 1.6 and 3.2. Note
that diagonals have the same number of samples n = d/γ.
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λ, and even slightly better for d = 400 and γ = 0.2.4 As expected its denoising performance drops
when d is small and γ large. In these situations, better results are obtained with (ξ̂ − σ2)+. The

results obtain with the estimator λ̂H depend on τ , but the optimal value is always close to the
result attained by the best among the other filters.

4 Parameter selection

In view of the results of the previous section, we shall consider two variants of the video NL-Bayes
algorithm described in Algorithms 1 and 2 which differ on the estimator used for the eigenvalues
of the a priori covariance matrix. We denote by VNLB-S the version of the algorithm that uses
the aymptotic estimator λ̂S, and by VNLB-H the one corresponding to the thresholded estimator
λ̂H.

For each stage of the algorithm we need to specify the following parameters: the spatial and
temporal components of the patch size sx and st, the spatial and temporal components of the
search region wx and wt, and the number of similar patches n. In addition, for VNLB-H we also
need to specify the value of τ . When needed, we will add a subscript indicating the stage, e.g. n1
and n2. We consider different parameter settings for color and grayscale videos. 5

The parameters of the search region are chosen manually. The rest of the parameters are
determined by sampling the parameter space and picking the ones which maximize the average
PSNR over a training set of sequences. We consider a grayscale training set containing six sequences
of twenty frames, and a color training set of four sequences of ten frames. We selected training
sequences having different characteristics on their dominant motion (static, translational, non-
rigid) and on their image content (random textures or geometric structures).

4.1 Search region

Due to the temporal consistency of natural image sequences, the patches similar to the reference
patch are expected to be located around its motion trajectory in neighboring frames. Thus we
define the spatio-temporal search region as a sequence of wt square windows of size wx×wx, whose
centers follow the motion trajectory of the reference patch. To estimate the trajectory we compute
the forward and backward optical flows of the sequence. The forward half of the trajectory ϕx,t
passing throught (x, t) is computed by integrating the forward optical flow vf as follows:

ϕx,t(h) = vf ([ϕx,t(h− 1)], h− 1) + ϕx,t(h− 1), h = t+ 1, . . . , t+ bwt/2c,

where [ · ] and b·c denote the round and floor operators. The backward half of the trajectory is
defined analogously using the backward optical flow vb.

In all our experiments we set wx = 27, and wt = 13, yielding a search volume of 9477 patches.
Due to the size of the spatial search window, the optical flow does not need to be accurate. We have
tested with two optical flow algorithms: the TV-L1 method [60] (we used the implementation of
[53]), and its robust variant described [43], and have found virtually no difference in the denoising
result. There is also no significant difference between computing the optical flow on the noisy data,
or using an oracular optical flow computed on the ground truth. For our experiments, we use the
TV-L1 optical flow since it is fast to compute.

4 It might seem counterintuitive that the filter computed from the estimated eigenvalues λ̂S, outperforms the
oracular one. It is a consequence of the error in the eigenvectors. In particular, eigenvectors corresponding to
eigenvalues below the recoverability threshold are better discarded.

5 In order to reduce the parameter space, we did not optimize the choice of the distance threshold ρ.
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Fig. 5: MSE obtained by estimating the n data samples from their noisy observations using em-
pirical Wiener filters with different estimators for the a priori variances λ. The plots correspond
to ones in Figure 4. The MSE is normalized by the minimum MSE (attained by the Wiener filter)
and it is shown as a function of the parameter τ .
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4.2 Parameters of Bayesian estimation

The empirical Bayesian estimation is controlled by the number of patches n and the parameters
of the variance estimator. We determine these parameters as functions of the noise level σ for each
of the patch sizes considered.

Based on the results of §3 on simulated data, using a higher number of samples to estimate
the a priori covariance matrix yields a lower MSE. In the context of our denoising algorithm, as
we increase the number n of similar patches, we include patches that are not as similar to the
reference patch and the assumption that the selected patches are IID samples becomes less valid.
Therefore there is trade-off between the error in the sample covariance matrix and the accuracy
of the model.

The thresholded eigenvalue estimator used in the VNLB-H variant requires the specification of
the additional parameter τ . For a fixed patch size, there is an interplay between n and τ . This can
be intuitively understood in the light of the asymptotic theory, where the recoverability threshold
depends on the ratio γ between the number of samples and the dimensionality. There is also
another interplay between the parameters of both stages n1, τ1 and n2, τ2. Due to this coupling
we sample this four dimensional parameter space and search exhaustively for the parameters that
optimize the mean PSNR on the training set, for different values of σ. To simplify (and avoid
over-fitting) we restrict the relationship between the parameters and σ to be linear.

The asymptotic eigenvalue estimator λ̂S used in the VNLB-S variant does not require the
additional parameter τ , but depends on the noise level σ. This estimator is based on Paul’s
asymptotic theory [18] which applies only for low-rank covariance matrices when the observations
are contaminated with AGWN. This suits well to the situation in the first step of the algorithm,
where the covariance is estimated using the noisy patches. This is not the case in the second step
of the algorithm, where patches of the basic estimate are used. The application of Paul’s theory in
this case is rather forced, since the residue in the basic estimate is not AGWN. In spite of this, a
soft-thresholding of the eigenvalues in our estimator seems reasonable under the assumption that
the similar patches should lie close to a lower dimensional space. In this case we can think of λ̂S as
a parametric estimator, such as a λ̂Hτ . In the first step, since the noise AGWN, the theory in [18]
gives the appropriate value of the parameter as the noise level σ. For the second step, we found
empirically that an effective way to set the noise parameter is to assign an artificial noise level to
the basic estimate, denoted as σ(1) in Algorithms 1 and 2. We estimate this artificial noise level
with the noise estimation algorithm [12].6 The remaining parameters n1 and n2, are determined
by a 2D parameter search on the training set. As before, we allow for a linear dependency with
the noise level σ.

4.3 Patch size

The patch size is a key parameter of patch-based denoising algorithms [7,30]. Increasing the patch
size reduces the variance on the patch distance and therefore on the set of similar patches. However,
larger patches are less sensitive to finer scale details and less similar among them. We solved this
trade-off empirically, by testing different patch sizes on a set of training sequences.

We consider patches sizes with temporal extent ranging from 1 to 4 frames, and dimensionality
d ≈ 100 and d ≈ 200:

d ≈ 100 : 10× 10× 1 7× 7× 2 6× 6× 3 5× 5× 4,
d ≈ 200 : 14× 14× 1 10× 10× 2 8× 8× 3 7× 7× 4.

6 We use the default parameters in [12], with the exception of the number of bins, which we set to one since we
are not interested in a noise curve, but in just an average noise level.



Video denoising via empirical Bayesian estimation of space-time patches 19

foreman football bus tennis mobile salesman average
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

10x10x1

7x7x2

6x6x3

5x5x4

foreman football bus tennis mobile salesman average
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

10x10x1

7x7x2

6x6x3

5x5x4

foreman football bus tennis mobile salesman average
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

10x10x1

7x7x2

6x6x3

5x5x4

foreman football bus tennis mobile salesman average
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

14x14x1

10x10x2

8x8x3

7x7x4

foreman football bus tennis mobile salesman average
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

14x14x1

10x10x2

8x8x3

7x7x4

foreman football bus tennis mobile salesman average
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

14x14x1

10x10x2

8x8x3

7x7x4

Fig. 6: Highest attainable PSNR for each patch size over the grayscale training set. For each patch
size and sequence, we plot on the vertical axis the highest PSNR obtained with that patch size
for that sequence minus the highest PSNR value attained for the sequence among all considered
patch sizes. The rightmost points on each plot correspond to the average PSNR over the training
set. The columns correspond to the noise levels σ = 6, 12, 48. The top row shows the results for
patches sizes with d ≈ 100 and those with d ≈ 200 are shown in the bottom row.

Method wx wt n1 n2 τ1 τ2
Gray VNLB-H 72 × 2 27 6 150 [42.9− .48σ] 2.1 max{0.5, 2.53− .056σ}

VNLB-H 102 × 2 27 6 150 60 3.7 max{0.0, 1.87− .028σ}
VNLB-S 72 × 2 27 6 60 60 n/a n/a
VNLB-S 102 × 2 27 6 100 [86.7− .56σ] n/a n/a

RGB VNLB-S 72 × 2 27 6 100 max{30, 80− 2σ} n/a n/a
VNLB-S 102 × 2 27 6 100 100− σ n/a n/a

Table 1: Parameters used for all results shown in §5, for the two variants of the method and two
patch sizes. The parameters wx and wt are the same for both steps. For RGB sequences we only
consider the VNLB-S method, since its parameter space is smaller.

In Figure 6 we plot for each patch size the best attainable PSNR on each sequence of the
grayscale training set. The larger patches with d ≈ 200 show better performance, specially as the
noise level increases. We can also see that for sequences with stronger motion (such as football and
foreman) it is better to use patches with a shorter time span, of two and even one frame. On the
other hand on more static sequences, e.g. mobile and salesman, it is better to use a larger time
span. For both dimensionalities, patches with two and three frames perform well for the tested
noise levels. For low noise levels 2D patches perform well, but their performance decays drastically
when σ increases.

Based on these results, in the following we will consider two patch sizes: 7×7×2 and 10×10×2.
The corresponding optimal parameters are shown in Table 1.
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5 Results

In this section we present results obtained with the proposed methods on some classical test
sequences with white Gaussian noise added. We consider separately the cases of grayscale and
color videos. For grayscale sequences we show results obtained with both variants of our method,
VNLB-H and VNLB-S, with patch sizes 7×7×2 and 10×10×2. These attained the best average
performance on the training sequences among the other patch sizes of the same dimensionality.
We used the parameters of Table 1. For color sequence we only show the results of VLNB-S. Some
sample sequences can be downloaded from the project website7 in uncompressed format.

σ Method Tennis Sales. Garden Mobile Bicycle Stefan Average

10 V-BM4D-tip 35.22 37.30 32.81 37.66

V-BM4D-mp 34.95 37.48 32.01 34.11 37.85 33.68 34.72 35.01

VNLB-S 72 × 2 35.65 38.02 34.05 36.21 39.39 35.42 36.15 36.46

VNLB-S 102 × 2 35.89 38.36 34.42 36.37 39.37 35.83 36.39 36.71

VNLB-H 72 × 2 35.73 38.23 34.47 36.63 39.62 35.78 35.10 36.74

VNLB-H 102 × 2 36.00 38.62 34.61 36.67 39.53 36.02 35.94 36.91

20 V-BM4D-tip 31.59 33.79 28.63 34.10

V-BM4D-mp 31.08 33.46 28.32 30.49 34.54 29.69 30.53 31.26

VNLB-S 72 × 2 32.01 34.39 30.00 32.26 36.20 31.39 31.93 32.71

VNLB-S 102 × 2 32.14 34.73 30.24 32.42 36.22 31.70 32.39 32.91

VNLB-H 72 × 2 32.00 34.55 30.26 32.56 36.42 31.60 30.67 32.90

VNLB-H 102 × 2 32.20 34.99 30.46 32.82 36.45 31.94 31.77 33.14

30 V-BM4D-tip 29.72 31.75 26.29 31.83

V-BM4D-mp 29.37 31.02 26.20 27.99 32.30 27.34 28.03 29.04

VNLB-S 72 × 2 30.19 32.10 27.61 29.73 33.94 29.00 29.26 30.43

VNLB-S 102 × 2 30.29 32.54 27.85 30.03 34.12 29.36 29.90 30.70

VNLB-H 72 × 2 30.26 32.27 27.66 29.94 34.15 29.05 28.07 30.56

VNLB-H 102 × 2 30.37 32.77 28.04 30.41 34.37 29.56 29.33 30.92

40 V-BM4D-tip 28.49 30.35 24.60 30.10

V-BM4D-mp 28.38 29.37 24.59 26.02 30.58 25.64 26.22 27.43

VNLB-S 72 × 2 29.02 30.32 25.86 27.79 32.16 27.20 27.28 28.73

VNLB-S 102 × 2 29.14 30.89 26.18 28.24 32.44 27.71 28.03 29.10

VNLB-H 72 × 2 29.02 30.49 25.69 27.92 32.31 27.19 26.19 28.77

VNLB-H 102 × 2 29.24 31.09 26.29 28.55 32.70 27.84 27.57 29.29

Table 2: Quantitative denoising results for some classic grayscale test sequences. The values in
italics correspond to the average of the PSNR of the basic estimates. See text for details.

5.1 Results on grayscale videos

We present denoising results on grayscale test sequences used commonly in the literature. The
sequences have CIF or SIF resolution and between 150 and 300 frames.

7 http://dev.ipol.im/~pariasm/video_nlbayes/
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Grayscale sequences Color sequences

σ Method Bus Tennis Sales. Bike Ave. Army Cooper Dog Truck Ave.

10 SPTWO 36.07 34.69 36.38 36.74 35.97 39.44 36.09 35.90 37.10 37.13

VNLB-S 72 × 2 36.32 34.67 38.13 39.25 37.09 39.30 37.31 36.66 37.29 37.64

VNLB-S 102 × 2 36.68 34.86 38.51 39.22 37.32 39.62 37.31 36.83 37.31 37.77

VNLB-H 72 × 2 36.68 35.04 38.31 39.45 37.37

VNLB-H 102 × 2 36.98 35.18 38.77 39.38 37.58

20 SPTWO 32.24 30.59 32.95 33.01 32.20 36.47 32.34 32.94 33.65 33.85

VNLB-S 72 × 2 32.31 30.35 34.44 36.09 33.30 36.06 33.44 33.80 33.75 34.26

VNLB-S 102 × 2 32.77 30.70 34.78 36.11 33.59 36.28 33.49 33.92 33.76 34.36

VNLB-H 72 × 2 32.52 30.29 34.61 36.28 33.42

VNLB-H 102 × 2 33.08 30.91 35.06 36.32 33.84

30 SPTWO 30.05 27.48 30.95 31.62 30.03 34.67 30.24 31.29 31.61 31.95

VNLB-S 72 × 2 29.98 27.69 32.15 33.85 30.92 34.26 31.28 32.13 31.74 32.35

VNLB-S 102 × 2 30.50 27.91 32.57 34.04 31.25 34.52 31.38 32.32 31.79 32.50

VNLB-H 72 × 2 30.11 27.64 32.33 34.05 31.03

VNLB-H 102 × 2 30.76 27.84 32.83 34.30 31.43

40 SPTWO 28.51 25.53 29.60 29.77 28.35 33.24 28.85 30.15 30.19 30.61

VNLB-S 72 × 2 28.21 26.10 30.40 32.12 29.21 32.90 29.78 30.88 30.35 30.98

VNLB-S 102 × 2 28.76 26.32 30.98 32.42 29.62 33.29 29.94 31.19 30.44 31.22

VNLB-H 72 × 2 28.28 26.05 30.57 32.30 29.30

VNLB-H 102 × 2 28.97 26.22 31.19 32.71 29.77

50 SPTWO 27.19 24.96 28.34 28.66 27.29 31.99 27.78 29.09 29.13 29.50

VNLB-S 72 × 2 26.95 25.07 29.03 30.59 27.91 31.82 28.70 29.91 29.27 29.92

VNLB-S 102 × 2 27.56 25.20 29.67 31.00 28.36 32.32 28.93 30.30 29.43 30.24

VNLB-H 72 × 2 27.05 25.00 29.20 30.82 28.02

VNLB-H 102 × 2 27.71 25.13 29.86 31.25 28.49

Table 3: Comparison with the method SPTWO. Shown PSNRs correspond to the central frame
for each test sequences. See text for details.

σ Method Tennis Sales. Garden Mobile Bicycle Stefan Average

10 VNLB-H 72 × 2 35.73 38.23 34.47 36.63 39.62 35.78 36.74

VNLB-H 72 × 2 (no m.c.) 35.71 38.23 34.29 36.60 39.51 35.06 36.59

20 VNLB-H 72 × 2 32.00 34.55 30.26 32.56 36.42 31.60 32.90

VNLB-H 72 × 2 (no m.c.) 31.98 34.55 30.01 32.53 36.27 30.74 32.71

30 VNLB-H 72 × 2 30.26 32.27 27.66 29.94 34.15 29.05 30.56

VNLB-H 72 × 2 (no m.c.) 30.23 32.26 27.40 29.91 33.96 28.23 30.36

40 VNLB-H 72 × 2 29.02 30.49 25.69 27.92 32.31 27.19 28.77

VNLB-H 72 × 2 (no m.c.) 28.99 30.50 25.44 27.89 32.10 26.46 28.59

Table 4: Results without a motion compensated search region (no m.c.). See text for details.
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σ Method Tennis Coast. Fore. Bus Foot. Average

5 V-BM3D 39.45 40.18 40.16 39.07 39.71

V-BM4D-tip 39.98 41.13 41.38 40.21 40.68

V-BM4D-mp 39.60 40.28 40.78 39.56 40.00 39.98 40.06

VNLB-S 72 × 2 40.29 41.43 41.89 41.27 41.23 41.13 41.22

VNLB-S 102 × 2 39.92 41.26 42.13 41.05 40.89 41.14 41.09

10 V-BM3D 36.04 36.82 37.52 34.96 36.34

V-BM4D-tip 36.42 37.27 37.92 36.23 36.96

V-BM4D-mp 35.90 36.30 37.21 35.38 36.08 35.91 36.20

VNLB-S 72 × 2 36.70 37.78 38.64 37.65 37.50 37.46 37.69

VNLB-S 102 × 2 36.88 38.01 39.05 37.94 37.62 37.71 37.97

15 CIFIC 32.76 33.47 31.59

V-BM4D-mp 33.67 34.05 35.17 33.02 33.82 33.49 33.98

VNLB-S 72 × 2 34.62 35.69 36.76 35.54 35.34 35.25 35.65

VNLB-S 102 × 2 34.85 35.95 37.13 35.91 35.51 35.59 35.96

20 V-BM3D 32.54 33.39 34.49 31.03 32.86

V-BM4D-tip 32.88 33.61 34.62 32.27 33.35

V-BM4D-mp 31.98 32.44 33.70 31.34 32.22 31.76 32.37

VNLB-S 72 × 2 33.17 34.26 35.43 34.03 33.82 33.66 34.22

VNLB-S 102 × 2 33.35 34.50 35.78 34.42 33.99 34.06 34.51

25 CIFIC 29.74 30.48 28.82

V-BM4D-mp 30.73 31.24 32.59 30.07 30.96 30.44 31.16

VNLB-S 72 × 2 32.07 33.15 34.35 32.81 32.62 32.42 33.10

VNLB-S 102 × 2 32.18 33.40 34.74 33.24 32.80 32.86 33.39

40 V-BM3D 29.20 29.99 31.17 27.34 29.43

V-BM4D-tip 29.52 30.00 31.30 28.32 29.78

V-BM4D-mp 28.14 28.73 30.09 27.44 28.35 27.66 28.60

VNLB-S 72 × 2 29.78 30.89 32.07 30.28 30.15 29.87 30.76

VNLB-S 102 × 2 29.92 31.19 32.60 30.69 30.36 30.34 31.10

Table 5: PSNRs obtained for the classic color test sequences. The averages corresponds to the first
four sequences. The values in italics correspond to the average of the PSNR of the basic estimates.
See text for details.

In Table 2 we compare our results against the state-of-the-art method V-BM4D [39] with two
different choices of parameters. The method labeled V-BM4D-tip corresponds to the results re-
ported in [39]. The results labeled V-BM4D-mp were obtained using the implementation available
online [40]. This implementation provides three parameter profiles of increasing quality and com-
plexity: “low complexity profile”, “normal profile” and “modified profile”. We show the results
obtained with the modified profile.

Each sequence was contaminated with AGWN of σ = 10, 20, 30, 40. Table 2 shows the PSNR
values obtained after denoising. We can observe that using a larger patch size gives better results,
specially for higher noise levels, but at a higher computational cost. For our methods and V-BM4D-
mp we show the average PSNR of the basic estimate as well. This allows to see the improvement
achieved by the second iteration.

In Table 3 we also include a comparison with SPTWO [8].To denoise each frame, SPTWO uses
the optical flow to register the neighboring frames (6 past and future frames) to the target frame.
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For each 5 × 5 reference patch in the target frame, 13k similar patches are selected by searching
for the k most similar 5× 5× 13 patch trajectories in the volume defined by the warped frames.
Because patches are warped according to the motion, SPTWO is in principle able to better handle
zooms, rotations and non-rigid transformations. This comes at the price of a higher dependency on
the optical flow. To compare our method with SPTWO, we computed the result of our algorithm
on some of the sequences used in [8]. The grayscale scale sequences have only 30 frames, and the
color sequences have 8. 8

Both variants of our algorithm achieve comparable results. The performance of VNLB-H is
slighly better (at most 0.3dB on the average). This is not surprinsing given that VNLB-H uses a
hand tuned estimator (on both steps of the algorithm) optimized over the test sequences. With
two parameters less, the results of VNLB-S are only slightly inferior. This supports the choice
of the basic noise level σ(1) to set the noise parameter of the soft-threshold estimator λ̂S in the
second step of the algorithm.

Our results outperform the ones of V-BM4D for all sequences and noise levels, and with the
two variants VNLB-S and VNLB-H and patch sizes. On average, the difference with V-BM4D-mp
is 1.8dB. The proposed methods also outperform SPTWO on the average (with a margin varying
between 1.2dB and 1.6dB depending on the noise level), but the difference is much smaller for bus
and tennis. In these sequences the result of SPTWO is slighly better that the ones we obtain with
the patch size of 7× 7× 2, except for the highest noise levels.

For a qualitative comparison, we show in Figures 7, and 8, details of the results obtained with
the proposed VNLB-H method, V-BM4D-mp and SPTWO,9 with noise levels of σ = 10, 40. For
VNLB-H we show results obtained with a patch size of 10× 10× 2. We omit the results obtained
with the VNLB-S since they are visually hard to distinguish.

The differences between the methods become more apparent for higher noise levels. The VNLB-
H preserves more details than V-BM4D. This can be noticed for example for mobile and bicycle.
SPTWO achieves very good visual results in moving objects for which the motion can be well
approximated. This can be seen in the face of salesman. Its results are temporally consistent with
the estimated motion. This creates artifacts when the motion is not well estimated. As an example,
the wallpaper texture in tennis adopts the motion of the arm. This dragging effect is common close
to the boundaries of moving objects, particularly if the background texture is weaker than the
noise level. In the bicycle sequence, for noise σ = 40 the rays of the wheel are not well reconstructed
and the sticker depicting a train shows deformations. This is probably also due to problems with
the motion estimation. Notice also that the result of the proposed method is smoother for constant
regions, such as the dark background in bicycle.

The results shown in Figures 7 and 8 show the spatial characteristics of the proposed method.
As a way of assessing the temporal consistency of the result we show a slice of the video volume
at a fixed row (or column). Figure 10 shows a horizontal slice of the mobile sequence. Each row in
the images shown corresponds to a different frame. The gray tube corresponds to a ball which is
hit by a black train entering from the left. The result of V-BM4D shows a high frequency variation
in the temporal (vertical) dimension, a consequence of the flickering on the video sequence. On
the other hand, the result of the video non-local Bayes method, shows a much slower variation in
time.

To the best of our knowledge, the best denoising results in grayscale sequences have been
reported in [36]. Some of these results are surprising compared to the rest of the state of the

8 In [8] the error is measured as the root mean square error (RMSE) of the central frame. For color se-
quences the average channel RMSE is used. To allow a direct comparison, we adopt in Table 3 these er-
ror measurements, expressing them as a PSNR in decibels. For color sequences, this amounts to PSNR =
20 log10

(
255/ 1

3
(RMSER + RMSEG + RMSEB)

)
.

9 We are thankful to the authors of [8] for kindly sharing with us their results.
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art. For example, for salesman with σ = 40 the result of [36] is 4dB higher than the best result
among all public state-of-the-art methods, including ours. We have not included these results in the
comparison table since the code is not available and we have not been able to reproduce the results.
This method builds upon BM4D, which in [41] is applied to volumetric imagery and video, showing
an inferior performance than V-BM4D. The authors in [36] consider shape adaptive patches as in
[21] (the patches are quite large 8× 8× 8), and perform several iterations. In each iteration, the
previous iterate is used as an oracle to compute patch distances and the adaptive shape of the
patches. Our method can be iterated as in [36], and some improvement can be obtained in a third
iteration, but not enough to compensate for the increase computational cost.

Finally in Table 4 we compare the PSNR obtained on the grayscale sequences of Table 2
without using a motion compensated search region (or equivalently, assuming zero motion). The
resulting search region is a 27× 27× 13 3D rectangle centered at the reference patch. The aim of
this experiment is to determine the impact of motion compensation on the proposed method. The
results shown correspond to the method VNLB-H with a patch size of 7×7×2. Some sequences are
mainly static, or have a slow motion (salesman, mobile, tennis). They show almost no difference
in PSNR when no optical flow is used. The sequences garden and bicycle have more motion,
yet the drop in PSNR caused by assuming zero motion is small, between 0.1dB and 0.3dB. As
expected, the sequence which is most affected is stefan, which has a very fast camera motion.
In this case the difference is quite important: ≈ 0.8dB. Nevertheless the result obtained with no
motion compensation still outperforms V-BM4D. This shows that the proposed method does not
have a critical dependence on the quality of the optical flow, and in fact can still be competitive
without any motion estimation.

5.2 Results on color videos

We considered five color test sequences, tennis, coastguard, foreman, bus and football. The first
four were chosen because they were used in [39]. The fifth one, football, was added to test the
performance of our method on a sequence with complex motions.

The results are shown in Table 5. As for grayscale videos, we compared our method with V-
BM4D using the two parameter profiles: V-BM4D-tip and V-BM4D-mp. We also include results of
CIFIC [17], a recent method. The proposed method, achieves the highest PSNR values on all the
considered sequences and levels of noise, with a significant difference. The difference increases for
higher levels of noise. A possible reason for this is that both CIFIC and V-BM4D rely on motion
estimation by 2D block matching, which might not be reliable for high noise levels.

To compare with SPTWO, we show in the right half of Table 3 our results on four 8 frame
sequences used by [8] (see footnote 8). SPTWO achieves excellent results for the sequence army
possible due to the fact that its optical flow can be well estimated. On the other sequences, the
proposed methods attain a higher PSNR.

Figure 9 shows results obtained by our method and V-BM4D for the sequence bus, for noise of
σ = 10, 40. As for grayscale sequences, it can be noticed that some details are better preserved by
the proposed method. V-BM4D also shows some color artifacts for high noise values (noticeable
for instance on the street bus).

6 Conclusions

We presented a Bayesian video denoising algorithm assuming that similar spatio-temporal patches
are IID samples from an a priori distribution. The proposed method uses motion estimation only
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Fig. 7: Details of the results obtained for the grayscale versions of mobile and tennis. For each
sequence, the left column corresponds to σ = 10 and the right one to σ = 40. At the top we
show the original frame, and the second row shows the noisy frames. In the third row we show the
result of V-BM4D-mp for mobile and SPTWO for tennis. On the bottom row we show our result
(VNLB-H 102 × 2).

to guide the search for similar patches, thus it does not rely on an accurate motion field. It provides
state-of-the-art results, both in terms of PSNR and qualitatively.

The patches in each group are estimated using an empirical Wiener filter, which requires
estimates of the mean and the covariance matrix of the a priori distribution. We studied this
estimation problem in the light of the asymptotic results of [18], assuming a low-rank Gaussian
prior. This led us to propose two estimators for the eigenvalues of the a priori covariance matrix.
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Fig. 8: Details of the results obtained for the grayscale versions of bicycle and salesman. For each
sequence, the left column corresponds to σ = 10 and the right one to σ = 40. From top to bottom
we show the (1) original frame, (2) noisy frames, (3) the result of V-BM4D-mp, (4) the result of
SPTWO and (5) our result (VNLB-H 102 × 2).
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Fig. 9: Details of the results obtained for the color version of bus. The left column corresponds to
σ = 10 and the right one to σ = 40. From top to bottom we show the (1) original frame, (2) noisy
frames, (3) the result of V-BM4D-mp, and (4) our result (VNLB-S 102 × 2).
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Fig. 10: Visualizing the temporal coherency of the denoising. The images show a horizontal slice
of the mobile video, at row 220, showing the ball (gray tube) as it gets hit by the toy train (black
region in the left). The vertical axis is time, and the horizontal axis is the x axis in the video. On
the first row: the original sequence and noisy version with noise 10, 20 and 40. The following rows
show the results obtained with V-BM4D, and the results for VNLB-H with patch size 10× 10× 2.
The result of VNLB varies smoothly in time, reducing the flickering effect. The contrast of the
images has been enhanced for better visualization.

One of them is derived by inverting the asymptotic bias of the eigenvalues of the sample covarianace
matrix predicted by [18]. This results in a soft-thresholding of such eigenvalues. The resulting
estimator performs well when the asymptotic regimes applies, but degrades as the number of
patches is reduced. This led us to propose a second estimator consisting on a hard threshold,
where the threshold value is controlled by a hand-tuned parameter. Two variants of the video
denoising algorithm were proposed: VNLB-S and VNLB-H, based respectively on the soft and
hard estimators. VNLB-S is considerably easier to tune, since it has one less parameter per step,
and achieves results which are only slightly inferior to those of VNLB-H.

The significant improvement over the state-of-the-art suggests that the Gaussian (or PCA)
models that have been successfully applied to still images processing, can also contribute to video
restoration. The high-dimensionality of spatio-temporal patches poses challenges in the estimation
of the moments of the prior distribution. In this setting, better Bayesian estimators can be obtained
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by a theoretically motivated optimization of the empirical Wiener filter, taking into account the
uncertainty on the sample covariance matrix.

Another conclusion is that very good results can be obtained without motion estimation. We
do not believe that video processing/restoration should be performed in general without taking
motion into account, but it is interesting to see how much can be done without compensating
motion.

The proposed approach could be extended to tackle more general inverse problems by consid-
ering an hyper-Bayesian framework as in [1]. The main obstacle is the computation time. Another
logical extension would contemplate including motion deblurring in the Bayesian formulation.
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