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Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy

The 2×2 ray tracing matrix (RTM) method is employed for description of optical aberrations caused by the refractive index mismatch (RIM) in fluorescent confocal polarization microscopy. We predict and experimentally confirm that due to the RIM a liquid crystal layer with highly non-uniform director distribution appears to be imaged as a layer with non-uniform thickness, which shows up in roughness of the rear surface. For the off-axial focusing of the probing beam in a droplet dispersed in an immiscible liquid we have developed an extended method still keeping the 2×2 dimensionality of the RTM.

INTRODUCTION

Depending on purpose, light propagation through an optical system can be considered in geometrical or wave optics approaches [START_REF] Born | Principles of Optics[END_REF]. In both approaches the analytical solutions are limited to simple cases. Interestingly, in both approaches the simplification of the light propagation description can be achieved using matrix formalism. Though naturally the matrices describing geometrical trajectories of the rays and those describing polarization properties of optical elements or materials, differ essentially by their physical sense, they have several features in common. First, in both approaches the corresponding matrices can be of the lowest 2×2 dimension. The 2×2 matrices used in wave optics are called Jones matrices [START_REF] Jones | A new calculus for the treatment of optical systems. I. Description and discussion of the calculus[END_REF][START_REF] Azzam | Ellipsometry and polarized light[END_REF]. In geometrical optics the 2×2 matrix is called either the ABCD matrix, highlighting its 2×2 dimension, or the ray tracing matrix (RTM), referring to its physical sense [START_REF] Cerullo | Problems in laser physics[END_REF]. Second, in both cases a matrix of consequent optical elements is a product of matrices of constituting individual optical elements. Third, both Jones and ABCD matrices have been originally developed for normal light incidence and for oblique propagation, matrices of higher dimensions are used.

Berreman's 4×4 matrix method has been developed for oblique light propagation through spatially optically nonuniform anisotropic samples [START_REF] Berreman | Optics in stratified and anisotropic media: 4x4 matrix formulation[END_REF]. Computer calculations using the Berreman matrix method provide high accuracy. However because of its higher dimension, the Berreman matrix method is difficult for analytical analysis. In order to solve this challenge an extended 2×2 Jones matrix method was developed [START_REF] Lien | Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence[END_REF][START_REF] Lien | A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays[END_REF][START_REF] Yeh | Extended Jones matrix method[END_REF][START_REF] Yu | Comparison of extended Jones matrices for twisted nematic liquid crystal displays at oblique angles of incidence[END_REF][START_REF] Yu | Differential and integral extended Jones matrices for oblique light propagation through a deformed crystal[END_REF] for oblique light propagation through liquid crystal (LC) cells with spatially non-uniform director field.

Similarly, in geometrical optics oblique light propagation is described using 3×3 matrices [START_REF] Casperson | Generalized beam matrices. II. Mode selection in lasers and periodic misaligned complex optical systems[END_REF][START_REF] Tovar | Generalized Beam Matrices: Gaussian Beam Propagation in Misaligned Complex Optical Systems[END_REF]. For example, on-axis light propagation through a spherical surface can be described in frames of 2×2 ABCD matrix formalism, but it is not applicable for the off-axis case and the 3×3 matrix approach has to be used. Similarly to the case of wave optics, increase of matrix dimensionality of the RTM leads to undesirable complications such as lengthening of working expressions, which thereby brings difficulties when using analytical analysis. Lowering of the RTM dimension is, thus, desirable. In this paper we show how the 2×2 RTM method can be extended for off-axis light propagation of a focussed beam through a spherical surface, still keeping 2×2 dimensionality of the RTM. An important application of the proposed extended RTM (ERTM) method we associate with modelling of confocal microscopy (CM) images with a dry objective. We illustrate how the ERTM method can be used for derivation of the relation between the nominal (NFP) and actual focus position (AFP) for a beam focused inside a spherical droplet suspended in another immiscible liquid in a flat glass micro-capillary. The NFP is the reading displayed by the CM software. Application of oil immersion objective eliminates optical aberrations due to the refractive index mismatch between air and glass. However, in many experimental geometries, for example, when the temperature stabilization is required, the application of immersion objective becomes impossible. For this reason we perform detailed consideration for a dry CM objective and then apply obtained relations for an oil immersion objective. We did not find in the literature such a description for a dry CM objective.

We first consider a beam focussed inside the gap of horizontally placed flat glass capillary (Sec. and apparently shows up by roughness of the rear surface of the imaged LC layer. We confirm this prediction experimentally at the end of Sec. 2.A.1. In Sec. 2.B.1, using the RTM method, we derive the dependence zNFP(zAFP) for a beam focused inside a spherical droplet on its optic axis, i.e. for the on-axis case at which the axial ray of the focussed beam is along the droplet diameter. Finally in Sec. 

RIM ABERRATIONS OF CM IMAGES

A. Sample with flat interfaces

Dry CM objective

Consider a Gaussian beam exiting the objective of a confocal microscope. Let the focus length of the objective be denoted f .

The beam passes the distance L in air, propagates through a flat glass [correspondingly subscript g ] wall of the thickness g d and refractive index g n and then is focused at the depth AFP z inside the capillary gap, which is filled with a liquid having refractive index n. We chose glycerol as a liquid filling the capillary gap. We assume further that the confocal microscope is based on the inverted optical scheme, at which the objective is below the microscope stage and where the probing beam enters a horizontally placed flat capillary from its bottom. The ABCD matrix of such an optical system depicted in Fig. 1 is a matrix product

G G g G g a g a obj M T S T S T M - - = (1) 
where 

[{1, 0};{ 1 / ,1}] obj M f = - is the 2×2 matrix of the CM objective, [{1, };{0,1}]
{ } { } , ; , G M A B C D =     (2) 
with

(1/ ){ ( / ) ( / )} g g AFP A f f L d n z n = -- - , ( / ) ( / ) g g AFP B L d n z n = + + , 1 / C fn = - , 1/ D n = .
According to Ref. [START_REF] Cerullo | Problems in laser physics[END_REF], the waist of a Gaussian beam transforms by an ABCD matrix such that ( )

2 1 0 R BD AC z + = , (3) 
where one obtains (see [START_REF] Cerullo | Problems in laser physics[END_REF] for details in a similar problem):

g AFP g d z f L n n = -- . ( 5 
)
For the empty capillary

1 n = and 1 0 g AFP NFP g n d z z f L n = = = -- , (6) 
and then Eq. ( 5) takes the form:

0 AFP NFP z z n = . (7) 
It is to be noted that during confocal microscopy data acquisition, the origin of the Cartesian coordinate system is not instrumentally fixed, but is floating from scan to scan. By the latter it is meant that the coordinate origin is not anchored to a microscope construction detail, but is assigned for each new scan to a point, where the scanning beam is focused in the moment, when data acquisition starts. At the consideration in the frame of ABCD matrix approach one deals with distances, rather than with coordinates. Indeed, f and L are distances measured from the microscope objective; g d is the thickness of the glass capillary wall. In the same vein 0 NFP z and AFP z are distances measured from the interface inside the sample, rather than coordinates. For this reasons there is no need to deal with the absolute nominal focus position NFP z , a distance from the sample interface at which the focus of the scanning beam would be located at its propagation in air along its whole path from the objective to the focus, i.e. setting [START_REF] Lien | Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence[END_REF]. The difference between them ( )

1 g NFP AFP g n n z z f L d = = = = --, which is different from the definition of 0 NFP z through Eq.
0 1 g c NFP NFP g g n z z z d n - = - = (8) 
is a constant bias which is important in terms of coordinates but cancels when measuring distances above the capillary wall. Indeed, when the focus of the scanning beam is at the bottom of the capillary gap, one has 0 AFP z = , and then Eq.( 8) Eq. ( 7) implies that the distance 0 NFP z of the nominal focus position from the bottom of the capillary gap, which is obtained from the CM reading, is n times smaller than the actual focus position, denoted by AFP z . The latter means that a layer with the refractive index n and of the thickness AFP z is imaged by the CM as a layer, which is n times thinner than the air layer of the same thickness. Therefore, when the focus of the CM scanning beam reaches the distance To illustrate the latter and thereby to check Eq. ( 7) we have doped glycerol with fluorescent dye (10 -3 wt% of Fluorescein), sucked it into a rectangular capillary to about a half of its length and recorded the Fluorescent CM (FCM) image through the capillary thickness on both sides of the liquid meniscus with air. Similar experiment though with a bit different purpose was performed in Ref. [15], where water and oil immersion solution of a dye were placed in contact in a flat cell. Confocal microscopy with an oil immersion objective displayed different thickness of the imaged layer on two sides from the interface between the two liquids. The latter illustrated geometrical aberrations, when measuring vertical distances in water layer with the oil immersion objective, whereas the NFP measured in the immersion oil with the same oil immersion objective has been identified as a true value. We shall discuss these issues in more details in Sec 2.A.2.

An interesting prediction follows from Eq. ( 7) for a liquid crystal (LC) film, in which the refractive index might be a function ( , , ) n x y z of in-plane coordinates. For such a film with smooth bottom and upper interfaces, according to Eq. ( 7), the thickness of the film imaged with FCPM should be a function of in-plane coordinates. As a result the upper interface of a LC layer with significantly distorted director field is expected to be imaged as a rough surface. This is in difference with the bottom (enter) interface, which should appear smooth. Roughness of the imaged rear interface will be governed by the relative difference n and e n for ordinary and extraordinary light waves, respectively. Typically δn might be as high as 10% and, thus, according to Eq. ( 7) the relative roughness is expected to be of the same order, i.e. of about 10% of the film thickness.

To check this prediction we have placed a droplet of a long- shows that the profile of the rear [upper] LC-glycerol interface appears to be obviously rough. The latter is in qualitative agreement with Eq. ( 7), which predicts that a real film with smooth interfaces should be imaged by the FCPM as a layer of the thickness, which is n times smaller than the real thickness. As a result, for the spatially non-uniform refractive index ( , , ) n x y z the image of the upper smooth surface appears to be rough. Apparent roughness of the upper LC interface on the FCPM image cannot be explained by non-uniform distribution of dye molecules, whose orientation and concentration mimic non-uniform distribution of the LC director through the film. Were roughness of the image of upper LC interface due to the dye distribution, the bottom interface at which the cholesteric is defectuous as well, should appear also rough, which is not the case for our experiment. Difference in the roughness of the images of the bottom and top LC interfaces suggests that the rear (upper) interface appears rough due to its position such that the probing beam enters into the LC film through the bottom glass-LC interface and then propagates toward the upper LC-glycerol interface, integrating difference in n through the thickness. To check this suggestion we rotated the substrate face-down, such that the probing beam now enters the LC film through the interface with glycerol, which becomes the bottom interface. In this case again the image [Fig. 3c] of the bottom interface is smooth and for the upper interface it is rough, despite the fact that now the bottom film surface is the glycerol-LC interface. Therefore, in both cases of face-up and face-down sample orientations, the image of the upper [rear] interface is rough, while for the bottom one it is smooth. The latter confirms that the roughness of the upper LC interface is due to the non-uniform refractive index distribution ( , ) n x z , which accumulates, when the beam propagates through the LC film.

One can also expect that the roughness of the upper LC interface image caused by RIM geometrical rescaling can be enhanced by vertical aberrations of the point spread function (PSF). The aberrations of the PSF are strongly anisometric being about 10 times larger in vertical [longitudinal] than in horizontal [lateral] direction even in the bulk of optically uniform fluorescent medium [15]. It was shown experimentally that the PSF is additionally broadened by optical inhomogeneties in a turbid medium, especially in the axial direction [17]. Similar effect can be expected for a LC sample with defects of the director field. LC defects scatter light and thus affect the PSF. However, for optically anisotropic media such as LCs, there are additional mechanisms of the PSF broadening. Even for a defect free uniformly aligned LC sample due to the birefringence, the light beam splits into two [extraordinary and ordinary] rays, which travel through the sample along different trajectories. As a result the axial resolution worsens with the increase of the birefringence value [18]. For LC samples containing defects the PSF broadening is enhanced by both effects: double refraction and scattering. Evidence for enhancement of geometrical rescaling aberrations by PSF aberrations mediated by refractive index inhomogeneities is presented in Fig. 3d. It is seen that roughness of the imaged upper (rear) surface is much higher than 10%, instead being of the order of more than 100%, which cannot be explained solely by geometrical RIM rescaling, but can be attributed to the PSF aberrations.

Oil-Immersion objective

It is to be noted that this paper focuses on consideration for a dry objective, whereas traditionally in the literature the theoretical and experimental studies are done for an oil immersion objective. To adopt the above presented RTM approach for the oil immersion objective, one has to modify matrices obj M , L T , a g Sin Eq. ( 1) such that 1 / f and L are replaced by / g n f , / g L n respectively and the a g S -becomes a unit matrix, where ng is the refractive index for immersion oil [START_REF] Cerullo | Problems in laser physics[END_REF]. Then for the oil immersion objective Eq. ( 5) for a flat sample becomes of the form:

g AFP g f z n L d n -- = . ( 9 
)
For the NFP denoted by:

NFP g z f L d = --, ( 10 
)
which corresponds to the nominal position of the focus for the propagation of the beam in air, Eq. ( 9) reads:

g NFP AFP n n z z = . ( 11 
)
Eq. [START_REF] Casperson | Generalized beam matrices. II. Mode selection in lasers and periodic misaligned complex optical systems[END_REF] indicates that for an oil immersion objective a liquid layer with the refractive index g n n <

[ g n n > ] will be imaged by a layer which is thicker [thinner] than the layer of immersion oil of the same real thickness and the immersion oil layer will be imaged with unaffected real thickness as previously observed for water and immersion oil layers placed in contact in a flat cell [15]. This is opposite to the observations expected for the dry objective, for which according to Eq. ( 7) a liquid with the refractive index n will be imaged as a layer, which is n times thinner than the air layer of the same real thickness.

The problem of RIM rescaling is known in confocal microscopy as the focal shift [15]. For convenience we shall call this property the vertical RIM rescaling. In the geometrical approach with the assumption that the AFP in the second medium is governed by the marginal rays of the aperture of an oil immersion objective, Ref. [19] gives tan tan

NFP AFP g z z α α = , ( 12 
)
where g α and α are respectively the incident and refracted angles of the marginal rays, which are determined by the numerical aperture (NA) of the objective. Eq. [START_REF] Tovar | Generalized Beam Matrices: Gaussian Beam Propagation in Misaligned Complex Optical Systems[END_REF] shows that the RIM vertical rescaling depends on the incident angle of the rays constituting the probing beam, which, in its turn, implies defocusing of the beam. Here we intentionally deal with low numerical aperture and, thus, with paraxial rays, thereby ignoring the beam defocusing to derive the relation

( ) NFP z z
in a simple handy form. We shall demonstrate that even in assumption of low numerical aperture and with the focus of the beam being modeled by a point source, one can predict main features for the RIM rescaling.

For low NA Eq. ( 12) reduces to Eq. ( 11). Both Eq. ( 11) and ( 7) show that the vertical scaling in the CM image is governed by the relative refractive index, although difference between Eqs. [START_REF] Lien | A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays[END_REF] and [START_REF] Casperson | Generalized beam matrices. II. Mode selection in lasers and periodic misaligned complex optical systems[END_REF] is that Eq. ( 7) is for a dry objective and Eqs. [START_REF] Casperson | Generalized beam matrices. II. Mode selection in lasers and periodic misaligned complex optical systems[END_REF][START_REF] Tovar | Generalized Beam Matrices: Gaussian Beam Propagation in Misaligned Complex Optical Systems[END_REF] are for an oil immersion objective.

Analysis of the problem accounting for vectorial properties of light in terms of the point spread function (PSF) was performed numerically in Ref. [15]. No doubt, that calculations of the PSF would be preferable. However they are complicate and can be done only numerically. For this reason, handy analytical expressions allowing for qualitative estimation of the main features of RIM aberrations are also in demand. Therefore, we consider the focusing of a Gaussian paraxial beam inside a spherical droplet.

B. Focusing of a paraxial Gaussian beam inside a sphere

Further we assume that the considered droplet has rotational symmetry around the Z-axis and for this reason we consider only light propagating in the XZ plane.

On-axis case

Consider a centered Gaussian beam with its axis along the optical axis of the system depicted in Fig. 4a. Here the optical axis of the system is a line passing along the droplet vertical diameter. The ABCD-matrix of such a system is of the form

D D G D G M T S M - = , ( 13 
)
where G M is given by Eq. ( 2), in which AFP z is replaced by the distance G d of the droplet south pole, measured from the entrance interface of the capillary gap (Fig. 4a);

1 2 2 1 0 1 0 1 G D D G G D D S n n n f f f n R n -         = = -     - - -         (14)
is the matrix of the spherical glycerol-droplet (G-D) interface with its front and rear focuses 1 2

;

G D D G D G n n f R f R n n n n = - = - - , (15) 
where D n is the refractive index of the droplet,

1 0 1 AFP D z T   =     (16) 
is the transfer matrix for the beam focus located inside the droplet at the depth AFP z .

Here the origin of the Cartesian coordinate system is chosen at the south pole of the droplet and the Z-axis is running vertically through the droplet center as shown in Fig. 4. To get an idea on typical values of the front and rear focuses 1 Applying conditions (3) and ( 4) to the components of the MD matrix given by Eq. ( 13) and introducing notation

0 D G g G NFP AFP G n n g G d d z z n f L n n =   = = -- -       , ( 17 
)
for the nominal z-position of the focus, which would correspond to the absence of RIM between D n and G n , we obtain ( )

0 D G G D AFP NFP n n n n z R z - - = . ( 18 
)
Eq. ( 18) is known in Geometric Optics as Abbe's (refraction) invariant [START_REF] Born | Principles of Optics[END_REF] relating position of a light dot in a medium with the refractive index G n at the distance 0 NFP z from the south pole on the optical axis of a sphere with the radius R and refractive index D n to the position AFP z of the light dot image inside the sphere. The latter implies that to a good approximation the focus of a paraxial Gaussian beam can be modelled by a point light source. Substitution of notations for the front and rear focuses, given by Eqs. (15) into Eq. (18) gives:

2 1 0 1 AFP NFP f f z z + = , ( 19 
)
which also can be rewritten in forms, which are handy for calculation of the position of the CM image for the focus of the scanning beam inside the droplet:

0 1 2 NFP AFP AFP f z z z f = - , ( 20 
) 0 2 0 1 AFP NFP NFP f z z z f = - . (21) 
The difference

0 0 0 2 1 AFP NFP NFP AFP AFP NFP AFP AFP R z z R z z z z z z f z f - - ∆ = - = = - - (22) 
describes the RIM effect for a liquid (LC, for example) droplet suspended in another immiscible liquid (glycerol, for example). Eq. ( 22) shows that ∆z=0 if the beam is focused at the south pole of the droplet for which is plotted in Fig. 5. Inside a droplet the shift of the beam focus will be not visible for a droplet of an optically uniform liquid, but could show up for a droplet with a modulated internal structure such as a long-pitch cholesteric droplet with tangential alignment condition at the droplet interface.

It is worth noticing that in the frame of our method by the appropriate definition of 0 NFP z (here Eq. 17), one can consider the spherical aberrations separated from vertical RIM rescaling effect. To account for both these RIM aberrations one has to redefine 0 NFP z according to Eq. ( 6). This will be done in Sec. 2.B.2 [see Eq. 31].

In this subsection we have considered spherical aberrations along the vertical droplet axis. To examine the distortion for the whole shape of the droplet, in next subsection we consider the off-axis beam propagation. We remind also that the above consideration of axial spherical aberrations intentionally does not account for the vertical rescaling aberration, which the beam suffers before entering the droplet, showing up as squeezing of vertical scale of the CM reading by G n times with respect to the real scale for the air layer of the same thickness [see subsection 2.1]. We shall return to this issue at the end of next section, after the consideration of the off-axis spherical aberrations.

Off-axis beam propagation

In a confocal microscope, the probing light beam scans the sample such that the beam axis is parallel to the microscope axis and is parallel to the flat sample normal. Eqs. (18-21) relating the actual focus position to its nominal position, are derived for the on-axis case. Below we show how the consideration can be extended to the off-axis beam shifted from the optical axis. Comparison of propagation of the probing beam for the on-and off-axis cases, depicted in Fig. 4a,b shows that to make such extension, the nominal 0 

where

2 2 1/ 2 ( ) p NFP z R R x = - - and NFP
x are the vertical and horizontal coordinates of the point P, at which the axial ray of the focused probing beam intersects the droplet surface in the off-axis case.

In the studied case the LC is optically denser than glycerol [ D G n n > ] and consequently the axial ray of the probing beam is refracted at their interface such that the actual focus position is shifted towards the optical axis (the Z-axis). In the frame of the ABCD approach there is no need to consider trajectories of each ray constituting the Gaussian beam. Location of the focused beam can be described by the trajectory of its axial ray and by the position of its focus [START_REF] Cerullo | Problems in laser physics[END_REF]. Therefore, one can replace the real refracted beam with its axis broken at the point P and thereby being tilted with respect to the optic axis of the droplet, by an effective cofocal non-broken beam with its axis being parallel to the Z-axis. Both beams are focused in the same point

( , )

AFP AFP

A x z

. Then the axial ray of the effective beam intersects the droplet surface at the point B and travels inside the droplet coming to the focus, which is at the depth [see Fig.

4(b)]

AFP AFP B z z z ′ = -, (24) 
where B z is the vertical coordinate of the point B . Modeling the focus of the probing beam by a point light source [21], we find the as a point of intersection of two rays. First ray is the axial ray of the beam, which is parallel to the optical axis of the system before entering the droplet and consequently after refraction the axial ray [PF2 in Fig. 4 

B AFP P NFP z x z x = , (25) 
( )

1 0 1 AFP NFP NFP P f x x f z z = - - . (26) 
Substitution of Eqs. ( 25) and (26) in Eq. ( 24) gives ( )

1 0 1 P AFP AFP NFP P f z z z f z z ′ = - - - . (27) 
Replacing 0 NFP z and AFP z in Eq. ( 21) by NFP z′ (Eq. 23) and AFP z′ (Eq. 27), one finds 29). Consequently Eq. ( 29) accounts purely for spherical aberrations due to the RIM at the south droplet interface, but hides aberrations which occur below the droplet interface. To reveal the latter one has to redefine the nominal focus position for the z-coordinate with respect to its position NFP z , which would be measured in air, i.e. setting in Eq. ( 17)

P NFP AFP AFP AFP f z R z z z f f z     = + -     -      , ( 29 
0 1 D G g NFP NFP G n n g d z z f L d n = = = = -- -, (30) 
similarly as it was done by Eq. ( 6) for flat interfaces. Relation between NFP z and 0 NFP z follows from Eqs. ( 17) and (30):

0 NFP NFP cG G z z z n = - , (31) 
where

( 1) / cG G G G z d n n = -
. Here cG z is a constant bias, which could be important in terms of coordinates but it cancels, when measuring distances in the same manner as it was discussed in Sec. 2.1. It has to be noted, that the goal of our consideration is to find the influence of spherical aberrations on the droplet shape. There are no spherical aberrations in the flat glycerol layer of the thickness G d . For this reason one can set 0

G d = ,
which leads to 0 cG z = . Substitution of Eq. (29) in Eq. ( 31) with 0 cG z = gives:

( )

1 2 2 1 AFP AFP P AFP NFP D G AFP z R z z z z n n z f f -   -   = + -      -     . ( 32 
)
In the case of a flat interface R → ∞ , which leads to 2 f → ∞ , and Eq. (32) reduces to

/ NFP AFP D z z n =
, which is akin to Eq. ( 7), derived for flat interfaces in Sec. 2.1.

Using Eq. (32) one can examine distortions of the shape of a spherical droplet due to spherical aberrations. For this we assume that the probing excitation beam scans the droplet interface in the XZ plane. In this case, AFP z in Eq. ( 32) is of the form:

2 2 AFP z R R x = ± -, (33) 
where ± corresponds to the north [superscript N] and south [superscript S] hemispheres, respectively. For the south hemisphere

2 2 S AFP P z R R x z = - -= , ( 34 
)
and substitution of Eq. (34) in Eq. ( 32) gives the equation for the expected shape of the south hemisphere of the droplet in the form:

2 2 S P NFP G G z R R x z n n - - = = . ( 35 
)
In Eq. ( 35) P z is the running thickness of wedge-like glycerol layer located between the droplet south interface and the Xaxis. Consequently, / P G z n is the thickness of the imaged layer for the liquid wedge of the running thickness P z . Observe that Eq. ( 35) is of the form of Eq. ( 7) and describes RIM rescaling of the distance zP, which defines the shape of the south hemisphere. It is clear that, since 1 G n > , Eq. ( 35) describes an oblate hemi-ellipse with its vertical semi-axis being shorter nG times than its horizontal semi-axis. For the oil immersion objective Eq. ( 35) becomes of the form: means that the image of the south hemisphere will be not distorted. For a hypothetical case of a liquid droplet in air or for real case of a solid sphere in air one would have For the north hemisphere:

2 2 N AFP NFP z R R x = + - , (37) 
and substitution of Eq. (37) in Eq. (32) gives the equation for the expected shape of the north hemisphere of the droplet as imaged by confocal microscopy with a dry objective in the form ( )

2 2 2 2 2 2 2 1 1 N NFP N AFP NFP NFP N LC AFP NFP R x z f z x n f z f R R x   -     = +     -   + -     . ( 38 
)
The shape of an LC droplet in glycerol as expected to be imaged by the confocal microscope, when accounting for both RIM effects [the vertical rescaling and spherical aberrations] is plotted in Fig. [horizontal dash-dotted line]. In other words, the shape of the droplet image is not a figure of revolution with respect to its horizontal diameter. The distance from the north pole to the equatorial plane is larger than that for the south pole. If the diameter of the droplet is 2R , then according to Eq. ( 7) the glycerol layer surrounding the droplet of the thickness d0=2R will be imaged by a layer of the thickness , which corresponds to the upper interface between glycerol and glass wall capillary and, thus, the excess cup will be imaged as apparently being embedded inside the upper capillary wall, which is indeed observed in Fig. 6 [on right]. A shadow above and below the droplet image is most probably due to the aberrated PSF. The latter suggestion is supported by the fact that the shadow is not seen on both, right and left sides of the droplet: it is well known that the vertical aberrations of the PSF are much larger than in the horizontal direction [15].

Conclusions.

Using the 2×2 RTM method, we have considered focusing of a Gaussian beam in the gap of a flat capillary filled with a liquid containing a freely suspended droplet of another immiscible liquid. We derived a relation between the actual and nominal focus positions for a Gaussian beam focused in the capillary gap filled with a liquid. Obtained expression describes the so-called RIM rescaling property. According to this property a layer of the thickness 0 d with the refractive index n will be imaged by a confocal microscope with a dry objective as a layer which is n times thinner than the air layer of the same thickness 0 d .

We illustrate this property with the 3D FCM image of a flat glass capillary partially filled with dye-doped glycerol, scanned on two sides of its meniscus with air. We predict and experimentally confirm that due to the vertical RIM rescaling a liquid crystal layer with highly nonuniform director distribution should be imaged as a layer of non-uniform thickness, apparently appearing to be imaged with a rough upper [rear] surface.

Our next step was to employ the ABCD approach to the focusing of a paraxial Gaussian beam inside a spherical droplet. We find that for the on-axial case there is no focal shift for the probing beam, if it is focused either in the center or in the south pole of the droplet; for all other focus positions the AFP is shifted towards the droplet center. Our expression relating 0 NFP z and AFP z [given by Eq. ( 18)] in the on-axial case is equivalent to Abbe's invariant for refraction by a spherical surface.

For the off-axial focusing we have developed an extended method still keeping the 2×2 dimensionality of the RTM. We predict and confirm experimentally that due to the RIM effect a spherical droplet will be imaged by a confocal microscope with a dry objective as a figure, akin to an oblate egg (as opposed to a normal prolate egg). Asymmetrical RIM distortion is accompanied by another interesting feature. If the droplet is suspended at the upper interface of the capillary gap, then the top part of the image appears to be apparently embedded in the capillary glass wall. We have confirmed this prediction experimentally.

By this work we have demonstrated that despite its approximate character, the RTM method is capable for prediction of several refractive index mismatch aberrations, summarized above. These predictions need to be taken into account, when analyzing confocal microscopy images of the samples with non-uniform refractive index such as LC samples with non-uniform director distribution and samples with inclusions. One of close examples concerns FCPM imaging of LC colloids composed of glycerol droplets suspended at the LC-air interface, where the droplets shape and location with respect to the interface are important for modeling of their interaction [21]. We believe that our theoretical consideration and conclusions will be useful at the analysis of confocal microscopy images for biological samples.

  2.A). Using conventional 2×2 RTM method, we derive relation between the vertical NFP and AFP (denoted, respectively, NFP z and AFP z ] for a beam focussed inside the capillary gap. Obtained dependence / NFP AFP z z n = shows that a flat layer with the refractive index n and thickness 0 AFP z d = is imaged with a CM dry objective by a layer, which is n times thinner than the air layer [with 1 n = ] of the same thickness 0 d . We illustrated this property of refractive index mismatch (RIM) rescaling by the experimentally obtained fluorescent confocal microscopy (FCM) 3D image of a flat capillary filled with dye-doped glycerol on both sides of the liquid-air meniscus. Accounting for the RIM rescaling, we predict, that a nonuniformly aligned liquid crystal (LC) layer, for which the refractive index is a function ( , , ) n x y z of coordinates through the sample, should be imaged by the fluorescent confocal polarization microscopy (FCPM) as a layer with non-uniform thickness ( , , ) d x y z . The function ( , , ) d x y z mimics the spatial distribution ( , , ) n x y z , integrated through the film thickness

  matrix through the entrance capillary wall of the thickness g d , [{1, 0};{0, / }] g G g S n n -= is the matrix of the glass-glycerol (g-G) interface, [{1, };{0,1}] G AFP T z = is the transfer matrix for a distance AFP z in glycerol. After matrix multiplication the ABCD matrix (Eq. 1) reduces to the form

  range of the Gaussian beam with the waist ω01 and wavelength λ. Substituting Eq. (2) in Eq. (3) and taking into account that typically[13] 

  corresponds to the beam focus being actually focused at the top of the capillary gap, then and which for the air layer [at1 n = ] is 0 d .For this reason in Eq. (7) we deal with 0 NFP z instead of NFP z .

  thus probes the rear interface of the capillary gap filled with glycerol, for which G n n = , then 0 NFP G z d′ = and one is led to conclude that the glycerol layer in the flat capillary gap of the thickness d0 will be imaged by a layer of the thickness 0

Fig. 1 .

 1 Fig. 1. Scheme, explaining focusing of a beam inside a flat capillary. See text for identification of notations

  Fig. 2. 3D FCPM image of a flat capillary with the gap of nominal thickness of 200µm filled with glycerol scanned on two sides of glycerol-air meniscus.

Fig. 3 .

 3 Fig. 3. FCPM images of sessile cholesteric droplets: horizontal view (a) and vertical cross-sections of face-up (b) and face down (c) droplet, (d) horizontal view (upper photo) and 3D image [lower photo] of another sessile droplet. The polarizer optical axis is oriented along the X-axis.

f and 2 f

 2 with respect to the droplet radius R, we take 1average refractive index of a nematic liquid crystal (LC) E3100-100. Such a choice is inspired by the fact, that thermotropic LCs are in most cases immiscible with glycerol and provide high enough refractive index. For the above chosen values of G

Fig. 5 .

 5 Fig. 5. Eq. 22, plotted for 50 R m µ =

  Fig. 4. On-axis (a) and off-axis (b) focusing of a light beam in a spherical droplet. In (b) F2 is the rear focus of the droplet, PF2 is the refracted axial ray of the probing light beam, actually focused in the point A and modeled by an effective co-focal nonrefracted beam with the axial ray BA parallel to the optic axis. See text for other notations.

  droplet surface towards the rear focus F2(0,f2) of the droplet sphere. For the second ray we chose a radial ray NC, might not necessarily belong to the real probing beam, but can be taken in consideration for the beam focus modeled by a point source. A radial ray should not be refracted at the droplet surface and, thus, runs through the NFP [denoted by point 4b] and the center C(0,R) of the droplet. Thereby the AFP [denoted by point A(xAFP, zAFP) in Fig.4(b)] is at the intersection of the rays PF2 and NC. Then using this latter statement, from Fig.4(b) one finds

  , distorted by spherical aberrations. It is useful to rewrite Eq. (28) to the form

  Eqs. (28,29) reduce respectively to Eqs. (20,21), describing on-axial case. Vertical shift of the probing beam due its off-axis position is described in Eq. (29) by the second term in square brackets.At this moment we have to recall that the above consideration of spherical aberrations does not account for the vertical rescaling aberration, which the beam suffers before entering the droplet. The vertical rescaling aberration shows up as squeezing of vertical scale of the confocal microscopy reading G n times with respect to the real scale in air. The latter was motivated by definition of 0 NFP z through Eq. (17), which led to 0 NFP z in the form of Eq. (

n

  stands for the immersion oil refractive index [which is equal to the refractive index of glass]. Eq. (36) is equivalent to Eq. (14), obtained in Ref. [15]. Eq. (36) shows that for a droplet suspended in immersion oil

Fig. 6 .

 6 Fig.6 . (Color online). Aberrated shape for an LC droplet of 15µm in diameter suspended in glycerol, plotted using Eq. 35 [dark brown curve] for the south part and Eq. 38 [blue curve] for the north part; and FCM image of an LC droplet freely suspended at the top of the capillary gap. Horizontal and vertical scales of the photograph are the same. The difference between them 2 ( ) / (2 ) NS N S D g g g D z z z R n n n n n ∆ = -= --

  2.B.2 we propose a way to extend the conventional analytical 2×2 RTM method to the off-axis case, i.e. for arbitrary location of the beam focus inside the spherical droplet. Obtained relations

	z	NFP	(	z	AFP	)	and	x	NFP	(	x	AFP	)

for respectively vertical and horizontal NFP and AFP allow for computing RIM spherical aberrations expected for a CM image of a spherical droplet. Sec. 3 concludes our results.

  6. Here Eq. (35) [dark brown curve] was used for the south part and Eq. (38) [blue line] for the north part of a droplet of 15µm in diameter suspended in glycerol at the upper interface of the capillary gap.It follows from Eqs. (35), (38) that the shape of the droplet image should be asymmetric with respect to the equatorial plane, which in Fig.6is at the height

	d	G ′	/ 2	=	/ R n G
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13. For a beam with λ=532nm focused to the waist