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NON SELF-ADJOINT LAPLACIANS ON A DIRECTED

GRAPH

MARWA BALTI

Abstract. We consider a non self-adjoint Laplacian on a directed graph
with non symmetric edge weights. We analyse spectral properties of this
Laplacian under a Kirchhoff assumption. Moreover we establish isoperimet-
ric inequalities in terms of the numerical range to show the absence of the
essential spectrum of the Laplacian on heavy end directed graphs.
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Introduction

The non self-adjoint operators are more difficult to study than the self-adjoint
ones: no spectral theorem in general, wild resolvent growth... The related the-
ory is studied by different authors: L. N. Trefethen [Tr05] for non symmetric
matrices, W. D. Evans, R. T. Lewis, A. Zettl [ELZ83] and R. T. Lewis [Lew79]
for non self-adjoint operators in a Hilbert space. Recently, the interest in spec-
tral properties of non self-adjoint operators has already led to a variety of new
results, both in the continuous and discrete settings, e.g, bounds on complex
eigenvalues [FLS11] and Lieb-Thirring type inequalities [Han11], [DHK09]. This
can be explained by the complicated structure of the resolvent of such an oper-
ator seen as an analytic function. In this paper we focus on directed graphs to
study a non symmetric Laplacian. We develop a general approximation theory

2010 Mathematics Subject Classification. 47A45, 47A12, 47A10, 47B25.
Key words and phrases. Directed graph, Graph Laplacian, Non self-adjoint operator, Numer-
ical range, Eigenvalues, Essential spectrum.
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2 MARWA BALTI

for the eigenvalues on directed graphs with non symmetric edge weights as-
suming only a condition of ”total conductivity of the vertices” presented as the
Assumption (β). We investigate the spectrum of our discrete non self-adjoint
Laplacian. We collect some basic properties of the Laplacian and we seek to
show the emptiness of its essential spectrum by using isoperimetric inequalities.
We explain how isoperimetric inequalities can be linked to the numerical range
of non symmetric operators. In fact, for the self-adjoint Laplace-Beltrami oper-
ator, Jeff Cheeger proved an inequality that links the first nontrivial eigenvalue
on a compact Riemannian manifold to a geometric constant h. This inspired an
analogous theory for graphs (see [Fuj96], [Gri11]). In this work, we introduce a
kind of Cheeger constant on a filtration of a directed graph G and we estimate
the associated Laplacian ∆. We give an estimation for the numerical range
of ∆ in terms of the Cheeger constant. We use this estimation and propose
a condition on the weights for the absence of essential spectrum of heavy end
directed graphs. There is an analogous result of H. Donnelly and P. Li [DL79]
for a self-adjoint operator on complete negatively curved manifolds. They show
that the Laplacian on a rapidly curving manifold has a compact resolvent.
Section 1 is devoted to some definitions and notions on a directed graph with non
symmetric edge weights and the associate non symmetric differential Laplacian.
We describe some basic results: Green’s formula and the spectral properties of
∆ and of its formal adjoint.
In Section 2, we study spectral properties of the bounded operator ∆̃ by relying
on known results for the symmetric case.
In Section 3, we establish the Cheeger inequality for the non symmetric Dirich-
let Laplacian on any subset of the set of vertices V to give a lower bound for
the bottom of the real part of the numerical range. We control the real part
of the numerical range of ∆ and relate it with the spectrum of the its closure
∆. We characterize the absence of essential spectrum of ∆. Fujiwara [Fuj96]
and Keller [Kel10] introduced a criterion for the absence of essential spectrum
of the symmetric Laplacian on a rapidly branching graph. In fact, our criterion
is: positivity of the Cheeger constant at infinity on heavy end graphs.

1. Preliminaries

We review in this section some basic definitions on infinite weighted graphs
and introduce the notation used in the article. They are introduced in [Bal16]
for finite non symmetric graphs (see [AT15] and [T-H10] for the symmetric
case).

1.1. Notion of Graphs. A directed weighted graph is a triplet G := (V, ~E, b),

where V is a countable set (the vertices), ~E is the set of directed edges and
b : V × V → [0,∞) is a weight function satisfying the following conditions:

• b(x, x) = 0 for all x ∈ V

• b(x, y) > 0 iff (x, y) ∈ ~E

In addition, we consider a measure on V given by a positive function

m : V → (0,∞).



NON SELF-ADJOINT LAPLACIANS ON A DIRECTED GRAPH 3

The weighted graph is symmetric if for all x, y ∈ V , b(x, y) = b(y, x), as a

consequence (x, y) ∈ ~E ⇔ (y, x) ∈ ~E.
The graph is called simple if the weights m and b are constant and equal to 1
on V and ~E respectively.

The set E of undirected edges is given by

E =
{

{x, y}, (x, y) ∈ ~E or (y, x) ∈ ~E
}

.

Definition 1.1. Define for a subset Ω of V , the vertex boundary and the edge
boundary of Ω respectively by:

∂V Ω =
{

y ∈ Ω : {x, y} ∈ E for some x ∈ Ωc
}

∂EΩ =
{

(x, y) ∈ ~E : (x ∈ Ω, y ∈ Ωc) or (x ∈ Ωc, y ∈ Ω)
}

.

On a non symmetric graph we have two notions of connectedness.

Definition 1.2. • A path between two vertices x and y in V is a finite
set of directed edges (x1, y1); (x2, y2); ..; (xn, yn), n ≥ 2 such that

x1 = x, yn = y and xi = yi−1 ∀ 2 ≤ i ≤ n

• G is called connected if two vertices are always related by a path.
• G is called strongly connected if for all vertices x, y there is a path from
x to y and one from y to x.

1.2. Functional spaces. Let us introduce the following spaces associated to
the graph G:

• the space of functions on the graph G is considered as the space of
complex functions on V and is denoted by

C(V ) = {f : V → C}

• Cc(V ) is its subset of finite supported functions;

• we consider for a measure m, the space

ℓ2(V,m) = {f ∈ C(V ),
∑

x∈V

m(x)|f(x)|2 < ∞}.

It is a Hilbert space when equipped by the scalar product given by

(f, g)m =
∑

x∈V

m(x)f(x)g(x).

The associated norm is given by:

‖f‖m =
√

(f, f)m.
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1.3. Laplacian on a directed graph. In this work, we assume that the graph
under consideration is connected, locally finite, without loops and satisfies for
all x ∈ V the following conditions:

∑

y∈V

b(x, y) > 0 and
∑

y∈V

b(y, x) > 0.

We introduce the combinatorial Laplacian ∆ defined on Cc(V ) by:

∆f(x) =
1

m(x)

∑

y∈V

b(x, y) (f(x)− f(y)) .

For all x ∈ V we note by β+(x) =
∑

y∈V

b(x, y), in particular if m(x) = β+(x)

then the Laplacian is said to be the normalized Laplacian and it is defined by:

∆̃f(x) =
1

β+(x)

∑

y∈V

b(x, y)
(

f(x)− f(y)
)

.

Dirichlet operator: Let U be a subset of V , f ∈ Cc(U) and g : V → C the
extension of f to V by setting g = 0 outside U . For any operator A on Cc(V ),
the Dirichlet operator AD

U is defined by

AD
U (f) = A(g)|U .

The operator ∆ may be non symmetric if the edge weight is not symmetric.

Proposition 1.1. The formal adjoint ∆′ of the operator ∆ is defined on Cc(V )
by:

∆′f(x) =
1

m(x)





∑

y∈V

b(x, y)f(x)−
∑

y∈V

b(y, x)f(y)



 .

Proof:

For all f, g ∈ Cc(V ), we have

(∆f, g)m =
∑

(x,y)∈ ~E

b(x, y)
(

f(x)− f(y)
)

g(x)

=
∑

x∈V

f(x)
∑

y∈V

b(x, y)g(x) −
∑

(y,x)∈ ~E

b(y, x)g(y)f(x)

=
∑

x∈V

f(x)





∑

y∈V

b(x, y)g(x) −
∑

(y,x)∈ ~E

b(y, x)g(y)



 .

As (∆f, g)m = (f,∆′g)m, so we get

∆′f(x) =
1

m(x)





∑

y∈V

b(x, y)f(x)−
∑

y∈V

b(y, x)f(y)



 .

�
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Remark 1.1. The operator ∆′ can be expressed as a Schrödinger operator with

the potential q(x) =
1

m(x)

∑

y∈V

(

b(x, y)− b(y, x)
)

, x ∈ V :

∆′f(x) =
1

m(x)

∑

y∈V

b(y, x)
(

f(x)− f(y)
)

+ q(x)f(x).

We introduce here the Assumption (β) and we assume that it is satisfied
by the considered weighted graph, throughout the rest.

Assumption (β): for all x ∈ V , β+(x) = β−(x)
where

β+(x) =
∑

y∈V

b(x, y) and β−(x) =
∑

y∈V

b(y, x).

Remark 1.2. The Assumption (β) is natural. Indeed, it looks like the Kirch-
hoff’s law in the electrical networks.

Corollary 1.1. We suppose that the Assumption (β) is satisfied, the operator
∆′ is simply a Laplacian, given by

∆′f(x) =
1

m(x)

∑

y∈V

b(y, x)
(

f(x)− f(y)
)

.

In the sequel, for the sake of simplicity we introduce the symmetric Laplacian
H associated to the graph with the symmetric edge weight function a(x, y) =
b(x, y) + b(y, x). It acts on Cc(V ) by,

Hf(x) = (∆ +∆′)f(x) =
1

m(x)

∑

y∈V

a(x, y)
(

f(x)− f(y)
)

.

The quadratic form Q∆ of H is given by

Q∆(f) = (∆f, f) + (∆f, f), f ∈ Cc(V ).

Comment 1.1. Let f ∈ Cc(V ), we have Q∆(f) = 2Re(∆f, f). Then

inf
‖f‖m=1

Q∆(f) = inf
‖f‖m=1

2Re(∆f, f). (1)

We establish an explicit Green’s formula associated to the non self-adjoint
Laplacian ∆ from which any estimates on the symmetric quadratic form Q∆

can be directly cited from the literature.

Lemma 1.1. (Green’s Formula) Let f and g be two functions of Cc(V ). Then
under the Assumption (β) we have

(∆f, g)m + (∆g, f)m =
∑

(x,y)∈ ~E

b(x, y)
(

f(x)− f(y)
)(

g(x) − g(y)
)

.

Proof:
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The proof is given by a simple calculation. From Corollary 1.1,
we have

(∆f, g)m + (∆g, f)m =(Hf, g)m

=
∑

(x,y)∈ ~E

b(x, y)
(

f(x)− f(y)
)

g(x)

+
∑

(y,x)∈ ~E

b(y, x)
(

f(x)− f(y)
)

g(x)

=
∑

(x,y)∈ ~E

b(x, y)
(

f(x)g(x) + f(x)g(x)− f(y)g(x)− f(x)g(y)
)

=
∑

(x,y)∈ ~E

b(x, y)
(

f(x)− f(y)
)(

g(x)− g(y)
)

.

�

We refer to [Kat76] page 243 for the definitions of the spectrum and the
essential spectrum of a closed operator A in a Hilbert space H, with domain
D(A).

Definition 1.3. • The spectrum σ(A) of A is the set of all complex num-
bers λ such that (A− λ) has no bounded inverse.

• The essential spectrum σess(A) of A is the set of all complex numbers
λ for which the range R(A− λ) is not closed or dimker(A− λ) = ∞.

2. Spectral analysis of the bounded case

This part concerns some basic properties of the bounded non self-adjoint
Laplacian ∆̃. We introduce the concept of the numerical range. It has been ex-
tensively studied the last few decades. This is because it is very useful in study-
ing and understanding the spectra of operators (see [Ber64], [JY12], [AZ10]).

Definition 2.1. The numerical range of an operator T with domain D(T ),
denoted by W (T ) is the non-empty set

W (T ) = {(Tf, f), f ∈ D(T ), ‖ f ‖= 1}.

The following Theorem in [JY12] shows that the spectrum behave nicely with
respect to the closure of the numerical range.

Theorem 2.1. Let H be a reflexive Banach space and T a bounded operator
on H. Then:

σ(T ) ⊂ W (T ).

The following Proposition is one of the main tools when working with the
normalized Laplacian.

Proposition 2.1. Suppose that the Assumption (β) is satisfied. Then ∆̃ is
bounded by 2.

Proof:
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| (∆̃f, g)β+ |= |
∑

x∈V

g(x)
∑

y∈V

b(x, y)
(

f(x)− f(y)
)

|

≤
∑

x∈V

β+(x)|f(x)g(x)|+
∑

x∈V

| g(x) |
∑

y∈V

b(x, y) | f(y) |

(2)

by the Assumption (β) and the Cauchy-Schwarz inequality we
prove the result:

| (∆̃f, g)β+ |≤
(

f, f
)

1

2

β+

(

g, g
)

1

2

β+ +
∑

x∈V

| g(x) |
(

∑

y∈V

b(x, y)
)

1

2
(

∑

y∈V

b(x, y) | f(y) |2
)

1

2

≤
(

f, f
)

1

2

β+(g, g)
1

2

β+ +
(

∑

x∈V

β+(x) | g(x) |2
) 1

2
(

∑

x∈V

∑

y∈V

b(x, y) | f(y) |2
) 1

2

≤(f, f)
1

2

β+(g, g)
1

2

β+ + (g, g)
1

2

β+

(

∑

y∈V

| f(y) |2
∑

x∈V

b(x, y)
)

1

2

≤
(

f, f
)

1

2

β+

(

g, g
)

1

2

β+ +
(

g, g
)

1

2

β+

(

∑

y∈V

| f(y) |2 β−(y)
)

1

2

≤2
(

f, f
)

1

2

β+

(

g, g
)

1

2

β+ .

Then

‖∆̃‖β+ = sup
‖f‖

β+≤1

‖g‖
β+≤1

| (∆̃f, g)β+ |≤ 2.

�

It is useful to develop some basic properties of the numerical range to make
the computations of the spectrum of the Laplacian.

Proposition 2.2. Let G be a connected graph, satisfying the Assump-
tion (β). Then

(1) σ(∆̃) ⊂ D(1, 1), the closed disc with center (1, 0) and radius 1.

(2) If β+(V ) < ∞, then 0 is a simple eigenvalue of ∆̃.

Proof:

(1) By Cauchy-Schwarz inequality as in (2), for f ∈ D(∆) we
have

| (∆̃f, f)β+ − (f, f)β+ | =|
∑

x∈V

∑

y∈V

b(x, y)f(x)f(y) |

≤
∑

x∈V

∑

y∈V

b(x, y) | f(x)f(y) |

≤ (f, f)β+

which implies that W (∆̃) ⊂ D(1, 1).
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(2) If
∑

x∈V

β+(x) =
∑

x∈V

β+(x) < ∞, the constant function is an

eigenfunction of ∆̃ associated to 0. Then 0 is an eigenvalue
of ∆̃. Now, we suppose that f is an eigenfunction of ∆̃
associated to 0, therefore

(

(∆̃ + ∆̃′)f, f
)

= 0. Thus by
connectedness of G, f is constant.

�

It is obvious that Re(A) =
1

2

(

A + A∗
)

if A is a bounded operator, but this

is not true in general. The result below establishes a link between the real
part of a matrix and its eigenvalues considered as the roots of the characteristic
polynomial, see [GC05] page 8. The adjoint of a square matrix is the transpose
of its conjugate.

Lemma 2.1. Let A be a square matrix of size n, λk(A) and λk(Re(A)),
k = 1, .., n the eigenvalues of A and Re(A) respectively. Suppose that the
eigenvalues of Re(A) are labelled in the increasing order, so that, λ1(Re(A)) ≤
λ2(Re(A)).. ≤ λn(Re(A)). Then

n
∑

k=n−q+1

Re(λk(A)) ≤
n
∑

k=n−q+1

λk(Re(A)), ∀q = 1, .., n

and the equality prevails for q = n.

Remark 2.1. It should be noted that for a matrix A, λk(Re(A)) and Re(λk(A))
are not equal in general. We can see [Bal16] for a counter-example.

In the following we study some generalities of eigenvalues of ∆̃D
Ω , where Ω is

a finite subset of V . We assume that they are ordered as follows:

Re(λ1(∆̃
D
Ω )) ≤ Re(λ2(∆̃

D
Ω )).. ≤ Re(λn(∆̃

D
Ω )).

Lemma 2.2. Let Ω be a finite non-empty subset of V , we have

λ1(Re(∆̃D
Ω )) ≤ Re(λ1(∆̃

D
Ω )).

Proof:

Let f be an eigenfunction associated to λ1(∆̃
D
Ω ). By the varia-

tional principle of λ1(H̃
D
Ω ), we have

λ1(H̃
D
Ω ) ≤

(H̃D
Ω f, f)m
(f, f)m

=
(∆̃D

Ωf, f)m
(f, f)m

+
(∆̃D

Ωf, f)m
(f, f)m

= λ1(∆̃
D
Ω ) + λ1(∆̃D

Ω ).

�

The next statement contains an additional information about the eigenvalues
of ∆̃D

Ω .

Proposition 2.3. Let Ω be a finite non-empty subset of V (#Ω = n) such that
∂V Ω 6= ∅. Then the following assertions are true
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(1) 0 < Re(λ1(∆̃
D
Ω )) ≤ 1.

(2) λ1(Re(∆̃D
Ω )) + λn(Re(∆̃D

Ω )) ≤ 2.

Proof:

(1) From Theorem 4.3 of [Gri11], we have λ1(Re(∆̃D
Ω )) > 0

and by Lemma 2.2 we conclude the left inequalty. Next, by
Lemma 2.1 we have for q = n:

n
∑

k=1

Re(λk(∆̃
D
Ω )) =

n
∑

k=1

λk(Re(∆̃D
Ω )

then

nRe(λ1(∆̃
D
Ω )) ≤

n
∑

k=1

λk(Re(∆̃D
Ω ) = Tr

(

Re(∆̃D
Ω )

)

= n

which proves that

Re(λ1(∆̃
D
Ω )) ≤ 1.

(2) It is deduced from the result of the symmetric case, see
Theorem 4.3 [Gri11].

�

Corollary 2.1. Let Ω be a finite non-empty subset of V , then

Re(λn(∆̃
D
Ω )) < 2.

Proof:

Applying the Lemma 2.1 for q = 1, we get

Re(λn(∆̃
D
Ω )) ≤ λn(Re(∆̃D

Ω )).

But by (2) of Proposition 2.3, we have :

λn(Re(∆̃D
Ω )) ≤ 2− λ1(Re(∆̃D

Ω )).

Then from the general property λ1(Re(∆̃D
Ω )) > 0, we conclude

that λn(Re(∆̃D
Ω )) < 2.

�

3. Spectral study of the unbounded case

This part includes the study of the bounds on the numerical range and the
essential spectrum of a closed Laplacian. Both issues can be approached via
isoperimetric inequalities.
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3.1. Closable operator. The purpose of the theory of unbounded operators
is essentially to construct closed extensions of a given operator and to study
their properties.

Definition 3.1. Closable operators: A linear operator T : D(T ) → H is
closable if it has closed extensions.

An interesting property for the Laplacian ∆ is its closability.

Proposition 3.1. Let G be a graph satisfying the Assumption (β). Then ∆ is
a closable operator.

Proof:

We shall use the Theorem of T. Kato which says that an op-
erator densely defined is closable if its numerical range is not
the whole complex plane, see [Kat76], page 268. Let λ ∈ W (∆),
there is f ∈ Cc(V ) such that ‖ f ‖m= 1 and λ = (∆f, f)m. From
the Green’s formula we have,

2Re(λ) =
∑

(x,y)∈ ~E

b(x, y) | f(x)− f(y) |2≥ 0.

It follows that W (∆) ⊂
{

λ ∈ C, Re(λ) ≥ 0
}

( C.

�

For such operators, another property of interest is the property of being
closed.

Definition 3.2. The closure of ∆ is the operator ∆, defined by

• D(∆) =
{

f ∈ ℓ2(V,m), ∃ (fn)n∈N ∈ Cc(V ), fn → f and ∆fn converge
}

• ∆f := lim
n→∞

∆fn, f ∈ D(∆) and (fn)n ∈ Cc(V ) such that fn → f .

For an unbounded operator the relation between the spectrum and the nu-
merical range is more complicated. But for a closed operator we have the
following inclusion, see [Kat76] and [AZ10].

Proposition 3.2. Let T be a closed operator. Then σess(T ) ⊂ W (T ).

More precisely, let us define the following numbers:

η(T ) = inf{Reλ : λ ∈ σ(T )}.

ν(T ) = inf{Reλ : λ ∈ W (T )}.

ηess(T ) = inf{Reλ : λ ∈ σess(T )}.

The Proposition 3.2 induces this Corollary.

Corollary 3.1.

ηess(∆) ≥ ν(∆). (3)

Remark 3.1. If ∆ is self-adjoint, then η(∆) = ν(∆). But this is not the case
in general.
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3.2. Cheeger inequalities. For a non symmetric graph G, we prove bound
estimates on the real part of the numerical range of ∆ in terms of the Cheeger
constant. We use this estimation to characterize the absence of the essential
spectrum of ∆.

First, we recall the definitions of the Cheeger constants on Ω ⊂ V :

h(Ω) = inf
U⊂Ω

finite

b(∂EU)

m(U)

and

h̃(Ω) = inf
U⊂Ω

finite

b(∂EU)

β+(U)

where for a subset U of V ,

b(∂EU) =
∑

(x,y)∈∂EU

b(x, y)

β+(U) =
∑

x∈U

β+(x) and m(U) =
∑

x∈U

m(x).

We define in addition:

mΩ = inf

{

β+(x)

m(x)
, x ∈ Ω

}

MΩ = sup

{

β+(x)

m(x)
, x ∈ Ω

}

.

Cheeger’s Theorems had appeared in many works on symmetric graphs. They
give estimations of the bottom of the spectrum of the Laplacian in terms of the
Cheeger constant. The inequality (4) controls the lower bound of the real part
of λ ∈ W (∆D

Ω ).

Theorem 3.1. Let Ω ⊂ V , the bottom of the real part of W (∆D
Ω ) satisfies the

following inequalities:

h2(Ω)

8
≤ MΩν(∆

D
Ω ) ≤

1

2
MΩh(Ω). (4)

Proof:

From the works of J. Dodziuk [Dod06] and A. Grigoryan [Gri11],
we can deduce the following bounds of the symmetric quadratic
form Q∆D

Ω
on Cc(Ω),

h2(Ω)

8
≤ MΩ inf

‖f‖m=1
Q∆D

Ω
(f) ≤

1

2
MΩh(Ω).

Then using the equality (1) we conclude our estimation.

�

We deduce in particular the following inequalities.
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Corollary 3.2. Let Ω ⊂ V , we have

h̃2(Ω)

8
≤ ν(∆̃D

Ω ) ≤
1

2
h̃(Ω).

Proposition 3.3. Let Ω ⊂ V and g ∈ Cc(Ω), ‖g‖m = 1. Let λ = (∆D
Ω g, g)m ∈

W (∆D
Ω ). Then

mΩ
Re(∆̃D

Ω g, g)β+

(g, g)β+

≤ 2Re(λ) ≤ MΩ
Re(∆̃D

Ω g, g)β+

(g, g)β+

. (5)

Proof:

We have for all x ∈ Ω

mΩm(x) ≤ β+(x) ≤ MΩm(x)

therefore

mΩ(g, g)m ≤ (g, g)β+ ≤ MΩ(g, g)m

which implies that:

mΩ
Re(∆̃D

Ω g, g)β+

(g, g)β+

≤
Q∆D

Ω
(g)

2(g, g)m
≤ MΩ

Re(∆̃D
Ω g, g)β+

(g, g)β+

because (∆D
Ω g, g)m = (∆̃D

Ω g, g)β+ , for all g ∈ Cc(Ω).

�

Corollary 3.3. Let Ω ⊂ V , we have

mΩ
h̃2(Ω)

8
≤ ν(∆D

Ω ). (6)

We can also estimate the real part of any element of the numerical range of
∆D

Ω in terms of the isoperimetric constant h̃.

Corollary 3.4. For all Ω ⊂ V and λ ∈ W (∆D
Ω ) we have

mΩ

(

2−

√

4− h̃2(Ω)
)

≤ 2Re(λ) ≤ MΩ

(

2 +

√

4− h̃2(Ω)
)

. (7)

Proof:

We follow the same approach as Fujiwara in Proposition 1
[Fuj96], and we apply it to the symmetric Laplacian H̃D

Ω =

∆̃D
Ω + ∆̃′D

Ω , we obtain, for all g ∈ Cc(Ω)

2−

√

4− h̃2(Ω) ≤
2Re(∆̃D

Ω g, g)β+

(g, g)β+

≤ 2 +

√

4− h̃2(Ω).

Hence we obtain the result by a direct corollary of the in-
equality (5).

�



NON SELF-ADJOINT LAPLACIANS ON A DIRECTED GRAPH 13

3.3. Absence of essential spectrum from Cheeger constant. This sub-
section is devoted to the study of the essential spectrum relative to the geometry
of the weighted graph. We evaluate the interest of the study of the numerical
range of non self-adjoint operators. Indeed, the knowledge of the numerical
range of the Laplacian brings an essential information on its essential spectrum.

We provide the Cheeger inequality at infinity on a filtration of graph G.

Definition 3.3. A graph H = (VH , ~EH) is called a subgraph of G = (VG, ~EG)

if VH ⊂ VG and ~EH =
{

(x, y); x, y ∈ VH

}

∩ ~EG.

Definition 3.4. A filtration of G = (V, ~E) is a sequence of finite connected

subgraphs {Gn = (Vn, ~En), n ∈ N} such that Gn ⊂ Gn+1 and:
⋃

n≥1

Vn = V.

Let G be an infinite connected graph and {Gn, n ∈ N} a filtration of G. Let
us denote

m∞ = lim
n→∞

mV c
n

M∞ = lim
n→∞

MV c
n

The Cheeger constant at infinity is defined by:

h∞ = lim
n→∞

h(V c
n ).

Remark 3.2. These limits exist in R+ ∪ {∞} because mV c
n
, MV c

n
and h(V c

n )
are monotone sequences.

Remark 3.3. The Cheeger constant at infinity h∞ is independent of the filtra-
tion. Indeed it can be defined, as in [Fuj96] and [Kel10], by h∞ = lim

K→G
h(Kc),

where K runs over all finite subsets because the graph is locally finite.

Definition 3.5. G is called with heavy ends if m∞ = ∞.

Lemma 3.1. For any subset Ω of V such that Ωc is finite, we have

ν(∆
D

Ω ) = ν(∆D
Ω ).

Proof:

It is easy to see that

b = inf
λ∈W (∆

D
Ω )

Re(λ) ≤ inf
λ∈W (∆D

Ω
)
Re(λ) = a.

Let f ∈ D(∆
D

Ω ) = {f ∈ D(∆), f(x) = 0, ∀ x ∈ Ωc} such that
‖ f ‖m= 1. Hence there is a sequence (fn) ∈ Cc(V ) = D(∆)
which converges to f and (∆fn) converges to ∆f . It follows

that gn = 1Ωfn = 0 on Ωc and (∆D
Ω gn) converges to ∆

D

Ωf . So

a ≤ ν(∆D
U ) ≤ Re(∆D

U gn, gn)m −→
n→∞

Re(∆
D
U f, f)m

then
a ≤ b.
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�

Theorem 3.2. The essential spectrum of ∆ satisfies:

h2∞
8

≤ M∞ηess(∆)

and

m∞
h̃2∞
8

≤ ηess(∆). (8)

Proof:

Let {Gn, n ∈ N} be a filtration of G, from the inequality (3)
we get,

ν(∆
D
V c
n
) ≤ ηess(∆

D
V c
n
).

From Theorem 5.35 of T. Kato page 244 [Kat76], the essential
spectrum is stable by a compact perturbation, we obtain

σess(∆) = σess(∆
D

V c
n
).

Therefore

ν(∆D
V c
n
) ≤ ηess(∆),

we use Theorem 3.1 and the equality (6), then we find the result
by taking the limit at ∞.

�

The following Corollary follows from Theorem 3.2. It gives an important
characterization for the absence of the essential spectrum especially it includes
the case of rapidly branching graphs.

Corollary 3.5. The essential spectrum of ∆ on a heavy end graph G with
h̃∞ > 0 is empty.

Proof:

The emptiness of the essential spectrum for ∆ on a graph with
heavy ends is an immediate Corollary of the inequality (8), then

if m∞ = ∞ where h̃∞ > 0, we have σess(∆) = ∅.

�
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