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Abstract

Understanding mosquitoes life cycle is of great interest presently because of the increasing

impact of vector borne diseases in several countries. There is evidence of oscillations in mosquito

populations independent of seasonality, still unexplained, based on observations both in laboratories

and in nature. We propose a simple mathematical model of egg hatching enhancement by larvae

which produces such oscillations that conveys a possible explanation. We propose both a theoretical

analysis, based on slow-fast dynamics and Hopf bifurcation, and numerical investigations in order

to shed some light on the mechanisms at work in this model.
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Introduction

Today numerous areas of the world are severely a�ected by mosquito-borne viral diseases, with notable
examples including dengue, chikungunya and Zika (see [5]). Scientists are hard at work to �nd new
and e�cient ways to mitigate the impact of, or even eradicate these arboviral infections, and especially
target vector control.
A bene�cial implementation of any of the vector control methods requires a good understanding of

the local vector population's bio-ecology, and a reliable monitoring of its dynamics. To achieve better
knowledge, this monitoring needs not only be demographic (using trap counts), but can also use genetic
data - for the example of Wolbachia see [12] and [26]. However, studies in Rio de Janeiro throughout
the past decade have shown that monitoring urban populations of Aedes aegypti is a di�cult task
(see [13], [7], [23]), largely because of environmental variations (spatial heterogeneity, seasonality, etc.).
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A �rst - to the best of our knowledge - systematic comparison of two complex models of Aedes aegypti
population dynamics, relevant for a control program, was done recently in [16]. Another application
of proper modeling of mosquito's life-cycle is the risk estimation for disease emergence (see [11]).
We believe that the intrinsic life cycle of Aedes aegpyti may still be improperly modeled, and e�ort

should be put in the direction of integrating several key features in the models. Among these features,
we have in mind the transitions between the stages (egg, larva, pupa, adult) or even within these
stages (larval instars, etc.) because in theory, any of these transitions (ovipositing behavior, hatching,
pupation, mating, etc.) can give rise to nonlinearity. Nonlinearities ought to be taken into account
when using collected data, so that they do not blur the picture we get of the actual population's
dynamics. In addition, synchronizing or de-synchronizing e�ects, either in time or space, are possible
outputs of these nonlinearities, and can result in variations in crucial traits of the mosquito populations,
such as vector capacity (see [14], [4])
We focus exclusively in this work on one single aspect of the evolution of the mosquito population,

setting the hypothesis that the larval density in breeding sites directly impacts the hatching rate.
Previous works on hatching and larvae dynamics include [3], [2], where stochastic models with food
dynamics were used. However, to the best of our knowledge, no mathematical work has been published
on the very topic of hatching enhancement through larval density since the experimental �ndings
of [17]. Observations on this phenomenon are uneasy to obtain in the �eld but can be assessed in the
lab (see [8]). Further research in this �eld could bene�t from mathematical modeling tools able to take
it into account and this may help monitoring the dynamics of mosquito populations.
We develop a mathematical model of the dynamics of mosquito population, with the requirements

that this model be su�ciently generic to match experimental observations across various conditions
and su�ciently simple so that it is possible to handle it theoretically and interpret it. Therefore we
choose to develop a deterministic model based on a system of ordinary di�erential equations, as was
done, for example, in [15]. Our simplistic model involves the positive in�uence of larvae on the system,
acting on hatching rate. We show that this feature can explain oscillations.
We draw a general picture of the system's properties in Section 2, and justify rigorously the use of

a two-population model as a further simpli�cation for the identi�cation of the qualitative properties
induced by hatching feedback. Then we focus on two parameter regimes of particular interest. Firstly
(Section 3) when the quantity of eggs is large compared to the quantity of larvae, oscillations can appear
and we are faced to a slow-fast oscillatory regime giving rise to oscillation pro�les comparable to those
of the FitzHugh-Nagumo system (Theorem 3.1). We can compute the amplitude of the oscillations in
this case, where they are typically large, and also their period. Secondly (Section 4), we show that our
model presents a Hopf bifurcation at any positive equilibrium of the system, assuming the quantity of
larvae promotes hatching. The bifurcation occurs as the feedback becomes stronger (Theorem 4.2). In
this case we can compute the period of the oscillations at the bifurcation point. We provide numerical
results for the system parametrized (roughly) for a tropical area such as Rio de Janeiro, showing that
the range of possible oscillations is wide.

1 Models and their reduction

The life cycle of a mosquito (male and female) consists of two main stages: the aquatic stage (egg,
larva, pupa), and the adult stage. We adopt a population biology point of view, which means that
we describe the mosquitoes life-cycle thanks to a system of ordinary di�erential equations. For the
purpose of studying the impact of larval density on hatching, we introduce the number densities of
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each population: A(t) (adults), E(t) (eggs), L(t) (larvae) and P (t) (pupae).
In a compartmental model, one can suppose the following type of dynamics

d

dt
E = βEA− E

(
H(E,L) + δE

)
,

d

dt
L = EH(E,L)− L

(
φ(L) + δL + τL

)
,

d

dt
P = τLL− δPP − τPP,

d

dt
A = τPP − δAA.

(S4)

We interpret the parameters as follows: βE > 0 is the intrinsic oviposition rate; δE , δL, δP , δA > 0 are
the death rates for eggs, larvae, pupae and adults, respectively; τL, τP > 0 are the transition rates from
larvae to pupae and pupae to adults, respectively ; φ tunes an extra-death term due to intra-speci�c
competition (this term is non-linear and we assume that it depends only on the larval density); �nally,
H(E,L) is the hatching rate, which may in general depend on larval density L and on egg density E,
neglecting a possible e�ect of pupae.
In order to reduce (S4) to a simpler model we suppose pupa population at equilibrium. This boils

down to assuming that the time dynamics for pupae is fast compared to the other compartments and

thus P =
τL

δP + τP
L.

To justify this approximation more rigorously, we assume τP , δP = O(1/ε) (quantifying the �fast
dynamics� for pupae) and de�ne τP = ετP , δP = εδP . We introduce P = εM and then we �nd the
following equations on M and A (those on E and L are untouched)

ε
dM

dt
= τLL− εM(τP + δP ),

dA

dt
= ετPM − δAA.

This method follows the classical justi�cation of Michaelis-Menten laws (see [20], [21]). We end up
with 

ε
dM

dt
= τLL−M(τP + δP ),

dA

dt
= τPM − δAA,

and in the limit ε→ 0, we recover our claim under the form M = τL
τP+δP

L.

This simpli�cation enables us to reduce the model to dimension 3. From now on we also assume
H(E,L) = h(L) and φ(L) = cL in order to obtain the simpli�ed system

d

dt
E = βEA− δEE − h(L)E,

d

dt
L = h(L)E − δLL− cL2 − τLL,

d

dt
A =

τP τL
δP + τP

L− δAA.

(S3)

We can proceed to a further reduction by supposing adult population at equilibrium. This boils down
to assuming that the time dynamics for adult mosquitoes is fast compared to the other compartments.
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Exactly as above with the pupae, in the approximation when δA and βE are large (and A itself is
small), it makes sense to set in this system, at �rst order, A = τP τL

(δP+τP )δA
L.

Finally, system (S4) reduces to the following system in dimension 2:
d

dt
E = bEL− dEE − h(L)E,

d

dt
L = h(L)E − dLL− cL2,

(1)

where bE = βE
τP τL

(δP+τP )δA
> 0, dE = δE > 0 and dL = δL + τL > 0.

We perform this model reduction because it is su�cient to take into account the larval e�ect. Indeed,
we show and quantify how the larval density-dependent hatching rate e�ectively generates oscillations,
without any other source of instability (like time-delay, temperature variations or other environment-
related e�ects). However, for future practical applications, further studies including the use of a more
biologically realistic model will be mandatory.
According to experimental data (results from [8]) and mainly guided by a biological intuition we

assume the hatching undergoes saturation for large values of L:

h ∈ C1([0,∞)), h > 0, max
L

h(L) =: h0 < +∞. (2)

To ensure the instability of the trivial equilibrium (0, 0) and rule out population extinction, we assume

dEdL < h(0)(bE − dL). (3)

We also assume, for the matter of simpli�cation of later computations

bE > dL + dE . (4)

For several mosquito species, it is actually possible to identify the biological parameters τL, δA, δE ,
δL and the adult density at equilibrium on the �eld (i.e A such that d

dtA = 0). From the formula

L = A δA
τL
, we deduce larvae density at equilibrium on the �eld (this density is called L throughout this

paper).
We warn the reader about what we call �equilibrium density on the �eld� and about parameter values.

We do not claim they can precisely reproduce population variations as observed in �eld experiments.
We simply use rough estimation of their orders of magnitude so as to prove the concept of population
oscillations due to density-dependent hatching rate. See paragraph 2.2 for additional comments.
This warning made, from now on we consider that parameters bE , dE , dL, adults and larvae density

at equilibrium on the �eld are known; the competition parameter c and the hatching function h are
unknown. The known parameters are set at a given place and temperature (see [23], [25]) and we work
with a �xed temperature, so the previous biological parameters are �xed and time-independent.
Our general goal is thus to assert the possible range of remaining parameters c and h(L) depending

on the qualitative properties of solutions.

2 Study of the reduced model

2.1 Basic properties, equilibria and their stability

With the assumption (2) we know that solutions remain non-negative. Furthermore, the trivial equilib-
rium (0, 0) is a steady state of (1) and all the other steady states (E,L) are determined by a non-linear

4



relation on L 
E =

bEL

dE + h(L)
,

cL = bE − dL −
dEbE

dE + h(L)
.

(5)

We observe that solutions of (5) are positive if and only if h(L) > dEdL
bE−dL . In addition:

Lemma 2.1. Assume (2) holds. Then there is a constant K > 0 such that for all non-negative t,
L(t) + E(t) ≤ K. Moreover, there exists at least one positive steady state of (1) if and only if

min
x≥0

(
cx+

dEbE
dE + h(x)

)
≤ bE − dL. (6)

Furthermore, all steady states (E,L) 6= (0, 0) satisfy 0 < cL < bE − dL − dEbE
dE+h0

.

For the �rst point, we do not use any property of h, but merely the fact that cL2/L → +∞ as
L → +∞. Note that with estimates on h, more restrictive properties can be obtained, in the sense
that one could construct strictly smaller positively stable and attractive sets.

Proof. We notice that

d

dt

(
E + L

)
= bEL− dEE − dLL− cL2 ≤ −dE(E + L) + UM ,

where UM := (bE+dE−dL)2

4c is the maximum of L 7→ (bE + dE − dL)L − cL2. Consequently the claim
holds with K = UM/dE .
Let

f(x) = cx+
dEbE

dE + h(x)
− (bE − dL).

Then L de�nes a steady state of (1) if and only if f(L) = 0, by (5).
Continuity of f yields the conclusion since h0 = maxh.

From now on we always assume that (6) holds, so that there exists at least one positive steady state
of (1). Then we analyze the stability of those steady states.

Lemma 2.2. The steady state (0, 0) is unstable (locally linearly) if and only if (3) holds.
A non-trivial steady state (E,L) of (1) is unstable (locally linearly) if and only if either

h′(L)E − dL − 2cL− dE − h(L) > 0, (7)

or
cdEL− dEh′(L)E + cLh(L) < 0 and h′(L)E − dL − 2cL− dE − h(L) ≤ 0. (8)

Proof. We divide the proof into three steps.
Firstly we linearize system (1) around a steady state (E,L). SettingE = E+e+. . . and L = L+`+. . .,

we �nd 
d

dt
e = bE`− dEe− h(L)e− h′(L)E`,

d

dt
` = h(L)e+ h′(L)E`− dL`− 2cL`.
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The eigenvalues λ of the above linear system are given by the determinant∣∣∣∣∣∣
−dE − h(L)− λ bE − h′(L)E

h(L) h′(L)E − dL − 2cL− λ

∣∣∣∣∣∣ = 0.

After straightforward computations, we obtain:

λ2 − λ
(
h′(L)E − dL − 2cL− dE − h(L)

)
+ dE

(
dL + 2cL− h′(L)E

)
+ h(L)

(
dL + 2cL− bE

)
= 0. (9)

Secondly we look at the trivial steady-state. Taking E = L = 0 in equation (9), we obtain:

P (λ) := λ2 + λ(dL + dE + h(0)) + dEdL + h(0)(dL − bE) = 0. (10)

We are looking for the condition such that (0, 0) is linearly unstable (we are interested in the condi-
tions when the mosquito population does not tend to zero in nature). In other words, we expect that
the polynomial P has a root with positive real part. Since the �rst order coe�cient is positive we end
up with condition (3) and the �rst point of the lemma is proved.
Finally we consider non-trivial steady states. We rewrite (9) as

λ2 − tr(A)λ+ det(A) = 0,

where A is the Jacobian matrix of the linearized system (1). Using (5) we �nd

dE
(
dL + 2cL− h′(L)E

)
+ h(L)

(
dL + 2cL− bE

)
= cdEL− dEh′(L)E + cLh(L),

and thus  tr(A) = h′(L)E − dL − 2cL− dE − h(L),

det(A) = cdEL− dEh′(L)E + cLh(L).
(11)

The discriminant ∆ of this polynomial is ∆ =
(
tr(A)

)2 − 4 det(A) and the steady state is unstable if
and only if there exists a root with positive real part.
There are two cases: If ∆ < 0 then the real part of the roots is tr(A)

2 . The steady state is unstable if
and only if tr(A) > 0.

If ∆ ≥ 0 then the bigger root is tr(A)+
√

∆
2 . Hence the steady state is unstable if and only if tr(A) >

−
√

∆. This is true if and only if either tr(A) > 0 or if det(A) < 0 and tr(A) ≤ 0.

Remark 2.3. There is a link with the basic o�spring number Q0 (de�ned in [6]). This dimensionless
number is the average number of o�spring generated by a single fertilized mosquito: from the method

in [22], we can compute Q0 =
bEh(0)

dL(dE + h(0))
.

We remark that the �rst statement in Lemma 2.2 boils down to the classical property: trivial equilib-
rium point is unstable if and only if Q0 > 1.

Remark 2.4. As in nature we can observe oscillations of eggs and larvae density [13], we pay attention
in this work to oscillations around the positive steady states described in Lemma 2.2. We show in
Section 4 that these solutions exhibit oscillations, by applying the Hopf bifurcation theorem. This
behavior occurs only if the non-trivial steady state is unstable.
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For the sake of conciseness we de�ne the following functions:
T (k) =

1

L

(
2k +

k + dE
bE

(k + dE − dL)
)
,

D(k) =
1

L

k + dE
bEdE

(
k(bE − dL)− dEdL

)
.

(12)

We can rephrase Lemma 2.2 into: Let (k, k′) = (h(L), h′(L)) at some equilibrium L. The state (E,L)
is unstable if and only if either k′ > T (k) or T (k) ≥ k′ > D(k). Thanks to (4) we can de�ne

k± :=
dE(bE + 2dE + dL)±

√
4d3

E(bE − dE − dL) + d2
E(bE + 2dE + dL)2

2(bE − dE − dL)
. (13)

Lemma 2.5. Assume (6) holds. If k > k+ then T (k) < D(k), and if k ∈ (0, k+) then T (k) > D(k).

Proof. We are looking for the k > 0 such that T (k) > D(k), that is also written from (12)

k2(bE − dE − dL)− kdE(bE + 2dE + dL)− d3
E < 0.

Recalling that bE > dE + dL by (6), the discriminant is:

∆ = d2
E(bE + 2dE + dL)2 + 4d3

E(bE − dE − dL) > 0.

The roots are exactly k±, so the polynomial is negative when k ∈ (k−, k+).
We note that k− < 0, so T (k) < D(k) if and only if k > k+, and T (k) > D(k) if and only if

k ∈ (k−, k+). Since k > 0, this is equivalent to k ∈ (0, k+).

Collecting our results on the equilibria we can state

Proposition 2.6. Assume (6) holds, and let (E,L) be a positive steady state of (1). Then k+ >
dEdL
bE − dL

and necessarily h(L) >
dEdL
bE − dL

.

If h(L) > k+, then (E,L) is unstable if and only if h′(L) > T
(
h(L)

)
. If dEdL

bE−dL < h(L) < k+, then

it is unstable if and only if h′(L) > D
(
h(L)

)
.

Finally, the eigenvalues of the linearized of (1) at (E,L) are complex conjugate and pure imaginary
if and only if h(L) > k+ and h′(L) = T

(
h(L)

)
.

Proof. This is a direct consequence of the previous calculations, except for

k+ =
dE(bE + 2dE + dL) +

√
4d3

E(bE − dE − dL) + d2
E(bE + 2dE + dL)2

2(bE − dE − dL)
>

dEdL
bE − dL

. (14)

Inequality (14) is equivalent to

bE − dL
bE − dL − dE

(
bE + dL + 2dE +

√
(bE + 2dE + dL)2 + 4dE(bE − dE − dL)

)
> 2dL.
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This inequality holds because bE > dL (thanks to (3)). Indeed,

bE − dL
bE − dL − dE

(
bE + dL + 2dE +

√
(bE + 2dE + dL)2 + 4dE(bE − dE − dL)

)
>
(
bE + dL + 2dE +

√
(bE + 2dE + dL)2 + 4dE(bE − dE − dL)

)
> bE + dL

> 2dL.

Then, setting k = h(L), k′ = h′(L) and using the notations (11), the eigenvalues of the linearized
operator are roots of the polynomial

P (λ) = λ2 − λtr(A) + det(A).

Hence the roots are pure imaginary if and only if tr(A) = 0 and det(A) > 0. From the de�nition of
T,D in (12), tr(A) = 0 if and only if k′ = T (k). As det(A) > 0 if and only if k′ < D(k), by Lemma 2.5
this holds whenever k > k+.

2.2 Discussion on the nonlinearities and the equilibrium values

We discuss in this paragraph the nonlinearities of system (1), and the role they play.
First we justify the use of a competition term. Solutions of (1) are bounded (Lemma 2.1), but

this holds only thanks to the nonlinear competition term −cL2 in the equation describing the larvae
dynamics. More generally, any competition term φ(L), as in Section 1 such that φ(L) → +∞ as
L→ +∞ yields the same result. However, in the absence of such a competition, a priori bound on the
solutions cannot be obtained, and no phenomenon keeps the population �nite. For Aedes mosquitoes,
the amount of available food in the breeding sites is an actual resource limitation that can trigger
massive death of larvae if the amount of food per larva drops down too low (see [2]). Therefore, we
choose the simplest (i.e. quadratic) competition term to represent this competition for resources, and
this ensures mathematically that solutions remain bounded.
Still, the competition parameter c is extremely hard to assess from experimental data, and the values

we use in this work should be handled with care. Usually, we �x a value for a positive equilibrium L
(which corresponds to choosing a type of breeding site). Then, to each value k = h(L) corresponds
a non-necessarily unique c(k) that makes L an equilibrium of (1). We treat k as a free parameter
in this study. It has been observed that the hatching rate indeed is extremely dispersed (see for
instance the experimental results of [17]), depending not only on the mosquito population and the
environmental conditions but also on the egg batches themselves. In future works expanding on the
simplest oscillatory behavior we describe here, this variability in the actual value of k should be taken
into account if the model outputs are to be linked with experimental data.
Second, we discuss the hatching rate function h, which is crucial to our study. From now on, we

require h to be increasing. Indeed, Proposition 2.6 shows that a steady state is always stable if h is
decreasing. Hence only an increasing h can produce stable oscillations. This mathematical assumption
is supported by a simple biological hypothesis: larvae promote hatching.
An interesting feature of this intuition is that it can be subsequently extended to higher-dimensional

systems such as (S4). In other words, it is not an artifact produced by considering only a 2-dimensional
system but a robust qualitative property for these systems.
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Indeed, for (S4) the Jacobian matrix at any point X = (E,L, P,A) reads

J(X) =


−δE − h(L) −Eh′(L) 0 βE

h(L) h′(L)E − δL − τL − 2cL 0 0
0 τL −δP − τP 0
0 0 τP −δA

 ,

hence if h′(L) < 0 then J(X) is a Metzler matrix (it has positive extra-diagonal coe�cients): the
system is cooperative in this case. Its characteristic polynomial may be written

P (λ) = (λ+A1)(λ+A2)(λ2 +A3λ+A4)− C,

where Ai, C > 0. Being a Metzler matrix, J has a real dominant eigenvalue. This matrix is stable if
and only if this eigenvalue is negative; in other words, if and only if P (0) > 0 (since P is increasing on
(0,+∞)). This condition reads

δA(δP + τP )
(
(δE + h(L))(−h′(L)E + τL + δL + 2cL) + Eh(L)h′(L)

)
> βEτLτPh(L).

At equilibrium,

δL + τL + cL =
h(L)

h(L) + δE

βEτLτP
δA(δP + τP )

,

therefore P (0) > 0 and thus any equilibrium where h′ < 0 must be (locally) stable, in system (S4) as
well as in system (1). Adding �neutral� compartments keeps this property true and we can be con�dent
in concluding that only a positive e�ect of larvae on hatching rate can destabilize the equilibrium and
lead to (local) oscillations.
Some preliminary experiments ran by one of the authors seem to indicate that the larval impact

on hatching may depend on larval development stage. Taking this into account would require model
complexi�cation. For instance, to model hatching impact discrepancies between �rst instar (positive)
and last instar larvae (negative) we could add at least one compartment in (1). However, we focus
here on the simplest oscillations-producing mechanism. The hatching function being increasing and
bounded, it is reasonable to assume that h is S-shaped and smooth, which is what we use in the rest
of the paper.
Third, having discussed the two nonlinearities in (1), we are left with an important question about

steady states: how to ensure that L is actually unique? The second equation in (5) is also written

h(L) = dE
dL + cL

bE − dL − cL
. (15)

The number of positive steady states depends strongly on function h. Being a S-shaped function
does not guarantee uniqueness. Therefore, it should be checked case by case except for some simple
function families. We illustrate this fact in Appendix A with Hill functions. Still, we notice that

κ : L 7→ dE
dL + cL

bE − dL − cL
is convex on (0, (bE −dL)/c) and goes to +∞ at (bE −dL)/c. So for instance

uniqueness is guaranteed if (3) holds and either, for all L ∈ (0, (bE − dL)/c), h′′(L) < 0 or

h′(L) < κ′(L) =
dEcbE

(bE − dL − cL)2
.
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3 The slow-fast oscillatory regime

In order to understand periodic solutions to (1), we examine a possible regime with a small parameter
and then prove the oscillation result (Theorem 3.1). We have in mind here the analysis of the FitzHugh-
Nagumo system. Numerical illustration, amplitude and period computation in some particular cases
can be found in Appendix B.

3.1 Parameter regime and main result

Here, we assume that the egg stock is large, and its dynamics slow compared with the larvae stock.
This identi�es a small parameter leading to a slow-fast system.
More precisely, let ε > 0, η : R+ → R+, and assume at �rst that all parameters (except for h) may

depend on ε. We transform the variables (E,L) from (1) into vε := εE and uε := 1
η(ε)L. These new

variables satisfy 
v̇ε = εη(ε)bEuε −

(
dE + h(η(ε)uε)

)
vε =: fε(uε, vε),

εu̇ε = 1
η(ε)h(η(ε)uε)vε − dLεuε − cη(ε)εu2

ε =: gε(uε, vε).
(16)

We assume that parameters scale in such a way that the following limits exist, as ε→ 0: fε
L∞−−→ f, gε

L∞−−→ g,

uε(t = 0) = u0
ε −→ u0, vε(t = 0) = v0

ε −→ v0.

(17)

In addition, we assume that the zero set of g is �non-degenerate� in the sense:

∀v ≥ 0,
{
σ ≥ 0, g(σ, v) = 0

}
does not contain any open interval. (18)

We give below a simple proof of the following fact, in the spirit of Tikhonov's theorem on dynamical
systems [10].

Theorem 3.1. Consider system (16) with dE , dL, L and h �xed, bE(ε) = h(L)+dE
εL

, η(ε) = L
2

h(L)−εdLL
,

for ε small enough, and cε = 1
εη(ε) . Let E(ε) := 1/ε. Then (εE(ε), 1

η(ε)L) = (1, h(L)−εdLL
L

) is a steady

state of (16) for all ε > 0 and (17) holds.
In addition, solutions of system (16) along with any bounded initial data admits a limit as ε → 0:

there exists u, v ∈ L1 ∩ L∞(0, T ) for all T > 0 such that vε → v uniformly and uε → u in Lp(0, T ) for
all p <∞.
Moreover, if initial data u0

ε, v
0
ε are such that

(
sgn(gε), sgn(fε)

)
(u0
ε, v

0
ε) is constant for ε small enough,

then (u, v) is periodic, g(u(t), v(t)) = 0 for almost every t > 0 and the trajectory is uniquely de�ned
from f and g with dv

dt = f(u, v).

Figure 1 illustrates the slow-fast dynamics. Before proving Theorem 3.1, we justify the particular
scaling choices in its statement. Non-trivial equilibrium (E,L) of (1) are given by (5):

dL + cL =
h(L)bE

h(L) + dE
, E =

bEL

h(L) + dE
.

10
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Figure 1: u is in x-axis, v in y-axis. Red dashed curves correspond to nullclines gε = 0 (u̇ε = 0) and
blue dotted curves to nullclines fε = 0 (v̇ε = 0). The four �gures correspond to decreasing values
of ε from top-left to bottom-right (0.5, 0.1, 0.01 and 0.001). In yellow and purple, two trajectories
t 7→ (uε(t), vε(t)) are shown, for two di�erent initial conditions (respectively (0.35, 1.2) and (0.2, 0.5)).

Thus in all generality (allowing all parameters to depend on ε), the scalings �t for our purpose (i.e.

with E(ε) = 1/ε) are exactly those for which ε = h(L(ε))+dE(ε)

bE(ε)L(ε)
and there exists η(ε) = O(1) such that

dL(ε)
(
h(L(ε)) + dE(ε)

)
+
bE(ε)L

2
(ε)

η(ε)
= h(L(ε))bE(ε).

It turns out that L(ε)
(
ε(bE − dL)− 1

η

)
= dE . Hence to guarantee η(ε) = O(1) it is required that

bE − dL = O(1/ε).

Therefore the scaling choice made in Theorem 3.1 is in some sense �generic�.
Note that for every possible parameter scaling we get a (possibly di�erent) limit in (17). For instance,

assuming εcε and εbE(ε) have limits 1/η0, ξ > 0 respectively as ε→ 0 (this is the case with the scaling

11



used in Theorem 3.1), we choose η(ε) = O(1) such that cεη(ε)ε = 1 and end up with
v̇ = εηbEu−

(
dE + h(ηu)

)
v =: fε(u, v),

εu̇ = 1
ηh(ηu)v − dLεu− u2 =: gε(u, v).

The limits f and g are given by

f(u, v) = η0ξu−
(
dE + h(η0u)

)
v, g(u, v) =

1

η0
h(η0u)v − u2. (19)

3.2 Proof of the main result

We proceed to the proof of Theorem 3.1 in three steps. First, scaled quantities uε and vε remain
uniformly bounded independently of ε, as can be proved from direct computation using the bound K
from Lemma 2.1.

Lemma 3.2. There exists C > 0 such that for all ε > 0 and t > 0,

|uε(t)|, |vε(t)|, |fε(uε(t), vε(t))|, |gε(uε(t), vε(t))| ≤ C.

Hence, up to extraction, vε converges to v uniformly on compact sets [0, T ] by the Ascoli theorem.
Then, the convergence of an auxiliary quantity gives convergence of uε:

Lemma 3.3. For all T > 0.
‖gε(uε, vε)‖L2(0,T ) = O(

√
ε). (20)

Moreover, there exists u, v ∈ L1 ∩L∞ such that after extraction of a subsequence uε → u in Lp(0, T )
for all 1 ≤ p <∞, as vε → v uniformly.

Proof. Let B(t, u) :=
∫ u

0 g
2(σ, v(t))dσ, where v is the limit of vε (obtained by the Ascoli theorem) and

g is the limit of gε (from (17)). From (18) we deduce that for all t, u 7→ B(t, u) is increasing. Hence
there exists a smooth function A(t, u) such that for all t, u, A(t, B(t, u)) = u.
If there exists w(t) ∈ Lp(0, T ) for all p <∞ and T > 0 such that∫ uε(t)

0
g2
ε(σ, vε(t))dσ

Lp(0,T )−−−−−→
ε→0

w(t), (21)

then de�ning u(t) := A(t, w(t)) we can conclude that uε = A
(
·,
∫ uε

0 g2(σ, v)dσ
) Lp(0,T )−−−−−→

ε→0
u = A(·, w).

Indeed, we notice that ∫ uε(t)

0
g2
ε(σ, vε(t))dσ −

∫ uε(t)

0
g2(σ, vε(t))dσ → 0,

and ∫ uε(t)

0
g2(σ, vε(t))dσ −

∫ uε(t)

0
g2(σ, v(t))dσ → 0.

12



Since uε is uniformly bounded,

∣∣ ∫ uε(t)

0
g2
ε(σ, vε(t))dσ −

∫ uε(t)

0
g2(σ, v(t))dσ

∣∣ ≤ uε(t)(‖g2
ε − g2‖∞ + C‖vε − v‖∞

)
,

for some C > 0 which depends only on ∂vg. Hence (21) implies∫ uε(t)

0
g2(σ, v(t))dσ

Lp(0,T )−−−−−→
ε→0

w(t).

Therefore we only need to prove (21) to complete the proof. To do so we �rst obtain (20) by
computing

gε(uε(t), vε(t))
2

ε
= gε(uε(t), vε(t))u̇ε

=
d

dt

∫ uε(t)

0
gε(σ, vε(t))dσ − fε(uε, vε)

∫ uε(t)

0
∂vgε(σ, vε(t))dσ.

Hence

1

ε

∫ T

0

(
gε(uε(t), vε(t))

)2
dt =

∫ uε(T )

uε(0)
gε(σ, vε(t))dσ −

∫ T

0
fε(uε(t), vε(t))

∫ uε(t)

0
∂vgε(σ, vε(t))dσdt.

Since fε, gε and ∂vgε = 1
η(ε)h(η(ε)uε) are uniformly bounded, we deduce that∫ T

0
gε(uε(t), vε(t))

2dt = O(ε).

This gives (20). Then we introduce

wε(t) :=

∫ uε(t)

0
g2
ε(σ, vε(t))dσ.

We compute

ẇε(t) =
1

ε
g2
ε(uε(t), vε(t))εu̇ε + fε(uε(t), vε(t))

∫ uε(t)

0
2gε(σ, vε(t))∂vgε(σ, vε(t))dσ.

By the previous point, t 7→ 1
εg

2
ε(uε(t), vε(t)) is uniformly (in ε) bounded in L1. In addition, t 7→ εu̇ε(t)

is uniformly (in ε) bounded in L∞, by the Lemma 3.2. The second term fε
∫
gε∂vgε is uniformly

bounded as well.
As a consequence, wε is uniformly (in ε) bounded in BVloc. This implies that up to extraction,

wε → w in L1. Because wε is also bounded in L∞, convergence actually takes place in all Lp spaces.

Finally, the shapes of (f, g) allow us to describe simply the limit trajectories. We use the following
assumptions: for all ε > 0 small enough, we assume that the right-hand sides of system (16) satisfy

(R.1) the set R2\{fε = 0, gε = 0} has exactly 4 connected components, whose measures do not vanish
as ε→ 0,

13



(R.2) f(u0, v0) 6= 0, g(u0, v0) 6= 0 and the couple
(
sgn(fε(u

ε
0, v

ε
0), sgn(gε(u

ε
0, v

ε
0)
)
is constant and equal

to
(
sgn(f(u0, v0)), sgn(g(u0, v0))

)
.

We also assume that the uniform limits f, g of fε, gε satisfy

(L.1) the curve Υ := {g = 0} is the graph of a function φ ∈ C1(R+,R+) with φ(∞) =∞ and φ(0) = 0,

(L.2) the function g is positive on the epigraph of φ,

(L.3) the function φ has exactly two local extrema,

(L.4) on the graph of φ, sgn(f) = −1 except for a bounded set.

Lemma 3.4. With these assumptions we have:
There exists a unique τ > 0 and a (unique up to translations) τ -periodic function (uτ , vτ ) : R+ → Υ

such that vτ is Lipschitz-continuous, uτ is piecewise continuous, for all t ≥ 0, vτ = φ(uτ ) everywhere,
v̇τ = f(uτ , vτ ) almost everywhere and the discontinuities of uτ are located at times t such that φ has a
local extremum at uτ (t−).
There exists τ1 ≥ 0 and τ2 ∈ [0, τ) such that for all t > τ1, (u, v)(t) = (uτ , vτ )(t + τ2). Moreover,

by construction τ1 and τ2 are uniquely de�ned from u0 and v0, so the limit (u, v) is in fact unique and
the whole family (uε, vε)ε converges as ε goes to 0.

Clearly from (19), Lemma 3.4 applies with the hypotheses of Theorem 3.1 and

φ(u) =
η0u

2

h(η0u)
, η0 =

L
2

h(L)
, (22)

thus proving the remaining part of the theorem.

Proof of Lemma 3.4. Thanks to assumptions (R.1), (L.1), (L.3) and (L.4), the construction of (uτ , vτ )
is classical and can be done by pasting together solutions of Cauchy problems given (locally) by
v̇τ = f(φ−1(vτ ), vτ ), on intervals where φ is invertible. Uniqueness comes from the crucial fact that
discontinuities of uτ are assumed to be located at local extrema of φ.
From the previous lemmas we know that (u, v) ∈ Υ almost everywhere. In addition, uniform

boundedness of fε(uε, vε) ensures that v is Lipschitz continuous.
Then, we claim that if t > 0 is such that φ has no local extremum at u(t+), then there exists τ0 > 0

such that (u, v) is continuous on (t, t + τ0). This point is the key of the proof. To prove it, let ui be
such that φ′(ui) < 0. We solve only the simpler problem

˙̂vε = f(ûε, v̂ε), v̂ε(0) = φ(ui) +O(ε),

ε ˙̂uε = g(ûε, v̂ε), ûε(0) = ui +O(ε).

Introducing ŵε := ûε − φ−1(v̂ε), where the inverse of φ is taken locally (this is possible for ε small
enough since φ′(ui) < 0 and v̂ε is uniformly Lipschitz-continuous), we obtain

˙̂wε =
ŵε
ε
∂1g(r̂ε(t), v̂ε(t))−

f(ûε, v̂ε)

φ′(φ−1(v̂ε))
, ŵε(0) = O(ε),

for some r̂ε(t) between ûε(t) and φ
−1(v̂ε(t)). We have ∂1g ≤ −α < 0 on a neighborhood of (ui, φ(ui)),

so on this neighborhood ŵε remains small (it is a o(ε)), which in turn proves that (r̂ε, v̂ε) remains in
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this neighborhood. In particular, ûε converges to some function û which is continuous at t = 0 (since
it is equal to φ−1(v̂(t)) on a positive neighborhood of 0). We do not write the full proof because the
derivation we use here extends readily at the price of tedious notations. A full proof should use fε, gε
rather than f, g, and rise some analogue φε of φ at level ε > 0, for ε small enough, which is locally
invertible on a neighborhood of the initial data. It does not require more assumptions than the ones
we stated.
This is enough to get all the results of Lemma 3.4, except for the initial layer which we treat now.

To �x the notations, we assume that φ has a local minimum equal to φm at um and a local maximum
equal to φM > φm at uM < um. Moreover, let u0

m < uM such that φ(u0
m) = φ(um). For α, β ∈ {1,−1},

we also introduce Zβα := {sgn(f) = α, sgn(g) = β}.
We de�ne a mapping π : R2 → Υ by π = Id on Υ and if (u, v) ∈ Zβα then π(u, v) = (u1, v) such

that φ(u1) = v and sgn(u1 − u) = β. The projection π is well-de�ned thanks to the assumptions on φ
and g, except on (u0

m,+∞) × {φm}, on which we let π ≡ (u0
m, φm). Then (u, v)(0+) = π(u0, v0). To

prove this, one simply has to check the behavior of uε (since vε and v are Lipschitz continuous). As
above, we claim that the �rst-order behavior is simply given by the �layer equation�

ε ˙̃uε = g(ũε, v0), ũε(0) = u0,

which makes ũε converge exponentially fast to π(u0, v0)1, thanks to assumptions (R.2) and (L.2). Up
to tedious notations and thanks to (17) and (R.2), this result extends to uε0, vε and gε.
Let Υu = Υ ∩

(
[uM , um]× R+

)
and Υs = Υ−Υu. (Note that π(R2

+ −Υu) = Υs.) After the initial
layer, the trajectory of (u, v) remains on Υs. This follows from the sign of f on Υu: because of the
continuity property, the trajctory cannot exit Υs but at (um, φm) (or (uM , φM ), respectively). At these
points however, Υu is repulsive since v must be continuous, v̇ < 0 (v̇ > 0, respectively) and Υu lies
locally in {v > φm} (respectively in {v < φM}).
Still, the initial data does not need to be projected directly by π on Υs ∩R+× [φm, φM ]. Therefore,

we introduce τ1 ≥ 0 as
τ1 := max

(
0, sup{t ≥ 0, v(t) 6∈ [φm, φM ]}

)
.

It remains to check that τ1 < +∞. For all T > 0, as long as φ has no local extremum at u(t) for
t ∈ (0, T ), u is continuous. Thanks to our assumption (R.1), there are two connected components in
Υs, on each one of whom sgn(f) is constant. Because of assumption (L.4), f must be negative on
the unbounded connected component. Therefore (u, v) remains on (0, T ) in a part of Υ where |f | is
positively bounded from below (one of the two connected components of Υs) and has the appropriate
sign. This yields the existence of τ1 < +∞.
Then for all t ≥ τ1 we have v(t) ∈ [φm, φM ], and the trajectory is uniquely de�ned onwards.

Remark 3.5. We did not treat the case when the limit of (uε0, v
ε
0) belongs to Υ (relaxing assump-

tion (R.2)). In this case indeed, no general result can be obtained, unless the various convergence
speeds (of fε, gε, u

ε
0 and vε0) are quanti�ed.

Remark 3.6. The last point of Theorem 3.1 implies that the amplitude of the oscillations (in u, v)
at the limit ε → 0 can be computed if one knows these parameter scale in ε thanks to only f and g.
Their period τ can also be computed directly from f and φ. As in the proof of Lemma 3.4 we denote
the intervals of values taken by u(t) where it is continuous (and thus C∞) as [u0

m, uM ] and [um, u
0
M ]

respectively, and let

Ψ(u, v) =

∫ v

u

φ′(u′)

f(u′, φ(u′))
du′.
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Then we have
τ = Ψ(u0

m, uM ) + Ψ(u0
M , um). (23)

4 Hopf bifurcation

Numerical observations (see Section A and Appendix A) show that the system (1) has a stable periodic
solution oscillating around the non-zero steady state, even far from the slow-fast asymptotics we
explored in the previous section. We now prove the local existence of this periodic solution using the
Hopf bifurcation theorem (Theorem 8.8 from [19], with a classical proof in [18]; see also [10]) for 2× 2
systems of di�erential equations.

4.1 The function class HL

To �nd out a possible bifurcation parameter, we choose the hatching function h within a special class,
for which we �x the value of one speci�c steady state L. With this setting, we can state a bifurcation
theorem using the simple bifurcation parameter h′(L), which represents the sensitivity of hatching rate
to larval density at equilibrium.
However, it is worth noting that our argument does not rely on the structure of this class of functions,

and may be adapted, for instance, to the Hill functions considered in Appendix A.
For a �xed L the class of functions under consideration that �ts our purposes is

HL :=
{
h(L) = a

(
arctan(b(L− L)) +

π

2

)
, a, b ∈ R+

}
. (24)

Graphs of these functions are shown in Figure 2. We use the immediate properties that these functions
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Figure 2: Function h ∈ HL with L = 2. Left: a = 1, b = {0.5, 1, 2}. Right: a = {1, 1.5, 2}, b = 2.
Curve styles with increasing values in a and b: dotted blue, solid red, dashed yellow.

are positive and increasing. For any couple (k, k′) ∈ R∗+×R∗+, there exists a unique function h of class

HL with h(L) = k and h′(L) = k′. Finally, for all c > 0, the steady state relation h(L) = dE(dL+cL)

bE−dL−cL
has a positive solution in L if a > dEdL

bE−dL
2
π . Indeed, for given values (k, k′) ∈ R2

+, the choice of a = 2k
π
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and b = k′

a gives the solution since

h(L) = a
π

2
=

2k

π

π

2
= k and h′(L) = ab =

2k

π

k′

2k
π

= k′.

Also we can solve the equation in L, aπ
2 = dE(dL+cL)

bE−dL−cL
, which yields L =

aπ
2

(bE−dL)−dEdL
caπ

2
+cdE

. Hence L is

positive under the stated condition.

Remark 4.1. From Lemma 2.2, for h of class HL, the state (0, 0) is unstable if and only if

a >
dEdL

(bE − dL)(π2 + arctan(−bL))
.

4.2 Transformation into a canonical form

Let P = (a, b) ∈ R2
+ and the function hP of class HL

hP (L) = a
(

arctan(b(L− L)) +
π

2

)
. (25)

We use the notation k := hP (L) = aπ2 . Let P : γ 7→ P (γ) = (a0, b0 + γ) where (a0, b0) ∈ R∗2+ . Then
we can associate P (γ) to a new system (Sγ(a0, b0)) obtained from (1){

Ė = bEL− dEE − hP (γ)(L)E,

L̇ = hP (γ)(L)E − dLL− cL2.
(Sγ(a0, b0))

This system has a positive equilibrium (E,L) and the Jacobian matrix of the system evaluated in
(E,L) is:

JP (γ) =

 −dE − hP (γ)(L) bE − h′P (γ)(L)E

hP (γ)(L) h′P (γ)(L)E − dL − 2cL

 ,

We set λ1,2(γ) = α(γ) ± iβ(γ) the eigenvalues of JP (γ), when the discriminant of the characteristic
polynomial of JP (γ) is negative.

4.3 Main result

Using function T from (12), we de�ne

b(a) :=
T (a)

a
, acrit :=

2k+

π
> 0. (26)

Theorem 4.2. There exists ã > 0 such that: If a > max(ã, acrit), (Sγ(a, b(a))) has a supercritical
Hopf Bifurcation in γ = 0. In particular:

1. there exists γ1<0 such that for all γ ∈ (γ1, 0], (E,L) is a stable focus,

2. for all U neighborhood of (E,L), there exists γ2 > 0 such that for all γ ∈ [0, γ2), (E,L) is an
unstable focus surrounded by a stable limit cycle contained in U , which has an amplitude that
grows when γ grows.

17



Remark 4.3. k+ is given by (13), and ã is such that the normal form coe�cient αN (see [19]) of
our system is negative if a > ã. We simply give a numerical justi�cation of the existence of ã as the
computations appear to be very long (see the proof below).

Remark 4.4. The value of a must be greater than acrit to ensure that the linearized operator has
complex eigenvalues.

The bifurcation diagram for Sγ(a0, b0) in Figure 3 is obtained by XPPAUT software [9].

Figure 3: Supercritical Hopf bifurcation diagram with a0 = 0.2. The bifurcation parameter b is in
x-axis, the diagram shows extreme values of the periodic solution for L (the L scale is in y-axis). The
steady state is stable (red line) until the bifurcation point (point number 2) is reached. A periodic
solution appears and is stable (green points) until a bigger value of b, where it becomes unstable (blue
circles). The amplitude of the periodic solution grows with the parameter b.

Proof of Theorem 4.2. We set λ1,2(γ) = α(γ) ± iβ(γ) (with γ a real parameter), the two eigenvalues
of JP (γ) the Jacobian matrix associated to our system and computed in (0,0). We call γc a bifurcation
value, and αN (γ) the normal form coe�cient of the system (see [19]).
Firstly, we only need to study complex conjugate and pure imaginary eigenvalues of JP (γ) to �nd

the bifurcation value γc, which means also to look for γc such that α(γc) = 0 and β(γc) 6= 0. Thanks
to Proposition 2.6 we know that this is the case when k > k+ i.e. aπ

2 > k+ or equivalently a > acrit

(by de�nition, acrit = 2k+
π ). Moreover since h′(L) = ab (direct computation from (25)), we know that

the bifurcation value is located at the level of the graph G of function b (de�ned in (26))

G := {(a, b) ∈ R2, a > acrit, T (a) = ab = h′P (γ)(L)}. (27)

And we can set γc = 0.
Secondly, we have to see if dα

dγ (γc) > 0, this means to check that tr(JP (γ)) changes sign at the
bifurcation value γc. Let γ 7−→ z(γ) = α(a0, b(a0) + γ). We recall that α(γ) is a function of a and b.
Since

α =
tr(JP (γ))

2
=

1

2

(
− dE −

aπ

2
+ abE − dL − 2cL

)
,

we have z′(γ) = ∂bα = aE
2 and we obtain that z′(γc) = z′(0) = aE

2 and it is always positive.
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Thirdly, we have to study the normal form coe�cient of the system computed in γc = 0 and �nd
when αN (γc) 6= 0. To get the normal form coe�cient, we have to transform the system (Sγ(a0, b0))
and we use the steps from [19]. In a �rst step we reduce the initial system (Sγ(a0, b0)) to a system
where the equilibrium (E,L) becomes the origin. By the change of variables x = E−E and y = L−L,
(Sγ(a0, b0)) becomes:

ẋ = bE(y + L)− dE(x+ E)− a
(

arctan(by) +
π

2

)
(x+ E),

ẏ = a
(

arctan(by) +
π

2

)
(x+ E)− dL(y + L)− c(y + L)2.

(28)

Then as (E,L) is an equilibrium, we can simplify (28) into
ẋ = bEy − dEx−

aπ

2
x− a

(
arctan(by)

)
(x+ E),

ẏ = a
(

arctan(by) +
π

2

)
(x+ E) +

aπ

2
x− dLy − cy2 − 2cyL,

(29)

which we write as  ẋ = bEy − dEx−
aπ

2
x− abyE + f(x, y),

ẏ =
aπ

2
x− dLy − 2cyL+ abyE + g(x, y),

(30)

where

f(x, y) = abyE − a arctan(by)(x+ E), g(x, y) = −abyE + a arctan(by)(x+ E)− cy2.

The system (30) can also be written under the matrix form ẋ

ẏ

 =

 −aπ
2 − dE bE − abE

aπ
2 −dL − 2cL+ abE

 x

y

+

 f(x, y)

g(x, y)

 .

We call M the �rst (2× 2) matrix in the right-hand-side.
Now, to obtain the normal form coe�cient, one way is to perform a linear change of variables so as

to get  Ẋ

Ẏ

 = N

 X

Y

+

 F (X,Y )

G(X,Y )

 , N :=

 0 −ω

ω 0

 . (31)

In our case, we can have an idea of the normal coe�cient only in a neighborhood of γ = 0. Because we
want to make a simple linear change of variables, we are looking for a matrix P such that PMP−1 = N
and that at the bifurcation value γ = 0, tr(M) = 0 = tr(N) and det(M) = −A2 −BC = ω2 > 0.

We setM =

 A B

C −A

 and we can choose P =

 ω+A
2Bω

1
2ω

ω−A
2Bω − 1

2ω

, P−1 =

 B B

ω −A −A− ω

 .

Next we obtain the matrix system (31) where X

Y

 = P

 x

y

 =

 x(ω+A)
2Bω + y

2ω

x(ω−A)
2Bω − y

2ω

 ,

 x

y

 = P−1

 X

Y

 =

 (X + Y )B

(ω −A)X + (−ω −A)Y

 ,
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 F (X,Y )

G(X,Y )

 = P

 f(x, y)

g(x, y)

 =

 ω+A
2Bω f(x, y) + 1

2ωg(x, y)

ω−A
2Bω f(x, y)− 1

2ωg(x, y)

 =

 f(x, y)
(
ω+A
2Bω −

1
2ω

)
− 1

2ω cy
2

f(x, y)
(
ω−A
2Bω + 1

2ω

)
+ 1

2ω cy
2

 .

In a �nal step we compute the normal form coe�cient using the previous formulas and the expression
that exists in two dimensions given in [19] which is:

αN (γ = 0) =
1

16

(
FXXX + FXY Y +GXXY +GY Y Y

)
− 1

16ω

(
GXY (GXX +GY Y )− FXY (FXX + FY Y ) + FXXGXX − FY YGY Y

)
.

The coe�cient is easy but very tedious to compute, and we used the computer algebra system Maple [1]
to get its expression.
In our case the coe�cient is equal to zero for some value ã > 0, and is always negative for a > ã (as

it appears that ã < acrit, this is su�cient by de�nition of (27)). Then αN (γc) 6= 0 for a 6= ã.
Finally, we want to have for all real γ in a neighborhood of 0, αN (γ)α(γ) < 0. Thanks to Maple we

have αN (0) < 0, in a neighborhood of γ = 0, for a > ã with ã small.
So we can apply the Hopf bifurcation theorem that ensures there exists a limit cycle (periodic

solution) when α(γ) > 0 (i.e tr(JP (γ)) > 0), and moreover this cycle is stable as α(γ) > 0: we are
faced to a supercritical bifurcation.

4.4 Discussion on the period of the oscillations

The period of the oscillating solutions are relevant to the biological problem in consideration, because
they can be compared with observations in nature.

Proposition 4.5. As γ → 0+, the periodic solution of the system (Sγ(a, b(a))) has a frequency ω and
a period T0 = 2π/ω given by the expression

ω =
1√

dE + k

[
k2(bE − dL − dE) + k(−2dE

2 − bEdE − dEdL)− dE3
] 1

2
.

Proof. As γ → 0+, the oscillations frequency is given by the imaginary part of the root of the polynomial

equation (9) in the case of non-trivial steady state. The frequency is ωγ =
√

det(JP (γ)), where the

expression of det(JP (γ)) is

det(JP (γ)) =
1

dE + k

[
k2(bE − dL − dE) + k(−2dE

2 − bEdE − dEdL)− dE3
]
.

Then the expression of ω = ω0 follows.

Remark 4.6. At the bifurcation value, the parameter k can be linked with the period T0. Let T0 a
given period observed experimentally, then we �nd a corresponding value for k as the positive root of
the following characteristic polynomial:

k2
[
T 2

0 (bE − dL − dE)
]

+ k
[
T 2

0 (−2d2
E − bEdE − dEdL)− 4π2

]
− T 2

0 d
3
E − 4π2dE .

Away from the bifurcation value, the real part of the eigenvalues is greater than zero and the period
of the oscillations can only be obtained numerically. Unfortunately, this case is more relevant as the
Hopf bifurcation theorem asserts that the amplitude is increasing with the parameter γ. In other words,
for �xed a the amplitude of the oscillations is an increasing function of b.
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5 Conclusion

We show that introducing internal regulation in the form of a larval-density-mediated hatching rate in a
compartmental model for mosquito population dynamics induces stable oscillations. These oscillations
can be rather simply understood from the mathematical point of view either as cycles produced by a
Hopf bifurcation (Theorem 4.2), in a �rst parameter regime, or as the typical slow-fast behavior (close
to FitzHugh-Nagumo model, Theorem 3.1) in a second parameter regime.
Our study supports the idea that understanding internal life-cycle regulation can e�ectively help

modeling and simulating population dynamics properly. Ongoing experiments of some of the authors
try to reproduce the larval density impact on hatching which was observed in [8] and may shed some
light on this misunderstood phenomenon. In particular, restricting the parameters and possible oscil-
lations range could only be reached by assessing as precisely as possible the actual hatching feedback.
In this paper we neglect environmental variations. Therefore it leaves open for future studies the

deep question of linking internal life-cycle regulation and external variations (induced, for instance, by
rainfall and temperature) in order to get a better description of the mosquito populations dynamics.
However, it was observed that population oscillations may happen on periods much shorter than
seasonal variations, and this justi�es the study of internal regulations as possible triggers.
Another possible extension of our works is the adaptive dynamics of hatching regulation trait. Indeed,

synchronizing the egg hatching may be bene�cial for a population in a given environment, but also be
detrimental if rare and extreme events can annihilate larval population, for instance. The egg stage
can be seen indeed as a quiescent, refuge state for the species (this approach was studied in [24]).
Here we prove that positive feedback of larvae on egg hatching tends to make the population size
oscillate, creating distinct generations (synchronizing e�ect) while negative feedback tends to stabilize
the population size, which may be detrimental on the long run if, for example, the favorable period for
larvae and adult development is typically short.
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der the European Union's Horizon 2020 research and innovation programme (grant agreement No
740623). MS, NV and DAM acknowledge partial funding from Inria, France and CAPES, Brazil
(processo 99999.007551/2015-00), in the framework of the STIC AmSud project MOSTICAW and
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MS and NV acknowledge partial funding from the ANR blanche project Kibord: ANR-13-BS01-0004
funded by the French Ministry of Research.

A Observations on a class of hatching functions

Among the many possible choices for a S-shaped hatching function h, we numerically and theoretically
explore the typical family of Hill functions. We assume the following form with parameters a, λ, p > 0

h(L) = hm + a
Lp

λp + Lp
, hm >

dEdL
bE − dL

. (32)

Steady states (E,L) of (1) are such that L is a solution of Q(L) = 0, where

Q(L) = −cLp+1
(
hm + a+ dE

)
+ Lp

(
(hm + a)(bE − dL)− dEdL

)
− cλpL(hm + dE) + λp

(
hm(bE − dL)− dEdL

)
.

The following lemma is a straightforward consequence of this computation
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Lemma A.1. When p = 1 and h is of type (32), there is a unique steady state of (1).

When p = 1 and h is of type (32), then h′′ < 0, a property that is lost when p > 1. Therefore, to
simplify the choice of the parameters, now we assume

dE = 0. (33)

Then, condition (6) is ful�lled, the steady state of (1) is unique and is given by

L =
bE − dL

c
, E =

bEL

h(L)
.

Proposition A.2. Let h be of type (32) and assume condition (33) holds. Then (1) has a unique
positive steady state (E,L) and its linearization has eigenvalues with negative real parts if and only if

k >
a

1 + αp
>
αp + 1

pαp
k
(
2 +

k − dL
bE

)
, α =

λ

L
, k = h(L). (34)

Proof. Necessarily k > k+ = 0 (where k+ is de�ned in (13)). Hence the eigenvalues of the linearized
system at (E,L) are in C\R and the condition for instability of the steady state from Proposition 2.6
simply reads h′(L) > T (h(L)), where T is de�ned in (12). Then we compute

h(L) = hm +
a

1 + αp
, h′(L) =

apαp

L
(
αp + 1

)2 .
The right-hand side inequality in (34) comes from h′(L) > T (k) and the left-hand side from hm > 0.

If all parameters but α and a are �xed, then condition (34) can be ful�lled if and only if

k < (p− 2)bE + dL. (35)

Indeed, we need to �nd α > 0 such that 2 + k−dL
bE

< p αp

1+αp . Note that in particular, this is impossible

when p ≤ 1 (since cL = bE − dL > 0 by hypothesis).
We provide below numerical results showing consistent oscillations under condition (35), for 2- and

3-dimensional systems (1) and (S3). To explore the possible behaviors depending on the function h
of type (32), we �x the biological parameters (including L), p > 1 and k = h(L) > 0 such that (35)
holds. We introduce the notation X(k) := 1

p(2 + k−dL
bE

) < 1 and use two parameters: ι ∈ (0, 1−X(k))
and ζ ∈ (0, 1), in order to represent the full range of (34). More precisely, we will parametrize a and
α with ι, ζ, as functions of k, and then we can go back to a function in (32) by letting λ = αL and
hm = k − a/(1 + αp).
We choose

αι(k) =
( X(k) + ι

1−
(
X(k) + ι

))1/p

and

aζ,ι(k) = ζk(1 + αpι ) + (1− ζ)k
(1 + αpι )2

αpι
X(k) = k

1− ζ(1− (X(k) + ι))

(X(k) + ι)(1− (X(k) + ι))
.

For any choice of ι and ζ, we end up with system (1), h given by (32), featuring a unique, (locally
linearly) unstable positive steady state. At least numerically, solutions always exhibit periodic oscilla-
tions, as can be seen in Figure 4 for egg dynamics.
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Figure 4: Egg dynamics from (1) for h of Hill function type. All parameters being �xed, including
p = 3 and k = 0.5, ι = 0.05 (top) or ι = 0.2 (bottom) and ζ = 0.2 (left) or ζ = 0.8 (right).

The above computations extend to the 3-dimensional system (S3), and numerical observations are
similar. Indeed, the condition (35) guaranteeing positivity of the trace of the Jacobian at the unique
positive equilibrium, rewrites for system (S3) as (p− 2)βEτLδA

+ δL + τL− δA > k. In this case we de�ne

X(k) :=
δA

pβEτL

(
2
βE
δA
τL − δL − τL + δA + k

)
,

and the above condition is equivalent to X(k) < 1.
Exactly as in the two-dimensional case, we explore the full range of (34) by choosing the parameters

(ι, ζ) ∈ (0, 1 − X(k)) × (0, 1) and de�ning αι(k) and aι,ζ(k) by the same formulas as before. For all
the numerical values we took for ι and ζ, we always found oscillating solutions. Examples (dynamics
of larvae and of (E,L,A) in the three dimensional space) are shown in Figure 5.
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Figure 5: Numerical solutions of (S3) for h de�ned by two di�erent Hill functions. All parameters

being �xed, including p = 3, k = 0.5, ι = 1−X(k)
10 and choosing ζ = 0.1 (top) or ζ = 0.9 (bottom).

B Amplitude and period computation in the slow-fast regime

In the slow-fast approach, system (1) exhibits oscillations with known amplitude and period at the
limit ε→ 0. We show here how to compute this amplitude analytically. To do so, we simply compute

the local extrema of u 7→ ηu2

h(ηu) . The �rst-order necessary condition is xh′(x) = 2h(x), where x = ηu.
This provides with a general method to determine the limit trajectories. With the previous example

from (32), h(x) = hm + a
xp(

αL
)p

+ xp
, this boils down to

2(hm + a)x2p + (αL)p
(
(2− p)a+ 4hm

)
xp + 2hm(αL)2p = 0.

Letting y = xp, we end up with a second-order polynomial, for which the analytical computation can
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be pushed a few steps further. In particular, its discriminant is

∆ = (αL)2p
((

(2− p)a+ 4hm
)2 − 16hm(hm + a)

)
= (αL)2pa

(
(2− p)2a− 8phm

)
.

Hence there are exactly two positive local extrema if and only if (2−p)2a > 8phm and (2−p)a+4hm < 0.
The �rst condition implies the second one if p > 2, and the second one is impossible if p ≤ 2. Therefore
the only case when there are two local extrema is when

p > 2 and
hm
a

<
(p− 2)2

8p
. (36)

Under assumption (36) we �nd that the extrema (yM < ym) are located at

(αL)p
(p− 2)a− 4hm ±

√
a2(p− 2)2 − 8aphm

4(hm + a)
.

Let ξ± = (p− 2)a− 4hm ±
√
a2(p− 2)2 − 8aphm. With the notations of Lemma 3.4,

um =
α

η
L
( ξ+

4(hm + a)

)1/p
, φm =

ηu2
m

h(ηum)
,

uM =
α

η
L
( ξ−

4(hm + a)

)1/p
, φM =

ηu2
M

h(ηuM )
.

Then we can compute u0
r for r ∈ {m,M} by solving η·(u0r)2

h(ηu0r)
= φr. Unfortunately this cannot be done

analytically. However, the amplitude of the oscillations in terms of v is equal to

Av := φM − φm.

With E = 1/ε, we expect that the oscillations of E have amplitude

φM − φm
ε

=
α2L

2

ηε

( ( ξ−
4(hm+a)

)2/p
hm + a ξ−

hm+ξ−

−

( ξ+
4(hm+a)

)2/p
hm + a ξ+

hm+ξ+

)
,

where η = L
2

h(L)
= L

2

hm+ a
1+αp

, by (22). Hence the amplitude of egg oscillations is equal to

1

ε
Av =

1

ε

α2(hm + a
1+αp )

(4(hm + a))2/p

( ξ
2/p
−

hm + a ξ−
hm+ξ−

−
ξ

2/p
+

hm + a ξ+
hm+ξ+

)
.

We can simplify this expression one step further by letting ρ := hm/a. Then we notice that q± :=
ξ±/a = p− 2− 4ρ±

√
(p− 2)2 − 8pρ and deduce

Av =
α2

1 + αp
1 + ρ+ αp

(4(1 + ρ))2/p

( (ρq−)2/p

1 + ρ2q−
1+ρq−

− (ρq+)2/p

1 + ρ2q+
1+ρq+

)
. (37)

In particular we notice that the amplitude depends only on the function h through ρ, α (hence L)
and p, and not on any other biological parameter, under the constraints (36).
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An interesting case is when p→ +∞, where h approaches a step function from hm to hm + a, with
its jump located at αL. In this limit we can compute the amplitudes in u and v:

Au = α
L

(hm + a1α<1 + a
2δα=1)

(√ρ+1
ρ −

√
ρ
ρ+1

)
,

Av = α2(hm + a1α<1 + a
2δα=1) 1

ρ(hm+a) .

If we assume dE = 0 (for simplicity), using formula (23), we can also obtain in this case an analytical
expression for the period of the oscillations:

τ =
2

hm
log
( hm + a/2− αL
hm + a/2− αL

√
ρ

1+ρ

)
+

2

hm + a
log
(hm + a/2− αL

√
1+ρ
ρ

hm + a/2− αL

)
Indeed, h(u) = hm if u < αL and h(u) = hm + a if u > αL so that f(u, φ(u)) = η0u

(
ξ − u

)
and

φ′(u) = 2η0
hm
u if u < αL and φ′(u) = 2η0

hm+au if u > αL.

C Numerical oscillations, period and amplitude close to the bifurca-

tion

We illustrate the statements from Section 4 with numerical examples. Biological parameters of (1)
are taken at a temperature around 25◦C which leads to A = 3.4 mosquitoes per 100 square meters
(taken from a physical situation described in [23]) and bE = 20.94, dL = 0.15. (taken from [25]). To
�t the condition dE � dL, dE is �xed arbitrarily at 1

180 . We note that condition (4) is satis�ed:
bE = 20.94 > 0.15 + 1

180 = dL + dE .

0 20 40 60 80 100

144

145

146

147

148

149

150

151

0 20 40 60 80 100

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Figure 6: Time dynamics of eggs (left) and larvae (right) for a1 = 0.1, b0.05
1 = 2.91.

The parameters a and b are chosen so that Theorem 4.2 applies, which proves the existence of periodic
solutions close to the non-trivial steady states. We perform numerical test by letting a parameter j
vary in a set J of 18 values between 0.05 and 4 in order to obtain 162 couples (ai, b

j
i )i=1,...,9;j∈J by

ai = 0.1 + 0.05(i− 1) and bji = bi,min + j × bi,min,
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Figure 7: Time dynamics of eggs (left) and larvae (right) for a2 = 0.25, b0.52 = 4.18.

where bi,min is the minimal b that can be chosen for ai to obtain oscillations (if b < bi,min the solutions
can not oscillate), i.e. for which the trace of the linearized operator is equal to 0.
The hatching functions are:

hji (L) = ai

(
arctan(bji (L− L)) +

π

2

)
.

In our tests the steady state changes with i (for example E1 = 145.92, E4 = 59.59 and E9 = 30) but
we always have L = A δA

τL
= 1.13.

a = 0.1 Period (days) E L Larvae amplitude (%L)

b = 2.91 5.18 23.1
b = 4.16 15.06 145.92 1.13 51.3
b = 8.32 61.54 110.22
b = 3.52 9.6 42.08

Table 1: Steady states, period and amplitude of oscillations for a = .1

a = 0.25 Period (days) E L Larvae amplitude (%L)

b = 2.93 2.68 20.35
b = 4.18 6.96 59.59 1.13 50.67
b = 8.37 22.64 110.2
b = 4.99 9.98 63.03

Table 2: Steady states, period and amplitude of oscillations for a = .25

We provide numerical results for i ∈ {1, 4, 9} and j ∈ {0.1, 0.25, 0.5} initial data close to the steady
state (which is drawn in dashed line). Two sets of initial data are chosen, (E(0), L(0)) = (E,L) (green)
and (E(0), L(0)) = (E,L + 0.02) (blue), which gives oscillations that appear to be periodic in time.

27



0 20 40 60 80 100

20

30

40

50

60

70

80

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

Figure 8: Time dynamics of eggs (left) and larvae (right) for a3 = 0.5, b23 = 8.44.

a = 0.5 Period (days) E L Larvae amplitude (%L)

b = 2.96 1.72 18.03
b = 4.22 3.8 30 1.13 49.8
b = 8.44 11.5 109.9
b = 7.6 10.1 99.43

Table 3: Steady states, period and amplitude of oscillations for a = .5
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Figure 9: Larvae dynamics period T0 in days (left) and larvae dynamics amplitude (Amp) in percentage
of L (right), for di�erent couples (a, b).

Simulations are made with a = a1 in Figure 6 (with b = b0.05
1 ) and a time variable evaluated in [0, 100]

days ; a = a2 in Figure 7 (with b = b0.52 ) and a time variable evaluated in [0, 100] days ; a = a3 in
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Figure 8 (with b = b23) and a time variable evaluated in [0, 150] days.
Considering the blue curves, we sum up in the Tables 1, 2 and 3 what we obtain for the period and

the oscillations' amplitude taken by the solutions. In the last line of the tables we give a value of b that
can be chosen to obtain a period of about 10 days. Relative amplitude of the oscillations is expressed
as a percentage of the (constant) value L.
It is possible to achieve the same period T0 for di�erent couples of parameters (a, b). For a �xed a,

when b is increasing, the period T0 and the amplitude of larvae are increasing too. The amplitude, on
the contrary, mainly depends on b. This is illustrated in Figure 9.
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