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ABSTRACT
Type systems express structural information about data, are hu-

man readable and hence crucial for understanding code, and are

endowed with a formal de�nition that makes them a fundamental

tool when proving program properties. Internal data structures of

a database store quantitative information about data, information

that is essential for optimization purposes, but is not used for doc-

umentation or for correctness proofs. In this paper we propose a

new idea: raising a part of the quantitative information from the

system-level structures to the type level.

Our proposal is motivated by the problem of schema inference

for massive collections of JSON data, which are nowadays o�en

collected from external sources and stored in NoSQL systems with-

out an a-priori schema, which makes a-posteriori schema inference

extremely useful. NoSQL systems are oriented towards the man-

agement of heterogeneous data, and in this context we claim that

quantitative information is important in order to assess the relative

weight of di�erent variants.

We propose a type system where the same collection can be de-

scribed at di�erent levels of abstraction. Di�erent abstraction levels

are useful for di�erent purposes, hence we describe a parametric

inference mechanism, where a single parameter speci�es the cho-

sen trade-o� between succinctness and precision for the inferred

type. �is algorithm is designed for massive JSON collection, and

hence admits a simple and e�cient map-reduce implementation.

CCS CONCEPTS
•Information systems → Semi-structured data; Data model
extensions; •�eory of computation→ Type theory; Logic;

KEYWORDS
JSON, type systems, schema inference, descriptive schemas, map-

reduce
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1 INTRODUCTION
Type systems express structural information about data, are hu-

man readable and hence crucial for understanding code, and are

endowed with a formal de�nition that makes them a fundamental

tool when proving program properties. Internal data structures of

a database store quantitative information about data, information

that is essential for optimization purposes, but is not used for doc-

umentation or for correctness proofs. In this paper we propose a

new idea: raising a part of the quantitative information from the

system-level structures to the type level.

�is idea is motivated by the problem of schema inference for

JSON data. �e explosion of JSON based NoSQL systems, such as

MongoDB or CouchDB, is linked to the need of systems where a

priori schema is not required, and with the ability to provide for

massive horizontal scaling capability. �e lack of a priori schema

may be helpful in the �rst phases of a project, but data cannot be

usefully exploited without a knowledge of its structure. When the

data is represented in a self-describing formalism, such as JSON,

schema design can be usefully replaced by the automatic inference

of an a posteriori schema from data. �is is not a ‘prescriptive’

schema, that limits the kind of data that will be stored, but is a

‘descriptive’ schema, that is extremely useful for the data analyst,

who needs to understand the structure of the data in order to get

information out of them.

Many type inference algorithms have been de�ned for this aim,

but traditional types are not expressive enough in the context of

irregular data, where every type has many variants, and type sys-

tems are not able to express the distinction between ‘exceptional’,

‘uncommon’, ‘common’, and ‘mandatory’ variants, and they are not

able to describe the size of collections. Consider, for instance, the

following schema (or type), inferred from a bibliographical JSON

dataset according to the technique described in (Baazizi et al. 2017).

[[{title : Str, text : ([Str] + Null), author : {. . .}?}]]

�at schema represents an array of arrays of records. Each record

has at most three �elds: title, text, and author . �e title �eld con-

tains a string, while the text �eld contains either an array of strings
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or the special value ‘null’. �e author �eld contains a record, that

is not speci�ed here, and the question mark a�er its type means

that it is optional, while the �rst two �elds are mandatory.

While structural information may su�ce in many contexts, there

are other applications where a structural description is not su�cient.

Indeed, one of the most frequent tasks in big data analysis is data

sampling; in this process, it is essential to know how many objects

are contained in the dataset, as well as the minimum, maximum,

and average lengths of arrays, to correctly dimension the sample

size. Another application for which purely structural schemas are

not informative enough is the integration of JSON data in existing

relational databases (DiScala and Abadi 2016; Liu et al. 2014). In

this case, to properly design a target relational schema, it is very

important to know the frequency of optional �elds in JSON objects,

as when several optional �elds are rather infrequent the schema

designer may choose to con�ne them in a supplementary table,

rather than using nullable �elds.

1.1 Counting types
In this paper we advocate the use of structural, descriptive schemas

enriched with quantitative information, and envision a type system

that is able not only to express a type describing the structural

properties of a dataset, but that can also enrich this type with infor-

mation about data distribution. �ere are many ways to describe

data distribution, most of which rely on counting information. Go-

ing back to the previous example, we observe that every instance

of a type constructor in the type corresponds to a path in the data,

and we annotate that type constructor with an absolute value, de-

scribing how many items are retrieved by the corresponding path,

as shown below (the notation nK is used to abbreviate n × 1000).

[ [ { title : Str20K , text : ([Str19,800K
]
19,800 ⊕ Null200 )20K ,

author : {. . .}2K }20K
]
20

]
1

Reading right to le�, the outermost empty path yields 1 array.

�e path [*], which we use here to extract the content of an array,

yields 20 intermediate arrays, which contain 20K records corre-

sponding to the path [*][*]. �e path [*][*].author corresponds to

2K records only, which means that most of the 20K records have

no author. �e path [*][*].text yields 20K items, hence the �eld is

present in every record. Of these 20K items, 19,800 are arrays, and

200 are the null value. �e path [*][*].text[*] yields 19,800K strings,

hence each of the 19,800 arrays contains, on average, 1000 strings.

Finally, the path [*][*].title yields 20K strings.

�is information is cumulative: we have a total of 20K titles and

a total of 2,000 authors, which gives us an idea about how much

information we can extract out of this data. It can also be read in a

relative way by dividing the counter of each �eld by the counter of

its record, the counter of a branch by the total count of the union,

or the counter of an array content by the counter of the array. For

example, the title �eld has a counter of 20K inside a record with

the same counter, which means that this �eld is mandatory, while

the counter of author is 2K out of 20K, hence one record out of 10

has an author. In the union type, the �rst branch counts 19,800 out

of 20,000 and the second counts 200 out of 20,000, hence the �rst

branch is taken in 99% of the cases. As for arrays, the content of

the intermediate array has a counter of 20K, while the array itself

has a counter of 20, which means the 20 internal arrays have an

average size of 1,000.

1.2 Bounded size arrays
A di�erent, and more traditional, way of giving information about

array size is that of providing bounds for the size, for example in

the form of a type [Num 5:20] denoting the type of all arrays that

have at least 5 numerical elements and at most 20 elements. �is

feature is present, for example, in JSON Schema, where one can

de�ne “minItems” and “maxItems” properties in an array schema

speci�cation (Wright 2016).

Size bounds can be used both in a descriptive type, to summarize

the minimal and maximal sizes that have been found in all the

arrays in a given position inside a JSON dataset, or in a prescriptive

type, to limit a priori the acceptable sizes for a JSON array.

We will show that our cumulative size information about array

types and this notion of size bounds can be easily combined into a

uniform type system and interact with no problem.

1.3 Union types and �eld correlation
�ese quantitative types provide a data description that is extremely

informative and succinct but, exactly because it is so succinct, it

may also hide some important information. Consider for example

the following author �eld.

[ [ {. . . author : {. . . , address1,000, a�l500}2,000 }.. ]
..

]
1

We know that half authors have an address – 1,000 out of 2,000

– and a quarter of them – 500 – have an a�liation, and that may

be enough for some applications. However, we may also wonder

about the relation between address and a�liation and, in particu-

lar, whether the presence of one implies or excludes the other, or

whether these �elds are independent from each other.

Union types allow us to express these di�erent possibilities. Con-

sider for example the following types, where r (meant to represent

the rest of the record) is, for the sake of simplicity, a mandatory

�eld, hence its index is always equal to that of the encoding:

{address1,000, a�l500, r2,000}2,000 (1)
{address500, a�l500, r500}500 ⊕ {address500, r1,500}1,500 (2)
{address1,000, r1,000}1,000 ⊕ {a�l500, r1,000}1,000 (3)
{address1,000, r1,500}1,500 ⊕ {a�l500, r500}500 (4)
{address1,000, r1,000}1,000 ⊕ {a�l500, r500}500 ⊕ {r500}500 (5)

�e �rst type is succinct and gives no correlation information.

Indeed, type (1) is a supertype of all those that follow, meaning

that, whenever a piece of JSON data satis�es any of the types that

follow, it also satis�es (1). Type (2) is more informative and tells

us that a�liation implies address: all 500 record with a�liation

have an address as well. Type (3) expresses, on the contrary, mutual

exclusion between a�liation and address, but is not the only way

to express this fact: type (4) expresses the same information. Type

(5) expresses again the same information as (3) and (4), but in a

way that is, in some sense, canonical, since it separately lists each

distinct possibility. When every combination of n optional �elds

is present, then this complete canonical representation has size

2
n

and is the only one that gives a complete representation of the

mutual correlation of all �elds.
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Hence, our approach allows one to give a succinct representation

of quantitative information, or allows one to express a more detailed

information where correlations are expressed, at the price of a less

succinct representation, up to the point of a possible exponential

explosion. In what follows we are going to present two di�erent

algorithms: one that infers succinct types like that of line (1), and

another one that infers detailed types such as that of line (5). We

believe that the data analyst may be interested in di�erent trade-

o�s between succinctness and precision, hence should be given the

freedom to choose the one that best �ts her needs.

1.4 Contributions
In this paper we present the following contributions:

(1) we de�ne a counting type system for JSON data, based on

record, array, and union types, where every type construc-

tor is endowed with quantitative information, with a non

obvious formal semantics based on sets of multisets;

(2) we de�ne a type inference mechanism that allows one

to infer a counting type for a given JSON data collection,

based on an associative type-reduction operation, that is

parameterized on an equivalence relation;

(3) we present two di�erent instances of the algorithm, based

on two di�erent equivalence relations;

(4) we describe a map-reduce implementation of this paramet-

ric type inference algorithm and experiment it on JSON

datasets collected on the web;

(5) we show that our counting types can be smoothly com-

bined with the standard notion of bounded size arrays, and

can be still inferred using the same map-reduce approach.

2 RELATEDWORK
�e study of types expressing quantitative information has been

limited, to our knowledge, to the speci�cation of the size of �at

collections, typically the size of an array, while never touching

the issue of the synthetic description of irregular tree-shaped data.

Dependent types and probabilistic types have been used to study

the properties of code that deals with quantitative data, but this is

orthogonal to our aim, since we do not deal here with type inference

for code, but only for data.

�e problem of inferring descriptive schema information from

datasets has been studied for decades in the programming language

and database communities. We only present here the work that is

more related to our proposal.

In (Baazizi et al. 2017), by using a type language that can describe

the nesting structure of records and arrays, declare optional and

mandatory record �elds, and represent data variability with the

help of union types, we have shown how a type can be inferred

for a large JSON dataset via a map-reduce algorithm, by inferring a

type for each element and then by merging these types, yielding

short times on massive datasets. Our main advance over this ap-

proach is the design of the counting type system, as well as a more

precise notion of type fusion, that still enjoys the basic property of

associativity, and hence the possibility of an e�cient map-reduce

implementation.

In (Kle�ke et al. 2015) Kle�ke et al. deal with the problem of

DataGuide inference for JSON data, and with its applications for

outlier detection. �e mechanism they propose is based on an op-

timized version of the DataGuide, where each node contains the

number of the corresponding nodes. �ese numbers correspond

exactly to the numbers computed by the �rst of our two inference al-

gorithms, which con�rms that our choice is natural. �e algorithm

they propose for the DataGuide computation is quite di�erent from

ours, being based on a depth-�rst traversal of the structure, while

their notion of DataGuide lacks union types and, hence, the possi-

bility of describing data at di�erent levels of abstraction, as well as

of expressing correlation properties. But the main di�erence with

that work is the fact that we propose a language-level mechanism,

while DataGuides are essentially a system-level notion.

�ere exist several tools for inferring schemas from JSON data

stored inside NoSQL systems.

In (Schmidt 2017) the author describes a JavaScript library that

is able to infer, in a streaming fashion, a schema with quantitative

information from a MongoDB data collection; this library is quite

e�cient, but its inference algorithm introduces counting errors

when optional �elds are found. Studio 3T (Labs 2017) is a com-

mercial front-end for MongoDB that o�ers a very simple schema

inference and analysis feature: while the tool is able to extract �elds

frequencies, the inference process cannot merge similar types, and

the resulting schemas has a huge size, which is comparable to that

of the input data.

In (Scherzinger et al. 2016), Scherzinger et al. present an approach

for maintaining object-NoSQL mappings. �e technique focuses

on the detection of mismatches between base types (e.g., Boolean,

Integer, String), while the use of other properties is le� for future

work. A series of proposals for processing JSON datasets have

been recently presented with the aim of: e�ciently managing JSON

repositories with the aid of schema information (Liu et al. 2014;

Spoth et al. 2017; Wang et al. 2015), describing a-priori schema

information (Pezoa et al. 2016; Wright 2016), and automatically

transforming denormalized, nested JSON data into normalized rela-

tional data that can be stored and queried into a RDBMS (DiScala

and Abadi 2016). However, none of these works deals with large

scale inference of a global, descriptive counting schema, and, with

the notable exception of (Schmidt 2017), none of these approaches

is able to exploit union types to account for data irregularity. Also,

none of these approaches presents the ability of parameterizing

schema inference to account for the need of di�erent levels of

abstraction.

3 COUNTING TYPES
3.1 Syntax and semantics
In our formalization, JSON values are either basic values, records,

or arrays. Basic values B include the null value, booleans, numbers

n, and strings s , and are represented as follows.

Syntax

J ::= B | R | A
B ::= null | true | false | n | s n ∈ N , s ∈ String
R ::= {l1 : J1, . . . , ln : Jn } n ≥ 0

A ::= [J1, . . . , Jn] n ≥ 0
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In our semantics, records represent sets of �elds, each �eld being

a key-value pair (l , J ), and arrays represent sequences of values.

In JSON, a record is well-formed only if all its top-level keys are

mutually di�erent; this condition will be checked by the type rules.

Notation 3.1 Sets(S ) is the set of all subsets of S . FSets(S ) is the set
of all �nite subsets of S . Lists(S ) is the set of all �nite lists whose
elements are in S . To reduce the confusion between JSON values and
mathematical objects, we denote a �nite set as ⦃a1, . . . ,an ⦄, a �nite
multiset as ⦃a1, . . . ,an ⦄m and a �nite list as 〈〈a1, . . . ,an〉〉. Empty
multiset is ∅m and multiset union is ∪m .

Semantics

JBK M
= B

J{l1 : J1, . . . , ln : Jn }K
M
= ⦃ (l1, JJ1K), . . . , (ln , JJnK) ⦄

J[J1, . . . , Jn]K M
= 〈〈JJ1K, . . . , JJnK〉〉

�e syntax of counting types is de�ned below.

T ::= S | ∅ | T ⊕ T Types

S ::= B | R | A Structural types

B ::= Nulln | Booln | Numn | Strn Basic types

R ::= {l1 : T1, . . . , lj : Tj }
n j ≥ 0 Record types

A ::= [T]
n

Array types

�e basic features of our counting types is that they represents

sets of multisets of values, rather than sets of values. Hence, while

the type Num denotes the set of valuesN = ⦃ 0, 1, . . . ⦄, the counting

type Num3
denotes the set of three-valued multisets

⦃ ⦃n1,n2,n3 ⦄m | n1 ∈ N ,n2 ∈ N ,n3 ∈ N ⦄.
All the multisets in a counting type have the same size, called

the width of the type, denoted as #(T) and computed as follows.

De�nition 3.2 (Width of T: #(T)).

#(Nulln ) = #(Booln ) = #(Numn ) = #(Strn ) = n
#({l1 : T1, . . . , lj : Tj }

n ) = n
#([T]

n ) = n
#(∅) = 0

#(T1 ⊕ T2) = #(T1) + #(T2)

To de�ne record and array types we need to �rst de�ne a couple

of path operators, M/[∗] and M/l (De�nition 3.3), which start from

a multiset of arrays or of records, take the indicated step, and �a�en

out the content using multiset union, yielding again a multiset, so

that for example we have the following equalities. Observe that

the operators are de�ned on lists and sets of pairs, which are the

semantics counterparts of JSON structures.

⦃ 〈〈V1,V2〉〉, 〈〈V2,V3,V4〉〉 ⦄m/[∗] = ⦃V1,V2,V2,V3,V4 ⦄m
⦃ ⦃ (l ,V1), (m,V2) ⦄, ⦃ (l ,V3), (n,V4) ⦄, ⦃ (m,V5) ⦄ ⦄m/l = ⦃V1,V3 ⦄m

De�nition 3.3 (V .[∗] ,M/[∗] , V .l ,M/l ).

〈〈V1, . . . ,Vn〉〉.[∗]
M
= ⦃V1, . . . ,Vn ⦄m

M/[∗]
M
= ∪mV ∈M V .[∗]

⦃ (l1,V1), . . . , (ln ,Vn ) ⦄.l M
= ⦃Vi ⦄m if l = li

⦃ (l1,V1), . . . , (ln ,Vn ) ⦄.l M
= ∅m if l < {ln , . . . , ln }

M/l
M
= ∪mV ∈M V .l

�e denotational semantics of counting types is de�ned as fol-

lows.

De�nition 3.4 (JTK).

Notation
MSetsn (S ) M

= ⦃ ⦃a1, . . . ,an ⦄m | ai ∈ S ⦄

Domain equations
Recs = FiniteSets(Keys × Values)
Arrays = Lists(Values)
Values = BaseValues ∪ Recs ∪ Arrays

Base Types Domain : Sets(MSets(BaseValues)))

JNumk K M
= MSetsk (N )

JNullk K, JBoolk K, JStrk K : similar

Records Domain : Sets(MSets(Recs)))
J{l1 : T1, . . . , ln : Tn }

k K
M
= ⦃M | M ∈ MSetsk (Recs),∀i ∈ {1..n}. M/li ∈ JTi K,

∀l < {l1, . . . , ln }. M/l = ∅
m ⦄

Arrays Domain : Sets(MSets(Arrays))

J[T]
k K M
= ⦃M | M ∈ MSetsk (Arrays), (M/[∗] ) ∈ JTK ⦄

Union types Domain : Sets(MSets(Values))

J∅K M
= ⦃ ∅m ⦄

JT1 ⊕ T2K
M
= ⦃M1 ∪

m M2 | M1 ∈ JT1K, M2 ∈ JT2K ⦄

Hence, an element of an array type [T]
n

is a multiset of ex-

actly n arrays, where the internal T describes the multiset union

of their contents. For example [Num4
]
3

is the type of a multiset

S = ⦃ [1], [], [2, 5, 2] ⦄m : 3 is the size of S , and 4 is the size of

JSK/[∗] .

An element of J{l1 : T1, . . . , ln : Tn }
k K is a multiset M of k

records (sets of pairs) such that the multiset M/li of the values

associated to each li belongs to the corresponding Ti . �e multiset

M/l may have less than k elements, if the key l is not present in

every record of the multiset, or exactly k when the �eld is manda-

tory (i.e., if #(Ti ) > k for some i , then J{l1 : T1, . . . , ln : Tn }
k K is

empty).

For example, {l : Num1 ⊕ Bool2,m : [Num3
]
2}3 is a possible type

for the multiset:

S = ⦃ {l : 1,m : [1, 3]}, {l : t }, {l : f ,m : [1]} ⦄m .
Observe that JSK/l = ⦃ 1, t , f ⦄m and JSK/m = ⦃ 〈〈1, 3〉〉, 〈〈1〉〉 ⦄m :

when all three records are considered, the mandatory l �eld contains

three values (3 = #(Num1 ⊕ Bool2)), while the optionalm �eld only

contains two arrays (2 = #([Num3
]
2)).

�antities in this type systems are cumulative. Consider the

following type, describing a nested structure where every key is

mandatory and every array has length 10.

[{a : [Num100
]
10,b : Num10, c : [[Bool1000

]
100

]
10}10

]
1

Consider a multiset ⦃x ⦄m belonging to that type. Observe that

x is an array, x[i].c is an array and x[i].c[j] is an array, for each i and

j less than 10. Although the generic third-level array x[i].c[j] has

length 10, the width of the boolean type that describes its content

is 1000. �e reason is that this internal type does not denote just

the content of one array found in a position x[i].c[j], that is, the

multiset ⦃x[i].c[j][k] | k < 10 ⦄m for some speci�c choice of i and
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j. Rather, Bool1000
is the type of the multiset x/[∗] /c /[∗] /[∗] of

all values that can be reached through a path x[i].c[j][k], that is,

the multiset

⦃x[i].c[j][k] | i < 10, j < 10, k < 10 ⦄m

Union types in our system are central, and are not standard. A

fundamental feature of our system is the ability to describe the

same type at di�erent levels of abstractions. Consider for example,

the following multiset with four arrays.

⦃ [1], [2, 3], [1, 1, 1, 1, 1, 1, 1, 1], [t , t] ⦄m

It may be fully described by a type such as

[Int1
]
1 ⊕ [Int2

]
1 ⊕ [Int8

]
1 ⊕ [Bool2

]
1

Or, we may collapse the �rst two records as in:

[Int3
]
2 ⊕ [Int8

]
1 ⊕ [Bool2

]
1

where the �rst addend describes two arrays whose total content is

made of three integers. Or we may collapse everything as in:

[Int11 ⊕ Bool2
]
4

which describes four arrays whose total content is two booleans and

11 integers. In a standard type system, a statement x : Int + Bool
means that we expect x to be either an integer or a boolean, and we

do not know whether it will be one or another. In our type system

when we say M :
m Int1 ⊕ Bool1

, we mean that each element of

the multiset M is either integer or boolean, but we also say that M
contains exactly two elements, and we know that exactly one is an

integer and exactly one is a boolean.

Traditional type systems are designed to prescribe features of

unknown data, while ours is designed to describe feature of data

that is already known. Traditional union types are needed in order

to accommodate for uncertainty, while our union type is used in

order to allow one to describe the same data at di�erent levels

of abstraction, with di�erent trade-o�s between succinctness and

precision. For this reason, our union type does not denote set

union, but rather a combination of union and product, so that every

element of Int1 ⊕ Bool1
is not “either an integer or a boolean”, but

is a multiset of two elements, one integer and one boolean.

Remark 3.5 While this system may look quite strange, it bears a

strong relation with the non-counting system, described in (Baazizi

et al. 2017). �e non-counting system can be obtained by erasing

every integer index from a type, and it holds that J : T implies that

J belongs to the erasure of T in the non-counting system. Type

erasure maps our union type T1 ⊕ T2 to a standard set-union type.

We de�ne the usual notions of subtyping T ≤ U and type equiv-

alence T ' U.

De�nition 3.6 (T ≤ U, T ' U). A counting type T is a subtype

of U, wri�en T ≤ U, i� JTK ⊆ JUK. A counting type T is equivalent

of U, wri�en T ' U, i� JTK = JUK.

As usual, a more detailed description that captures a more spe-

ci�c set - in this case a more speci�c set of multisets - is a subtype

of a more general description, as in the examples below.

(i ) {m : Int1}1 ⊕ {l : Int1}1 ≤ {m : Int1, l : Int1}2

(ii ) [Int2
]
1 ⊕ [Int1

]
2 ≤ [Int3

]
3

3.2 Inference modulo reduction
In this paper we use schema and type as synonyms. Schema infer-

ence is the process of inferring a schema, which for us is just a type,

for a JSON expression. Our system is based on two judgements:

`E M :
m T, that associates a type T of width n to a multiset M of n

elements, and `E J : S that associates a structural type S of width

one to the single value J . Our inference algorithm is parametrized

with respect to an equivalence relation E which will be discussed

later, and is speci�ed in Figure 1.

�e type rules of Figure 1 transform atomic values and records

into the corresponding structural types in the obvious way. �e type

inference for the arrays is based on type inference for collection.

Elements of a collection are recursively mapped to the correspond-

ing structural types, and all their types are combined together in

order to get a common supertype by rule (TypeUnionMultiset),

which is the core of the inference algorithm. A more natural rule

would have been

(BasicTypeUnionMultiset)

`E M1 :
m T1 `E M2 :

m T2

`E M1 ∪
m M2 :

m T1 ⊕ T2

but this rule produces a type that is not very helpful for the task

of data summarization, since it has one type for each piece of

JSON data, hence we generalize T1 ⊕ T2 to a parametric function

Reduce(T1,T2,E) that can produce a type that is much more com-

pact. We are going to de�ne this function in the next section, but we

anticipate here that it is commutative, associative, that its behavior

depends on the E parameter, and that it always yields a supertype

of T ⊕ U. �is last property ensures soundness of type inference,

as speci�ed by the following theorem (the E parameter will be

discussed very soon, but its nature is irrelevant for this theorem).

Theorem 3.7. Assume that Reduce(T,U,E) enjoys the following
subtype property, on every pair of types T and U that can be both
generated by type inference:

∀T,U. T ⊕ U ≤ Reduce(T,U,E)

�en, for any JSON value J , and for any multisetM of JSON values:

`E J : S ⇒ ⦃ JJK ⦄m ∈ JSK
`E M :

m T ⇒ JMK ∈ JTK

Type rules suggest an obvious algorithm, where any J and any M
is matched with the conclusions of each rule, and the corresponding

rule is used to reduce the conclusions to the premises. �e rule

(TypeUnionMultiset) is non-deterministic, since a multiset may

be split in many di�erent ways, and non terminating, in case one

of M1 or M2 is empty. Non termination is easy to avoid, by never

choosing an empty set as M1 or M2. Non-determinism is only

apparent: since Reduce(T,U,E) is associative and commutative, the

algorithm may split a multiset in any way that is convenient, which

is essential in a map-reduce implementation. �is property will be

formalized in �eorem 3.18.

In the following sections, we are going to de�ne theReduce(T,U,E)
function and to show how its behavior changes depending on the

parameter.
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(TypeNull)

`E null : Null1

(TypeBool)

`E true/false : Bool1

(TypeNumber)

n ∈ N

`E n : Num1

(TypeString)

s ∈ String
`E s : Str1

(TypeRec)

∀i . `E Ji : Si ∀i, j . i , j ⇒ li , lj

`E {l1 : J1, . . . , ln : Jn } : {l1 : S1, . . . , ln : Sn }
1

(TypeArray)

`E ⦃ J1, . . . , Jn ⦄m :
m T

`E [J1, . . . , Jn] : [T]
1

(TypeEmptyMultiset)

`E ∅m :
m ∅

(TypeSingleton)

`E J : S

`E ⦃ J ⦄m :
m S

(TypeUnionMultiset)

`E M1 :
m T1 `E M2 :

m T2

`E M1 ∪
m M2 :

m Reduce(T1,T2,E)

Figure 1: Type inference for counting types.

3.3 Parametric reduction
Type reduction is based on structural type merging. We de�ne merg-
ing of two structural types S1 and S2 as the operation of rewriting

S1 ⊕ S2 into a structural type S3, that is a type with no outermost

union, such that S1 ⊕ S2 ≤ S3, with the aim of ge�ing a type that

is more compact even if less precise.

We divide the structural types into six di�erent kinds, as formal-

ized by the following function that maps any S to an integer:

kind (Nulli ) = 0 kind (Booli ) = 1 kind (Numi ) = 2

kind (Stri ) = 3 kind (R) = 4 kind (A) = 5

It is easy to see that inclusion S1 ⊕ S2 ≤ S3 implies that S1, S2

and S3 have the same kind, that is, two structural types S1 and S2

can only be merged if they have the same kind.

Merging base types is easy: a union type Inti ⊕ Intj can be

rewri�en as Inti+j : both types denote the sets of all multisets that

contain exactly i + j integers, hence this merging operation does

not entail any loss of type information, and the same holds for the

other kinds of base types.

Merging two array types is also quite easy: for any pair [T]
i

and [U]
j
, the type [T ⊕ U]

i+j
is a structural supertype of [T]

i ⊕

[U]
j
. For example, [Int3

]
1

and [Int2
]
2

can be merged yielding

[Int3 ⊕ Int2
]
1+2

, hence [Int5
]
3
. However, in this case, there is

a loss of type information. While [Int3
]
1 ⊕ [Int2

]
2

speci�es that

3 integers are in one array and 2 are somehow split among the

other two arrays, the supertype [Int5
]
3

describes a set of 3 integer

arrays with total content of 5 integer, with no other information. As

another example, [Int3
]
1 ⊕ [Bool3

]
1

describes two homogeneous

arrays, but the supertype [Int3 ⊕ Bool3
]
2

describes two arrays that

collectively contain three integers and three booleans that can be

freely mixed. In this case we not only lose information about size

of each array, but also about the fact that the two base types are

separated.

Finally, if we have two record types such as {a : Int1,b : Int1}1

and {b : Bool1, c : Bool1}1, they can be merged by merging the

common �elds, obtaining

{a : Int1,b : Int1 ⊕ Bool1, c : Bool1}2

�is supertype describes two records, says that a and c are only

present in one, but does not specify whether they are both in the

same, nor the correlation between the type of b, that is once Int
and once Bool, and the presence of the other �elds, hence a lot of

information is lost by this merging. However, if we substitute

{a : Int1,b : Int1}1 ⊕ {a : Int2,b : Int2}2

with

{a : Int3,b : Int3}3

we have, this time, no loss of information: both the union type and

the merged type denote a multiset of three records, each of them of

type {a : Int1,b : Int1}1. Hence, merging records does not always

imply loss of information.

To sum up this informal discussion, when two structural types

have the same kind, they always admit a structural merge. However,

such merge may yield a loss of type information, and the loss is more

severe when the merged type are farther one from the other. Hence,

we de�ne a reduction operation that is parametrized over a partial

equivalence relation (PER) E, and which merges two structural

types if and only if they are E-equivalent. In this way, a �ner

E will merge less pairs, yielding a result that is bigger but more

informative. A coarser equivalence will give a di�erent trade-o�,

since it will merge more pairs, hence producing a result that is more

compact but less informative. In the extreme cases, an empty PER

will merge nothing, yielding a huge type with no information loss,

while a relation that relates every two types with the same kind

will return a much smaller type, with a higher information loss.

We need to set up a bit of machinery for this. We �rst recall

what is a PER, and we de�ne the notion of a kind-respecting PER.

De�nition 3.8 (Partial Equivalence Relation, kind-respecting PER,
K equivalence). A Partial Equivalence Relation (PER) over a set A
is a binary relation on A that is symmetric and transitive.

A Kind-respecting PER (KPER) is a PER E such that

E (S1,S2) ⇒ kind (S1) = kind (S2)

�e KPER K (S1,S2) is the maximal KPER, de�ned by

K (S1,S2) ⇔ kind (S1) = kind (S2)

We then de�ne a pair of operators, ◦T to extract the multiset

of the structural addends out of a type T, and ⊕M to rebuild the

original type, so that ⊕(◦(T)) is equivalent to T.

De�nition 3.9 (◦T (addends of T), ⊕M). For any type T and for

any multiset M of structural types, the operators ◦T and ⊕M are
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de�ned as follows. �e elements of ◦T are called the addends of T.

◦(T1 ⊕ T2)
M
= ◦T1 ∪

m ◦T2

◦∅
M
= ∅m

◦S
M
= ⦃S ⦄m

⊕(∅m )
M
= ∅

⊕(⦃S ⦄m ) M
= S

⊕(⦃S ⦄m ∪m M )
M
= S ⊕ (⊕M ) if M , ∅m

We also de�ne two operators �(R) to extract the key-�eld pairs

out of R and {M }n to rebuild the original type, so that {�(R)}n is

equivalent to R when n = #(R).

De�nition 3.10 (�(R), {S }n ).

�({l1 : T1, . . . , lk : Tk }
n )

M
= ⦃ (l1,T1), . . . , (lk ,Tk ) ⦄

{ ⦃ (l1,T1), . . . , (lk ,Tk ) ⦄ }n M
= {l1 : T1, . . . , lk : Tk }

n

We need a �nal de�nition, to give a name to the basic invariant

of our algorithm: given a KPER E, whenever two structural E-

equivalent types are argument of an union, they will be merged, so

that the resulting type is E-reduced, as de�ned below.

De�nition 3.11 (E-reduced). Given any partial equivalence rela-

tion E de�ned on structural types, a type T is E-reduced i� for any

union type T1 that is found at any nesting level inside T, no two

distinct addends in ◦T1 are E-equivalent.

We can �nally de�ne our Reduce(T1,T2,E) operator.

De�nition 3.12 (Reduce(T1,T2,E)). For any KPER E de�ned on

structural types, and for any two E-reduced types T1 and T2, the

operator Reduce(T1,T2,E) is de�ned as follows.

Reduce(T1,T2,E) =
⊕( ⦃Merge(S1,S2,E) | S1 ∈ ◦T1,S2 ∈ ◦T2,E (S1,S2) ⦄m

∪m ⦃ S1 | S1 ∈ ◦T1, @S2 ∈ ◦T2. E (S1,S2) ⦄m
∪m ⦃ S2 | S2 ∈ ◦T2, @S1 ∈ ◦T1. E (S1,S2) ⦄m )

Merge(Bm ,Bn ,E) = Bm+n

Merge(R1,R2,E) =
{ ⦃ (l , Reduce(T1,T2,E)) | (l ,T1) ∈ �(R1), (l ,T2) ∈ �(R2) ⦄
∪ ⦃ (l ,T1) | (l ,T1) ∈ �(R1),@T2. (l ,T2) ∈ �(R2) ⦄
∪ ⦃ (l ,T2) | (l ,T2) ∈ �(R2),@T1. (l ,T1) ∈ �(R2) ⦄

}#(R1 )+#(R2 )

Merge([T1]
m , [T2]

n ,E) = [ Reduce(T1,T2,E) ]
m+n

�e �rst line is the most important. Observe that, since both T1

and T2 are E-reduced, we have that no addend of T1 is E-related to

another addend of T1 and the same for T2. Hence, by transitivity

of E, no addend of T1 can be related to two distinct addends of T2,

and vice versa. Hence, any addend of T1 is either related to exactly

one addend of T2, hence the two are merged, or it is not related

to any, and it goes to the result unchanged. Hence, the �rst line

speci�es that all pairs of addends of T1 ⊕ T2 that are E-related are

merged, while those that have no E-equivalent addend are copied

into the result.

�e other three lines specify how two equivalent structural types

can be merged, and they formalize the description given at the

beginning of the section: base types are merged by index addition,

array types are merged by index addition and content reduction,

and record types use index addition and reduce the type of �elds

with the same key. �ese last three lines specify how structural

types are merged, but it is the E equivalence that speci�es if they

are merged. �is will be be�er discussed later, but please consider

the two extreme cases: the empty KPER ∅, and the maximal KPER

K . When E is the empty KPER, then no addend is ever merged with

any other addend, hence the last three lines of the de�nition are

useless. When E is the maximal KPERK , whenever two types have

the same kind, then they are merged. Any intermediate relation

will have a less drastic behavior, and will, for example, specify

when two record types, or two array types, should or should not

be merged.

3.4 Kind-driven reduction
We are �nally ready to instantiate our generic reduction operators.

We start by generalizing the approach of (Baazizi et al. 2017),

where two types are merged whenever they have the same kind.

�is is the coarser equivalence relation that can be used in our

type system. Kind-driven reduction Reduce(T1,T2,K ) or simply

K -reduction, is based on the idea that whenever two records are

met inside a collection, their types are always merged together,

the frequency of each key in the two record types is summed and,

crucially, the same operation, is propagated down the two types,

and the same reduction approach is applied to array types. �is

yields a very compact type, but some important information may

be lost during this process.

Example 3.13. Consider the following two types:

T1 = [{l : U4

1
}4]

2 ⊕ Num2
and T2 = [{l : U2

2
,m : U2

3
}2]

3
, where Uki

is a metavariable for a type of width k . �e reduction process is

described below. Reduce invokes Merge on structural types that are

addends, and Merge invokes Reduce on the types that are found

inside arrays and records. Observe that the l �eld is mandatory in

both of the merged record types – its width is equal to the record

type width – and, hence, it is mandatory in the �nal record type

again (the width of Reduce(U4

1
,U2

2
,K ) is #(U4

1
) + #(U2

2
) = 6). On

the other side, them �eld is only mandatory in the second record

type, but not in the �rst one, hence in the �nal record type it only

has a width 2 when the record type has width 6, hence it is optional

with a frequency of 2/6. In the same way, starting from two array

types whose average length is 4/2 and 2/3, we arrive at a merged

array type whose average length is (4+2)/(2+3), that is, 6/5. Finally,

while in T1 we have an array type in 2 cases out of 4 and in T2 we

always have an array type, in the merged type we have an array

type in 5 cases out of 7. All these statistics are computed by the

reduction algorithm and can be read from the �nal type.

Reduce(T1,T2,K ) =

= Merge([{l : U4

1
}4]

2, [{l : U2

2
,m : U2

3
}2]

3,K ) ⊕ Num2

= [Reduce({l : U4

1
}4, {l : U2

2
,m : U2

3
}2,K )](2+3) ⊕ Num2

= [Merge({l : U4

1
}4, {l : U2

2
,m : U2

3
}2,K )]5 ⊕ Num2

= [{l : Reduce(U4

1
,U2

2
,K ),m : U2

3
}(4+2)

]
5 ⊕ Num2

3.5 Key-driven reduction
Kind-driven reduction o�en yields a good compromise between

precision and succinctness. It is precise since, when `K J : T, every
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path such that J/p is not empty has a corresponding path in T, and,

for every path in T that arrives to a type T′ of width #(T′), the cor-

responding data exists and is a multiset of #(T′) elements. However,

this description loses interesting information when di�erent record

types are mixed. Consider a collection that contains 32 records of

type

{a : Int1,b : Int1, c : Int1}1

and 32 records of type

{d : Int1, e : Int1, f : Int1}1.

�e K -reduction algorithm infers a type

{a : Int32,b : Int32, c : Int32,d : Int32, e : Int32, f : Int32}64.

�is type exactly describes the six di�erent vertical paths /a . . . /f
and their results, but says nothing about the correlations among

di�erent keys, that is, the fact that the keys are partitioned in two

groups, ⦃a,b, c ⦄ and ⦃d, e, f ⦄, where keys of the same group

always appear together. Consider now a situation where we have

one record for each of the 64 subsets of ⦃a,b, c,d, e, f ⦄. In this

case the presences of the di�erent keys have no correlation, but the

inferred type is exactly the same.

In some situations the data analyst may be interested in this cor-

relation information, and in this case the following L-equivalence

relation may be exploited. It coincides with K -equivalence on any

type apart from records. Two record types are L-equivalent i� they

have the same sets of ‘labels’, that is, the same set of keys.

De�nition 3.14 (L-equivalence). L-equivalence between pairs of

structural types is de�ned as follows.

L ([T1], [T2]) always

L ([B], [B]) always

L (R1,R2) ⇔ Keys(R1) = Keys(R2)

If we consider the �rst case we described, K -reduction yields

the type

{a : Int32,b : Int32, c : Int32,d : Int32, e : Int32, f : Int32}64

while L-reduction yields the type

{a : Int32,b : Int32, c : Int32}32

⊕{d : Int32, e : Int32, f : Int32}32

�e increase of size is minimal, but the new type is much more

informative than the previous. If we consider the second case,

however, L-reduction yields a very big type, one with 64 addends:

{ }1 ⊕ {a : Int1}1 ⊕ {b : Int1}1 ⊕ {c : Int1}1 ⊕ {d : Int1}1 ⊕ . . .

⊕{a : Int1,b : Int1}1 ⊕ {a : Int1, c : Int1}1 ⊕ . . .

In this case, this type is still more informative than the merged

type, since it explicitly speci�es that no correlation exists among

the keys. However, its size is comparable with the size of the data,

hence its utility as a synthetic description of data is very limited.

In practice, no equivalence is be�er than the other in general,

although K -reduction is be�er in situations where data is very

irregular, hence it is important to be able to produce a description

that is very synthetic, while L-reduction is be�er in situations

where few types of records that are quite di�erent are mixed in a

single collection, or, more generally, in situations where the cor-

relation between the presence of di�erent �elds is important for

the analyst. Moreover, K -reduction is be�er in a �rst phase when

one is interested into a fast preview of the general structure of data,

while L-reduction may become more interesting when one wants

to get a more detailed view of the structure of data.

3.6 Properties of type inference
Our type inference algorithm enjoys two fundamental properties.

�e �rst is soundness, the fact that, independently of the partial

equivalence that is chosen for the reduction, the inferred type is

always a type of the input collection. �e second is associativity and

commutativity of type reduction, that ensures that the algorithm

can be implemented using a single pass in a map-reduce approach.

By �eorem 3.7, soundness is a consequence of the fact that

T ⊕ U ≤ Reduce(T,U,E), which we prove now.

Theorem 3.15. For any KPER E on structural types, for any two
E-reduced types T1 and T2:

T1 ⊕ T2 ≤ Reduce(T1,T2,E)

For any two E-reduced structural types S1 and S2:

E (S1,S2) ⇒ S1 ⊕ S2 ≤ Merge(T,U,E)

Proof: see Appendix.

Theorem 3.16 (Commutativity). �e following two properties
hold.

(1) Given two E-reduced types T1, T2, we have

Reduce(T1,T2,E) ' Reduce(T2,T1,E)

(2) Given two structural E-reduced types S1, S2, we have

E (S1,S2) ⇒ Merge(S1,S2,E) ' Merge(S2,S1,E)

Theorem 3.17 (Associativity). �e following two properties
hold.

(1) Given three E-reduced types T1, T2 and T3, we have

Reduce(Reduce(T1,T2,E),T3,E)

' Reduce(T1, Reduce(T2,T3,E),E)

(2) Given three structural E-reduced types S1, S2 and S3 we have

E (S1,S2),E (S2,S3) ⇒

Merge(Merge(S1,S2,E),S3,E)

' Merge(S1,Merge(S2,S3,E),E)

Theorem 3.18 (Determinism). For any JSON value J , and for
any multisetM of JSON values, for any KPER E, the following hold:

`E J : S1 and `E J : S2 ⇒ JS1K ' JS2K

`E M :
m T1 and `E M :

m T2 ⇒ JT1K ' JT2K

4 BOUNDED SIZE ARRAYS
A bounded size array type is a type [T i:j] that speci�es the set of

all arrays whose size k satis�es the constraint i ≤ k ≤ j. Counting

types [Tm]
n

can be usefully combined with bounded-size types,

since they give di�erent information. Consider for example the

following inferred type.

{email : [Str1,200
0:15]

1,000, . . .}1,000

We are collecting records where the email �eld is an array of

strings. �e size-bounds part of the type tells us that these arrays

range, in length, from 0 - an empty array - to 15. �e counting
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part of the type tells us that we collected 1, 000 such arrays whose

average length is 1.2 - hence the length distribution is heavily

skewed toward the lower end of the 0-15 range.

Depending on the application, either the bounds or the average

length may be the most important piece of information. We are

going to de�ne here a system that combines both.

We �rst present syntax and semantics of bounded size counting

array types.

Syntax:

A ::= [T i:j]n n ∈ N , i ∈ N , j ∈ (N ∪ {∞})

Semantics:

J [T i:j]n K M
= ⦃M | M ∈ MSetsn (Arrays),

(M/[∗] ) ∈ JTK,
V ∈ M ⇒ i ≤ |V .[∗] | ≤ j ⦄

A bounded array type [T i:j]n denotes a subset of [T ]
n

: each

element of [T i : j]n is a multiset M of n arrays such that M/[∗]
belongs to JTK, with the further constraint that the size of each

single array in M is included between i and j, where i ∈ N , j ∈
(N∪{∞}), and∞ denotes a value that is greater than every element

of N .

For any M ∈ J[T i:j]nK, the type T gives cumulative information

about M/[∗] , while the size-bounds describe each element of M .

�ese two pieces of information are di�erent, but they are related.

Consider an array type [T i:j]n , where #(T) = m: this array type

denotes a multiset of n arrays whose collective content is composed

bym values of type T and such that each single array has a length

that is included between i and j. Since m/n is the average length

of each array, we must have that i ≤ m/n ≤ j, that is, this type is

empty when i > m/n orm/n > j.
�e type inference rule for bounded size arrays is very simple:

(TypeArray)

`E ⦃ J1, . . . , Jn ⦄m :
m T

`E [J1, . . . , Jn] : [T n:n]
1

Rule (TypeArray) always generates a strict n:n bound. A bound

i :j with i , j is only generated when the types of two arrays of

di�erent sizes i and j are merged. �e merge rule for bounded-size

arrays is indeed de�ned as follows.

Merge([T i:j]m , [U k:l]n ,E)
M
= [Reduce(T,U,E) min(i,k ):max(j, l )]m+n

In this way, when many arrays with the same size are merged,

we end up with a �xed size type such as [Num200
2:2]

100
. When the

arrays have di�erent sizes, the resulting type [T i:j]n with #(T) =m,

will specify both the average array sizem/n and the minimal and

maximal length, respectively i and j, of all the arrays.

�e unbounded array types can be described as a degenerate

form of bounded size types where the lower bound is always 0 and

the upper bound is always ‘∞’.

Observe that our inference and fusion rules never infer a ‘∞’

upper bound: the inferred upper bound is always just the �nite

length of the longest array that is found in the corresponding posi-

tion, so that the ‘∞’ value is only present in our formalization for

compatibility with the base case and for the cases when our types

are used in a prescriptive way.

Once more, bounded size arrays enjoy the properties of sound-

ness of type inference, and commutativity and associativity of type

reduction. �ey are formalized as in �eorems 3.7, 3.15, 3.16, and

are not reported here for space reasons.

5 IMPLEMENTATION AND EXPERIMENTS
In this section we show that the parametric type inference approach

e�ectively takes advantage of distribution to run e�ciently on

relatively large datasets, and that, more interestingly, it is able to

extract valuable structural information.

Implementation and experimental setup. �e implementation of

our type inference technique uses the map-reduce paradigm which

enables processing large datasets on a cluster of commodity ma-

chines. To asses the feasibility of our approach, we performed our

experiments on a cluster of 6 nodes with a modest con�guration:

each node is equipped with a 2 × 10-cores CPU, 64 GB of RAM

and a standard RAID hard-drive, running Apache Spark 1.6.1 and

Hadoop File System 2.7 (HDFS). Our technique was implemented

in Scala by following the formal speci�cation in the paper and by

using an external library to parse the textual representation of JSON

objects. Data partitioning for the map phase is le� to HDFS, which

guarantees a balanced data distribution. Our technique also takes

advantage of the local aggregation (combine) performed by Spark,

thanks to the associativity of the type reduction: the types inferred

within each partition are locally reduced before being sent to the

master node in charge of producing the �nal result. To measure the

gain of using a distributed framework, we have set up two di�erent

se�ings: a centralized se�ing using one node of the cluster (20

cores and 50GB of RAM), and a distributed one that exploits the

full cluster capacity (120 cores and 300GB of RAM).

Dataset GitHub Twi�er NYTimes

Statistics about the data

Size 13 GB 21 GB 21.3 GB

# objects 1,000,001 9,901,087 1,184,943

average textual size 14 KB 2 KB 19 KB

average AST size / height 495.46/4 142.21/3 1238.00 /7

Statistics about the types - execution times

Kind-driven reduction

Map phase: avg. type size 495.46 135.44 109.74

Reduce ph.: �nal type size 655 559 139

Total time (min) - cent./dist. 15/0.7 Fail/1.3 19.5/2.8

Key-driven reduction

Map phase: avg. type size 495.46 135.44 128.54

Reduce ph.: �nal type size 2,979 2,438 384

Total time (min) - cent./dist. 15.3/0.8 Fail/3 20.4/3

Table 1: Experimental results.
Datasets. To evaluate our approach we use three main datasets,

that present complementary features. Speci�cally, the GitHub

dataset (GH) does not use arrays and constitutes a good testbed

for the measure of �eld presence; the Twi�er dataset (TW), on the

contrary, is interesting for the intensive use of arrays; the NYTimes

dataset (NYT) allows the same �eld to have di�erent structures

in di�erent instances and is thus useful to study type variability.
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�ese datasets are described in Table 1. �e �rst part of this table

reports basic statistics on each collection: its size in GB, the number

of its objects, the average size of the textual representation of each

of these objects in KB and in terms of the size of the corresponding

abstract syntax tree (AST), and the average height of the AST. It

can be observed that the NYTimes objects are the largest among

the three datasets, which is related to their high level of nesting.

Performance. �e total execution times are reported in Table 1.

We �rst observe that both variants of type reduction incur compa-

rable execution times, with the more precise version being slightly

slower. Distribution of execution is extremely e�ective: it enables

processing the Twi�er dataset (whose processing failed because

of the large number of its objects), and it signi�cantly reduces the

execution time for GitHub and NYTypes, with factors of 21 and 7.

Succinctness and precision analysis. Both tested equivalence pro-

duce types that are quite succinct, and, of course, K -equivalence

produces more compact types than L-equivalence. In our table, we

measure succinctness by comparing the sizes of the types that we

obtain a�er each phase with the size of the objects. Some form of

succinctness is already obtained upon the map phase where each

single object is analyzed. �e most prominent example of this is

observed for NYTimes: the AST size of the average type is around

9% of the size of the AST of the average object. �is is due to the

presence of arrays, which, in this dataset, typically contain 10 ob-

jects, whose type is represented by just one type. �e succinctness

results a�er reduction are more interesting, and depend on the

equivalence used as parameter. If we consider kind equivalence,

the size of the resulting type is, for Twi�er which represents the

worst case, just 4 times bigger than the average size of each of the

9,901,087 individual types of the collection elements. �is limited

increase means that the element types are very similar, and it in-

dicates that the type that describes the entire collection is quite

small, and hence can be reasonably read and understood by the

data analyst. If we consider L-equivalence, the size of the resulting

type is, for Twi�er which again features the worst case, 18 times

bigger than the average size of the element types. �e counterpart

is of course the extraction of a very precise information about �eld

correlations. �e type of the Twi�er collection contains 55 record

types, nested at di�erent levels. �e key-driven inferred type shows

that 12 of these 55 record types present di�erent key combinations,

and it lists all of these combinations, each with its frequency. �e

same phenomenon is encountered in GitHub and NYTimes where

respectively 7 and 8 record types have di�erent shapes. In these

cases the increase in size from the kind-driven to the key-driven

is more limited. In a typical situation, a data analyst may use the

more compact type in order to gain a �rst understanding of data

structure, and may then use the more precise type to get a be�er

understanding.

Counting types analysis. �is part of this section is devoted to

discussing the bene�t of using counting types. �is theme is in-

herently subjective: knowing the frequency of one speci�c �eld

or the frequency of a combination of �elds in a record may be

extremely important, or totally irrelevant, depending on the role of

the �eld or the record and on the need of the data analyst. �e only

way to measure the practical bene�t would be by collecting and

analyzing interviews to data analysts, which is out of the scope of

this paper. Hence, we try here a di�erent approach: we measure

the variability of the information that we collect, according to the

information-theoretic observation that numbers that are uniform

are not very interesting, since they can be easily guessed.

�ree features are discussed: the frequency of branches in unions,

the frequency of (optional) �elds in records, and the cardinality

of arrays. For the sake of simplicity, frequencies are grouped into

three ranges: marginal which correspond to values below 10%,

dominant which correspond to values above 90%, and median which

correspond to all values in between. We focus on the distribution

of Nulls in ‘Null+String’ unions, the most common we observed,

and the distribution of optional �elds. �e distribution of Nulls

for Github, Twi�er and NYTimes datasets, and for each range, are

respectively (14, 5, 2), (12, 12, 4) and (5, 1, 2) whereas the distribution

of �elds for these dataset are (5, 12, 0), (14, 3, 3) and (11, 3, 4). We

observe that all datasets present the whole range of situations with

�elds that are very o�en null, very o�en non-null, and �elds that

are somewhere in between. �e same observation holds for �eld

frequencies with an exception for the GitHub dataset where the

intermediate case is more common.

�e last feature to analyze is the cardinality of arrays. We distin-

guish between �xed and variable size arrays. We observed that the

size of arrays ranges between 0 and 4 when dealing with �xed size

arrays, whereas it can range from 0 to 35 in varying size arrays.

Many of Twi�er arrays have length 2 which, by a deeper exam-

ination, revealed that they correspond to longitude and latitude

coordinates. �e use of �xed size arrays is more common in Twi�er

than in NYTimes, where variable size arrays are more frequent. By

direct observation we noticed that, most of the time, the content of

�xed size arrays is a tuple of numeric values, whereas the content

of variable size arrays are lists of records.

6 CONCLUSIONS
Types are a fundamental tool to document code and reason about

it. �ey usually express structural information, but we believe they

may be usefully extended with quantitative information.

We have presented here a case study for this idea, where a quan-

titative type system is used in order to describe data. �is is useful

to assess the size of the data under consideration but is especially

useful in a situation where data is somehow irregular, with di�erent

variants, since it gives the possibility to specify the frequency of

each of the variants.

�e basic original features of our type system are the set-of-

multisets semantics that departs from the usual set-of-values ap-

proach and the peculiar nature of the union type operator. �e most

original feature of our type-inference algorithm is the parameteriza-

tion on an equivalence relation, which has practical relevance and

has also the advantage of allowing us to prove the basic properties

of many di�erent variants of the same algorithm just once.

We have presented the notion of counting types in a very speci�c

se�ing, that of schema inference. We believe it would be interest-

ing to extend the idea of quantitative types to the more standard

scenario where types are used to specify property of unknown data

and to specify properties of code, but this is far from easy.
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A APPENDIX
Lemma A.1. ⊕ is monotonic w.r.t subtyping, that is:

T ≤ T ′ ∧ U ≤ U ′ ⇒ T ⊕ U ≤ T ′ ⊕ U ′

Theorem A.2. For any KPER E on structural types, for any two
E-reduced types T1 and T2:

T1 ⊕ T2 ≤ Reduce(T1, T2,E)

For any two E-reduced structural types S1 and S2:

E (S1, S2) ⇒ S1 ⊕ S2 ≤ Merge(T ,U ,E)

Proof.

Reduce(T1, T2,E) =
⊕( ⦃ Merge(S1, S2,E) | S1 ∈ ◦T1, S2 ∈ ◦T2,E (S1, S2) ⦄m

∪m ⦃ S1 | S1 ∈ ◦T1, @S2 ∈ ◦T2. E (S1, S2) ⦄m
∪m ⦃ S2 | S2 ∈ ◦T2, @S1 ∈ ◦T1. E (S1, S2) ⦄m )

Merge(Bm ,Bn ,E) = Bm+n

Merge(R1, R2,E) =
{ ⦃ (l , Reduce(T1, T2,E)) | (l , T1) ∈ �(R1), (l , T2) ∈ �(R2) ⦄
∪ ⦃ (l , T1) | (l , T1) ∈ �(R1),@T2. (l , T2) ∈ �(R2) ⦄
∪ ⦃ (l , T2) | (l , T2) ∈ �(R2),@T1. (l , T1) ∈ �(R2) ⦄

}#(R1 )+#(R2 )

Merge([T1]
m , [T2]

n ,E) = [ Reduce(T1, T2,E) ]
m+n

By mutual induction on size of T1 and T2 and, for structural types,

by cases. In the induction order, Reduce(T1, T2,E) is greater than

Merge(T1, T2,E), which will be crucial to prove the �rst property.

First property: No addend of T1 may be E-equivalent to two

distinct addends of T2 since, by transitivity, these two distinct

addends would be E-related, contradicting the hypothesis that T2 is

E-reduced, and the same property holds for T2. Hence, T1 ⊕ T2 can

be rewri�en as follows, because every addend of T1 ⊕ T2 appears

in the following expression exactly once.

⊕( ⦃ S1 ⊕ S2 | S1 ∈ ◦T1, S2 ∈ ◦T2,E (S1, S2) ⦄m
∪m ⦃ S1 | S1 ∈ ◦T1, @S2 ∈ ◦T2. E (S1, S2) ⦄m
∪m ⦃ S2 | S2 ∈ ◦T2, @S1 ∈ ◦T1. E (S1, S2) ⦄m )

�e de�nition of Reduce(T1, T2,E) is obtained by substituting

any S1 ⊕ S2 in the �rst line with Merge(S1, S2,E). �e result than

follows by the inductive hypothesis S1 ⊕ S2 ≤ Merge(S1, S2,E) and

by monotonicity of union (Lemma A.1).

Second property, by cases on the kind of S1. Since E is a KPER,

E (S1, S2) implies that kind (S1) = kind (S2).
Kinds 0-3, In this case, S1 and S2 can be wri�en as Bn and Bm ,

and we must prove that Bn ⊕ Bm ≤ Bm+n . By de�nition, every

element of Bn ⊕ Bm is a multiset of sizem + n that only contains

values from B. Such a multiset belongs to Bm+n by de�nition.

Kind 5, array types: S1 = [T ′
1
]
m

, S2 = [T ′
2
]
n

.

We want to prove that

S ∈ J[T ′
1
]
m ⊕ [T ′

2
]
nK =⇒ S ∈ J[Merge(T ′

1
, T ′

2
,E)]m+nK

that is, S ∈ MSetsm+n (Arrays), (S/[∗] ) ∈ JMerge(T ′
1
, T ′

2
,E)K.

Assume that S ∈ J[T ′
1
]
m ⊕ [T ′

2
]
nK. �is implies that S = S1∪

m S2

with S1 ∈ J[T ′
1
]
mK and S2 ∈ J[T2]

nK. Hence S is a multiset ofm +n
arrays and S1/[∗] ∈ JT ′

1
K and S2/[∗] ∈ JT ′

2
K. By de�nition of /[∗] ,

it holds that (S1 ∪
m S2)/[∗] = (S1/[∗] ∪

m S2/[∗] ). From S1/[∗] ∈

JT ′
1
K and S2/[∗] ∈ JT ′

2
K, by de�nition of J ⊕ K, we have that

http://dx.doi.org/10.1145/2882903.2882924
http://dx.doi.org/10.1145/2588555.2595628
http://dx.doi.org/10.1145/2872427.2883029
http://dx.doi.org/10.1145/2872427.2883029
http://ceur-ws.org/Vol-1558/paper10.pdf
http://cidrdb.org/cidr2017/papers/p84-spoth-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p84-spoth-cidr17.pdf
http://dx.doi.org/10.14778/2777598.2777601
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(S1/[∗] ∪
m S2/[∗] ) ∈ JT ′

1
⊕ T ′

2
K, hence (S1 ∪

m S2)/[∗] ∈ JT ′
1
⊕ T ′

2
K,

that is S/[∗] ∈ JT ′
1
⊕ T ′

2
K, hence S/[∗] ∈ JReduce(T ′

1
, T ′

2
,E)K by

induction.

Kind 4, record types: S1 = {F1}
m

, S2 = {F2}
n

,

S3 =

{ ⦃ (l , Reduce(T1, T2,E)) | (l , T1) ∈ �(R1), (l , T2) ∈ �(R2) ⦄
∪ ⦃ (l , T1) | (l , T1) ∈ �(R1),@T2. (l , T2) ∈ �(R2) ⦄
∪ ⦃ (l , T2) | (l , T2) ∈ �(R2),@T1. (l , T1) ∈ �(R2) ⦄

}m+n

We split the �elds of F1 in two sets: the �rst for those common

with F2 and the second for those unique to F1:

F1 = {(l
i
c : T f

′ (i )
1

)}i ∈1..kc ∪ {(l i
1

: T f
′′ (i )

1
)}i ∈1..k1

and we do the same for F2, where we split common �elds and

unique �elds in the following sets:

F2 = {(l
i
c : Tд

′ (i )
2

)}i ∈1..kc ∪ {(l i
2

: Tд
′′ (i )

2
)}i ∈1..k2

Note that, for the common �eld, we use the same kc and the same

function lc in both cases. In this way, we can now rewrite S3 as

{ {(l ic , Reduce(T
f ′ (i )
1

), Tд
′ (i )

2
,E)}i ∈1..kc

∪ {(l i
1
, T f

′′ (i ))
1

)}i ∈1..k1

∪ {(l i
2
, Tд

′′ (i ))
2

)}i ∈1..k2 }m+n

We want to prove that S ∈ J{F1}
m ⊕ {F2}

nK implies S ∈ JS3K,

that is:

(1) S ∈ MSets(m+n) (Recs)
(2) ∀i ∈ 1..kc . S/l

i
c ∈ JReduce(T f

′ (i )
1
, Tд

′ (i )
2
,E)K

(3) ∀i ∈ 1..k1. S/l
i
1
∈ JT f

′′ (i )
1

K

(4) ∀i ∈ 1..k2. S/l
i
2
∈ JTд

′′ (i )
2

K
(5) ∀l < (Keys(F1) ∪ Keys(F2)). S/l = ∅

m

Assume that S ∈ J{F1}
m ⊕ {F2}

nK. �is implies that S = S1∪
m S2

with S1 ∈ J{F1}
mK and S2 ∈ J{F2}

nK. Hence S is a multiset ofm +n

records. We have now to prove the other four properties.

By de�nition of /l , we have that, for any key l :

S/l = (S1 ∪
m S2)/l = S1/l ∪

m S2/l (∗)

Prop. 2: We know by hypothesis that S1/l
i
c ∈ JT f

′ (i )
1

K and

S2/l
i
c ∈ JT f

′ (i )
2

K. Hence, by (*), S/l ic ∈ JT f
′ (i )

1
⊕ T f

′ (i )
2

K and, by

induction, S/l ic ∈ JReduce(T f
′ (i )

1
, Tд

′ (i )
2
,E)K.

Prop. 3-4: We know by hypothesis that S1/l
i
1
∈ JT f

′′ (i )
1

K and

that S2/l
i
1
= ∅m . By (*), we conclude that S/l i

1
= S1/l

i
1

, hence

S/l i
1
∈ JT f

′′ (i )
1

K. Case 4 is identical.

Prop. 5: Assume that l < (Keys(F1)∪Keys(F2)). �en, S1/l = ∅
m

and S2/l = ∅
m

, hence S/l = ∅m .
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