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There have been extensive studies of critical exponents for phase transitions of thermodynamic systems; see among many others [START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF][START_REF] Sengers | Experimental critical-exponent values for fluids[END_REF]. However, there are still two basic open questions regarding critical exponents. The first is whether the critical exponents are universal. It is believed, though not proven, that they are indeed universal. The second question is why there is a discrepancy between theoretical and experiment values of critical exponents.

We shall show in this paper that the critical exponents are indeed universal, and the discrepancy is due to fluctuations. More precisely, this paper is aimed [START_REF] Chaikin | Principles of condensed matter physics[END_REF] to establish a dynamical law of fluctuations based on the standard model of thermodynamics; (2) to derive the theoretical critical exponents using the standard model; (3) to deduce the critical exponents based on the standard model with fluctuations, leading to correct critical exponents in agreement with experimental results; and (4) to show that the standard model of statistical physics derived from first principles [START_REF]Dynamic law of physical motion and potential-descending principle[END_REF][START_REF] Liu | Thermodynamical potentials of classical and quantum systems[END_REF] is in agreement with experiments.

The main ingredients of the study are as follows.

First, for a thermodynamic system, there are three levels of variables that are used to fully describe the system: the control parameters λ, the order parameters u, and the thermodynamic potential F . In a recent paper [START_REF]Dynamic law of physical motion and potential-descending principle[END_REF], two of the authors postulated the potential-descending principle (PDP): for a non-equilibrium state u(t; u 0 ) of a thermodynamic system with initial state u(0, u 0 ) = u 0 , (1) the potential F (u(t; u 0 ); λ) is strictly decreasing as time evolves;

(2) the order parameters u(t; u 0 ), as time evolves to infinity, tend to an equilibrium of the system, which is a minimal point of the potential F . We have shown that the PDP is a more fundamental principle than the first and second laws of thermodynamics, and provides the dynamic law for statistical physics:

(1.1) du dt = -δF (u, λ), which offers a complete description of associated phase transitions and transformation of the system from non-equilibrium states to equilibrium states. This dynamic law (1.1) also describes automatically irreversibility.

Second, in view of (1.1), we developed a systematic theory in [START_REF] Liu | Thermodynamical potentials of classical and quantum systems[END_REF] for deriving explicit expressions of thermodynamic potentials, based on first principles, rather than on the mean-field theoretic expansions.

Third, phase transition is a universal phenomena in most, if not all, natural systems, and refers to the transformation of the system from one state to another, as the control parameter crosses certain critical threshold. Phase transitions and critical phenomena are the most important topics in statistical physics. We refer the interested readers to, among many others, [START_REF] Pathria | Statistical Mechanics[END_REF][START_REF] Reichl | A modern course in statistical physics[END_REF][START_REF] Landau | Statistical Physics: V. 5: Course of Theoretical Physics[END_REF][START_REF] Lifshitz | Statistical physics part 2[END_REF][START_REF] Lifschitz | Lehrbuch der theoretischen Physik[END_REF][START_REF] Kadanoff | Statistical physics: statics, dynamics and renormalization[END_REF][START_REF] Fisher | Renormalization group theory: Its basis and formulation in statistical physics[END_REF][START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF][START_REF] Chaikin | Principles of condensed matter physics[END_REF][START_REF] Kleman | Soft matter physics: an introduction[END_REF][START_REF] Nishimori | Elements of phase transitions and critical phenomena[END_REF] and the references therein for more details.

A systematic dynamic transition theory for dissipative systems has been developed by two of the authors through a sequence of paper starting around 2004, and the theory and its wide range of applications are synthesized in their book [START_REF] Ma | Phase Transition Dynamics[END_REF]. The theory demonstrates a general principles that phase transitions of all dissipative systems can be classified into three categories: continuous, catastrophic, and random.

We are now have at disposal • the thermodynamic potential,

• the dynamic law (1.1), and • the dynamic transition theory [START_REF]Dynamical theory of thermodynamic phase transitions[END_REF], providing a complete theoretical understanding of phase transitions and critical phenomena for thermodynamic systems. This is the basic theory of the standard model for thermodynamical systems.

Fourth, there is, however, a discrepancy between the theoretical exponents and their experimental values, as in the case of mean-field theoretic approach. We demonstrate in this paper that in reality, there is a critical fluctuation effect, and we show that the discrepancy just mentioned is due entirely to the spontaneous fluctuation.

To have an accurate account of the fluctuations, we need to derive its governing fundamental law, which have to stem from the thermodynamic potential and the dynamic law (1.1).

In fact, for an equilibrium state u 0 of a thermodynamic system, the fluctuation of u is the deviation from u 0 :

(1.2) fluctuation w = u -u 0 .
Then the needed dynamic law for fluctuations is given by

(1.3) dw dt = -[δF (u 0 + w) -δF (u 0 )] + f .
where f is the fluctuation of the external force.

Fifth, we now see that there are two groups of critical exponents:

• theoretical critical exponents of the dynamic law (1.1), and • fluctuation critical exponents of the dynamic law of fluctuations (1.3). Hence we have shown that the theoretical values from the dynamic law (1.1) do reflect the nature under the ideal assumption that no fluctuations are present in the system. However, the fluctuations are inevitable, and are completely accounted for by the dynamic law of fluctuations (1.3). In a nutshell,

• the standard model (1.1), together with the dynamic law of fluctuation (1.3), offers correct information for critical exponents; and • this in return validates the standard model of thermodynamics, which is derived based on first principles.

The paper is organized as follows. Section 2 provides a review of the classical Einstein fluctuation theory and makes a slight modification of the theory. Section 3 recalls the potential-descending principle, the dynamic law of statistical physics and derives the dynamic law of fluctuations. Section 4 studies the fluctuation effect on critical parameters for equilibrium phase transitions. Section 5 derives critical exponents using the standard model without fluctuations, and Section 6 obtains the critical exponents using the standard model with fluctuation effects.

Statistical Theory of Fluctuation

2.1. Classical Einstein fluctuation theory. Thermodynamical quantities in equilibrium are statistical average values. However, from microscopical viewpoint a thermodynamical system state always deviates its average value. The deviation is called a fluctuation of the state.

Let u represent a thermodynamical quantity, such as the temperature T , the pressure p, the volume V , the molar density ρ, etc.. If u is its average value, and ∆u is the deviation from u, called the fluctuation of u at u: ∆u = u -u. Since ∆u varies in both time and space, we need to know its meansquare value:

(2.1) (∆u) 2 = the mean-square fluctuation of u.

The classical theory for computing (2.1) is the Einstein's fluctuation formula, which we introduce below for convenience. Let W max be the maximum state number of a thermodynamical system, and W be a fluctuation of W max . The core of the Einstein fluctuation theory is to regard W as (2.2) W = the fluctuation probability distribution.

This formula defines the state number fluctuation W ; then for any thermodynamical quantity u, its mean-square fluctuation (∆u) 2 can be expressed as

(2.3) (∆u) 2 = ∞ -∞ (∆u) 2 W (∆u)d(∆u) ∞ -∞ W (∆u)d(∆u)
.

To compute the value of (2.3), we have to determine the distribution function W = W (∆u). To this end, we start with the Boltzmann entropy formula:

S = k ln W max ,
where k is the Boltzmann constant, and S is the entropy in the equilibrium state. Let S be the deviation from S, which is written as

S = k ln W.
Then we obtain the entropy fluctuation as follows:

(2.4) ∆S = S -S = k ln W W max .
We infer from (2.4) the fluctuation state number W as

(2.5) W = W max e ∆S/k .
In thermodynamics, ∆S is a function of ∆u:

(2.6) ∆S = f (∆u).

Hence by inserting (2.6) into (2.5), we deduce that (2.7) W = W max e f (∆u)/k .

Let x = ∆u. By (2.7), formula (2.3) is rewritten as f (x) ∼ -α|x| k for α > 0, k > 0. This is not a natural condition.

(2.8) (∆u) 2 = ∞ -∞ x 2 e f (x)/k dx ∞ -∞ e f (x
In fact, formula (2.8) is based on the following definition of thermal energy:

(2.9)

kT ln W = thermal energy.

Namely k ln W =entropy. However, in view of the ensemble theory in statistical physics, the general form of a probability distribution for a thermodynamical system is as

(2.10) ρ = ρ 0 e -E/kT ,
where E is the energy. Hence, instead of (2.9) we should think that (2.11) kT ln W = system energy (potential).

Thus, in view of (2.10) and (2.11), it is reasonable to take the fluctuation probability distribution W in the form (2.12)

W = W 0 e -|∆F |/kT ,
where F is a thermodynamical potential, and ∆F is the fluctuation of F . With the revised formula (2.12), we introduce the following postulate, which serves as the foundation for the statistical theory of fluctuations.

Postulate 2.1. Let u be a thermodynamical quantity, and F (u) be the potential functional of u. Then, the fluctuation probability distribution W of the system is given by (2.12), and the mean square fluctuation of u is as follows

(2.13) (∆u) 2 = ∞ -∞ x 2 e -|∆F (x)|/kT dx ∞ -∞ e -|∆F (x)|/kT dx
, where x = ∆u is the fluctuation of u.

Some examples.

We use the revised fluctuation formula (2.13) to compute a few mean square fluctuations of some thermodynamical quantities.

Let F = U -ST + P V be the Gibbs free energy of a thermodynamic system.

1). Let the entropy S be an order parameter. The second-order approximation of the Taylor expansion of ∆F at the equilibrium S is

∆F = F (S) -F (S) = ∂F (S) ∂S ∆S + 1 2 ∂ 2 F (S)
∂S 2 (∆S) 2 By the PDP, Principle 3.1, for an equilibrium state S, we have

∂F (S) ∂S = 0.
Hence ∆F is expressed as

(2.14) ∆F (x) = 1 2 ∂ 2 F (S)
∂S 2 x 2 with x = ∆S. Also, since F = U -ST + P V , U is the internal energy and ∂U ∂S = T , we have

∂ 2 F ∂S 2 = ∂ 2 U ∂S 2 = ∂T ∂S = T C V ,
where C V is the heat capacity. Thus, (2.14) becomes

(2.15) ∆F (x) = T 2C V x 2 .
Inserting (2.15) into (2.13), we deduce that

(2.16) (∆S) 2 = kC V ,
where k is the Boltzmann constant.

2). Let V be the order parameter, then we have

∆F = F (V ) -F (V ) = 1 2 ∂ 2 F ∂V 2 (∆V ) 2 = - 1 2 ∂P ∂V (∆V ) 2 .
By the classical theory of thermodynamics,

∂P ∂V = - 1 V α T , α T = compression coefficient.
Thus we obtain that (2.17)

∆F (x) = x 2 2V α T with x = ∆V.
Then we derive from (2.13) and (2.17) that (2.18) (∆V ) 2 = kT V α T .

3). We now derive the mean square fluctuation of temperature T , by using (2.16). Let T = T (S), then we have

∆T = ∂T ∂S ∆S =⇒ (∆T ) 2 = ∂T ∂S 2 (∆S) 2 .
By (2.16) and (∂T /∂S)

2 = T 2 /C 2 V , we obtain (2.19) (∆T ) 2 = kT 2 /C V .
Remark 2.2. The results (2.16), (2.18) and (2.19), derived by the revised fluctuation theory, are the same as those by the classical fluctuation theory. In fact, the revised Postulate 2.1 is easier to understand and to apply.

Dynamical Theory of Fluctuations

3.1. Potential descending principle. In [START_REF]Dynamic law of physical motion and potential-descending principle[END_REF], a fundamental principle in statistical physics, called the potential-descending principle (PDP), was postulated, and is recalled here.

Principle 3.1 (Potential-Descending Principle). For each thermodynamic system, there are order parameters u = (u 1 , • • • , u N ), control parameters λ, and the thermodynamic potential functional F (u; λ). For a non-equilibrium state u(t; u 0 ) of the system with initial state u(0, u 0 ) = u 0 , we have the following properties:

(1) the potential F (u(t; u 0 ); λ) is decreasing:

d dt F (u(t; u 0 ); λ) < 0 ∀t > 0;
(2) the order parameters u(t; u 0 ) have a limit

lim t→∞ u(t; u 0 ) = ū;
(3) there is an open and dense set O of initial data in the space of state functions, such that for any u 0 ∈ O, the corresponding ū is a minimum of F , which is called an equilibrium of the thermodynamic system:

δF (ū; λ) = 0.
The PDP is leads to the first and second laws of thermodynamics, and to the three classical distributions, and consequently is a fundamental of statistical physics. Based on this principle, the dynamic equation of a thermodynamic system in a non-equilibrium state takes the form du dt = -AδF (u, λ) for isolated systems, (3.1)

       du dt = -AδF (u, λ) + B(u, λ), AδF (u, λ) • B(u, λ) = 0 for coupled systems, (3.2)
where δ is the derivative operator, B represents coupling operators, and A is a symmetric and positive definite matrix of coefficients. We refer interested readers to [START_REF]Dynamic law of physical motion and potential-descending principle[END_REF] for details.

Dynamical law of fluctuations.

Based on the PDP, an equilibrium state u 0 of a thermodynamic system satisfies the variational equation of the potential functional F :

(3.3) δF (u 0 ) = 0.
Also, the fluctuation of u is the deviation from u 0 :

(3.4) fluctuation w = u -u 0 .
We shall apply (3.1) to establish the dynamical equation for w.

It is known that a fluctuation is the process that the system deviates from the equilibrium state u 0 , resulting to a non-equilibrium state u = u 0 + w. Therefore, by (3.2) the non-equilibrium state u satisfies the following equation:

(3.5) du dt = -δF (u) + f ,
where f is the fluctuation of the external force, and for convenience the matrix A and operator B in (3.2) are taken as A = I, B = 0. Noticing that du 0 /dt = 0, we see that (3.3) can be written in the form as (3.5). Hence we arrive at the following general form of thedynamic law of fluctuations:

(3.6) dw dt = -[δF (u 0 + w) -δF (u 0 )] + f .
Furthermore, by the nonlinear operator theory, we know

(3.7) δF (u) -δF (u 0 ) = δ 2 F (u 0 )w + k≥2 1 k! δ k+1 F (u 0 )w k ,
where δ m F (u 0 ) is the m-th order variational derivative operator. Since the fluctuation w is naturally small:

0 < ||w|| 1,
for a non-critical state u 0 as defined after (3.21), we can ignore the higher-order terms with k ≥ 2 in (3.7). Thus, equation (3.6) is written as

(3.8) dw dt = -δ 2 F (u 0 )w + f .
Since u(0) = u 0 , by (3.4) we have the initial value condition (3.9) w(0) = 0.

The system (3.8)-(3.9) is also called dynamical law of fluctuations, near the non-critical state.

For convenience, we recall the precise definitions of the first and second order derivative operators of a functional F at u 0 as follows.

The first order derivative operator δF (u 0 ) is defined by

(3.10) δF (u 0 ), v = d dt F (u 0 + tv) t=0 , ∀ v ∈ X,
where X is the space of state functions, and u, v represents the inner product between two state functions u and v.

The second order derivative operator δ 2 F (u 0 )w is defined by

(3.11) δ 2 F (u 0 )w, v = d dt δF (u 0 + tw), v t=0 , ∀ v ∈ X,
As an example, we compute the first and second order derivative operators for the following functional (3.12)

F (u) = Ω 1 2 |∇u| 2 + αu 3 + f (x)u dx, u ∈ X = H 1 0 (Ω) = {u, ∇u ∈ L 2 (Ω) | u| ∂Ω = 0}, where α = 0 is a constant.
For this functional, the left-hand side of (3.10) is then written as

(3.13) δF (u 0 ), v = Ω δF (u 0 )vdx.
The right-hand side of (3.10) reads

d dt F (u 0 + tv) t=0 = d dt Ω 1 2 |∇(u 0 + tv)| 2 + α(u 0 + tv) 3 + (u 0 + tv)f dx t=0 = Ω [∇u 0 • ∇v + 3αu 2 0 v + f v]dx = Ω [-∆u 0 + 3αu 2 0 + f ]vdx.
Hence, we infer from (3.10) that (3.14) δF (u 0 ) = -∆u 0 + 3αu 2 0 + f. Consider (3.11), then we derive from (3.14) that

δ 2 F (u 0 )w, v = d dt Ω [-∆(u 0 + tw) + 3α(u 0 + tw) 2 + f ]vdx t=0 = Ω [-∆w + 6αu 0 w]vdx.
It follows that

(3.15) δ 2 F (u 0 )w = -∆w + 6αu 0 w.
The above (3.14) and (3.15) are the first and second order derivative operators of (3.12). In [START_REF] Ma | Phase Transition Dynamics[END_REF], we know that for the potential functionals F of all thermodynamic systems, the second order derivative operator of (3.17) are sectorial:

(3.18) L = -δ 2 F (u 0 ) is a sectorial operator.
Hence, the solution of (3.16) can be expressed as

(3.19) w = t 0 e (t-τ )L f (τ )dτ.
In the following we discuss the basic properties of the solution (3.19).

1). Explicit expression of solution w. By (3.17) and (3.18), the eigenvalue equation of L is

(3.20) Lϕ k = β k ϕ k .
The equilibrium state u 0 is called a non-critical state if the eigenvalues (3.20) satisfy

(3.21) 0 > β 1 ≥ • • • ≥ β k ≥ • • • and β k → -∞ as k → ∞.
If β 1 = 0, the equilibrium state u 0 is called a critical state. We remark here that for a stable equilibrium state u 0 , β 1 ≤ 0 is always true.

In this section we consider only the non-critical case where β 1 < 0. Let the corresponding eigenvectors be denoted by

{ϕ k | k = 1, 2, • • • }.
Then {ϕ k } form an orthonomal basis of X, where X is the space of state functions. Therefore, w, f ∈ X can be expanded as

(3.22) w = ∞ k=1 w k ϕ k , f = ∞ k=1 f k ϕ k . Inserting (3.22) into (3.19), we get (3.23) ∞ k=1 w k ϕ k = ∞ k=1 t 0 f k (τ )e (t-τ )L ϕ k dτ.
By (3.20) we have

(3.24) e (t-τ )L ϕ k = e (t-τ )β k ϕ k .
It follows from (3.22) and (3.24) that

w k = t 0 f k (τ )e (t-τ )β k dτ.
Thus, the solution w of (3.16) can be explicitly expressed as

(3.25) w = ∞ k=1 t 0 f k (τ )e (t-τ )β k dτ ϕ k ,
where f k are given by f k = f , ϕ k .

2). Estimates of the fluctuation radius. Let the fluctuation of the external force f ∈ X satisfy that

(3.26) sup t || f || 2 L 2 = ∞ k=1 | f k | 2 C 0 < ∞, | f k | C 0 = sup t | f k (t)|.
Under condition (3.26), by (3.25), the solution w of (3.16) has the following estimate

sup t ||w|| 2 L 2 = ∞ k=1 sup t t 0 f k (τ )e (t-τ )β k dτ 2 (3.27) ≤ ∞ k=1 | f k | 2 C 0 sup t t 0 e (t-τ )β k dτ ≤ ∞ k=1 1 β 2 k | f k | 2 C 0 sup t (1 -e tβ k ) 2 .
By (3.21) we see that

0 < (1 -e tβ k ) < 1 and 0 < β 2 1 ≤ β 2 2 ≤ • • • . Hence from (3.27) we obtain (3.28) sup t ||w|| L 2 ≤ 1 β 1 || f || L 2 .
In mathematics, for a function u defined in a domain Ω its L 2 -modulas is defined as

||u|| 2 L 2 = Ω |u| 2 dx.
Hence, (3.28) represents the estimates for the maximum fluctuation radius at non-critical point u 0 , i.e. β 1 < 0.

Remark 3.2. Since the fluctuation (3.4) is at a stable equilibrium u 0 , the operator L of (3.18) is negative definite. Therefore all eigenvalues of L are non-positive. For a critical state u 0 where β 1 = 0, the estimate (3.28) is no longer valid, and we need to use other methods to estimate the critical fluctuation.

Fluctuation Effect for Critical Parameters of Equilibrium Phase Transitions

4.1. Three basic theorems of thermodynamic phase transitions. To discuss the fluctuation effects in critical parameters, we need to introduce the three basic phase transition theorems in thermodynamic systems, derived in [START_REF]Dynamical theory of thermodynamic phase transitions[END_REF]. Let u 0 be an equilibrium state of a thermodynamic system. To study the dynamic transition of this stationary solution u 0 , we write u = u 0 + u , then the dynamical equation (3.1) or (3.2) leads to the following form for the deviation order parameter u (dropping the primes for convenience):

(4.1) du dt = L λ u + G(u, λ),
where λ is the control parameter, L λ is a linear operator, and G(u, λ) is the nonlinear operator with G(u, λ) = o(||u||). Equation (4.1) is called the standard model of a thermodynamic system with potential functional F (u, λ), and u = 0 represents the basic equilibrium state u 0 .

The following is the first theorem of thermodynamic phase transitions.

Theorem 4.1. Consider a thermodynamic system (4.1). Let β 1 (λ),

β 2 (λ), • • • ∈ R be eigenvalues 1 of the linear operator L λ . If (4.2) β i (λ)    < 0 if λ < λ 0 , = 0 if λ = λ 0 , > 0 if λ > λ 0 1 ≤ i ≤ m, β j (λ 0 ) < 0 m + 1 ≤ j,
then the system (4.1) always undergoes a dynamic transition to one of the three types of dynamic transitions: continuous, catastrophic and random, as shown in Figure 4.1, as λ crosses the critical threshold λ 0 .

The second theorem of thermodynamic phase transitions shows that there exist only first-order, second-order and third-order phase transitions, and provides the relationship between the Ehrenfest and the dynamic classifications. The second theorem is stated as follows.

Theorem 4.2. For the phase transition of a thermodynamic system, there exist only first-order, second-order and third-order phase transitions. Moreover the following relations between the Ehrenfest classification and the dynamical classification hold true: second-order ⇐⇒ continuous first-order ←-catastrophic either first or third-order ←-random first-order -→ either catastrophic or random third-order -→ random with asymmetric fluctuations.

In some thermodynamic phase transitions, there exist two phenomena: the latent heat, the superheated and supercooled states. The third theorem of thermodynamic phase transitions provides the relationship between the two phenomena and dynamical transition types. Theorem 4.3. For a thermodynamic system (4.1), the following statements hold true:

(1) both catastrophic and random transitions lead to saddle-node bifurcations, as shown in 

du dt = L λ u + G(u, λ), u(0) = ϕ.
If λ > λ 0 , u = 0 is stable. Let (4.4) r s (λ) be the attracting radius of u = 0.

Namely, for any initial value ϕ ∈ X, if ||ϕ|| X < r s (λ), then the solution u(t, ϕ) of (4.1) with initial value u(0, ϕ) = ϕ satisfies lim t→∞ u(t, ϕ) = 0.

We infer from Figure 4.1 that the attracting radius r s (λ) of u = 0 has the following property (4.5) r s (λ) > 0 for λ > λ 0 , = 0 for λ < λ 0 ;

and for the cases in diagrams (b) and (c), we have (4.6) r s (λ) -→ 0 as λ → λ + 0 .

Since u = 0, corresponding to u 0 before taking deviation, is an equilibrium state for all λ, theoretically the system can be in the state u = 0 regardless of its stability. However, a spontaneous fluctuation will cause the system deviating from u = 0 to a non-equilibrium state. Namely, (4.3) becomes (4.7)

du dt = L λ u + G(u, λ), u(0) = ϕ f ( = 0),
where ϕ f is the fluctuation from u = 0. If u = 0 losses its stability, then with the fluctuation ϕ f the solution u(t, ϕ f ) of (4.7) will leave u = 0. Hence, we arrive at the following physical conclusion: It is the spontaneous fluctuations and the external perturbations that cause a system to undergo a transition from a unstable equilibrium state to another stable state at a critical threshold.

4.3.

Fluctuation effects on critical parameters. Consider the critical parameters λ 0 as in Figure 4.1(b) and (c). By (4.5) and (4.6), if λ > λ 0 with λ -λ 0 = ε sufficiently small, the attracting radius r s (λ) of u = 0 is also small. Therefore, even if u = 0 is stable for λ > λ 0 , with λ -λ 0 > 0 being small, then under a fluctuation ϕ f of u = 0 satisfying ||ϕ f || X > r s (λ), system (4.7) still undergoes a transition at λ > λ 0 . It shows that the observed critical parameter λ 0 is larger than λ 0 :

(4.8) the observed value λ 0 > the theoretic value λ 0 , due to the presence of spontaneous fluctuations.

We now need to know the relation between λ 0 and λ 0 . Let r f (λ) be the fluctuation radius at λ, defined by (4.9)

r f (λ) = sup Γ ||ϕ f (λ)|| X ,
where Γ is the set of all fluctuations of u = 0 at λ. It is clear that if r f (λ) > r s (λ), (4.7) may undergo a transition. Hence λ 0 is determined by the equation (4.10) r f (λ) = r s (λ).

We only consider the case where the transition is catastrophic as in Figure 4.1(b) to compute λ 0 ; the case where the transition is random can be addressed in the same fashion. We proceed in a few steps as follows.

1). Expression of attracting radius r s . For the catastrophic transition, the reduction equation of (4.1) on the central manifold is given (see [START_REF] Ma | Phase Transition Dynamics[END_REF]):

(4.11) du 1 dt = β 1 (λ)u 1 + b 1 u 3 1 + o(|u 1 | 3 ), where b 1 > 0 is a constant, called transition number, β 1 (λ) is as in (4.2) with m = 1, u 1 = u, ϕ 1 ,
u is the solution of (4.1), and ϕ 1 is the eigenvector corresponding to β 1 . The steady state solution of (4.11) is (4.12)

u ± 1 (λ) = ± -β 1 (λ)/b 1 + o(|β 1 | 1/2
) for λ > λ 0 . By the bifurcating theory in [START_REF] Ma | Phase Transition Dynamics[END_REF], the bifurcated solution u ± λ of (4.1) near λ 0 can be expressed as

(4.13) u ± λ = u 1 (λ)ϕ 1 + o(|β 1 | 1/2 )
, where u 1 is as in (4.12).

Thus, it follows from (4.12)-(4.13) that the attracting radius r s is (4.14)

r s = ||u ± λ || L 2 = [-β 1 /b 1 ] 1/2 for λ > λ 0 .
2). Computation of fluctuation radius r f . The fluctuation equation is given by (3.16), and its solution w is given by (3.19), recalled here for convenience:

(4.15) w = ∞ k=1 t 0 f k e (t-τ )β k dτ ϕ k .
where the eigenvalues β k (λ) for λ > λ 0 satisfy

0 > β 1 ≥ • • • ≥ β k ≥ • • • , lim k→∞ β k = -∞,
where β 1 (λ) is the first eigenvalue of L λ , the same as in (4.14). Physically, β 1 is expressed near λ 0 as (4.16)

β 1 = α(λ 0 -λ) for λ > λ 0 .
By (4.15) we have

(4.17) ||ϕ f || X = sup t ||w|| L 2 = sup t ∞ k=1 t 0 e β k (t-τ ) f k dτ 2 1/2 = f 0 .
Hence the fluctuation radius (4.9) is written as

(4.18) r f = sup Γ f 0 = f ,
where f 0 is as in (4.17) representing the fluctuation force, and f is the maximum fluctuation force.

3). Observed critical parameters. Then by (4.14), (4.16) and (4.17), we deduce from (4.10) that the observed critical parameter λ 0 is

(4.19) λ 0 = λ 0 + b 1 f 2 /α,
where b 1 is as in (4.11), α is as in (4.16), which are known parameters for a given physical system.

For random transitions corresponding to the first-order transitions, we can derive in the same fashion the observed critical parameter as (4.20)

λ 0 = λ 0 + b 0 f /α,
where b 0 > 0 is the coefficient in the following reduced equation of (4.1) on the central manifold:

du 1 dt = β 1 (λ)u 1 + b 0 u 2 1 + o(|u 1 | 2 ).

Theoretical Critical Exponents of Standard Models

5.1. Definition of critical exponents. Critical exponent theory is an important topic in the field of thermodynamic phase transitions. The concept is only suitable for second-order phase transitions. Let u be an order parameter, and λ be a control parameter. It is known that u is a function of λ, i.e. u = u(λ). For a second-order phase transition, at the critical threshold λ c , we have

lim λ→λc u(λ) = u(λ c ).
This continuity implies that u can be expanded as

u(λ) = u(λ c ) + A|λ -λ c | θ + o(|λ -λ c | θ ),
where A is a parameter independent of λ. The exponent θ is called a critical exponent of the thermodynamic phase transition.

Usually there are six types of critical exponents, denoted by (5.1) β, δ, α, γ, η, ν, whose precise definitions are given as follows:

1). β-exponent (order parameter exponent). Let u be an order parameter, and the control parameter be the temperature T . Near the critical temperature T c , u(T ) can be expanded as

(5.2) u(T ) = A(T c -T ) β + o((T c -T ) β ) for T < T c .
Here we have used u(T c ) = 0. The exponent β in (5.2) is the orderparameter exponent as listed in (5.1).

2). δ-exponent (external force exponent). Let the control parameter be an external force f . Then the order parameter u = u(f ) can be expressed near (f c , T c ) as

(5.3) |u(f ) -u(f c )| = A|f -f c | θ + h.o.t. with u(f c ) = 0.
Here h.o.t. refers to the higher-order terms. Conventionally (5.3) is rewritten in the form

(5.4) |f -f c | ∼ |u(f ) -u(f c )| δ at T = T c .
The exponent δ in (5.4) is the external force exponent.

3). α-exponent (heat capacity exponent). The heat capacity C is defined by

(5.5) C = -T ∂ 2 F ∂T 2 = T ∂S ∂T ,
where F is the Gibbs free energy functional and S is the entropy. Let the heat capacity C = C(T ) be expressed near T c as

(5.6) |C(T ) -C(T c )| = A|T c -T | -α at p = p c .
Then the exponent α in (5.6) is the heat capacity exponent.

4). γ-exponent (responding parameter exponent). The compression coefficient κ is given by

κ = - ∂ 2 F ∂ρ 2 = 1 ρ ∂ρ ∂p ,
where ρ is the density. The magnetic susceptibility χ is defined as

χ = ∂M ∂H H=0 ,
where M is the magnetization, and H is the applied magnetic field.

As functions of temperature T , the exponents γ of κ and χ at T c , expressed as

(5.7) ∆κ(T c ) = A(T -T c ) -γ at p = p c , ∆χ(T c ) = A(T -T c ) -γ at H = 0,
are the corresponding parameter exponents.

5). η exponent (coherence exponent).

The density fluctuation coherence function is defined as R(r) = ∆ρ(r)∆ρ(0), where ∆ρ(r) represents the density fluctuation at r. At the critical temperature T c , the power exponent on r of R(r) can be expressed as R(r) = Ar -n+2-η with n = the spatial dimension.

The number η is the coherence exponent. 6). ν exponent (coherence length exponent). The coherence length ξ(T ) is a function of the temperature as

R(r) = kT 4πb 1 r e -r/ξ(T ) ,
where R(r) is the density fluctuation coherence function. At T c the expression of ξ(T ) is as

ξ(T ) = A(T c -T ) -ν ,
which defines the coherence length exponent ν.

Critical exponents of thermodynamic potentials.

In [START_REF] Liu | Thermodynamical potentials of classical and quantum systems[END_REF], we developed a systematic theory for deriving explicit expressions of thermodynamic potentials, based on first principles. In this section, we compute the exponents β, δ, α and γ based on thermodynamical potentials.

1). Order parameter exponent β. We start with the standard model (4.1) with the temperature T as the control parameter, i.e.

(5.8)

du dt = L T u + G(u, T ),
where G(u, T ) is the higher order term of u:

(5.9) G(u, T ) = o(||u||).

Let β 1 (T ) be the first eigenvalue of L T , and be simple. Based on the dynamic transition theory established in [START_REF] Ma | Phase Transition Dynamics[END_REF], for continuous type of transition, the transition solution of (5.8)-(5.9) near T c can be written as

(5.10) u(T ) -u c = x(T )ϕ 1 + o(|x|),
where ϕ 1 is the first eigenvector corresponding to β 1 , and x(T ) satisfies the following algebraic equation (5.11)

β 1 (T )x -bx 3 + o(|x| 3 ) = 0, β 1 = α(T c -T ),
where α, b > 0 are constants. The solution of (5.11) can be written as

x(T ) =    0 for T c < T, ± α b (T c -T ) 1/2 + o(|T c -T | 1/2 ) for T c > T.
Then the solution (5.10) is

(5.12) u(T )-u c =    0, T c ≤ T, ± α b (T c -T ) 1/2 ϕ 1 + o(|T c -T | 1/2 ), T c > T.
In view of definition (5.2) for the β-exponent, we derive from (5.12) the order-parameter exponent as

(5.13) β = 1 2 . 
2). External force exponent δ. For the thermodynamic system with a generalized force f , its dynamical equation is in the form

(5.14) du dt = L λ u + G(u, λ) -f with λ = T.
Let λ c = T c and f c be the critical thresholds of (5.14), and u c be the critical equilibrium state:

(5.15)

L λc u c + G(u c , λ c ) = f c .
Also, let u f be the equilibrium solution of (5.14) satisfying (5.16)

L λc u f + G(u f , λ c ) = f.
We infer then from (5.15) and (5.16) that (5.17)

L λc (u f -u c ) + [G(u f , λ c ) -G(u c , λ c )] = f -f c .
Because (T c , f c ) is a critical point for a continuous transition, in mathematics it implies that (5.17) can be expressed in the following form

(5.18) L u -b u 3 + o(|| u|| 3 ) = f , (b > 0),
where L = L λc + DG(u c , λ c ), and the first eigenvalue

β 1 of L satisfies β 1 (λ c ) = 0, and u = u f -u c , f = f -f c .
In thermodynamics, the δ-exponent is defined only for a homogeneous system. In this case L = β 1 = 0 at λ = λ c . Hence, (5.18) becomes (5.19)

|f c -f | = b|u f -u c | 3 + o(|u f -u c | 3 ).
By (5.4) we obtain the external force exponent δ as (5.20) δ = 3.

3). Heat capacity exponent α. By the heat capacity formula (5.5),

C(T ) is (5.21) C(T ) = T ∂S ∂T ,
where S is the entropy. Let F (u, S, T ) be the potential functional, (u, S) be the order parameter, and the temperature T be the control parameter.

By the standard dynamical model of thermodynamic system established in [START_REF]Dynamic law of physical motion and potential-descending principle[END_REF][START_REF] Liu | Thermodynamical potentials of classical and quantum systems[END_REF], the equation for F (u, S, T ) are in the form (5.22)

du dt = - δ δu F (u, S, T ), δ δS F (u, S, T ) = 0.
In addition, for conventional thermodynamic systems, the general form of F is as follows

F = F 1 (u, T ) + aT (-S 2 + b 1 Su 2 + b 2 S),
where a, b 1 , b 2 are system parameters. It follows from the second equation of (5.22) that neat T = T c the entropy S is (5.23) S = γ 1 u 2 + γ 0 , where γ 0 , γ 1 are constants, and u(T ) is as in (5.12). Hence S in (5.23) can be written as

S = 0 for T c ≤ T, A(T c -T )ϕ 1 + A 0 + o(|T c -T |) for T c < T.
Then we derive from (5.21) that

|∆C| Tc = |C(T c ) -C(T )| t→Tc = 0 as T → T + c , A as T → T - c
. By (5.6) we deduce that (5.24) α = 0.

4).

Responding parameter exponent γ. The compression coefficient κ and the magnetic susceptibility χ are responding parameters. In general a responding parameter, denoted by θ, can be expressed as

(5.25) θ = B(u) ∂u ∂f , B(u) = 1 or 1 u ,
where u is the order parameter, and f is the generalized force. Near (T c , f c ) the relation between u and f is given by (5.19). Namely By (5.12), ∆θ is as

∆θ = B(u c ) 3α||ϕ 1 || 1 T c -T for T < T C .
Hence we deduce from (5.7) that

(5.28) γ = 1.

5.3.

First theorem of critical exponents. The four exponents β, δ, α, and γ given by (5.13), (5.20), (5.24) and (5.28) are deduced using the standard model of thermodynamic systems developed in [START_REF]Dynamic law of physical motion and potential-descending principle[END_REF][START_REF] Liu | Thermodynamical potentials of classical and quantum systems[END_REF].

Although the values of these four exponents are the same as those using the Landau mean field theory, the results by the standard model are derived with a different theoretical foundation and a different viewpoint. Furthermore there is a discrepancy between the theoretical exponents β, δ, α, γ and their experimental values. However, the critical fluctuation effect introduced in the next section shows that the discrepancy is due entirely to the spontaneous fluctuation. In other words, for the critical exponent theory there are two groups of data:

(5.29) theoretical critical exponents of standard model, and fluctuation critical exponents of standard model.

Namely, the standard model offers correct theoretical exponents under the no-fluctuation assumption; and for reality, the standard model with fluctuation provides their correct values in agreement with experimental data. Therefore in a nutshell,

• the standard model offers the correct information for critical exponents; and • this in return validates the standard model of thermodynamics, which is derived based on first principles.

Consider the two groups of critical exponents in (5.29), which obey the same relations, called the scaling laws. Write (5.26) ∆f ∼ (∆u) δ , and (5.27) is in the form ∆θ ∼ (∆u) -(δ-1) with ∆u ∼ (T c -T ) β .

Thus we get

∆θ 1) . By the definition of the γ-exponent, we have (5.30) γ = β(δ -1).

∼ (T c -T ) -β(δ-
The relation (5.30) is called the Widom scaling law. In summary, by using the standard model we derive the following theorem, which we call the first theorem of critical exponents, on theoretical critical exponents.

Theorem 5.1 (First Theorem of Critical-Exponents). For a secondorder phase transition, near the critical point, there are two groups of critical exponents as in (5.29): the theoretical and the fluctuation critical exponents, which satisfy certain common scaling laws as given in (5.30). Moreover, the theoretical critical exponents β, δ, α, γ are given by (5.31) β = 1 2 , δ = 3, α = 0, γ = 1.

6. Critical Exponents with Fluctuation Influences 6.1. Fluctuation β-exponent. Theorem 5.1 states that there are two groups of critical exponents, which can be derived by the standard model of thermodynamics. The exponents without fluctuation influences are given by (5.31), and the exponents with fluctuation influences will be deduced as follows.

Let u be an order parameter of a system, which has a second order phase transition at T c . By the dynamical phase transition theory in [START_REF] Ma | Phase Transition Dynamics[END_REF], the equation governing the second order phase transition must be in the form

(6.1) du dt = L λ u -bu 3 + h.o.t.,
where b > 0, and the control parameter λ is the temperature T . The theoretical exponent β = 1 2 is deduced from (6.1). However, in experiments the real β-exponent is detected under the presence of spontaneous fluctuations. Hence, the dynamical equation governing a second order phase transition with spontaneous fluctuations is given by (

6.2) du dt = L λ u -bu 3 + f (t),
where f is a fluctuation force. Let {β k (λ)} be the eigenvalues of L λ and {ϕ k } be the eigenvectors. Then the solution u of (6.2) near the basic state u = 0 can be expressed as

u = u k ϕ k , (6.3) u k = t 0 e β k (t-τ ) f k dτ -b t 0 e β k (t-τ ) u 3 , ϕ k dτ, (6.4)
where f k is the k-th component of f :

f k = f , ϕ k .
It is known that at the critical threshold T c ,

β 1 0, β 1 > 0, β j < 0, ∀ j ≥ 2,
and u 0, f 0. Hence (6.4) can be approximatively written as

u 1 = t 0 e β 1 (t-τ ) f 1 (τ )dτ -bu 3 1 ϕ 3 1 , ϕ 1 t 0
e β 1 (t-τ ) dτ, (6.5)

u j = t 0 e β j (t-τ ) f j dτ, j ≥ 2. (6.6) Notice that u 1 t 0 e β 1 (t-τ ) dτ = β 1 u 1 e β 1 t -1 → 0 as t → ∞.
We infer from (6.5) that as t → ∞, u 1 in (6.5) can be rewritten as (6.7)

u 3 1 = 1 b ϕ 3 1 , ϕ 1 f β 1 ,
where

β 1 = α(T c -T ) is as in (5.11), f = ∞ 0 e -β 1 τ f 1 (τ )dτ, ϕ 3 1 , ϕ 1 = Ω ϕ 4 1 dx.
Here f can be viewed as the weighted average of the fluctuation f 1 (t) with an exponential decay weight. By (6.7) near T c we have

u 1 A(T c -T ) 1/3 , A = [αf /b ϕ 3 1 , ϕ 1 ] 1/3 . (6.8)
Therefore, by (6.6) and (6.8), the long-time (i.e. t → ∞) observed equilibrium solution u in (6.3) is in the form

u = u c + A(T c -T ) 1/3 ϕ 1 , (6.9)
where u c is the mean equilibrium state generated by f independent of (T c -T ), expressed as

u c = ∞ j=2 f j ϕ j , f j = lim t→∞ ∞ 0 e β j (t-τ ) f j dτ.
Hence by (6.9) the observed β-exponent is derived by

||u -u c || = A||ϕ 1 ||(T c -T ) 1/3 . Namely β = 1 3 . ( 6 
.10) 6.2. Fluctuation δ-exponent. The equation to determine the theoretical δ-exponent is (5.18), or equivalently

|u f -u c | 3 = 1 b |f -f c |, (6.11) 
where the difference f -f c of the external force has no fluctuation influence.

In experiments, the operating quantity is f -f c , and the δ-exponent detected satisfy the following relation

|u f -u c | δ = A 0 |f -f c |. (6.12)
However, the quantity influencing δ in reality is the mean square root of the fluctuation f -f c . Namely (6.11) should be replaced by the following equation with the fluctuation effect:

|u f -u c | 3 = 1 b (∆(f -f c )) 2 . (6.13)
Let the relation between |f -f c | and its fluctuation mean square root be

(6.14) (∆(f -f c )) 2 1/2 = A|f -f c | µ ,
where µ is a to-be-determined constant. Inserting (6.14) into (6.15) we deduce that

|u f -u c | 3/µ = A 0 |f -f c |.
In comparison with (6.12) we derive (6.15) δ = 3/µ, which is the fluctuating δ-exponent.

We now need to compute the value µ in (6.15) by using the statistical theory of fluctuations. It suffices to consider f = p the pressure. In this case the fluctuation of pressure is

(6.16) ∆(p -p c ) = ∂p ∂V ∆V - ∂p c ∂V c ∆V c .
Taking square on both sides of (6.16) and then taking an average of them, we get Namely (6.17) (∆p

-∆p c ) 2 = 1 α T (p)α T (p c )V V c ∆(V -V c ) 2
Again by (2.18): (∆V ) 2 = kT c α T (p)V, it is reasonable to take

(∆(V -V c )) 2 = kT c (α T (p) -α T (p c ))(V -V c ).
Putting it into (6.17 In view of (6.14), for f = p we derive that (6.20)

µ = 1 + γ p 2 ,
where γ p is the responding parameter exponent defined by (6.19), and α T is the isothermal compression coefficient, which is a new critical exponent. Thus, the fluctuating δ-exponent (6.15) becomes In statistical physics, for α, β, γ there is the Rushbrooke scaling law given by (6.25) Rushbrooke scaling law : α + 2β + γ = 2.

In view of the scaling laws (6.24) and (6.25), by the fluctuating exponents β and δ in (6.10) and (6.23), we obtain

1 ≤ γ < 5 3 , 0 ≤ α < 2 3 ,
where α ≥ 0 is based on the physical fact that for a second-order transition, the increment of the heat capacity |∆C| must be finite at T c . Also, 1 ≤ γ is due to the fact that the value of γ is always bigger than or equal to the theoretical value without fluctuations.

We have now proved the following second theorem of critical-exponents.

Theorem 6.1 (Second Theorem of Critical-Exponents). The two groups of critical exponents in (5.29) satisfy the common scaling laws in (6.24) and (6.25). Moreover, the fluctuating critical exponents β, δ, α, γ derived from the standard model and the scaling laws in (6.24) and (6.25) are given by (6.26)

β = 1 3 , 3 < δ < 6, 0 < α < 2 3 , 1 ≤ γ < 5 3 .
For comparison, in the table above, we listed the three groups of exponent data for different thermodynamic systems: 1) experimental exponents, 2) theoretical exponents without taking into consideration of fluctuations, and 3) theoretical exponents using the standard model with fluctuations. This table shows clearly the strong agreement of the results using the standard model of thermodynamics with fluctuations. 
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 3 Non-critical fluctuation estimates. We know that the fluctuation equation (3.8) near a non-critical state is linear, and rewrite (3.8)-(3.9) in the form (3.16) dw dt = Lw + f , w(0) = 0, where (3.17) L = -δ 2 F (u 0 ) is a symmetric linear operator.
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 4 1(b) and (c); and(2) both latent heat, superheated and supercooled states always accompany the saddle-node bifurcations associated with the first order transitions.
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 4142 Figure 4.1. Three types of transitions: (a) continuous, (b) catastrophic, and (c) random. The point p s in (b) and (c) are saddle-node bifurcation points, and λ 0 is the critical parameter.

(5.26) b u 3 =

 3 f where u = u f (T ) -u c , f = f -f c .It follows from (5.25)-(5.26) that(5.27) ∆θ = B(u c )

(∆p -∆p c ) 2 = ∂p ∂V 2 (∆V ) 2 + ∂p c ∂V c 2 (∆V c ) 2 - 2

 22222 ∂p ∂V ∂p c ∂V c (∆V )(∆V c ). By (2.18), at T = T c we can write (∆V ) 2 = -kT c c ) 2 + (∆V ) 2 -2(∆V )(∆V c ) .

2 1/ 2 =

 22 p -p c )) 2 = A 0 |α T (p) -α T (p c )||p -p c |,where we used the equation of state p = T c V , andA 0 = k α T (p)α T (p c )V V c . Let (6.19) |α T (p) -α T (p c )| = A 1 |p -p c | γp ,Then it follows from (6.18) and (6.19) that (∆(p -p c )) A|p -p c | (1+γp)/2 .
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 6163 For a second-order transition, α T (p) → α T (p c ) as p → p c .It implies that γ p > 0. In addition, physically the mean-square fluctuation (∆(f -f c )) 2 must be larger than |f -f c | 2 for f near f c , and consequently µ < 1 in (6.14). Hence by(6.20) we have (It follows from (6.21) and (6.22) that (6.23) 3 < δ < 6. This is the estimate of fluctuation δ-exponent deduced from the standard model and the statistical fluctuation theory. The experimental values of the δ-exponent are in good agreement with (6.23); see Table I below. Second theorem of critical exponents. From the standard model we deduce two scaling laws (5.30) and (6.21), rewritten here: (6.24) Widom scaling law : γ = β(δ -1), δ -γ p scaling law : δ(1 + γ p ) = 6.

Table I .

 I Experimental and Theoretic Data of Critical Exponents[START_REF] Pathria | Statistical Mechanics[END_REF] 

		magnetic	PVT	binary	without	with
	exponent	system	system	system	fluctuation fluctuation
	β	0.30∼0.36 0.32∼0.35 0.30∼0.34	1/2	1/3
	δ	4.2∼4.8	4.6∼5.0	4.0∼5.0	3	3.0∼6.0
	α	0.0∼0.2	0.1∼0.2 0.05∼0.15	0	0∼2/3
	γ	1.2∼1.4	1.2∼1.3	1.2∼1.4	1	1∼5/3

The linear operator L λ = -δ

F (u 0 ; λ) is always self-adjoint, and all eigenvalues of L λ are real.
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