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Abstract

In this paper, we propose a numerical framework for optimizing the fracture resistance of quasi-
brittle composites through a modification of the topology of the inclusion phase. The phase field
method to fracturing is adopted within a regularized description of discontinuities, allowing to
take into account cracking in regular meshes, which is highly advantageous for topology opti-
mization purpose. Extended bi-directional evolutionary structural optimization (BESO) method is
employed and formulated to find the optimal distribution of inclusion phase, given a target vol-
ume fraction of inclusion and seeking a maximal fracture resistance. A computationally efficient
adjoint sensitivity formulation is derived to account for the whole fracturing process, involving
crack initiation, propagation and complete failure of the specimen. The effectiveness of developed
framework is illustrated through a series of 2D and 3D benchmark tests.

Keywords: Fracture resistance, Topology optimization, BESO, Phase field method, Crack
propagation

1. Introduction

Composite materials are usually made of two or more constituent materials with variant me-
chanical properties and have advantageous overall characteristics when compared to traditional
materials. The overall behavior of composite materials, such as fibrous composite, concrete,
metallic porous material and metal alloy, depends strongly on the size, shape, spatial distribu-
tion and properties of the constituents. Seeking for an optimal design of spatial distribution of the
constituents in heterogeneous media has recently attracted a growing attention (see e.g., [1–4]).

Among all properties of interest, accounting for material failure is of essential importance in
the design of composite materials. As illustrated in Fig. 1, it is desired to improve the fracture

∗Corresponding author
Email address: xialiang@hust.edu.cn (Liang Xia)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering December 19, 2017



Fracture

Energy

L
o

a
d

DisplacementMatrix Inclusion

Peak Load

Figure 1: Illustration of the enforcement of a pre-cracked composite for fracture resistance.

resistance in terms of the required mechanical work for complete failure through an optimal place-
ment of the inclusion phase. Due to the modeling complexity of fracturing, it is still an unexplored
field upon the literature. Prechtel et al. [5] investigated on fiber-reinforced composites and adopted
a gradient-free pattern search algorithm for the design of fiber shapes such that the fracture energy
required to release for complete failure is maximized, in which a cohesive model is used for the
cracking simulation. Gu et al. [6] designed the optimal layout distribution of stiff inclusions within
a soft matrix using a gradient-free greedy search algorithm for various fracture resistant proper-
ties under uniaxial tension, whereas the simulation was realized using the finite element method
without accounting for the crack propagation. More recently, San and Waisman [7] used a genetic
algorithm to find optimal placement of reinforcing particles to maximize the fracture resistance of
carbon black polymer, in which the phase field method was used for cracking simulation account-
ing for meanwhile large deformation kinematics.

One common feature of aforementioned works is that only a limited number of design vari-
ables was considered, which allows the use of gradient-free optimization algorithms. However,
such gradient-free optimization algorithms are no longer applicable when it comes to a larger
number of design variables as in the highly demanding computational requirements of fracturing
simulation. To this end, we develop in this work a topology optimization framework for fracture
resistance of quasi-brittle composite structures through an optimal design of the spatial distribu-
tion of inclusion phase. On the one hand, unlike previous works where inclusion shapes or layout
typologies are a priori fixed, topology optimization adopted in the present work provides new
design possibilities. On the other hand, topology optimization design variables are updated upon
gradient information, which is highly efficient in terms of required design iterations as compared
to gradient-free algorithms.

As an advanced design tool, topology optimization has undergone a remarkable development
since the seminal paper by Bendsøe and Kikuchi [8] over the past decades in both academic re-
search [9, 10] and industrial applications [11]. By topology optimization, one aims to find an
optimal material layout within a prescribed design domain so as to maximize or minimize certain
objectives and satisfying one or multiple design constraints. The key merit of topology optimiza-
tion over conventional sizing or shape optimizations is that the structural topology or the material
layout inside the design domain is not a priori assumed, resulting in more freedom about the de-
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sign and in most case to more efficient performances. Even though there do exist quite numerous
researches on topology optimization with the enforcement of stress constraints (e.g., [12–20]) and
damage constraints (e.g., [21–31]), topology optimization for fracture resistance accounting for
complete fracturing process has not been explored in the literature to our best knowledge.

In this work, the extended bi-directional evolutionary structural optimization (BESO) method
recently developed by the first author and his collaborators in [32, 33] for the design of elastoplas-
tic structures is adopted to carry out topology optimization. As compared to continuously defined
density-based methods, the ESO-type methods [34–38] naturally avoid the definition of supple-
menting pseudo-relationships between fictitious materials and fracture toughness for the sake of
their discrete nature, resulting in clear physical interpretation and algorithmic advantages. For a
prescribed material volume usage of inclusion phase, the extended BESO method is adopted to
seek for an optimal spatial distribution of inclusion phase so as to maximize the fracture resistance
of composites. A computationally efficient adjoint sensitivity formulation is derived that accounts
for the complete fracturing process.

With regard to fracturing simulation, the phase field approach proposed in Francfort and
Marigo [39], Bourdin et al. [40], Hakim and Karma [41], Miehe et al. [42, 43], Borden et al. [44]
(only to name a few) is adopted for its computational advantages in handling very complex crack
topologies. It should be noted that the phase field approach to fracture is consistent with brittle
fracture through variational methods based on energy minimization as shown in Francfort and
Marigo [39]. In this framework, the sharp crack discontinuities are regularized by a diffuse phase
field approximation within a continuum formulation, making it very flexible to handle crack nu-
cleation, multiple crack fronts, cracks merging and branching in both 2D and 3D without ad hoc
numerical treatment (see e.g. [42, 43, 45–48]). In addition, due to its gradient-based formulation,
it is not sensitive to the mesh orientation and thus regular meshes can then be used, which is crucial
in topological optimization procedures where regular meshes are most often employed.

This paper is organized as follows. Section 2 first reviews the phase field method for the mod-
eling of crack propagation as developed by Miehe et al. [43, 45]. Section 3 presents the topology
optimization method for design of quasi-brittle composites with fracture resistance. Section 4 val-
idates the proposed design framework through a series of 2D and 3D benchmark tests. Finally,
conclusion and future perspectives are drawn.

2. Phase field modeling of crack propagation

Let Ω ∈ RD be an open domain describing a cracked solid as depicted in Fig. 2 , with D ∈
[2, 3] being the space dimension. The external boundary of Ω is denoted by ∂Ω ∈ RD−1. Cracks
which may propagate within the solid are collectively denoted by Γ. In this work, we adopt the
framework proposed in [42, 43, 45, 49, 50] for a regularized representation of discontinuities. In
this regularized framework, the propagating cracks are approximately represented by an evolving
scalar phase field d(x, t), where the diffusion is characterized by a length scale parameter `.

2.1. Phase field approximation of cracks
The scalar crack phase field d(x, t) can be determined through solving the following boundary

value problem subject to Dirichlet boundary conditions (d = 1) on the crack (see [42] for more
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Figure 2: Illustration of phase field crack modeling: (a) a sharp crack surface Γ embedded into the solid Ω;
(b) the regularized representation of the crack by the phase field d(x).

details): 
d(x, t) − `2∇2d(x, t) = 0, in Ω
d(x, t) = 1, on Γ
∇d(x, t) · n = 0 on ∂Ω,

(1)

where ∇2(.) is the Laplacian operator, ` is a length scale parameter that governs the width of the
regularization zone and gives for ` → 0 the exact sharp crack in Γ in (1), and n is the unit outward
normal vector to ∂Ω. In the following, we denote the crack phase field d(x, t) by d to alleviate the
notations. It has been shown that the system of equations (1) corresponds to the Euler-Lagrange
equation associated with the variational problem:

d = Arg
{
inf
d∈S

Γ(d)
}
, Γ(d) =

∫
Ω

γ(d) dV, (2)

where S = {d | d(x) = 1,∀x ∈ Γ}, and γ is the crack surface density function per unit volume
defined by:

γ(d) =
1
2`

d2 +
`

2
∇d · ∇d. (3)

The functional Γ(d) represents the total length of the crack in 2D and the total crack surface
area in 3D. A detailed explanation of (3) can be found in [42].

2.2. Thermodynamics of the phase field crack evolution
The variational approach to fracture mechanics provided by Francfort and Marigo [39] intro-

duces the following energy functional for a cracked body:

J(u, Γ) =

∫
Ω

Wu(ε(u)) dV +

∫
Γ

gc dA, (4)

in which Wu is the energy density function where ε = 1
2 (∇u+∇T u) the strain and u the displacement

field. The first term on the right hand side of (4) corresponds to the elastic energy stored in the
4



cracked solid. The second term on the right hand side of (4) corresponds to the energy required to
create the crack according to the Griffith criterion with gc the critical fracture energy density, also
named as Griffith’s critical energy release rate.

In the adopted regularized framework, the phase field d(x) is introduced for the representation
of cracks. Then above functional (4) is substituted by the following one:

J(u, d) =

∫
Ω

Wu(ε, d) dV +

∫
Ω

gcγ(d) dV, (5)

where γ(d) is the surface density defined in (3). From (5), the energy potential or free energy W
can be identified as:

W(ε, d) = Wu(ε, d) + gcγ(d). (6)

Following [42], the elastic energy Wu is defined in the following form that assumes isotropic
elastic behavior of the solid and accounts for damage induced by traction only, through:

Wu(ε, d) = ((1 − d)2 + κ)ψ+(ε) + ψ−(ε), (7)

where κ � 1 is a small positive parameter introduced to prevent the singularity of the stiffness
matrix due to fully broken parts, ψ+ and ψ− are the the tensile and compressive strain energies,

ψ± = λ〈tr[ε]〉2±/2 + µtr[ε±]2, (8)

with λ and µ the Lamé coefficients of the solid. Only tensile damage degradation is taken into
account in the elastic energy (7) through a decomposition of the elastic strain ε into tensile and
compressive parts [42]:

ε = ε+ + ε− with ε± =

3∑
i=1

〈εi〉±ni ⊗ ni. (9)

In the above, 〈x〉± = (x ± |x|)/2, and εi and ni are the eigenvalues and eigenvectors of ε. The
evolution of the damage variable d(x, t) can be determined by the variational derivative of the free
energy W. In a rate-independent setting with the consideration of the reduced Clausius-Duhem
inequality, the evolution criterion is provided by the Kuhn-Tucker conditions [42, 46]:

ḋ ≥ 0; −δdW ≤ 0; ḋ[−δdW] = 0, (10)

yielding
−δdW = 2(1 − d)ψ+(ε) − gcδdγ = 0, (11)

with the functional derivative [42]
δdγ = d/` − `∆d. (12)

Following [43], the maximum tensile strain energy is stored to account for loading and un-
loading histories and the damage evolution criterion (11) can then be expressed in the following
form: gc

`
[d − `2∇2d] = 2(1 − d) max

t∈[0,T ]

{
ψ+(x, t)

}
. (13)
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The criterion (13) is a monotonously increasing function of the strain ε(x, t) that induces un-
necessary stress degradation even at low strain values. To avoid this issue, an energetic damage
evolution criterion with threshold has been introduced in [45, 51, 52], yielding

ψc[d − `2∇2d] = (1 − d) max
t∈[0,T ]

{
〈ψ+(x, t) − ψc〉+

}
, (14)

in which ψc is a specific fracture energy density of the solid, which can be further related to a
critical fracture stress σc by:

ψc =
1

2E
σ2

c , (15)

where E is the Young’s modulus (see more details in [45]). The above crack evolution criterion
(14) can be further stated as

ψc[d − `2∇2d] = (1 − d)H(x, t), (16)

with the introduction of a strain energy history function [52]

H(x, t) = max
t∈[0,T ]

{
〈ψ+(x, t) − ψc〉+

}
. (17)

2.3. Weak forms of displacement and phase field problems
In the absence of body forces, the linear momentum balance equation for the solid medium

reads
∇ · σ = 0, (18)

where according to the definitions in (7) and (8), the stress tensor σ equals

σ =
∂Wu

∂ε
=

(
(1 − d)2 + κ

) (
λ〈tr[ε]〉+1 + 2µε+) + λ〈tr[ε]〉−1 + 2µε−, (19)

in which 1 is the second-order identity tensor and κ � 1 is a small positive parameter introduced to
prevent the singularity of the stiffness matrix due to fully broken parts. Multiplying the governing
equation (18) by kinematically admissible test functions for the displacement δu, integrating the
resulting expression over the domain Ω, and using the divergence theorem together with boundary
conditions yields the associated weak form:∫

Ω

σ : ε(δu) dV =

∫
∂Ωt

t̄ · δu dA, (20)

in which t̄ is the applied traction on the Neumann boundary ∂Ωt (see Fig. 2). The weak form (20)
is completed with Dirichlet boundary conditions defined on ∂Ωu.

The associated weak form for the crack phase field evolution (16) can be obtained in a similar
fashion: ∫

Ω

{
(H + ψc) dδd + ψc`

2∇d · ∇(δd)
}

dV =

∫
Ω

Hδd dV, (21)

in which δd ∈ H1
0(Ω), d ∈ H1(Ω) and satisfying the Dirichlet boundary conditions on Γ.
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2.4. Finite element discretization
In this work, we adopt the same finite element discretization for the approximation of the dis-

placement field u and the crack phase field d. We can express the two finite element approximate
fields (uh, dh) as:

uh(x) = Nu(x)du, dh(x) = Nd(x)dd (22)

and their gradients as
∇uh(x) = Bu(x)du, ∇dh(x) = Bd(x)dd, (23)

where Nu and Bu denote matrices of shape functions and shape functions derivatives associated to
displacements, and Nd and Bd denote matrices of shape functions and shapre functions derivatives
associated to phase field variable. Here, {du,dd} denote the vectors of the nodal values of the finite
element mesh for displacement and crack phase fields, respectively.

Introducing the above discretization into the weak form (20), we obtain the following discrete
system of equations:

Kudu = fu, (24)

with the external force vector fu

fu =

∫
∂Ωt

Nut̄ dA, (25)

and the stiffness matrix Ku

Ku =

∫
Ω

BT
u DBu dV, (26)

where D is the constitutive matrix corresponding to the definition in (19), given by:

D =
∂[σ]
∂[ε]

= (1 − d)2
(
λR+[1][1]T + 2µP+

)
+

(
λR−[1][1]T + 2µP−

)
, (27)

where [σ] and [ε] are the vector forms corresponding to the second order tensors of stress σ
and strain ε. R± and P± are two operators for the decomposition of strain into the tensile and
compressive parts (see e.g., [46]). The matrices P± are such that:

[ε+] = P+[ε] and [ε−] = P−[ε]. (28)

The discretization of the phase field problem (21) leads to the following discrete system of
equations:

Kddd = fd (29)

where
Kd =

∫
Ω

{
(H + ψc) NT

d Nd + ψc`
2BT

d Bd

}
dV (30)

and
fd =

∫
Ω

NT
dH dV, (31)

in whichH is strain energy history function defined in (17).
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In the present work, a staggered solution scheme is employed following [43], where at each
time increment the phase field problem is solved for fixed displacement field known from the
previous time step tn. The mechanical problem is then solved given the phase field at the new time
step tn+1. The overall algorithm is described as follows:

1. Set the initial fields d(t0),u(t0), andH(t0) at time t0.
2. Loop over all time increments: at each time tn+1:

(a) Given d(tn),u(tn), andH(tn):
(b) Compute the history functionH(tn+1) according to (17).
(c) Compute the crack phase field d(tn+1) by solving (29).
(d) Compute u(tn+1) with the current crack d(tn+1) by solving (24).
(e) (.)n ← (.)n+1 and go to (a).

3. End.

3. Topology optimization model for fracture resistance

The extended bi-directional evolutionary structural optimization (BESO) method developed in
[32, 33] for the design of elastoplastic structures is adopted in this work to carry out topology
optimization. Composites made of two material phases, matrix phase and inclusion phase, are
considered. The spatial layout of inclusion phase is optimized by the extended BESO method to
yield composite with a higher fracture resistance.

3.1. Model definitions
The design domain Ω is discretized into Ne finite elements and each element e is assigned

with a topology design variable ρe. The Ne-dimensional vector containing the design variables
is denoted as ρ = (ρ1, . . . , ρNe)

T . Following [53], the design variables and the multiple material
interpolation model are defined as

ρe = 0 or 1, e = 1, 2, . . . ,Ne (32)

and Ee = ρeEinc + (1 − ρe)Emat

σc,e = ρeσc,inc + (1 − ρe)σc,mat,
(33)

where Ee and σc,e are the Young’s modulus and the critical fracture stress of the e-th element.
{Einc, σc,inc} and {Emat, σc,mat} are the Young’s moduli and the critical fracture stresses of the in-
clusion and the matrix phases, respectively. Attention needs to be recalled that “Einc > Emat” is
assumed when carrying out topology optimization with multiple materials using the BESO method
[53]. The Poisson’s ratios of the two material phases are assumed identical. The design variables
can thus be interpreted as an indicator such that the value of one corresponds to the inclusion
phase, whereas zero corresponds to the matrix phase.

For stability considerations, it is conventionally to adopt displacement-controlled loading for
nonlinear designs (e.g., [32, 33, 54–56]). For a prescribed displacement load, the fracture resis-
tance maximization is equivalent to the maximization of the mechanical work expended in the
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course of the fracturing process as illustrated in Fig. 1. In practice, the total mechanical work J, is
approximated by numerical integration using the trapezoidal rule, i.e.

J ≈
1
2

nload∑
i=1

(
f(i)
u + f(i−1)

u

)T
∆d(i)

u . (34)

Here nload is the total number of displacement increments, ∆d(i)
u is the i-th increment of the nodal

displacement vector and f(i)
u is the external nodal force vector (comprising surface tractions and

reaction forces) at the i-th load increment.
During the optimization process the volume fraction of the inclusion phase is prescribed. Then

the optimization problem discretized with Ne elements can be formulated as [e.g., 32, 33, 56]

max
ρ

: J(ρ,du,dd)

subject to : K(i)
u d(i)

u = f(i)
u , i = 1, . . . , nload

: V(ρ) =
∑
ρeve = Vreq

: ρe = 0 or 1, e = 1, . . . ,Ne.

(35)

Here ve is the volume of the e-th element, V(ρ) and Vreq are the total and required material volumes,
respectively. The stiffness matrix K(i)

u at the i-th load increment is constructed following (26) and
(27).

It may be recalled that by this model the discrete topology design variable ρe ∈ {0; 1} indicates
merely the associated material phase (matrix/inclusion) of the e-th element. This assumption omits
naturally the definition of supplementing pseudo-relationships between intermediate densities and
their constitutive behaviors as is the case in density-based models (e.g., [55, 57, 58]) resulting in
algorithmic advantages (see also [32, 33]).

3.2. Sensitivity analysis
In order to perform the topology optimization, the sensitivity of the objective function J with

respect to topology design variables ρ needs to be provided. Following the “hard-kill” BESO
procedure [36, 53], the topology evolution is driven merely by the sensitivities of the solid phase
(ρ = 1, the inclusion phase in the current context), whilst the sensitivities of the void phase with
(ρ = 0, the matrix phase) are set to zero.

The derivation of the sensitivity requires using the adjoint method (see, e.g., [59, 60]). La-
grange multipliers µ(i), λ(i) of the same dimension as the vector of unknowns du are introduced in
order to enforce zero residual r at times ti−1 and ti for each term of the quadrature rule (34). Then
the objective function J can be rewritten in the following form without modifying the original
objective value as

J∗ =
1
2

nload∑
i=1

{ (
f(i)
u + f(i−1)

u

)T
∆d(i)

u +
(
λ(i)

)T
r(i) +

(
µ(i)

)T
r(i−1)

}
. (36)

Due to the asserted static equilibrium the residuals r(i) and r(i−1) have to vanish. The objective
value is, thus, invariant with respect to the values of the Lagrange multipliers λ(i) and µ(i) (i =

1, . . . , nload), i.e.
J∗

(
ρ;

{
λ(i),µ(i)

}
i=1,...,nload

)
= J (ρ) . (37)
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This equivalence holds also for the sensitivity with respect to changes of the topology design
variable ρe on element e

∂J∗

∂ρe
=
∂J
∂ρe

. (38)

In the following the derivative ∂J∗/∂ρe is computed with properly determined values of λ(i) and
µ(i) leading to certain simplifications of the derivation. To formally describe these derivations, we
introduce a partitioning of all degrees of freedom (DOF) into essential (index E; associated with
Dirichlet boundary conditions) and free (index F; remaining DOF) entries. For a vector w and a
matrix M we have

w ∼
[
wE

wF

]
and M ∼

[
MEE MEF

MFE MFF

]
. (39)

In the present context, the displacements du,E on the Dirichlet boundary are prescribed and,
hence, they are independent of the current value of ρ. This implies that

∂∆du

∂ρe
=

∂

∂ρe

[
∆du,E

∆du,F

]
=

[
0

∂
(
∆du,F

)
/∂ρe

]
(40)

holds for arbitrary load time increments, i.e. for du = d(i)
u or du = d(i−1)

u . The components fu,F of
the force vector fu vanish at all load time increments and the only (possibly) non-zero components
are the reaction forces fu,E

f(i)
u =

[
f(i)
u,E
0

]
. (41)

Equations (40) and (41) imply (
f( j)
u

)T ∂∆d(i)
u

∂ρe
= 0. (42)

Hence for arbitrary load increment indices i, j = 1, . . . , nload, we have

∂

∂ρe

((
f( j)
u

)T
∆d(i)

u

)
=

∂f( j)
u

∂ρe

T

∆d(i)
u . (43)

With the property of (43) at hand, the derivative of the modified design objective in (38) is
given by:

∂J∗

∂ρe
=

1
2

nload∑
i=1

∂
(
f(i)
u + f(i−1)

u

)T

∂ρe
∆d(i)

u +
(
λ(i)

)T ∂r(i)

∂ρe
+

(
µ(i)

)T ∂r(i−1)

∂ρe

 . (44)

Recall the equilibrium equation at each load time increment is given by (35), the derivatives of
r( j) at the equilibrium of the j-th load increment with respect to ρe can be expanded as

∂r( j)

∂ρe
=
∂f( j)

u

∂ρe
−
∂K( j)

u

∂ρe
d( j)

u −K( j)
u
∂d( j)

u

∂ρe
. (45)
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With the expression (45), (44) can be reformulated as

∂J∗

∂ρe
=

1
2

nload∑
i=1

{ (
∂f(i)

u

∂ρe

)T (
∆d(i)

u + λ(i)
)

+

(
∂f(i−1)

u

∂ρe

)T (
∆d(i)

u + µ(i)
)

−
(
λ(i)

)T
(
∂K(i)

u

∂ρe
d(i)

u + K(i)
u
∂d(i)

u

∂ρe

)
−

(
µ(i)

)T
(
∂K(i−1)

u

∂ρe
d(i−1)

u + K(i−1)
u

∂d(i−1)
u

∂ρe

) }
. (46)

As mentioned previously, the aim is to find proper values of the Lagrange multipliers λ(i) and
µ(i) such that the sensitivities can be explicitly and efficiently computed. From the consideration
of (41), the first two terms can be omitted by setting

λ(i)
E = −∆d(i)

u,E and µ(i)
E = −∆d(i)

u,E. (47)

Accounting further for the structure of the sensitivities of du in (40) and for the symmetry of
the stiffness matrices we have

∂J∗

∂ρe
= −

1
2

nload∑
i=1

{ (
λ(i)

)T ∂K(i)
u

∂ρe
d(i)

u +
(
K(i)

u,FEλ
(i)
E + K(i)

u,FFλ
(i)
F

)T ∂∆d(i)
u,F

∂ρe

+
(
µ(i)

)T ∂K(i−1)
u

∂ρe
d(i−1)

u +
(
K(i−1)

u,FEµ
(i)
E + K(i−1)

u,FF µ
(i)
F

)T ∂∆d(i−1)
u,F

∂ρe

}
. (48)

In order to avoid the evaluation of the unknown derivatives of d(i)
u,F and d(i−1)

u,F , the values of
λ(i)

F and µ(i)
F are sought as following by solving the adjoint systems with the prescribed values

λ(i)
E = −∆d(i)

u,E and µ(i)
E = −∆d(i)

u,E at the essential nodes:

λ(i)
F =

(
K(i)

u,FF

)−1
K(i)

u,FE∆d(i)
u,E, (49)

and
µ(i)

F =
(
K(i−1)

u,FF

)−1
K(i−1)

u,FE ∆d(i)
u,E. (50)

The two relations (49) and (50) together with (47) completely determine the values of the
Lagrange multipliers λ(i) and µ(i). It is obvious that the first adjoint system of (49) is in fact
self-adjoint such that no additional calculation is needed and λ(i) = −∆d(i)

u . Note in addition that
because the proportional loading is increased at a constant rate, i.e.

∆d(i)
u,E =

∆t(i)

∆t(i−1) ∆d(i−1)
u,E , (51)

the solution of the second linear system (50) can also be omitted by means of the recursion formula

µ(i)
F =

∆t(i)

∆t(i−1)λ
(i−1)
F . (52)
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Substituting the two Lagrange multipliers into (48), the objective derivative ∂J∗/∂ρe can be
eventually computed via

∂J∗

∂ρe
=

1
2

nload∑
i=1

{ (
λ(i)

)T ∂K(i)
u

∂ρe
d(i)

u +
(
µ(i)

)T ∂K(i−1)
u

∂ρe
d(i−1)

u

}
(53)

in which
∂K( j)

u

∂ρe
= k( j)

e,inc − k( j)
e,mat, j = 1, 2, . . . , nload (54)

according to the defined multiple material interpolation model in (33), where k( j)
e,inc and k( j)

e,mat are
the element stiffness matrices at the j-th load time calculated from using Young’s moduli Einc and
Emat, respectively.

3.3. Extended BESO method
The extended BESO method recently developed in [33] augments the original proposition

in [56] through an additional damping treatment of sensitivity numbers, so as to improve the
robustness and the effectiveness of the method, particularly in dealing with nonlinear designs with
the presence of dissipative effects.

By the extended BESO method, the target volume of material usage V (k) at the current design
iteration (k-th) is determined by

V (k) = max
{
Vreq, (1 − cer)V (k−1)

}
, (55)

in which the evolutionary ratio cer determines the percentage of material to be removed from the
design of the previous iteration. Once the final required material volume usage Vreq is reached, the
optimization algorithm alters only the topology but keeps the volume fraction constant.

At each design iteration, the sensitivity numbers which denote the relative ranking of the el-
ement sensitivities are used to determine material phase exchange. When uniform meshes are
used, the sensitivity number for the considered objective is defined as following using the element
sensitivity computed from (53)

αe =


(
∂J∗
∂ρe

)η
, for ρe = 1

0 , for ρe = 0.
(56)

in which η is a numerical damping coefficient (the same as the one applied in the Optimality
Criteria method for density-based methods [61]). When η = 1, we recover the conventional
sensitivity numbers for linear elastic designs [36, 62]. In the presence of dissipative effects, the
sensitivity numbers vary by several orders of magnitude resulting in instabilities of the topology
evolution process, especially when removing certain structural branches (see, e.g., [32, 33]). For
this reason, the sensitivity numbers are damped in this work with “η = 0.5” as suggested in [33].

In order to avoid mesh-dependency and checkerboard patterns, sensitivity numbers are firstly
smoothed by means of a filtering scheme [61]

αe =

∑Ne
j=1 we jα j∑Ne

j=1 we j
, (57)
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where we j is a linear weight factor

we j = max(0, rmin − ∆(e, j)), (58)

determined according to the prescribed filter radius rmin and the element center-to-center distance
∆(e, j) between elements Ωe and Ω j. Attention needs to be recalled that the filter (57) is also
responsible for material exchange from the matrix phase (ρe = 0) to the inclusion phase (ρe = 1)
by attributing filtered sensitivity number values to design variables that are associated to the matrix
phase.

Due to the discrete nature of the BESO material model, the current sensitivity numbers need
to be averaged with their historical information to improve the design convergence [35]

α(k)
e ←

(α(k)
e + α(k−1)

e )
2

. (59)

The update of the topology design variables is realized by means of two threshold parameters
αth

del and αth
add for material removal and addition, respectively [32, 56]

ρ(k+1)
e =


0 if αe ≤ α

th
del and ρ(k)

e = 1,
1 if αth

add < αe and ρ(k)
e = 0,

ρ(k)
e otherwise.

(60)

The present scheme indicates that inclusion elements are exchanged to matrix elements when
their sensitivity numbers are less than αth

del and matrix elements are reversed to inclusion elements
when their sensitivity numbers are greater than αth

add. The parameters αth
del and αth

add are obtained
from the following iterative algorithm which was first proposed in [56] and recently adopted by
the first author in [32, 33]:

1. Let αth
add = αth

del = αth, where the value αth is determined iteratively such that the required
material volume usage is met at the current iteration.

2. Compute the admission ratio car, which is defined as the volume of the recovered elements
(ρe = 0 → 1) divided by the total volume of the current design iteration. If car ≤ cmax

ar , the
maximum admission ratio, then skip the next steps; otherwise, αth

del and αth
add are redetermined

in the next steps.
3. Determine αth

add iteratively using only the sensitivity numbers of the matrix elements (ρe = 0)
until the maximum admission ratio is met, i.e., car ≈ cmax

ar .
4. Determine αth

del iteratively using only the sensitivity numbers of the inclusion elements (ρe =

1) until the required material volume usage is met at the current iteration.

The introduction of cmax
ar stabilizes the topology optimization process by controlling the number

of elements reversed from matrix to inclusion. In the present work, cmax
ar is set to a value greater

than 1% so that it does not suppress the merit of the reverse procedure.
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4. Numerical examples

In this section, we show the performance of the proposed design framework through a series
of 2D and 3D benchmark tests. In all 2D examples, uniform meshes of quadrilateral bilinear
elements with the plane strain assumption are employed. Similarly, uniform mesh of eight-node
cubic elements are adopted for the 3D design case. The same finite element discretization is
adopted for both displacement and crack phase fields. The characteristic length scale parameter
for the phase field regularization appearing in (1) is set to be twice that of the typical finite element
size ` = 2he. For the sake of clear visualization, only the crack phase field with the values over
0.4 is plotted. The material properties of the inclusion and the matrix phases are given in Table 1
according to [63].

With regard to topology optimization, all parameters involved in the extended BESO method
as presented in Section 3.3 are held constant in all following examples. The evolutionary rate
cer, which determines the relative percentage of material to be removed at each design iteration,
is set to cer = 4% (exception for the third example cer = 6%). The maximum admission ratio
corresponding to the maximum percentage of recovered material that is allowed per iteration is set
to cmax

ar = 2%. The filter radius is set to be twice that of the typical finite element size rmin = 2he.

Table 1: Material properties of the inclusion and the matrix [63].

Name Symbol Value Unit
Young’s modulus of inclusion Einc 52 GPa

Young’s modulus of matrix Emat 10.4 GPa
Poisson’s ratio of both phases ν 0.3 [-]

Critical fracture stress of inclusion σc,inc 30 MPa
Critical fracture stress of matrix σc,mat 10 MPa

4.1. Design of a 2D reinforced plate with one pre-existing crack notch
The problem setting of the 2D plate with one pre-existing crack notch is illustrated in Fig. 3(a).

The dimensions of the plate is 50×100 mm2. The whole plate is uniformly discretized into 60×120
square shaped bilinear elements. Plane strain assumption is assumed. The lower end of the plate
is fixed vertically while free horizontally. The left bottom corner node is fixed in both directions to
avoid rigid body motions. The upper end of the plate is prescribed with incremental displacement
loads with ∆ū = 0.01 mm for the first five load increments and ∆ū = 0.002 mm for the following
load increments. The incremental loading process continues until the reaction forces is below a
prescribed criterion value indicating that the structure is completely broken.

Fig. 3(b) is the initial guess design with the inclusion phase occupying 10% of the domain
area. By the extended BESO method, the inclusion phase area is gradually reduced to a target
area fraction, 5% of the domain area. The pre-existing crack notch is simulated by prescribing
Dirichlet conditions on the crack phase field with d = 1 along the crack. The surrounding area of
the initial crack notch (up to 2 times of the length scale parameter `) is treated as a non-designable
region to avoid nonphysical designs with the inclusion material added within the already existing
crack. The evolution of inclusion typologies together with their final crack patterns and the design
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Figure 3: A 2D plate with one pre-existing crack notch subject to incremental traction loads: (a) problem
depiction, (b) initial guess design.
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Figure 4: History of the evolution of inclusion typologies and their final crack patterns.

objective history are shown in Fig. 4. It can be observed from Fig. 4 that the fracture resistance of
the composite structure gently improves whilst the area fraction of the inclusion phase gradually
decreases from initial 10% to 5%. It means that for the same fracture resistance performance, the
required usage of inclusion phase can be largely saved via an optimal spatial distribution design.

Detailed propagation of the phase field crack of the optimally designed composite structure
with one pre-existing crack notch subject to incremental traction loads is given in Fig. 5. The
crack propagates into the inner supporting structure made of the inclusion phase during the initial
incremental loads. Two other cracks initiate around the upper and lower left corners of the inner
supporting structure and continue to propagate horizontally until the structure is fully broken.

The fracture resistance of the optimally designed composite structure is validated through a
comparison study. Starting from the same initial guess design (Fig. 3(b)), topology optimization
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(a) (c)(b) (d) (e)

Figure 5: Crack propagation of the optimally designed composite structure with one pre-existing crack
notch subject to incremental traction loads: (a) ū = 0 mm, (b) ū = 0.060 mm, (c) ū = 0.076 mm, (d)

ū = 0.082 mm, (e) ū = 0.092 mm.
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Figure 6: Fracture resistance comparison of two composite structures with one pre-existing crack notch
subject to incremental traction loads.

using the same parameter setting has been carried out considering only linear elastic behavior
without accounting for crack propagation, i.e. linear design, yielding two parallel bars along the
vertical loading direction from the left design in Fig. 6. A complete fracturing simulation is carried
out then on the linearly designed composite structure accounting for crack propagation. From both
load-displacement curves and design objective values, the crack design is 15% more resistant to
fracture than the linear design.

We would like to recall that the adopted BESO method is a heuristic scheme which does not
necessarily guarantee a global optimum design. In the case of linear elasticity, the method has
been proved to be insensitive to the two chosen initial starting topologies for structural stiffness
maximization design [35]. However, such independency is not guaranteed when it comes to severe
nonlinear problems as it is in the current case, i.e., different starting topologies may lead to different
local optimum designs. Meanwhile, though the BESO method allows for both material removal
and addition, their effectiveness are different. As stated in Section 3.3, sensitivity numbers are
only evaluated for the inclusion elements and are set to zero for the matrix elements. It is only
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 crack pattern

 J = 20.46 mJ
 iteration 13  iteration 24  iteration 39

initial guess A

area fraction 20%

Figure 7: Evolution of inclusion topologies from an inital guess design with the inclusion phase occupying
20% area fraction of the domain and the final crack pattern.

 crack pattern

 J = 17.82 mJ
 iteration 8  iteration 16  iteration 30

initial guess B

area fraction 2%

Figure 8: Evolution of inclusion topologies from an inital guess design with the inclusion phase occupying
2% area fraction of the domain and the final crack pattern.

due to the filtering scheme (57) that sensitivity numbers on the matrix elements neighboring to
inclusion-matrix interface are evaluated. Therefore, it is in usual more effective to perform a
gradual material reduction starting from a larger initial domain, meanwhile the recovery/addition
serves as a complementary mechanism for minor adjustment [36].

For the purpose of comparison, we have redesigned the first example from two alternative
initial topologies as shown in Figs. 7 and 8. For both cases, the resulted finial inclusion topologies
are local optimum designs and are different from the previous design in Fig. 4. Note that in order
to start with initial guess B with a lower inclusion area fraction, (57) needs to be modified for
material addition and the maximum admission ration αth

add should be exempted from the design.
By comparing the values of the required work for complete fracture, a larger initial inclusion
domain would result in a better design, however at the expense of more computing effort.

4.2. Design of a 2D reinforced plate with two pre-existing crack notches
A 2D plate with two pre-existing crack notches in Fig. 9(a) is considered for design. Apart

from the two pre-existing crack notches, the other problem settings are defined the same as the
previous example. An initial guess design with the inclusion phase occupying 15% of the domain
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Figure 9: Illustration of a 2D plate with two pre-existing crack notches subject to incremental traction
loads: (a) problem depiction, (b) initial guess design.
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Figure 10: History of the evolution of inclusion typologies and their final crack patterns.

area is assumed as shown in Fig. 9(b). It is expected to optimally reduce the inclusion phase area
fraction from 15% to 8% by using the developed method. The pre-existing two crack notches are
simulated by prescribing Dirichlet conditions with d = 1 along the crack. The surrounding area
of the two initial crack notches is treated as a non-designable region to avoid nonphysical designs
with the inclusion material added within the already existing crack. .

Fig. 10 shows the evolution of inclusion typologies together with their final crack patterns and
the design objective history. Similar to the previous example, the fracture resistance of the com-
posite structure gently improves whilst the area fraction of the inclusion gradually decreases from
initial 14.67% to 8%, indicating that for the same fracture resistance performance, the required
usage of inclusion phase material can be largely saved via an optimal spatial distribution design.
Due to the anti-symmetry of the problem setting, cracks appear anti-symmetrically in the upper
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Figure 11: Crack propagation of the optimally designed composite structure with two pre-existing crack
notches subject to incremental traction loads: (a) ū = 0 mm, (b) ū = 0.060 mm, (c) ū = 0.072 mm, (d)

ū = 0.080 mm, (e) ū = 0.094 mm.

and lower parts of the structure. Fig. 11 shows detailed propagation of the phase field crack of the
optimally designed composite structure with two pre-existing crack notches subject to incremental
traction loads. The two initial cracks propagate into the inner supporting structure made of the in-
clusion phase during the initial incremental loads. Then, two other cracks initiate at the upper and
lower left surfaces of the inner supporting structure. All four cracks then continue to propagate
until the structure is fully broken.

Similar to the previous example, a comparison study is also performed to validate the per-
formance of the fracture resistance of the optimally designed composite structure. Topology op-
timization is carried out considering only linear elastic behavior without accounting for crack
propagation starting from the same initial guess design (Fig. 9(b)) and using the same design pa-
rameters. Linear design without accounting for crack propagation results in two longer parallel
bars compared to the linear design obtained in the previous example (due to increased inclusion
usage) as shown in Fig. 12. The linearly designed composite structure is then subjected to a full
fracturing simulation and its load-displacement curve is compared with the one of the crack de-
sign. From both load-displacement curves and design objective values, the fracture resistance of
the crack design has been obviously increased for over 40% in comparison to the linear design.

4.3. Design of a 2D reinforced plate with multiple pre-existing cracks
This example addresses a multi-objective design using the developed method to improve the

fracture resistance of a 2D reinforced plate trying to accommodate the geometry of the inclusion
to several different distributions of cracks at the same time to deal with possible random creation
of cracks within the structures. For the sake of illustration, only 3 configurations are used here as
shown in Fig. 13. All problem settings are defined the same as the previous two examples except
for the use of a finer finite element discretization. Considering the simulation accuracy involving
multiple cracks, a finer discretization with 100 × 200 square shaped bilinear elements is adopted
in this design. Following the same design procedure as presented in the first two examples, the
area fraction of inclusion is gradually reduced from initial 28% to 8%. The initial distribution
of inclusion phase is assumed to be a square shape enveloping all inner cracks of three cases as
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Figure 12: Fracture resistance comparison of two composite structures with two pre-existing crack notches
subject to incremental traction loads.

Figure 13: Three 2D plates with multiple pre-existing cracks (cases 1-3 from left to right).

shown by the dashed lines in Fig. 13.
The optimally designed distribution topology of inclusion phase is given in Fig. 14 and their

final crack patterns are shown in Fig. 15. It can be observed that the inclusion phase is distributed
preferably at places such that can prevent the further propagation of critical cracks. Attention needs
to be recalled that due to the regularized description of cracks using the phase filed method, the
surrounding region of all initial cracks is assumed to be non-designable. Otherwise the inclusion
phase would fill all fictitious cracks by the design resulting in nonphysical designs.

4.4. Design of a 3D reinforced plate with one pre-existing crack notch surface
A 3D plate with one pre-existing crack notch surface as shown in Fig. 16 is considered for

design to further validate the developed method. The dimensions of the 3D plate is 50×100×6.67
mm3. The whole volume domain is discretized into 60×120×8 eight-node cubic elements. Similar
to the 2D case in Section 4.1, the lower end of the plate is fixed vertically while free horizontally.
The central node on the right end edge is fixed in all directions to avoid rigid body motions.
The upper end of the plate is prescribed with incremental displacement loads with ∆ū = 0.01
mm for first seven load increments and ∆ū = 0.002 mm for the following load increments. The
incremental loading process continues until the reaction forces is below a prescribed criterion
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Figure 14: Optimally designed inclusion distribution topology for three 2D plates with multiple
pre-existing cracks (cases 1-3 from left to right).
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Figure 15: Final crack patterns of the three optimally designed 2D plates with multiple pre-existing cracks
and their load-displacement curves.

value indicating that the structure is completely broken. The pre-existing crack notch surface is
simulated by prescribing Dirichlet conditions d = 1 along the crack surface. The surrounding
volume of the initial crack surface (up to 2 times of the length scale parameter `) is treated as a
non-designable region to avoid nonphysical designs.

Fig. 16(b) gives the initial guess design with the inclusion phase occupying 10% of the domain
volume. By the developed method, the inclusion phase area is gradually reduced to the target
volume fraction, 5% of the domain volume. The evolution of the spatial distribution topology of
inclusion phase together with their final crack patterns and the design objective history are given
in Fig. 17. The resultant hollow distribution topology design is similar to the one obtained in the
2D case in Section 4.1. It can be observed from Fig. 17 that unlike the 2D cases, the fracture
resistance of the composite structure in the 3D case is obviously improved during the removal
of material volume. From the 3D design, it is more obvious that for the same or even higher
fracture resistance performance, the required usage of inclusion phase can be largely saved via an
optimal spatial distribution design. This is because there exist much more inefficient material in
the 3D case than the 2D case, such as those within the hollow, which could be clearly removed
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Figure 16: A 3D plate with one pre-existing crack notch subject to a traction load: (a) problem depiction,
(b) initial guess design.
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Figure 17: History of the evolution of inclusion typologies and their final crack patterns.

without weakening the fracture resistance of the composite structure. Detailed phase field crack
propagation of the optimally designed 3D composite structure is given in Fig. 18, where the crack
propagation trajectory is similar to the corresponding 2D case in Section 4.1.

5. Conclusions

In this paper, we have proposed a numerical design framework for fracture resistance of com-
posites through an optimal design of the spatial distribution of inclusion phase. The phase field

22



0 0.02 0.04 0.06 0.08 0.1

displacement [mm]

0

0.5

1

1.5

2

2.5

lo
a

d
 [
K

N
]

(a) (c)(b) (d) (e)

a

c

b

d

Figure 18: Crack propagation of the optimally designed 3D composite structure with one pre-existing
crack notch subject to incremental traction loads: (a) ū = 0.084 mm, (b) ū = 0.088 mm, (c) ū = 0.094 mm,

(d) ū = 0.010 mm, (e) load-displacement curve.

method to fracturing with a regularized description of discontinuity has been adopted for the mod-
eling of complete fracturing process. The optimal design of the spatial distribution of inclusion
phase is realized by means of topology optimization using an extend bi-directional evolutionary
structural optimization method. Both 2D and 3D benchmark tests have been performed to validate
the proposed design framework. It has been shown that significant improvement of the fracture
resistance of composites has been achieved for designs accounting for full failure when compared
to conventional linear designs.

Compared to previous studies in the literature on the subject, this work provides a much more
efficient alternative for the design of high fracture resistant composites. There exist twofold mer-
its of the developed design framework: on the one hand, the adoption of topology optimization
provides uttermost design freedom, yielding higher fracture resistant designs; on the other hand,
limited number of iterations is required for the design for the sake of using gradient information,
which is of essential importance dealing with computationally demanding fracturing simulation.
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