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allowed them to significantly develop in Benin by his unwavering support to
Masters and PhD of Statistics.

The fractional Brownian motion which has been defined by Kolmogorov
[16] and numerous papers was devoted to its study since its study in Man-
delbrot and Van Ness [19] present it as a paradigm of self-similar pro-
cesses. The self-similarity parameter, also called the Hurst parameter,
commands the dynamic of this process and the accuracy of its estimation
is often crucial. We present here the main and used methods of estimation,
with the limit theorems satisfied by the estimators. A numerical compari-
son is also provided allowing to distinguish between the estimators.

Introduction
The fractional Brownian motion (fBm for short) has been studied a lot since the seminal
paper of Kolmogorov [16] and its resumption in Mandelbrot and Van Ness [19]. A
simple way to present this extension of the classical Wiener Brownian motion is to
define it from its both first moments. Hence, a fBm with parameter (H,σ2) ∈ (0,1]×
(0,∞) is a centered Gaussian process X = {X(t), t ∈ R} having stationary increments
and such as

cov
(
X(s),X(t)

)
= σ

2 RH(s, t) =
1
2

σ
2 (|s|2H + |t|2H −|t− s|2H) (s, t) ∈ R2.

As a consequence, Var(X(t)) = σ2 |t|2H for any t ∈R, which induces that X is the only
H-self-similar centered Gaussian process having stationary increments. More detail on
this process can be found in the monograph of Samorodnitsky and Taqqu [25].
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We consider the following statistical problem. We suppose that a trajectory (X(1), · · · ,X(N))
of X is observed and we would like to estimate the parameters H and σ2 which are un-
known.

Remark 0.1 It is also possible to consider an observed path (X(1/N),X(2/N), · · · ,X(1))
of X. Using the self-similarity property of X, the distributions of (X(1), · · · ,X(N)) and
NH(X(1/N),X(2/N), · · · ,X(1)) are the same.

This statistical model is parametric and it is natural to estimate θ = (H,σ2) using a
parametric method. Hence, in the one hand, in the forthcoming Section 1, two possible
parametric estimators are presented. In the second hand, several other used and famous
semi-parametric estimators are studied in Section 2. For each estimator, its asymptotic
behavior is stated and the main references recalled. Finally, Section 3 is devoted to
a numerical study from Monte-Carlo experiments, allowing to obtain some definitive
conclusions with respect to the estimators.

1 Two classical parametric estimators
Since X is a Gaussian process for which the distribution is integrally defined when
θ is known, a parametric method such as Maximum Likelihood Estimator (MLE) is
a natural choice of estimation and it provides efficient estimators. As X is a process
having stationary increments, it is appropriate to define Y the process of its increments,
i.e. the fractional Gaussian noise,

Y = {Y (t), t ∈ R}= {X(t)−X(t−1), t ∈ R},

with covariogram rY (k) = cov
(
Y (t),Y (t + k)

)
satisfying

rY (k) =
1
2

σ
2 (|k+1|2H + |k−1|2H −2|k|2H) k ∈ R.

The spectral density fY of Y is defined for λ ∈ [−π,π] by (see Sinaı̈ [21] or Fox and
Taqqu [11]):

fH(λ ) :=
1

2π
∑
k∈Z

rY (k)eikλ = 2σ
2

Γ(2H +1)sin(πH)(1− cosλ ) ∑
k∈Z
|λ +2kπ|−1−2H .

(1.1)
Hence, since (X(1), · · · ,X(N)) is observed, (Y (1), · · · ,Y (N)) is observed (we assume
X(0) = 0).

1.1 Maximum Likelihood Estimation
The likelihood L(Y (1),··· ,Y (N))(y1, · · · ,yN) of (Y (1), · · · ,Y (N)) is the Gaussian probabil-
ity density of (Y (1), · · · ,Y (N)), which can be written

L(Y (1),··· ,Y (N))(y1, · · · ,yN) =
(2π)N/2

det
(
ΣN(H,σ2)

) ×
exp
(
− 1

2
(y1, · · · ,yN)Σ

−1
N (H,σ2)(y1, · · · ,yN)

′
)
,
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where the definite positive covariance matrix ΣN(H,σ2) is such as

ΣN(H,σ2) =
(
r(|i− j|)

)
1≤i, j≤N .

Then the MLE θ̂N = (ĤN , σ̂2
N) of θ is defined as:

(ĤN , σ̂2
N) = Arg max

(H,σ2)∈(0,1)×(0,∞)
L(Y (1),··· ,Y (N))(Y (1), · · · ,Y (N)).

As it is generally done, it can be more convenient to minimize the contrast defined by
−2log

(
L(Y (1),··· ,Y (N))(Y (1), · · · ,Y (N))

)
.

The asymptotic behavior of this estimator has been first obtained in Dahlhaus [9]. The
main results are the following:

Theorem 1.1 The estimator (ĤN , σ̂2
N) is asymptotically efficient and satisfies

( ĤN

σ̂2
N

)
a.s.−→

N→∞

( H
σ2

)
(1.2)

and
√

N
(( ĤN

σ̂2
N

)
−
( H

σ2

))
D−→

N→∞
N2
(
0 , Γ

−1
0 (H,σ2)

)
, (1.3)

where Γ
−1
0 (H,σ2) is the limit of 1

N I−1
N (H,σ2) and IN(H,σ2) is the Fisher information

matrix of (Y (1), · · · ,Y (N)). Moreover,

Γ0(H,σ2) =
1

4π

∫
π

−π

(
∂

∂θ
log fθ (λ )

)(
∂

∂θ
log fθ (λ )

)′
dλ , (1.4)

and fθ (λ ) = σ
2 gH(λ ) where

gH(λ ) = 2 sin(πH)Γ(2H +1)(1− cosλ ) ∑
j∈Z

∣∣λ +2π j
∣∣−2H−1

.

The asymptotic covariance Γ0(H,σ2) can not be really simplified, we just can obtain:

Γ
−1
0 (H,σ2) =

1
1
2 aH −b2

H

( 1
2 −σ2bH

−σ2bH σ4aH

)
(1.5)

where aH = 1
4π

∫
π

−π

(
∂

∂H loggH(λ )
)2dλ and bH = 1

4π

∫
π

−π
∂

∂H loggH(λ )dλ .

1.2 Whittle estimation
The MLE is an asymptotically efficient estimator but it has two main drawbacks: first,
it is a parametric estimator which can only be used, stricto sensu, to fBm and its use
is numerically limited since the computation of the likelihood requires to inverse the
matrix ΣN(H,σ2) and this is extremely time consuming when N≥ 5000 and impossible
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when N ≥ 10000 (with a 2014-software). In Whittle [28], a general approximation
of the likelihood for Gaussian stationary processes Y has been first proposed. This
consists on writing for Y depending on a parameter vector θ :

− 1
N

logL(Y (1),··· ,Y (N))(Y (1), · · · ,Y (N))− 1
2

log(2π)

D'
N→∞

ÛN(θ) =
1

4π

∫
π

−π

(
log( fθ (λ ))+

ÎN(λ )

fθ (λ )

)
dλ

where ÎN(λ ) =
1

2πN

∣∣∣∑N
k=1 Y (k)e−ikλ

∣∣∣2 is the periodogram of Y .

Then θ̃N = (H̃W , σ̃2
N) = Argminθ∈ΘÛN(θ) is called the Whittle estimator of θ . In

case of the fractional Gaussian noise, Dahlhaus [9] achieved the results of Fox and
Taqqu [11] and proved the following limit theorem:

Theorem 1.2 The estimator (H̃W , σ̃2
N) is asymptotically efficient and satisfies( H̃W

σ̃2
N

)
a.s.−→

N→∞

( H
σ2

)
(1.6)

and
√

N
(( H̃W

σ̃2
N

)
−
( H

σ2

))
D−→

N→∞
N2
(
0 , Γ

−1
0 (H,σ2)

)
, (1.7)

with Γ0(H,σ2) defined in (1.4).

Hence, the Whittle estimator (H̃N , σ̃2
N) has the same asymptotic behaviour than the

MLE while its numerical accuracy is clearly better: in case of fractional Gaussian
noise, and therefore in case of the fBm, the Whittle estimator has to be preferred to the
MLE.

2 Other classical semi-parametric estimators
As we said previously, we present now some classical semi-parameteric methods fre-
quently used for estimating the parameter H of a fBm, but also applied to other long-
range dependent or self-similar processes.

2.1 R/S and modified R/S statistics
The first estimator which has been applied to a fBm, and more precisely to a fractional
Gaussian noise has been the R/S estimator. This estimator defined by the hydrologist
Hurst [14] was devoted to estimated the long-range dependent parameter (also called
the Hurst parameter) of a long memory process. Lo [18] introduced the modified R/S
statistic for a times series X which is defined as

Q̂N(q) =
1

ŝN,q

(
max

1≤k≤N

k

∑
i=1

(X(i)−XN)− min
1≤k≤N

k

∑
i=1

(X(i)−XN)
)

(2.1)
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where XN = 1
N (X(1) + · · ·+ X(N)) is the sample mean and ŝ2

N,q is an estimator of
σ2 = ∑i∈Z cov(X(0),X( j)) defined by

ŝ2
N,q =

1
N

N

∑
i=1

(X(i)−XN)
2 +2

q

∑
i=1

ωi(q) γ̂N(i) (2.2)

with
{

ωi(q) = 1− i/(q+1)
γ̂N(i) = 1

N ∑
N−i
j=1(X( j)−XN)(X( j+ i)−XN)

(2.3)

The classical R/S statistic corresponds to q = 0. In such case, we have the following
asymptotic behavior when X is a fGn:

Proposition 2.1 If X is a fGn with parameter H > 1/2, then (see Li et al., 2011)

1
NH E

[
Q̂N(0)

]
−→
N→∞

E
[

max
0≤t≤1

BH(t)− min
0≤t≤1

BH(t)
]
, (2.4)

with BH the fractional bridge with parameter H, i.e., BH(t) = XH(t)− tXH(1) for t ∈
[0,1] where XH is a standardized fBm of parameter 1.

Using this asymptotic behavior of the expectation, an estimator of H has been de-
fined. First the trajectory (X(1), · · · ,X(N)) is divided in K blocks of length N/K and
Q̂ni(0) is averaged for several values of ni such as ni −→

N→∞
∞. Then, a log-log re-

gression of (Q̂ni(0)) onto (ni) provides a slope ĤRS which is an estimator of H since
logE

[
Q̂ni(0)

]
'H log(ni)+C (see for instance Taqqu et al. [23]). Note that even in the

”simple” case of the fGn, there still do not really exist a convincing asymptotic study
of such an estimator.
Lo [18] and numerical experiments in Taqqu et al. [23] have shown that this estimator
is not really accurate and Lo [18] proposed an extension of this R/S statistic: this is
the modified R/S statistic. We have the following asymptotic behavior (see Giraitis et
al. [12] and Li et al. [17]):

Proposition 2.2 If q −→
N→∞

∞ and q/N −→
N→∞

0, and X is a fGn, then:

• if H ≤ 1/2, N−1/2 Q̂N(q)
D−→

N→∞
UR/S (2.5)

• if H > 1/2, qH−1/2N−H Q̂N(q)
D−→

N→∞
ZR/S (2.6)

where UR/S =max0≤t≤1 B1/2(t)−min0≤t≤1 B1/2(t) and ZR/S =max0≤t≤1 BH(t)−min0≤t≤1 BH(t),
with BH the fractional bridge with parameter H.

Then, using several values of q, (q1, · · · ,qm), a log-log regression of Q̂N(qi) onto qi
provides an estimator ĤRSM of H (the slope of the regression line is H− 1

2 . But there
do not exist more precise result about the convergence rate of such estimator of H in
the literature. Moreover, in Teverovsky et al. [24], the difficulty of selecting a right
range of values for qi is highlighting.
As a conclusion, we can say that R/S or modified R/S statistics provide estimation of
H but these estimators are not really accurate.
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2.2 Second-order quadratic variations
Contrary to the R/S method, the second-order quadratic variations can be directly ap-
plied to self-similar processes, and hence in particular to fBm.
For presenting this method, introduced by Guyon and Leòn [13] and Istas and Lang
[15], first, for a ∈N∗, define the second-order quadratic variations of X = (X(i))i∈Z by

V (a)
t := (X(t +2a))−2X(t +a)+X(t))2 for t ∈ N∗. (2.7)

The key-point of this method is the following property:

Property 2.3 If X is a second moment order H-self-similar process having stationary
increments, with EX2(1) = σ2, then for all a ∈ N∗ and t ∈ N∗

E(V (a)
t ) = σ

2(4−22H)a2H . (2.8)

Therefore logE(V (a)
t ) =C+2H loga for any (a, t). This provides an idea of estimating

H: if E(V (ai)
t ) can be estimated for several different scales ai, then the slope of the

log-log-regression of
(
Ê(V (ai)

t )
)

onto (ai) is 2ĤN , which is an estimator of H.

The common choice for scales are ai = i and the estimator of E(V (i)
t ) is the empirical

mean of V (i)
t ,

SN(i) =
1

N−2i

N−2i

∑
k=1

V (i)
k . (2.9)

Then a central limit theorem can be established for i ∈ N∗:
√

N
(
SN(i)−σ

2(4−22H)i2H) D−→
N→∞

N
(

0,γ(i)
)

with γ(i) =
1
2

σ
4i2H+1

∞

∑
`=−∞

(
|`+2|2H + |`−2|2H −2|`+1|2H −2|`−1|2H +6|`+2|2H)2

.

Then we can define

ĤN :=
1
2

A
AAᵀ

(
log(SN(i))

)ᵀ
1≤i≤p,

where A :=
(

log i− 1
p ∑

p
j=1 log j

)
1≤i≤p ∈ Rp is a row vector, Aᵀ its transposed vector

(vector-column).
As a consequence, it can be shown (see Bardet [2] or [8]) that, with (a0,a1,a2) =
(1,−2,1),

√
N
(
ĤN−H

) D−→
N→∞

N
(
0 , Σ(H)

)
, where Σ(H) :=

AΓ(H)Aᵀ

4(AᵀA)2 and(2.10)

Γ(H) :=
( 2

i2H j2H ∑
k∈Z

[∑
q
k1,k2=0 a(1)k1

a(1)k2
|ik1− jk2 + k|2H

∑
2
k1,k2=0 a(1)k1

a(1)k2
|k1− k2|2H

]2)
1≤i, j≤p

. (2.11)

This method has a lot of advantages: low time-consuming, convergence rate close to
MLE convergence rate...
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However it is easy to slightly improve this estimator. First, as the asymptotic covariance
Γ(H) of (SN(i)) is a function of H; hence, using the estimator ĤN , this asymptotic co-
variance can be estimated. Hence, a pseudo-generalized estimator of H can be defined.
More precisely, define

Γ̂N = Γ
(
ĤN
)
. (2.12)

Then the pseudo-generalized estimator H̃N of H is defined by:

H̃N =
(BNL)ᵀΓ̂

−1
N

(
log(SN(i))

)ᵀ
1≤i≤p

2(BNL)ᵀΓ̂
−1
N (BNL)

(2.13)

with Ip = (1,1, · · · ,1)ᵀ, L = (log i)1≤i≤p and BN = I−
IpIᵀp Γ̂N

Iᵀp Γ̂
−1
N Ip

.

Then, from Bardet [2],

Proposition 2.4 If X is a fBm of parameter H, then with B = I−
IpIᵀp Γ

Iᵀp Γ−1Ip
,

√
N(H̃N − H)

D−→
N→∞

N
(
0; Σ

′(H)
)
, with Σ

′(H) =
1

4t(BL)G−1(BL)
. (2.14)

From Gauss-Markov Theorem, the asymptotic variance Σ′(H) is smaller or equal to
Σ(H) and thus the estimator H̃N is more accurate than ĤN .
Another improvement of this estimator consists on considering a number p of ”‘scales”’
increasing with N: this is what we will use in simulations (theoretical results are not
yet established, if they could be once).

2.3 Detrended Fluctuation Analysis (DFA)
The DFA method was introduced in Peng al. [20] in a biological frame. The aim
of this method is to highlight the self-similarity of a time series with a trend. Let
(Y (1), . . . ,Y (N)) be a sample of a time series (Y (n))n∈N.

1. The first step of the DFA method is a division of {1, . . . ,N} in [N/n] windows of
length n (for x ∈R, [x] is the integer part of x). In each window, the least squares
regression line is computed, which represents the linear trend of the process in
the window. Then, we denote by Ŷn(k) for k = 1, . . . ,N the process formed by this
piecewise linear interpolation. Then the DFA function is the standard deviation
of the residuals obtained from the difference between Y (k) and Ŷn(k), therefore,

F̂(n) =

√√√√ 1
n · [N/n]

n·[N/n]

∑
k=1

(
Y (k)− Ŷn(k)

)2

2. The second step consists on a repetition of the first step with different values
(n1, . . . ,nm) of the window’s length. Then the graph of the log F̂(ni) by logni is
drawn. The slope of the least squares regression line of this graph provides an
estimation of the self-similarity parameter of the process (Y (k))k∈N.
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From the construction of the DFA method, it is interesting to define the restriction of
the DFA function in a window. Thus, for n ∈ {1, . . . ,N}, one defines the partial DFA
function computed in the j-th window, i.e.

F2
j (n) =

1
n

n j

∑
i=n( j−1)+1

(X(i)− X̂n(i))2, for j ∈ {1, . . . , [N/n]}. (2.15)

Then, it is obvious that

F2(n) =
1

[N/n]

[N/n]

∑
j=1

F2
j (n). (2.16)

Let {XH(t), t ≥ 0} be a FBM, built as a cumulated sum of stationary and centered
fGn {Y H(t), t ≥ 0}. In Bardet and Kammoun [4], the following detailed asymptotic
behavior of the DFA method is established. First some asymptotic properties of F2

1 (n)
can be established:

Proposition 2.5 Let {XH(t), t ≥ 0} be a fBm with parameters 0 < H < 1 and σ2 > 0.
Then, for n and j large enough,

1. E(F2
1 (n)) = σ

2 f (H)n2H
(

1+O
(1

n

))
, with f (H) =

(1−H)

(2H +1)(H +1)(H +2)
,

2. Var
(
F2

1 (n)
)

= σ
4g(H)n4H

(
1+O

(1
n

))
, with g depending only on H,

3. cov(F2
1 (n),F

2
j (n)) = σ

4h(H)n4H j2H−3
(

1+O
(1

n

)
+O

(1
j

))
,

with h(H) =
H2(H−1)(2H−1)2

48(H +1)(2H +1)(2H +3)
.

In order to obtain a central limit theorem for the logarithm of the DFA function, we
consider a normalized DFA functions

S̃ j(n) =
F2

j (n)

n2Hσ2 f (H)
and S̃(n) =

F2(n)
n2Hσ2 f (H)

(2.17)

for n ∈ {1, . . . ,N} and j ∈ {1, . . . , [N/n]}.
Under conditions on the asymptotic length n of the windows, one proves a central limit
theorem satisfied by the logarithm of the empirical mean S̃(n) of the random variables
(S̃ j(n))1≤ j≤[N/n].

Proposition 2.6 Under the previous assumptions and notations, let n ∈ {1, . . . ,N} be
such that N/n→ ∞ and N/n3→ 0 when N→ ∞. Then√[N

n

]
· log(S̃(n)) D−→

N→∞
N (0,γ2(H))),

where γ2(H)> 0 depends only on H.
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This result can be obtained for different lengths of windows satisfying the conditions
N/n→∞ and N/n3→ 0. Let (n1, . . . ,nm) be such different window lengths. Then, one
can write for N and ni large enough

log(S̃(ni))'
1√

[N/ni]
· εi =⇒

log(F(ni))' H · log(ni)+
1
2

log(σ2 f (H))+
1√

[N/ni]
· εi,

with εi ∼N (0,γ2(H)). As a consequence, a linear regression of log(F(ni)) on log(ni)
provides an estimation ĤDFA of H. More precisely,

Proposition 2.7 Under the previous assumptions and notations, let n ∈ {1, . . . ,N},
m ∈N∗ \{1}, ri ∈ {1, . . . , [N/n]} for each i with r1 < · · ·< rm and ni = rin be such that
N/n→ ∞ and N/n3→ 0 when N→ ∞. Let ĤDFA be the estimator of H, defined as the
slope of the linear regression of log(F(ri ·n)) on log(ri ·n), i.e.

ĤDFA =
∑

m
i=1(log(F(ri ·n))− log(F))(log(ri ·n)− log(n))

∑
m
i=1(log(ri ·n)− log(n))2

.

Then ĤDFA is a consistant estimator of H such that, with C(H,m,r1, . . . ,rm)> 0,

E[(ĤDFA−H)2]≤C(H,m,r1, . . . ,rm)
1

[N/n]
. (2.18)

Hence, this result shows that the convergence rate of ĤDFA is
√

N/n that is a con-
vergence rate o(N1/3) from the condition N/n3→ 0. This is clearly less accurate than
parametric estimators or even quadratic variations estimators. This estimator is devoted
to trended long-range time series but even in such frame this estimator does not give
satisfying results (see Bardet and Kammoun [4]).

2.4 Increment Ratio Statistic
The Increment Ratio (IR) statistic was first proposed in Surgailis et al. [22] in the
frame of long-range dependent time series and extended to continuous time processes
in Bardet and Surgailis [6]. For a time series X = (X(k))k∈Z define the second order
variation as in 2.7 D(a)

t = X(t +2a))−2X(t +a)+X(t) for t ∈ Z and a ∈ N∗. Assume
that a trajectory (X(0),X(1), · · · ,X(N)) is observed. Define for a ∈ N∗,

R(a)
N :=

1
N−2a

N−3a

∑
k=0

∣∣D(a)
k +D(a)

k+1

∣∣
|D(a)

k |+ |D
(a)
k+1|

, (2.19)

with the convention 0
0 := 1. Note the ratio on the right-hand side of (2.19) is either 1

or less than 1 depending on whether the consecutive increments D(a)
k and D(a)

k+1 have
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same signs or different signs; moreover, in the latter case, this ratio generally is small
whenever the increments are similar in magnitude (“cancel each other”).
If X is a fBm with parameter H ∈ (0,1), then it is established in Bardet and Surgailis [6]
that for any H ∈ (0,1),

R(1)
N

a.s.−→
N→∞

Λ2(H) (2.20)

√
N
(
R(1)

N −Λ2(H)
) D−→

N→∞
N
(
0 , Σ2(H)

)
. (2.21)

The expressions of Λ2(H) and Σ2(H) are respectively given by:

Λ2(H) := λ (ρ2(H)), (2.22)

λ (r) :=
1
π

arccos(−r)+
1
π

√
1+ r
1− r

log
(

2
1+ r

)
, (2.23)

ρ2(H) := corr
(
D(1)

0 ,D(1)
1

)
=
−32H(t)+22H(t)+2−7

8−22H(t)+1 (2.24)

and Σ2(H) := ∑
j∈Z

cov

 ∣∣D(1)
0 +D(1)

1

∣∣∣∣D(1)
0

∣∣+ ∣∣D(1)
1

∣∣ ,
∣∣D(1)

j +D(1)
j+1

∣∣∣∣D(1)
j

∣∣+ ∣∣D(1)
j+1

∣∣
 . (2.25)

and their graphs in Figures 1 and 2.

Figure 1: The graph of Λ2(H).

The central limit (2.21) provides a way for estimating H: indeed, since H ∈ (0,1) 7→
Λ2(H) is an increasing C 1 function, define

ĤN = Λ
−1
2
(
R(1)

N

)
.

From the Delta-method, we obtain the following central limit theorem for ĤN :

10



Figure 2: The graphs of
√

Σp(H), p = 1 (with a pole at 3/4) and p = 2 (with a pole at
7/4) (from Stoncelis and Vaičiulis [26]

Proposition 2.8 For all H ∈ (0,1),

√
N
(
ĤN−H

) D−→
N→∞

N
(
0 , γ

2(H)
)

with γ2(H) = Σ2(H)
[(

Λ
−1
2

)′
(Λ2(H)))

]2
In Bardet and Surgailis [7], in a quite similar frame, an improvement of ĤN has been
proposed. It consists first on obtaining a central limit theorem for the vector (R(1)

N ,R(2)
N , · · · ,R(m)

N )

with m ∈N∗ and not only for R(a)
N with a = 1. Hence, we obtain the following multidi-

mensional central limit theorem:
√

N
(
(R(i)

N )1≤i≤m− (Λ
(i)
2 )1≤i≤m

) D−→
N→∞

N
(
0 , Γm(H)

)
where Γm(H) = (γi j(H))1≤i, j≤m and

Λ
(i)
2 (H) = λ (ρ

(i)
2 (H))

with ρ
(i)
2 (H) = Cor(D(i)

0 ,D(i)
1 ) =

−|2i+1|2H −|2i−1|2H +4|i+1|2H +4|i−1|2H −6
8−22H+1

and γi j(H) = ∑
k∈Z

cov

( ∣∣D(i)
0 +D(i)

1

∣∣∣∣D(i)
0

∣∣+ ∣∣D(i)
1

∣∣ ,
∣∣D( j)

k +D( j)
k+1

∣∣∣∣D( j)
k

∣∣+ ∣∣D( j)
k+1

∣∣
)
.

Then we define:

Ĥ(i)
N =

[
Λ
(i)
2

]−1(R(i)
N

)
,

and using again the Delta-Method we obtain another multidimensional central limit
theorem

√
N
(
(Ĥ(i)

N )1≤i≤m−H Im
) D−→

N→∞
N
(
0 , ∆m(H)

)
11



and ∆m(H) :=
([

∂

∂x
(Λ

(i)
2 )−1(Λ

(i)
2 (H))

]
γi j(H)

[
∂

∂x
(Λ

( j)
2 )−1(Λ

( j)
2 (H))

])
1≤i, j≤p

.

Finally a pseudo-generalized least squares estimator of H can be constructed (like for
ĤQV ). Indeed ∆m(H) can be estimated by ∆̂m = ∆m(Ĥ

(1)
N ). Then we define

ĤIR =
(
Iᵀm (∆̂m Im

)−1 Iᵀm (∆̂m)
−1 (Ĥ(i)

N

)
1≤i≤m (2.26)

and we obtain this proposition:

Proposition 2.9 For all H ∈ (0,1) and m ∈ N∗,
√

N
(
ĤIR−H

) D−→
N→∞

N (0 , s2),

with s2 =
(
Iᵀm
(
∆m(H)

)−1 Im
)−1.

Then the convergence rate of ĤIR is
√

N, confidence intervals can also be easily com-
puted.

2.5 Wavelet based estimator
This approach was introduced for fBm by Flandrin [10], and popularized by many au-
thors to other self-similar or long-range dependent processes (see for instance Veitch
and Abry [27], Abry et al. [1] or Bardet et al. [5]). Here we are going to follow
Bardet [3], which is especially devoted to fBm as an extension of Flandrin [10].
First we define a (mother) wavelet function ψ such as ψ : R→R is a piecewise contin-
uous and piecewise left (or right)-differentiable in [0,1], such that |ψ ′l (t)| is Riemann
integrable in [0,1] with ψ ′l the left-derivative of ψ , with support included in [0,1] and
Q first vanishing moments, i.e.∫

t p
ψ(t)dt = 0 f or p = 0,1, · · · ,Q−1 (2.27)

and
∫

tQ
ψ(t)dt 6= 0. (2.28)

For ease of writing, we have chosen a ψ supported in [0,1]. But all the following results
are still true, mutatis mutandis, if we work with any compactly supported wavelets. For
instance, ψ can be any of the Daubechies wavelets.
Now we define the wavelet coefficients d(a, i) of X where a ∈ N∗ is called “scale” and
i ∈ {1,2, · · · , [N/a]−1} is called “shift” by:

d(a, i) =
1√
a

∫
∞

−∞

ψ(
t
a
− i)X(t)dt =

1√
a

∫ a

0
ψ(

t
a
)X(t +ai)dt. (2.29)

, For each (a, i), d(a, i) is a zero-mean Gaussian variable and its variance is a self-
similar deterministic function in a, independent of the shift i, since for any a∈{1,2, · · · , [N/2]}
and i ∈ {1,2, · · · , [N/a]−1},

Ed2(a, i) = a2H+1Cψ(H) where Cψ(H) =−σ2

2

∫ ∫
ψ(t)ψ(t ′)|t− t ′|2Hdtdt ′.

12



We assume now Cψ(H) > 0 for all H ∈]0,1[. Now we consider an empirical variance
IN(a) of d(a, i) by

IN(a) =
1

[N/a]−1

[N/a]−1

∑
k=1

d2(a,k). (2.30)

Using properties of ψ and particularly condition
∫

t pψ(t)dt = 0 for p = 0,1, · · · ,Q−1,
we can show that lim

|i− j|→∞

|cov(d̃(a, i), d̃(a, j))|= 0 and limit theorems for IN(a). More

precisely,

Proposition 2.10 Under the previous assumptions, for 1≤ a1 < · · ·< am ∈ N∗, then[√
N
ai
(log IN(ai)− (2H+1) logai−logCψ(H))

]
1≤i≤m

D−→
N→∞

Nm(0;F), (2.31)

with F=( fi j)1≤i, j≤m the matrix with Di j=GCD(ai,a j),

fi j =
σ4Di j

2C2
ψ(H)a2H+1/2

i a2H+1/2
j

∞

∑
k=−∞

(∫ ∫
ψ(t)ψ(t ′)

∣∣kDi j +ait−a jt ′
∣∣2Hdtdt ′

)2

.

When a trajectory (X(1), · · · ,X(N)) is observed, dX can not be computed and an ap-
proximation has to be considered. Indeed, the wavelet coefficients d(a, i), computed
from a continuous process, can not be directly obtained and only approximated coeffi-
cients can be computed from a time series. It requires to choose large enough scales to
fit well. Here, we will work with approximated coefficients e(a, i) defined by:

e(a, i) =
1√
a

∞

∑
k=−∞

ψ(
k
a
− i)X(k) =

1√
a

a

∑
k=0

ψ(
k
a
)X(k+ai). (2.32)

Denote also

JN(a) =
1

[N/a]−1

[N/a]−1

∑
k=1

e2(a,k). (2.33)

The limit theorem of proposition 2.10 can be rewritten with ẽ(a, i) instead of d̃(a, i).
The main difference is the use of scales a1(N), · · · ,am(N) satisfying lim

N→∞
ai(N) = ∞.

More precisely, the limit theorem is the following:

Proposition 2.11 Let n1 < · · ·< nm be integer numbers and let ai(N) = nib(N) for i =

1, · · · ,m with b(N) a sequence of integer numbers satisfying: [
N

b(N)
]≥ 2, lim

N→∞
b(N) = ∞

and lim
N→∞

N
b3(N)

= 0. Then, under previous assumptions,√
N

b(N)
(logJN(ai(N))−(2H+1) logai(N)−logCψ(H))1≤i≤m

D−→
N→∞

Nm(0;G),
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with G=(gi j)1≤i, j≤m the matrix with Di j=GCD(ni,n j),

gi j =
σ4Di j

2C2
ψ(H)n2H+1/2

i n2H+1/2
j

∞

∑
k=−∞

(∫ ∫
ψ(t)ψ(t ′)

∣∣kDi j +nit−n jt ′
∣∣2Hdtdt ′

)2

.

From conditions on b(N), the best convergence rate of this limit theorem is less than
N1/3 instead of

√
N without the discretization problem. It is an important difference

for the following estimation of H.
Indeed, Proposition 2.11 provides a method to estimate H from a linear regression. In
fact, the central limit theorem of this proposition can be written :√

N
b(N)

(YN−(2H+1)L−KIm)
D−→

N→∞
Nm(0;G),

with

• K=logCψ(H), Im=(1, ..,1)′, and L=(logni)1≤i≤m,

• YN =(logJN(ai(N))− logb(N))1≤i≤m and M=(L, Im).

Under assumptions, there exists θ = t(2H + 1,K), such that YN = M θ + βN , where
βN is a remainder which is asymptotically Gaussian. By the linearity of this model,
one obtains an estimation θ̂1(N) of θ by the regression of YN on M and ordinary least
squares (O.L.S.).
But we can also identify the asymptotic covariance matrix of βN . Indeed, the matrix
G is a function Gψ(n1, · · · ,nm,H) and Ĝ(N) = Gψ(n1, · · · ,nm, Ĥ1(N)) converges in
probability to G. So, it is possible to determine an estimation θ̂2(N) of θ by generalized
least squares (G.L.S.) of H by minimizing

‖ YN−M θ ‖2
Ĝ(N)−1= (YN−M θ)′Ĝ(N)−1(YN−M θ).

Thus, from the classical linear regression theory and the Gauss-Markov’s Theorem:

Proposition 2.12 Under previous assumptions,

1. The O.L.S. estimator of H is ĤOLS such as ĤOLS =

(
1
2
,0
)
(M′M)−1M′YN−

1
2

and

√
N

b(N)
(ĤOLS−H)

D−→
N→∞

N (O , σ
2
1 ), with σ

2
1 =

1
4
(M′M)−1M GM′ (M′M)−1.

2. The G.L.S. estimator of H is ĤWave such as ĤWave =

(
1
2
,0
)(

M′ Ĝ(N)−1M
)−1

M′Ĝ(N)−1 YN −
1
2

and

√
N

b(N)
(ĤWave−H)

D−→
N→∞

N (O , σ
2
2 ), with σ

2
2 =

1
4

(
M′ Ĝ(N)−1M

)−1
≤ σ

2
1 .
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Hence, as for other semi-parametric estimator of H (see the DFA estimator of H), the
convergence rates of ĤWave is N1/3−ε , which is less accurate than the convergence rates
of Whittle or generalized quadratic variations estimators.

3 Numerical applications and results of simulations

3.1 Concrete procedures of estimation of H

In the previous section, we theoretically defined several estimators of H from a tra-
jectory (X(1), · · · ,X(N)) of a fBm. Hereafter, we specify the concrete procedure of
computation of these estimators:

• The Whittle estimator ĤW does not require to select auxiliary parameters or
bandwidths. However we can notice that the integrals are replaced by Riemann
sums computed for λ = πk/n, k = 1, · · · ,N.

• The classical R/S estimator ĤRS has been computed by averaging on uniformly
distributed windows (see Taqqu et al. [23]).

• The modified R/S estimator ĤRSM has been computed using several uniformly
distributed values of q around the optimal bandwidth q = [N1/3] as it is given by
Lo [18]. More precisely we selected q = {[N0.3], · · · , [N0.5]}.

• The second order quadratic variations estimator ĤQV requires the choice of the
number of scales. After convincing auxiliary simulations, we selected p= [3log(N)].

• The DFA estimator ĤDFA requires the choice of windows. From the theoret-
ical and numerical study in Bardet and Kammoun [4], we have chosen n =
{[N0.3], · · · , [N0.5]}.

• The Increment Ratio estimator ĤIR is computed with M = 5.

• The wavelet based estimator ĤWave is computed with b(N) = [N0.3] and m =
[2∗ log(N)].

3.2 Results of simulations
We generated 1000 independent replications of trajectories (X(1), · · · ,X(N)) for N =
500 and N = 5000, with X a fBm of parameters H = 0.1,0.2, · · · ,0.9. We applied the
estimators of H to these trajectories and compared the Mean Square Error (MSE) for
each of them.

4 Conclusion
We studied here several parametric and semi-parametric estimators of the Hurst param-
eter. In the part, we only consider the fBm. In such frame, we obtained:
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H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = 500
√

M̂SE for ĤW 0.0280 0.0246 0.0255 0.0277 0.0294 0.0301 0.0310 0.0319 0.0305√
M̂SE for ĤRS 0.2148 0.1918 0.1682 0.1420 0.1141 0.0847 0.0566 0.0431 0.0724√

M̂SE for ĤRSM 0.0642 0.0660 0.0675 0.0654 0.0651 0.0691 0.0831 0.1061 0.1437√
M̂SE for ĤQV 0.0206 0.0263 0.0292 0.0326 0.0339 0.0346 0.0356 0.0361 0.0354√
M̂SE for ĤDFA 0.0291 0.0424 0.0574 0.0723 0.0840 0.0994 0.1109 0.1195 0.1293√
M̂SE for ĤIR 0.0411 0.0483 0.0549 0.0561 0.0612 0.0624 0.0644 0.0603 0.0511√

M̂SE for ĤWave 0.0970 0.1043 0.0791 0.0666 0.0608 0.0598 0.0606 0.0618 0.0637

N = 5000
√

M̂SE for ĤW 0.0246 0.0094 0.0088 0.0085 0.0087 0.0090 0.0092 0.0094 0.0097√
M̂SE for ĤRS 0.1640 0.1427 0.1191 0.0972 0.0751 0.0515 0.0261 0.0185 0.0568√

M̂SE for ĤRSM 0.0296 0.0300 0.0303 0.0293 0.0275 0.0309 0.0352 0.0497 0.0757√
M̂SE for ĤQV 0.0059 0.0077 0.0321 0.0491 0.0013 0.0104 0.0157 0.0107 0.0111√
M̂SE for ĤDFA 0.0152 0.0271 0.0362 0.0457 0.0510 0.0573 0.0632 0.0682 0.0710√
M̂SE for ĤIR 0.0119 0.0149 0.0159 0.0177 0.0183 0.0194 0.0192 0.0198 0.0196√

M̂SE for ĤWave 0.0666 0.0359 0.0293 0.0281 0.0286 0.0312 0.0328 0.0428 0.0472

Table 1: Values of the (empirical) MSE for the estimators of H when X is a fBm of
parameter H and N = 500, N = 5000

1. Theoretically Only 3 estimators have a
√

N convergence rate: ĤW , ĤQV and
ĤIR. The first one is specific for fBm, both the other ones can be also applied
to other processes. The worst estimators are certainly R/S and modified R/S
estimators. Wavelet based and DFA estimators can finally be written as gener-
alized quadratic variations but the works with semi-parametric convergence rate
o(N1/2), and second-order quadratic variation estimator is clearly more accurate.

2. Numerically The ranking between the estimators is clear and follows the theo-
retical study: the Whittle estimator ĤW provides the best results, followed by the
second-order quadratic variation estimator ĤQV and the IR estimator ĤIR which
provides accurate estimations, followed by ĤWave which is still efficient. The
DFA and R/S estimators are not really interesting.

References
[1] P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch, Self-similarity and long-range

dependence through the wavelet lens, in Long-range Dependence: Theory and
Applications, P. Doukhan, G. Oppenheim and M.S. Taqqu editors, Birkhäuser
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