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Abstract: This text develops the invited talk I presented to the internat ional meeting on 

learning and teaching calculus to be held in Mexico in September 2015. It addresses the problem 

of understanding and modelling students’ conceptions taking as a theme the case of function. To 

set the problématique, the introduction reports the Arsac study of the development of the Cauchy’s 

conception of uniform convergence. Then the issue of understanding students’ understanding is 

discussed, and a framework is proposed: the model cK¢. Then conceptions of function across 

history and from a learning perspective are described with the tools provided by the model with a 

special emphasis on controls illustrating the key role they play. 
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1. A short story as an introduction 

Uniform convergence is a difficult concept which requires a good command of those of function, limit and 

continuity, and of the concept of variable as well. Arsac (2013) analyses this complexity when questioning 

the historical difficulty of reasoning on limits, starting from an analysis of the Cauchy’s Cours d’analyse1 

published in 1821. It is in this textbook that the mathematician stated a first version of the theorem on the 

convergence of series of continuous functions (Cauchy, 1821, pp. 131-132): 

 Let “(I) u0, u1, u2 … un, un+1, &c…” be a series, then the theorem states: 

“Théorème2. Lorsque les différens termes de la série (I) sont des fonctions de la 

même variable x continues par rapport à cette variable dans le voisinage d’une 

valeur particulière pour laquelle la série est convergente, la somme s de la série 

est aussi, dans le voisinage de cette valeur particulière, fonction continue de 

x.” 

It is now known that this statement is not correct. The question is to understand why such an outstanding 

mathematician didn’t realize the error he was making, and why it was so difficult to overcome it when 

                                                 
1 http://gallica.bnf.fr/ark:/12148/btv1b8626657 
2 “When the various terms of series (1) are functions of the same variable x, continuous with 

respect to this variable in the neighborhood of a particular value for which the series 

converges, the sum s of the series is also a continuous function of x in the neighborhood of 

this particular value.” (trans. Bradley & Sandifer 2009 p.90) 
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counterexamples were provided? The Arsac’s study of this episode of the history of mathematics is 

enlightening and full of lessons for mathematics educators. 

A first thing Arsac invites the reader to notice is that the variable x is not explicit in the expression (I) of 

the series of functions, although the modern notation f(x) was used in different parts of the Cours 

d’analyse. This may come from the fact that this representation was the usual representation of series of 

numbers, but it has also roots in the relations between function and variable, and the relation between 

variables and quantities: 

“When variable quantities are related to each other such that the value of one 
of the variables being given one can find the values of all the other variables, 

we normally consider these various quantities to be expressed by means of the one 

among them, which therefore takes the name the independent variable. The other 

quantities expressed by means of the independent variable are called functions of 

that variable.” (trans. Bradley & Sandifer 2009 p.17) 

In this quote, variable appears as an adjective and a noun, witnessing a tight relation between variable and 

quantity. This relation comes with a cinematic concept image of limit which origin, Arsac (ibid. p.17) 

reminds us, goes back to Neper and Newton. This concept image is reinforced by its relation to the 

graphical representation of functions as the one illustrated by Cauchy mathematical argument in support to 

the intermediate value theorem in the 1821 edition of his Cours d’analyse (but an analytic proof is 

proposed in a note3). The cinematic concept image is present in the definition of continuity in which a 

small increment of the variable produces a small increment of the function (dependent variable): 

“In other words, the function f(x) is continuous with respect to x between the 
given limits if, between these limits, an infinitely small increment in the 

variable always produces an infinitely small increment in the function itself.” 

(trans. Bradley & Sandifer 2009 p.26) 

As it is the case in the definition of limit, the evolution of the variable in the definition of function is 

conceived as a monotonous movement, and so is the conception of the evolution of the function (the 

dependent variable). As Arsac suggests it, this view is significant of the dominant understanding of the 

nature of function and variable at that time. 

Then, in the expression of the series (I), un and x are two variables, x being the independent variable on 

which depends the functions un, but the former is left implicit de facto establishing – in the writing – a 

parallel between series of numbers and series of functions (i.e. the independent quantity and the dependent 

quantity).  

The validity of the theorem on the convergence of series of continuous functions was backed by a narrative 

which expressed a qualitative reasoning of the same nature as that of the text of the definition of 

continuity.  

 

 

                                                 
3 Cauchy, 1821, Note III, pp.460-520 
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“Denoting the sum of the convergent series 
u0, u1, u2, u3, ... 

by s and the sum of the first n terms [of the convergent series (I)] by sn, we have 

s = u0+u1+u2+. . .+un−1+un+un+1+. . . 

 = sn+un+un+1+. . . , 

and, as a consequence, 

s−sn = un+un+1+. . . . 

From this last equation, it follows that the quantities 

un, un+1, un+2, . . . 

form a new convergent series, the sum of which is equal to s−sn. If we represent 

this sum by rn, we have 

s = sn+rn, 

and rn is called the remainder of series (I) beginning from the nth term. 

Suppose the terms of series (I) involve some variable x. If the series is 

convergent and its various terms are continuous functions of x in a neighborhood 

of some particular value of this variable, then 

sn, rn and s 

are also three functions of the variable x, the first of which is obviously 

continuous with respect to x in a neighborhood of the particular value in 

question. Given this, let us consider the increments in these three functions when 

we increase x by an infinitely small quantity α. For all possible values of n, the 

increment in sn is an infinitely small quantity. The increment of rn, as well as rn 

itself, becomes infinitely small for very large values of n. Consequently, the 

increment in the function s must be infinitely small.” (trans. Bradley & Sandifer 2009 

89-90) 

Arsac (ibid. p.58) notices that Cauchy did not introduce this text as a mathematical proof as the 

mathematician did for other theorems in his Cours d’analyse, but a “remark”. The first lines fix the 

meaning of the symbols s, sn and rn as it would have been done for series of numbers, the fact that it is a 

series of functions is introduced after the notation by the sentence: “suppose the terms of the series 

(I) involve some variable x”. As a matter of fact, what appears first, let say on the surface of the 

text, are numbers (i.e. variables representing quantities) and their dependence. This does not mean that it is 

what Cauchy meant, but here is a limit of his expression. There is also a vision of a monotonous movement 

of x and the effect it causes on the functions at each step of the reasoning. The increment of x is explicitly 

named – α – but this naming is not exploited as Cauchy could have done it. Things happen because they 

“must” happen. 

Cauchy recognized that there are exceptions to the theorem as he formulated it in the 1821 publication of 

the Cours d’analyse, to which Abel and Seidel pointed the Fourier series counter-examples (Arsac 

ibid.chapter IV and V). He later modified the statement of the theorem and published it in a Comptes 

rendus à l’Académie des Sciences in 1853, introducing the condition: 

sn’-sn = un+un+1+…+un’-1 becomes infinitely small for infinitely large value of the 

numbers n and n’>n. 

However, in this revised version of the theorem, the variable x remains implicit in the expression of the 

functions un. As Arsac (ibid. p. 61 sqq) points it, Cauchy refers to a number series which involves “some 

variable x” (formulation he chosen in the first formulation of the theorem). Having in mind the 

characterization of the convergence of series of numbers, he very likely did not envision expressing a 

definition of convergence specific to functions; instead, he manipulated numerical terms some of which 

being “variable quantities”. His démonstration (mathematical proof), as he calls it now, is dominated 
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by the use of natural language. This being associated to the implicitness of the variable x in the expression 

of the functions un, has important consequences: the role of the increment α is not addressed in the 

démonstration, the definition of “infinitely small”4 favors a dynamic and monotonous concept image of 

convergence, the order of the appearance of the terms {n, x, ε} driven by the rhetoric of argumentation is 

not congruent with the logical order. A consequence of the latter is that the dependence of n on ε and not 

on x, as it can be structurally evidenced by the modern algebraic expression5, is – so to say – hidden. 

The style of the Cauchy’s revised version is still closer to a mathematical argument (a remark) than to a 

mathematical proof according to modern standards. There is no question that rigor is present as a willing6, 

but it encounters obstacles: the definition of variable and function, the absence of the sign < and hence of 

computation on inequalities, the absence of a mathematical notation of absolute value (introduced by 

Weierstrass in 1841) and of the quantifiers (introduced at the turn of the XX° century); eventually natural 

language as a tool to express the reasoning on functions is infused by a cinematic concept image of 

convergence and the Leibnizian “lex continuitatis” (law of continuity7).  

The Arsac’s analysis of the Cauchy’ understanding of function and convergence, is based on a critical and 

precise analysis of the original texts taking into account the situation of calculus in the first half of the 

XIX° century. It carefully avoids anachronism which could be introduced by rewriting the text with the 

language and formalization of contemporary mathematics. Such rewriting in modern terms hides the 

conceptual and technical difficulties mathematicians met to overcome them, and it leads to questionable 

interpretations as it was the case for Lakatos8 which rewriting of Cauchy’s mathematical texts suggests 

errors analogous to the ones students could make. But, more importantly it hides the difficulties coming 

from the conceptualization of the notion of function and variable. 

This analysis of the difficulties encountered by mathematicians of the XIX° century faced with the 

counterexamples to the first formulation of the Cauchy’s theorem of uniform convergence evidences the 

tight relation between representation, language and the reasoning tools on the one hand, and on the other 

hand the limits due to characteristics of the underpinning cinematic concept image of continuity and limit.  

This short story illustrates the challenge of avoiding anachronism and over-interpretation as well as of 

taking into account contextual and situational characteristics of the analyzed mathematical content.  What 

did Arsac for this historical case should also be done for mathematics of the classroom, mathematics of 

everyday life or ethnomathematics as well..  

The key features of Arsac’s approach can be synthetized along three lines of analysis. First, the 

characterization and description of the semiotic means available (language, symbols, diagrams), second, 

the elicitation of the reasoning rules as they are actualized by the discourse and the means for 

representation. To this should added, more hypothetically because they are generally left implicit in the 

discourse, the control structures which back the confidence and validity of judgements and choices made 

along the problem solving process.  

                                                 
4 “We say that a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as 

to converge towards the limit zero”. (trans. Bradley & Sandifer 2009 p.21). 
5 ∀ ε   ∃ N  ∀ n>N  ∀ n’  [n’>n → ∀ x   |sn-sn’ |< ε] 
6 But isn’t it the case that rigor is always a willing? 
7 e.g. see (Crockett 1999) 
8 See Arsac ibid. p.62 sqq and 136-137. 
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Representation, operation, control are keywords of the model I designed in the mid-nineties for learner 

modeling in the framework of the theory of didactical situations (TDS, Brousseau 1986/19979). It is this 

model which shapes the way I report here on the work of Arsac. In the following sections of this article, 

keeping with the case of calculus, I will present this model which original aim is to enhance our means to 

give account of mathematical understanding and competences. 

2. Understanding understanding 

The US common core state standard initiative10 states well the problem research has to address: “Asking a 

student to understand something means asking a teacher to assess whether the student has understood it. 

But what does mathematical understanding look like?” This question may have multiple answers 

depending on their frameworks and the background of the respondent.  I will here present one which is 

built in the context of the TDS and the theory of conceptual fields (Vergnaud 1980/200911).  

These frameworks provide two postulates to ground an answer: 

1. From a didactical perspective – “Modeling a teaching situation consists of producing a game 

specific to the target knowledge among different subsystems: the educational system, the student 

system, the milieu, etc”.  (Brousseau 1997 p.47) 

2. From a developmental perspective – “A concept is altogether: a set of situations, a set of 

operational invariants, and a set of linguistic and symbolic representations.” (Vergnaud 2009 

p.94), what is referred to synthetically by the notation C=(S, I, S   ) 

Within the TDS theoretical framework, the teacher questioning the student’s understanding is “a player 

faced with a system, itself built up from a pair of systems: the student and, let us say for the moment, a 

‘milieu’ that lacks any didactical intentions with regards to the student” (Brousseau ibid. p.40). Whereas 

the TDS is explicit about models of didactical situations and has made progress on understanding their 

properties, it is less the case for the student<>milieu system. To make a progress in this direction, the 

Vergnaud theory of conceptual fields provides the first and fundamental elements for a possible solution. 

Its characterization has of concept has  direct connections with the TDS description of the relation between 

a learner and a milieu based on different forms of knowledge (Brousseau ibid. p.61): 

[1] The models for action governing decisions. 

[2] The formulation of the descriptions and models. 

[3] The forms of knowledge which allow the explicit “control” of the subject's interactions in relation 

to the validity of her statements. 

Apart from the set of situations S which is implicitly shared by both frameworks, the two other 

components, I and S  , of the Vergnaud’s definition can be mapped onto the first forms of knowledge  [1] 

and [2]. The difference between both approaches lies in the third form of knowledge [3] which brings to 

the fore knowledge as means of “control”. This function of knowledge (resp. dimension of concept) was 

                                                 
9 The first date indicates the original date of first publication of the ideas here referred to. 
10 [http://www.corestandards.org/math] retrieved 11/10/2013 
11 The first date indicates the original date of first publication of the ideas here referred to. 
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not absent from the Vergnaud model but not explicitly involved in his characterization. A mathematical 

theorem is both a tool and a statement: “if A then B” is a tool to obtain B if A is valid, it is also a statement 

which has a truth value. This duality of “the operational form and the predicative form of knowledge”, as 

Vergnaud (2009 p.89 sqq) expresses it, facilitated keeping implicit the control dimension in the 

characterization he proposed. However, after Polya a long tradition of research on metacognition (e.g. 

Schoenfeld 1985 pp. 97-143) has shown the crucial role of control in problem-solving. Hence the 

suggestion to introduce explicitly “controls” aside the three components of the Vergnaud model. 

Before proceeding to present an new version of a model of students understanding derived from the TSD 

and the theory of conceptual fields, it is necessary to clarify a vocabulary issue.  I will use the term 

“conception” and not the term “knowledge” as it is classical in mathematics education. 

Most research is based – more or less explicitly – on the hypothesis that learners act as rational subjects. 

But, one is often faced to rational thinking co-existing with knowledge which seems to lack coherency 

(from the observer’s point of view). Let us take an example from the work of Trouche on the learning of 

calculus with graphic calculators:  

 

Students are asked the following question:  

« ƒ is defined by f(x) = lnx + 10sinx. Is the limit +∞ in +∞ ? » 

25% of errors were observed for students12 using a graphic calculator, 

whereas without a graphic calculator there were no errors. (Trouche 1996 

p.50) 

 

Such a phenomena has been studied extensively, in particular contrasting mathematics practice in and out 

of school; what Lave (1988 p.63) recognizes as “discontinuity of math performances between settings”. 

Bourdieu (1990) proposed a solution to this paradox: “The calendar thus creates ex nihilo a whole host of 

relations […] between reference-points at different levels, which never being brought face to face in 

practice, are practically compatible even if they are logically contradictory” (ibid. p. 83). The key 

elements are time on one hand, and on the other hand the diversity of situations. Time organizes the 

subjects’ decisions sequentially in such a way that even contradictory, they are equally operational because 

appearing at different periods of their history: contradictory decisions can ignore each other. The diversity 

of the situations introduces an element of a different type. It is a possible explanation insofar as one 

recognizes that each decision is not of a general nature but that it is related to a specific sphere of practice 

(some may prefer to say that it is situated) within which its efficiency is acknowledged. Within a sphere of 

practice students are coherent and successful; they are non-contradictory, but the sphere could be narrow.  

Contradictions (and failures) appear when students are faced with situations foreign to their sphere of 

practice but in which they have nevertheless to produce a response to a question, or a solution to a problem 

(e.g. as a requirement from the teacher). They mobilize what they have available which worked elsewhere, 

but more often than not this ends in systematically making errors. The classical position in the 80s was to 

consider these errors as symptoms of misconceptions. This term used to come with expressions like “naive 

theory”, “private concepts”, “beliefs” or even “mathematics of the child”. Such views missed the fact that 

“a child may not be ‘seeing’ the same set of events as a teacher, researcher or expert. […] many times a 

                                                 
12 73 grade 12 students, scientific track (Terminale S) 
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child’s response is labeled erroneous too quickly and […] if one were to imagine how the child was 

making sense of the situation, then one would find the errors to be reasoned and supportable” (Confrey 

1990 p.29). Agreeing with this position, I renounced using the term “misconception”. However, 

recognizing that learners may have different and possibly contradictory models-in-action to mobilize for 

(what we consider as) the same piece of knowledge. A word different from “knowledge” is needed because 

of the issue raised by the observation of possible contradictions in learners behaviors. One candidate is 

“conception” largely used in science education to refer to theory-in-action. More often than not the word 

conception functioned as a tool in discourses, not being taken as an object of study as such (Artigue 1991, 

p.266), although there was an acknowledged need (e.g. Vinner 1983, 1987) for a better grounded definition 

of conceptions, and for tools allowing analyzing their differences and resemblances.  

In the two coming sections, I propose a definition of “conception”, and then describe a model derived 

from the Vergnaud’s triplet and pluggable into the TSD. 

3. Behavior, conception and knowing 

The only indicators one has to get an insight into learners’ understanding are their behaviors and products 

which are consequences of the kind of understanding they may have engaged. Such evaluations are 

possible and their results are significant only in the case where one is able to establish a valid relationship 

between the observed behaviors and the invoked understanding. This relation has been relatively “hidden” 

as such for a long while as a result of the fight against behaviorism, but it has always been present in 

educational research at least at the methodological level. Indeed, the key issue is that the meaning of a 

piece of knowledge cannot be reduced to behaviors, whereas meaning cannot be characterized, diagnosed 

or taught without linking it to behaviors.  

Being a tangible manifestation of the relationships between a person and her environment, a “behavior” 

depends on the characteristics of this person as well as on the characteristics of her environment. A now 

well documented example is that of an instrument which at the same time facilitates action if the user holds 

the required competence, and on the other hand limits this action because of its own constraints (Rabardel 

1995, Resnick & Collins 1994, p.7). The words “person” and “environment”, used here, refer to complex 

realities whose aspects are not all relevant for our investigations; this may be the case of the music 

preference of the person and the temperature in the room in which he or she stands, although we have 

always to be prepared to consider seriously features initially downplayed. What is of interest is the person 

from the point of view of his or her relationship to a piece of knowledge. For this reason I refer from now 

on to the learner as a reduction, if I dare saying so, of the person to her epistemic dimension. In the same 

way, I do not consider the environment in all its complexity, but only those features that are relevant with 

respect to a given piece of knowledge. Actually, this corresponds to the TDS concept of milieu, which is a 

kind of projection of the environment onto its epistemic dimension: the milieu is the learner’s antagonist 

system in the learning process (Brousseau, 1997 p.57) 

This situated perspective on learner and milieu suggests not considering understanding as a property which 

can be ascribed only to the learner but as a property of the interacting system formed by the learner and his 

or her antagonist milieu, to which I will refer as the learner<>milieu system. What is requested for this 

property to be valid is that the system satisfies the conditions required for it to be viable. It means that the 

system has the capacity to recover equilibrium after a perturbation which otherwise would cause its 

collapse, or that it can transform itself or reorganize itself. This is another formulation of Vergnaud's 

postulate that problems (perturbed system) are the sources and the criteria of knowing (Vergnaud 1981 
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p.220). It is important to realize that nothing is said about the process leading to the recovery of the 

equilibrium under the said constraints. They are proscriptive (Stewart, 1994 pp. 25-26), which means that 

they express necessary conditions to ensure the system viability, but not prescriptive, which means that 

they do not say in what way equilibrium must be recovered.  

Hence, a definition of conception: 

A conception is the state of dynamical equilibrium of an 

action/feedback loop between a learner and a milieu under 

proscriptive constraints of viability.  

The study and characterization of a conception will be 

based on observable behaviors of the system (action, 

feedback) and outcomes of its functioning. It requires 

evidence of the assessment of the equilibrium, which depends 

on the possibility to elicit the learner’s control of the interaction and of the milieu’s reification of failures 

and success by adequate feedback. 

Geometry provides many good examples: constructing a diagram on a sheet of paper with a pencil is 

permissive to empirical adjustments, while dynamic geometry software allowing messing up a diagram by 

dragging points can reify the failure due to not conforming to geometrical properties (Healy et al. 1994) – 

although “students may modify the figure ‘to make it look right’ rather than debug the construction 

process” (Jones1999 p.254). 

Indeed, this situated definition means that an observer may associate different conceptions to a 

learner<>milieu system13 involved in a situation which characteristics he or she considers conceptually the 

same or involving problems he or she claims isomorphic. This is largely documented in the literature, for 

example by research on transfer, or by ethnomathematics research. Anyhow, in the observer’s referential 

system, these different conceptions associated to the observed learner<>milieu system should be gathered 

in a common cluster. For this reason, learner’s knowing14 is defined as the set of conceptions which can be 

triggered by different situations the observer considers (mathematically) the same.  

“Conception”, “knowing” and “concept” – the latter being redefined later in the development of the model 

– are abstract terms which meaning is determined by their functions in the model and by the relations they 

have with other abstract terms in the related theoretical frameworks. Indeed, we must then discuss how far 

the proposed formalization makes sense when confronted with other use and context, or with (the 

perceived) “reality”, and if they are adequate tools for the research they are meant to instrument. 

I have associated to the model the name cK¢ which stands for “conception”, “knowing”, “concept”. The 

following section outlines its main components. 

                                                 
13 Often wrongly referred to as “student conception”, for the sake of the simplification of discourse. 
14 I know that using “knowing” as a noun is uncommon, but it helps keeping distance with the word “knowledge” which has 

in education a strong authoritative connotation. 

Learner Milieu
action

feedback

Constraints
 

Figure 1.  learner<>milieu system 
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Key features of the model cK¢ 

The aim of a model is to provide a tool to establish links between theoretical frameworks which back it and 

the experimental field where will be set up experiments and carried out observations. It must be precise 

and effective tool to allow identifying what to observe, assessing the quality of data and performing an 

analysis. 

The cK¢ model of students’ understanding based on the TDS and the theory of conceptual fields, burrows 

the Vergnaud triplet but with a different vocabulary to avoid confusion with a psychological 

conceptualization and modelling. Actually, the aim of the model is not to provide a cognitive model as 

such, nor students’ mental models as they are referred to in some research projects, but to characterize and 

represent states of the student<>milieu system. Two main differences with Vergnaud’s model are: the use 

of the term “problem” instead of “situation”, and the explicit introduction of “control structures”. The 

meaning of “problem” is narrower than that of “situation”, it refers to consequences of a perturbation of 

the student<>milieu system and not to the larger educational, institutional or material context in which it 

occurs.  

Then the cK¢ formal characterization of a conception consists of a quadruplet (P, R, L, Σ) in which:  

- P is a set of problems. 

- R is a set of operators. 

- L is a representation system. 

- Σ is a control structure.  

P proved to be more complex to elicit precisely than expected. Two opposite solutions have been 

proposed: (i) to include all problems for which the conception provides efficient tools (Vergnaud 1991 

p.145), but for basic concepts this option is too general to be effective; (ii) to consider a finite set of 

problems from which other problems will derive (Brousseau 1997 p.30), but this option opens the question 

of establishing that such a generative set of problems exists for any conception. A solution familiar to most 

researchers consists of deriving P from both the observation of students in situations and from the analysis 

of historical and contemporary practices of mathematics. Actually, what one does when working on 

specific conceptions is to open a window on P by making explicit a few good representatives of its 

potential elements. These representatives work as kind of prototypical problems; this is a pragmatic 

implementation of Brousseau’s proposal. 

R corresponds to actions reified by behaviors one can observe during the functioning of the 

learner<>milieu system. They are not schemes in psychological terms but possibly data from which 

schemes may be inferred. 

L refers to any semiotic tools which allow representing problems, supporting interaction and reifying 

operators. Actually, there is no difference there with the “set of linguistic and symbolic representations” 

Vergnaud includes in his definition. 

Σ, the control structure, includes behaviors such as making choices, choosing operators, assessing 

feedback, making decisions, judging the evolution of a problem solving process. These metacognitive 

behaviors are more often than not silent and invisible, hence rarely accessible to observation. There are 

ways to overcome this difficulty by using specific experimental settings, for example inviting learners to 
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work in pairs, with the expectation that this will be enough to elicit these behaviors as part of their verbal 

interactions; it is the objective of the TDS situations of formulations (Brousseau 1997 p.10 sqq) 

It is worth noticing that the quadruplet is not more related to the learner than to the milieu with which he or 

she interacts: the representation system allows the formulation and the use of the operators by the active 

sender (the learner) as well as the reification of the actuators and feedback of the reactive receiver (the 

milieu); the control structure allows expressing the learner’s means to assess an action, as well as the 

criteria of the milieu for selecting a feedback. It is in this sense that the quadruplet characterizing a 

conception is congruent to the above conceptual definition of a conception as a property of the 

learner<>milieu system. 

4. Outlines of the conceptions of “function” across its history 

The word “function” may be associated to a number of different understandings. This is the case along the 

history of mathematics (Edwards, 1979; Kleiner, 1989; Kline, 1972; Smith, 1958), as well as along the 

mathematical life of learners (DeMarois and Tall 1996; Dubinsky and Harel 1992; Breidenbach et al. 

1992; Thompson 1994; Sierpinska 1989; Vinner and Dreyfus 1989).  

A first and efficient approach to distinguish these different conceptions of “function" in the course of the 

history of mathematics is to analyze them first from the point of view of the system of representation they 

implemented (Balacheff and Gaudin 2010). 

One of the most ancient traces of the existence of function are tables and their uses. For example, Ptolemy 

(in the Almagest) knew that positions of planets change with time, and compiled astronomical numerical 

tables (Youschkevitch, 1976, pp. 40-42). Arabian astronomers in the 10th and 11th centuries also used 

precise tables. However, these tables did associate a given quantity to another one, and so, the idea of 

variable was not yet present. 

The association of curves with tables leveraged the development of the concept of function, allowing 

making progress in formulating and solving the problem of determining the trajectories of the planets. 

Following Kline (1972), Kepler improved the computation of the position of planets essentially by 

adjusting geometrical curves and astronomical data, but without theoretical reference to explain why he 

considered the trajectories to be elliptical. The validity of the conjectured trajectories was then depending 

on the precision of the measurement of the planets’ positions and on the choice of a familiar geometric 

object: the ellipse. This permitted the description of the universe with simple mathematical laws. Kline 

also noted that most of the functions introduced in the 17th century were first studied as curves (ibid. p. 

338), the geometrical trajectories of moving points (Kleiner 1989); hence the important role of geometry in 

this history. 

The invention of the symbolism of algebra (Viete), and its development (Descartes, Newton, and Leibniz) 

was decisive: “The evolution of the function concept can be seen as a tug of war between two elements, 

two mental images: the geometric (expressed in the form of a curve) and the algebraic (expressed as a 

formula )” (Kleiner 1989). The separation of the study of functions from geometry is credited to Euler who 

published in 1748 an entirely algebraic treatise entitled “Introductio in Analysin Infinitorum”, without a 

single picture or drawing (Kleiner 1989, p. 284). “Function” was presented as the central object of 

Calculus. The analytic characterization of functions received a strong formulation by Euler, who asserted 

that a function is an analytical expression formed in any manner from a variable quantity and constants. In 
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1755, Euler formulated a general definition of function expressing the notion of dependence between 

variable quantities, and the notion of causality (Dhombres 1988, p. 45). 

The function concept continued its development marked by the definition of Dirichlet which considered 

function as an arbitrary correspondence:  

“y is a function of a variable x, defined on the interval a<x<b  if to every value of the variable x in this 

interval there corresponds a definite value of the variable y. Also, it is irrelevant in what way this 

correspondence is established” (quoted by Kleiner 1989 p.10). 

This definition initiated a new “tug of war”, this time between the algebraic conception and the logical one. 

The difficulties it brought along stimulated many discussions up to the 20th century (Monna 1972). 

I will not go further into the history of the function concept but now limit my focus on three conceptions 

identified by the representation system on which they mainly rely: “Table”, “Curve” and “Analytic”; let us 

refer to them as respectively CT , CC and CA. Each of these three conceptions can be characterized by a 

quadruplet as it follows. 

The Table conception CT (PT, RT, Table, ΣT) has essentially empirical grounds: the validity of a table 

depends on the precision of measurements and related computations under the requirements of a given 

experimental context. In the case of Kepler, for example, the validity must be evaluated against the quality 

of the interpolations and predictions that the ellipse allowed, as well as on the quality of the instruments 

available at that time. Therefore the corresponding control structure ΣT was fundamentally of an empirical 

nature, providing the means that allowed the precision of tables to be verified with reference to the 

observations and to the measurements that had been carried out. However, the input/output table was the 

first means of representation used; it shaped quite a number of functions. Kline (1972, p. 338), reminds us 

that the table of the sine function was known with great precision long before the associated curve became 

a mathematical object. Then, the validity of the solution of a problem from the corresponding sphere of 

practice (PT) did depend in an essential manner on the quality of rather concrete productions and actions 

necessary to collect and treat data. 

• Table conception (PT, RT, Table, ΣT), 

PT – Problems from physics and astronomy 

RT – Computation of ratio and integers, geometry 

LT/Table– Numerical tables, geometrical representation of curves, numbers, natural language 

ΣT – Confrontation between calculation and actual data 

The Curve conception CC (PC, RC, Curve, ΣC) developed in the beginning of the 18th century, in response 

to the important problem of long distance navigation where coasts were out of sight. Thus, PC originated in 

practical questions, and RC included techniques of measurement, computation, and drawing. But the 

mathematical study of curves, as geometrical objects possibly associated to an algebraic expression, 

developed for itself including issues blending geometrical problems (e.g. like finding a tangent) to 

kinematic problems (e.g. velocities of points moving along a curve). Curves as geometrical entities were 

the ontological referent of this conception; if the word function was in use it was to refer to curves.  

• Curve conception (PC, RC, Curve, ΣC) 

PT – Study of curves as trajectories of points 
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RT – Algebraic tools (since Euler) and manipulation of drawings 

LT/Curve– Representation of curves (not yet graphs), algebraic representation and natural 

language 

ΣT - Mathematical and experimental validation, mental experiments 

The Analytic conception (PA, RA, Formula, ΣA) follows a rupture in the epistemology of functions: function 

defined by an analytical expression does not need to refer to an experimental field (either natural 

phenomena or mechanical drawings). It can be studied for itself. This does not mean that modeling no 

longer plays any role; rather, it means that it is no longer central and does not characterize the conception. 

A purpose of the analysis of the 18th century (and of the 19th and 20th centuries) was the solution of 

functional equations, which were of great importance in physics (Dhombres, 1988), and the developments 

into infinite series which played a central role as operators (RA) in those solutions. The corresponding 

control structure ΣA depends on the specific characteristics of algebra as a representation system and on the 

operators it allows to implement. Computation of symbolic expressions and mathematical proof are the key 

tools to decide whether a statement is valid or not. Indeed, symbolic representations are not the only ones 

to be available and to be used. Following CA, a function can be associated to a graph, that is, a set of pairs 

(x; y) in the Cartesian plane (where y is the value of the function for a given x). Graphical representations 

have a potential heuristic value by displaying phenomena that algebraic expressions do not easily evidence 

(for example, the intersection of two lines). 

• Analytic conception (PA, RA, Formula, ΣA), 

PA – Study of functions (as objects) 

RA – Algebraic tools 

LA/Formula – Algebra, graphs 

ΣA – Mathematical proof 

This classification must not hide the complexity of the evolution of conceptions, their hybridization or 

cohabitation. On the contrary, the tension in the graphical register between graphs and curves was the 

origin of problems which stimulated the evolution. The general solution of partial differential equations 

expressing the vibrations of a finite string, subject to initial conditions, induced Euler to consider arbitrary 

functions that did not necessarily have analytic representations. New developments of the understanding of 

function took two centuries. The debate on what can count as function developed along the 19th century 

gave ground to the emergence of the Dirichlet conception of function as a relation. 

5. Outlining the conceptions  of “function”, the case of students 

There is a large number of researches on secondary and post-secondary students understanding of function. 

I will refer here on a few seminal works, in particular research from Vinner, Dreyfus, Tall and Sierpinska, 

to illustrate the way the model contributes to clarify the different understandings.  

The study of Vinner (1992) on students’ concept image of function is classical. Vinner (ibid. p.200) 

identified eight features of students’ ways of understanding function: 

- “The correspondence which constitutes the function should be systematic, should be established 

by a rule and the rule itself should have its own regularities”; 

- “A function must be an algebraic term”; 

- “A function is identified with one of its graphical or symbolic representations”; 
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- “A function should be given by one rule”; 

- “Function can have different rules of correspondence for disjoint domains provided that these 

domains are regular domains (like half lines or intervals); 

- “A rule of correspondence which is not an algebraic rule is a function only if the mathematical 

community officially announced it as a function”; 

- “The graph of a function should be regular and systematic”; 

- “A function is a one-to-one correspondence”. 

These features have been largely confirmed; they can be considered consensual nowadays as witnessed by 

the references to them in the contemporary literature. 

Unlike history, students have some familiarity with Algebra when they are introduced to function. 

Moreover, most curricula provide them with some knowledge about the equation of a straight line and 

about the relation between graphical properties (intersection of lines) and algebraic properties (solution of 

an equation). Hence, the algebraic and graphical registers as well as their interactions play a central role; 

they make representation a privileged entrance point for the search for a characterization of the different 

conceptions. The nature of the relation between the algebraic and the graphical representation depends on 

what Sierpinska (1989) calls the synthetic views and analytic views: 

“Curve analytical view: a function is an ‘abstract’ curve in a system of coordinates; this means 

that it is conceived of points (x, y), where x and y are related to each other somehow.” (ibid. 1989 

pp.18). 

“Curve, a synthetic view: […] function is identified with its representation in the plane; it is a 

curve viewed in a concrete, synthetic way.” (Sierpinska 1989 p.17). 

Sierpinska added this clarifying comment: “[the] relationship (between x and y, the analytical view) can 

be given by an equation. But the curve does not represent the relation. Rather, it is represented by the 

equation.” (ibid.). Thus, the suggestion to consider two types of student conceptions: the Curve-Algebra 

conception (CCA) and the Algebra-Graph conception (CAG). Both conceptions share the same 

representation systems, algebraic and graphic, but with different interaction between both. In the case of 

CCA, the criterion is that the curve must be represented by an equation; such a requirement is part of the 

corresponding control structure ΣCA. In the case of CAG the criterion is that the algebraic representation 

must be associated with a graph which one must be able to plot, a requirement which part of the respective 

control structure ΣAG. The empirical distinction between CCA and CAG is not easy because their 

representation systems are very close the one to the other, when manipulating formulas and drawing 

diagrams. It is by looking at the control structures ΣCA and ΣAG, in relation to the operators and the way 

they are implemented, that the distinction can be shaped. 

Ana Sfard (1991) would qualify these conceptions as operational conceptions of function because of their 

orientation towards a description of processes and actions. She emphasizes “the deep ontological gap 

between operational and structural conceptions” (ibid. p.4), characterizing the latter by the ability “to 

recognize the idea ‘at a glance’ and to manipulate it as a whole, without going into details” (ibid. p.4). As 

a matter of fact, recognizing this ability does not prevent the researcher from being able to characterize it 

empirically; which means the capacity to identify it by referring to empirical evidences. In order to address 

this issue and to give room to structural conceptions, Gaudin (2005 pp.97-98) introduces a function-as-

object conception as the union of the operational conceptions which opens the possibility to trigger the 
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most adapted operators, system of representation or control structure depending on the problem identified. 

The function-as-object conception includes controls managing the distinction between the representations 

and the so-called object as a whole, as it is defined by properties independent of specific processes and 

operations. In particular, these controls allow validating the correct resolution of a problem in other ways 

than the verification of the correctness of the processing of representations (ibid. p.98). 

The next section illustrates the role of controls and their difference in nature taking the case of the Curve-

Algebra conception, the Algebra-Graph conception and the function-as-object conception. It introduces the 

distinction between “referent controls” and “instrumentation controls” (Gaudin 2005 p.161). 

 

6. The key role of controls 

The identification of the controls enacted during a problem solving process is methodologically difficult. 

Whereas operators are accessible to an observer thanks to their reification by the behavior of the students, 

their interaction with the milieu and their actual productions, controls (e.g. reasons for a decision, criteria 

for a choice) are most often than not left implicit. It is by designing a situation of formulation, combining 

interactions with a milieu and social interactions, that there is a possibility to elicit them. Such situations, 

as defined by TDS (Brousseau 1997 p.10 sqq) as a situation of formulation, set constraints and instructions 

which make verbalization not only compulsory but necessary for the success of the task. An elementary 

situation of formulation consists of requiring from a group of students to solve collaboratively a problem 

and ensure an agreement on the solution. 

Problems triggering a function-as-object conception (Sfard 1992) are more likely to give a key role to 

controls hence facilitating observing their role and their functioning. Among them problems of 

approximation are of a special interest because of the uncertainty on the criteria for the best approximation 

which requires an agreement among students on the features of the function and an analysis of the problem 

data. Smoothing problems, in particular, ask for consideration of multiple aspects in order to take decisions 

mobilizing qualitative as well as quantitative reasoning which resonate with the characteristics of the 

system of representation – either algebraic or graphical. The following case studied by Nathalie Gaudin 

(2005) has been designed on these principles. It exploits the functionalities of the Mapple software to 

provide a milieu within which students could ground an experimental strategy possibly triggering Curve-

Algebra conceptions or Algebra-Graph conceptions. But the graphical systems of representation of these 

conceptions provide an insufficient qualitative support, and the algebraic representations lack the tools to 

assess the distance between functions and their regularity and shape, hence favoring the emergence of a 

function-as-object conception.  

Here is the task Gaudin (2005 esp. ch.5) proposed to pairs of students15 to achieve collaboratively using 

Mapple: 

The following yi provide values with possible errors (+/-10 %). These values come from a 3rd degree polynomial 

which coefficients are unknown, evaluated at a series of points xi. 

Five approximations (f1 … f5) are proposed. 

You have to choose the one with approximate the best this polynomial: 

 on the interval [0;20] 

 on [0 ; +∞ [ 

                                                 
15 3 pairs of 2nd year student teachers, and 6 pairs of 2nd year students from an school of engineers. 
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Explain why you choose or not each of these approximations.  

 

 

f1(x) = 1.2310 + 0.0752 x + 1.789 × 10-3 x2 

f2(x) = 1.2429 + 0.06706 x + 2.833×10-3 x2 – 3.48 ×10-5 x3 

f3(x) = 1.2712 + 0.0308 x + 0.0115 x2 – 7.1626 ×10-4 x3 + 1.704 ×10-5 x4 

f5(x) = 8,817×10-5x3 - 0.00160x2 + 0.10977x + 1.2200   

 with f5(0) = 1,22 ; f5(6) = 1,84 ; f5(13) = 2,57 et f5 (20)=3,48 

f4 defined by: (1)  it passes through each point (xi, yi); (2) on each interval  [xi ; yi], it is a 

polynomial of a degree equal or less than 3; (3) it is twice differentiable and its second derivative is continuous; (4) its 

algebraic representation is the following on each interval [xi ; yi]): [3rd degree polynomials] 

The data gathered during the experiment, come from the observation of the students<>milieu interactions 

and from the verbal interactions between students. The first step in the analysis consists of identifying 

“atoms” (elementary aggregation of the raw data) allowing distinguishing between performed actions, 

statements about actions and statements about facts.  

The methodological problem raised by the use of cK¢ – as it is the case of any research on verbal protocols 

– is of segmenting raw data to extract relevant items from the perspective of the analysis to be carried out 

and in line with the chosen framework. Here is an example taken from the case of Rémi and Olivier 

(Gaudin 2005 p.233 sqq): 

 Rémi: So the polynomial is somewhere there [A26] 

Olivier: Yeah. The best approximation could be outside [A27 a].  So we have not 

made so much progress [A27 b]. 

Rémi: It depends how we define the best. It depends if you consider that a point 

out of there is a bad thing or if you consider it on average… if it is the set of point 

which ok… [A28] You see what I mean?  So we try to draw all the polynomial, 

you see? We draw all 

Olivier: all in a raw? [A29] 

Rémi: Not sure that it will be easy to see anything, but we can try, and use the 

colors. 

Olivier: You will remember that the yellow is the first? Can you write it? Then 

green… blue, we have to choose the colors… red. May be we avert yellow. Try 

« teal », it’s the best color which exists [A30] 

Atoms could be made of several utterances (e.g. A30) and one utterance may be split into several atoms 

(e.g. A28, A29). Once this treatment of the raw data has been achieved, atoms are classified depending on 

their roles. 
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Rémi: So the polynomial is somewhere there 

Olivier: Yeah. The best approximation could be outside.   

A - assessment of a fact 

Olivier: So we have not made so much progress. B - judgment 

Rémi: It depends how we define the best. It depends if 

you consider that a point out of there is a bad thing or if 

you consider it on average… if it is the set of point 

which, ok…  

C - assessment of the judgement 

Rémi: You see what I mean?  So we try to draw all the 

polynomial, you see? We draw all  

Olivier: all in a raw? 

D - decision on an action 

Rémi: Not sure that it will be easy to see anything, but 

we can try, and use the colors. 

Olivier: You will remember that the yellow is the first? 

Can you write it? Then green… blue, we have to choose 

the colors… red. May be we avert yellow. Try « teal », 

it’s the best color which exists. 

E - assessment of an action 

One observe that some controls are used to elicit the meaning of “approximation” or question it (e.g. C). 

They are important to stabilize the problem-solving strategy and the ground for decisions. They allow 

anticipating possible actions and checking their adequacy. They are the “referent controls” (Gaudin 2005 

p.161). Once the referent controls have oriented the strategy, students must select the actions to perform; 

this is the role of the “instrumentation controls” (ibid.). Coupled with action they form an operator which 

structure is [if control then action].  

This analysis confirmed the role of the curve-algebra and algebra-graph conceptions as starting states of 

the problem solving process, then the evolution towards a function-as-object conception which 

representation system includes algebraic and graphical registers in a fully integrated way, and which 

control structure includes controls on the function as such.  

The following table summarizes these three conceptions which are not differentiated by the observed 

actions, but by the controls – referent or instrumental – which underpin them. 
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 Curve-algebra 

conception 

Algebra-graph 

conception 

Function-as-object 

conception 

Referent 

controls 

Global shape of the 

approximating 

curve  

Visual closeness of 

the approximating 

curve to the (xi, yi) 

Closeness of the fj(xi) and 

the yi, or of the points (xi, 

fj(xi)) and (xi, yi) 

Global shape of the 

approximating curve and 

closeness of the  fj(xi) and 

the yi or the points (xi, 

fj(xi)) and (xi, yi) 

Instrumentation 

controls 

Related to the use 

of Mapple to plot 

the functions 

Selecting the formula   

[fj(xi) - yi]² 

Related to the use of 

Mapple for the 

calculations 

Integration of the 

algebraic and graphical 

registers 

Full use of Mapple as a 

tool for Calculus 

Representation 

systems 

Mapple drawings 

and associated 

functionalities 

Algebraic formulas 

Analytical and graphical Analytical and graphical 

 

Two types of controls drive the resolution of the problem, the referent controls and the instrumentation 

controls. The former implement properties expressed by the definition of approximation and allow 

anticipating the strategy and the criteria for an acceptable solution (Gaudin 2005 p.153). For example: [if f 

is an approximation of P then f must follow the variation of P], or [the closeness of the fi(xj) and yj, and the 

position of the curve with respect to the (xi, yi)]. The latter ensure the coherency between the referent 

controls and the actions to be performed; they drive the choices of operators.  

 

A role of controls is to ensure that a conception is triggered within its domain of validity. Delineating this 

domain is necessary if one claims that students’ conception are not contingent to circumstances and hence 

have all the characteristics of genuine knowledge. However, this is a challenging task; I address some 

aspects of it in the next section. 

7. Conception and sphere of practice 

Characterizing the sphere of practice of a conception is a difficult problem since the mathematical 

experience of learners is not restricted to the mathematical classroom. It is clear, that their spheres of 

practice are determined by activities outside the school as well as by what is done within the school in 

other disciplines than mathematics. 

In the case of function, the curriculum even at the elementary level has a strong impact (Ayalon et al. 

2017). Progressing in the course of their curriculum, students develop an understanding of functions which 

is more and more determined by the formal content taught and the actual everyday school practice. The 

choices made by textbooks to implement curricula are indicators of the learning contexts; their diversity is 

a first indicator of the possible diversity of students conceptions. Vilma Mesa (2009) has carried out an 
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extensive comparative study16 looking for conceptions possibly induced by mathematics textbooks which 

provides a picture of this diversity and its possible impact on learning. For this study, she has used cK¢ for 

the methodology it provides, not for the formalism – what is a fair use. 

Vilma Mesa’s analysis of her textbook corpus is guided by four questions parallelizing the four dimensions 

of the cK¢ characterization of conceptions. Given a task (exercise or problem): 

- What use is given to function in the task? 

- What does the student need in order to achieve the task? 

- What representations are mobilized by the task? 

- How could the student know that he or she has got a correct an answer? 

The 2304 tasks coming from 35 textbooks (7th and 8th grade) were sorted following Biehler’s taxonomy of 

“prototypical use of functions”17 (Biehler 2005). An analysis grid were constructed and assessed based on 

a multiple judges approach, it is composed on the four lines of analysis of: 10 different types of problems 

(e.g. cause/effect relationship, graph defined relation, set-of-ordered-pairs relation), 39 operators (e.g. find 

percentage or number, find slope, name points on axis), 9 representation systems (e.g. arrow diagram, 

graph in two axes, symbolic, tabular), 9 controls (e.g. vertical line test, continuity assumed, use check 

points). Five types of conceptions are dominantly favored (Mesa 2009 p.86): 

- Symbolic rules (20%): elementary tasks fulfilling a familiarization purpose, likely to induce what I 

above referred to as algebra-graph conceptions. 

- Ordered pairs (14%): tasks requiring deciding whether or not a given ordered pairs, in the context 

of a mathematical or a non-mathematical situation, is a function or not. The representations are 

tables, sets of pairs, diagram or verbal. 

- Social data (7%): task requiring appreciating a relation in a real-life context which provides 

meaning and content-based controls. It does not use algebraic representations of a function. 

- Physical phenomena (4%): tasks based on the modeling of a time or a cause-and-effect relation. 

The controls are based on the content and context (mathematics or physics). It does not use 

algebraic representations of a function. 

- Controlling image (3%): tasks in a context provided by a geometrical diagram, a graph, a numerical 

pattern or figural pattern. The few symbolic representations correspond to cases where symbols 

“acts as label” (like in the formula for the area of a rectangle). 

The symbolic rules type of tasks is present in 71% of the textbooks, but they represent only 20% of the 

corpus meaning that a large practice of students are devoted to tasks in which function appears as a relation 

of dependence between two quantities. Tables, sets of pairs, diagram or verbal representations dominate, 

and apart the ordered pairs type of tasks, controls are context-based or even based on the didactical 

contract (e.g. Mesa 2009 p.65). The weight of the context in the controls favored by the tasks, instead of 

mathematical process oriented controls, opens the possibility for the development of different types of 

conceptions of function de facto fragmenting potentially students understanding.  

 

                                                 
16  The corpus gathered 35 textbooks for seventh grade or higher in different languages (English, French, German, 

Portuguese and Spanish) which had specific sections devoted to functions. 
17 Natural laws, causal relation, constructed relations, descriptive relations and data reduction (Mesa 2009 p.11). 
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The balance between the different types of tasks discriminates fours clusters: rule oriented textbooks (50% 

of tasks are of a symbolic rule type), abstract oriented textbooks (78% of tasks are of a symbolic or ordered 

pairs type), abstract-oriented with application (includes at least one of the contextual type of tasks) and 

application-oriented (no symbolic rules or ordered type of tasks).  It is remarkable that the abstract-

oriented cluster contains only half or so of the textbooks, the other half includes the application-oriented 

cluster and a rule/abstract oriented cluster. Moreover, Vilma Mesa notices that “the TIMSS items, as a set, 

do not share the same characteristics as those depicted by the tasks in the textbooks” (ibid. p.99).  

cK¢ worked as an efficient framework to evidence the diversity of the understandings of function 

potentially promoted by curricula. However, it has for such a study a heuristic role since textbooks are only 

indicators of what the implementation of curricula could be like. The actual life in the classroom framed by 

the teacher own understanding of function may give rise to a reality different from the one the analysis 

pictures. But this is a solid basis from which to go forwards.  

The conceptions promoted by the different types of tasks are legitimate in the context of the practices as 

the textbooks suggest they could be. However Vilma Mesa reminds us (ibid. pp.114-115) that the 

conceptions she has identified have been reported by research on teachers’ understandings of function, 

reinforcing their legitimacy. In other words, any of these conceptions are correct insofar as they allow 

achieving tasks and solving problems in the classroom context, and they satisfy the curriculum and 

teachers expectations and requirements. Even if some of them could turn into obstacles to overcome to 

progress in the understanding of function, they all contribute to its meaning. They can be considered as 

different facets of the concept, each situated from an epistemic and pragmatic perspective. 

8. Conception, knowing and concept 

The number of conceptions of function from an historical, didactical and epistemic perspective raises the 

question of their relations from a pragmatic perspective (e.g. efficiency, scope of use), and from a 

mathematical perspective (e.g. correctness, generality). Among these questions one is of a special 

importance: understanding learners’ conceptions requires their interpretation from the perspective of the 

conception of the observer (e.g. teacher, researcher or evaluator). In particular, it is important to be aware 

of the fact that the generality or the falsity of a conception is not an intrinsic property but a type of 

relationship it holds with another conception. The case of Cauchy we reported in the beginning of this 

article illustrates how this relationship is susceptible to the translation from one system of representation to 

the other. This is often hidden by the fact that, as teachers or researchers, we tend to assess learners’ 

productions and activities from the perspective of our own understanding.  

Comparing conceptions assumes the more often than not hidden hypothesis that they are about the same 

mathematical content, what I will refer to as the object of the conception. The notion of mathematical 

object is difficult because of the immateriality of mathematical content; the ontological problem. This 

difficulty can be overcome within the model by, taking Vergnaud’s postulate as a grounding principle: 

problems are sources and criteria of knowings (1981 p.220). Then, let C and C’ be two conceptions and CR 

the conception associated to the observer, so that it exists a representation mapping ƒ: L→LR and ƒ’: L’→

LR. Then:  

[C and C’ have the same object with respect to CR if for all p from P there exists p’ from P’ such that 

ƒ(p)=ƒ’(p’), and reciprocally] 
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Eventually, conceptions have the same object if their spheres of practice can be matched from the point of 

view of another conception which is in our case the conception of the researcher. The fact that two 

conceptions have the same object does not mean that they have another type of relationship (e.g. one being 

false with respect to the other, or more general, or partial, or else). It may be the case that some problems 

of P’ (resp. P) cannot be expressed with L (resp. L’); and if they are, the translated problems may not be 

part of the sphere of practice of the other conception. The relation “To have the same object with respect to 

a given conception CR” is an equivalence relation among conceptions with respect to CR.  

Let’s now claim the existence of a conception Cµ more general than any other conception to which it can 

be compared. This seems to be a purely theoretical and abstract claim. Actually, it roughly corresponds to 

a conception of mathematics as it emerges from the practice of professional mathematicians. In our daily 

work as researchers or teachers, although in general left implicit, Cµ takes the form of a conception of 

reference we think shared by the research community mathematics educators. Then, the following 

propositions: 

A “concept” is the set of all conceptions having the same object with respect to Cµ.  

i.e.  a conception is the actualization of a concept by a pair (subject/situation) 

This definition is aligned with the idea that a mathematical concept is not reduced to the text of its formal 

definition, but is the product of its history and of all practices in different communities. Indeed, there is no 

agent holding the concept and no way to ensure that we can enumerate a complete list of these 

conceptions. So, a last definition will allow reducing the distance between this abstract definition and the 

needs we have to have a practical model: 

A “knowing” is any subset of a concept which can be associated  to a cognitive subject or a 

community. 

i.e. a conception is the actualization of a knowing by a situation; it characterizes the subject/milieu 

system in a situation) 

Given a concept, for example the concept of function discussed in this paper. Several different conceptions 

could form the knowing of this concept associated to an individual, each being enacted depending on 

various contextual features or problem characteristics. In the same way one may refer to the knowing of a 

mathematic classroom referring to the different conceptions likely to be enacted in this class. Eventually, 

one can refer to the XVIII° century knowing of function. These definitions of knowing and concept 

provide a framework which preserves students’ epistemic integrity despite contradictions and variability 

across situations.  

The name cK¢ comes from the names of the three pillars of the model: conception, knowing, concept. I 

keep the word “knowledge” to name a conception which is identified and formalized by an institution 

(which is a body of an educational system in our case). 
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9. Conclusion and additional comments 

cK¢ proposes a framework for “learners modeling”. Historically, it has been designed to take up the 

challenge of providing a model having an epistemic relevance to bridge research in mathematics education 

and research on educational technology. On the one hand it had the objective to offer a common 

framework to express the knowledge base on learners understanding of mathematical concepts; on the 

other hand it intended to respond to the need for representations both understandable by researchers in 

mathematics education and computationally tractable. The formalism it dares should enhance the way one 

informs the design of technology enhanced learning environments, complementing descriptions generally 

available in natural language with no standardized narrative structure.  

Research in mathematics education develops jointly theories and experimentations, in this context models 

can serve as mediators between theories of which they require an articulate and precise understanding, and 

experiments of which they frame the design and drive the collection of data. However, both theories and 

experiments raise difficult issues. On the side of theories, one has to deal with a complex discourse which 

rarely makes explicit all details and hence gives room to non-univocal interpretations. On the side of 

experiments, the practical implementation is always richer and more complex than what the design of 

models anticipates. Moreover, in the case of conceptions, one is confronted with issues (that Toulmin 

already noticed when proposing a model of argumentation): distinguishing operators from controls is not 

absolute (e.g. theorems can be activated as tools or predicates), and controls are more often than not 

implicit. Such difficulties require further theoretical as well as methodological investigations. 

The case of function evidences the complexity of making sense of students’ understanding. against what 

history teaches us about the evolution of this concept. And indeed we would be very cautious with the idea 

that the “historical study of the notion of function together with its epistemological analysis helped us to 

analyze the student’ mathematical behavior” (Sierpinska 1989 p.2). It is clear that the epistemological 

analysis is an essential tool, but the historical analysis may induce a view of the notion of function which 

hides the role played by the modern school context. The historical analysis could delineate the notion from 

the mathematical point of view, from the epistemic point of view we must be prepared to see things in a 

rather different way. Actually Sierpinska acknowledged that “the students’ conceptions are not faithful 

images of the corresponding historical conception” (ibid. p.19). For example, one of the questions one has 

to consider is that of knowing what could be the essential difference between students’ algebraic 

conceptions and the “corresponding” historical conceptions. It is also striking that tables play a very 

limited role if any at all in the situations involving functions: if they are present it is in relation to concrete 

situations in which the aim is less to analyze a function than to analyze data (the function is seen as a tool 

for data analysis). 

Initially based on the Theory of Didactical Situation and the Theory of Conceptual Field, the cK¢ 

modeling framework is not restricted to them. For the purpose of its development and in order to enhance 

its efficiency it is necessary to integrate other theories to strengthen its components (e.g. representation, 

control system). But cK¢ holds other promises. It facilitates building a bridge between knowing and 

proving, constructing a link between control and proof, hence facilitating understanding the relation 

between argumentation and proof. 
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