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ORDER ANTIMORPHISMS OF FINITE-DIMENSIONAL CONES

CORMAC WALSH

Abstract. We show that an order antimorphism on a finite-dimensional cone having

no one-dimensional factors is homogeneous of degree −1. A consequence is that the

existence of an order antimorphism on a finite-dimensional cone implies that the cone
is a symmetric cone.

1. Introduction

Given an order structure, it is natural to study its isomorphisms and antimorphisms.
Recall the former are the the bijective maps that preserve the order in both directions,
and the latter are those that reverse the order in both directions.

The case of ordered vector spaces has received much attention, starting with Alexan-
drov and Ovchinnikova [1] and Zeeman [14], who studied maps preserving the light cone
that arises in special relativity. This work has be extended to more general ordered vector
spaces by Rothaus [12], Noll and Schäffer [10, 9], and Artstein-Avidan and Slomka [3].
One typically searches for conditions under which the isomorphisms are affine.

For example, in [10] it was shown that any order isomorphism between two proper
open convex cones, one of which has no one-dimensional factors, in a finite dimensional
linear space is the restriction of a linear isomorphism between the two cones. Here,
proper means that the cone contains no complete lines, and having no one-dimensional
factors means that it can not be written as the Cartesian product of (0,∞) with a cone
of smaller dimension. The latter condition is obviously necessary—if there is a one-
dimensional factor then taking any non-linear order-preserving bijection on this factor
and the identity on the complement gives an order isomorphism that is not linear.

Order antimorphisms are also interesting. In [2] the antimorphisms of the set of lower-
semicontinuous convex functions on Rd were considered. It was shown that the only such
map, up to linear terms, is the Legendre–Fenchel transform.

Here we investigate the antimorphisms of ordered vector spaces. If the domain is the
whole space, then there is nothing new—the antimorphisms are just the isomorphisms
composed with a reflection in the origin. But the existence of antimorphisms on open
cones is more subtle. Our main result is that, when there are no one-dimensional factors,
they must be antihomogeneous, that is, satisfy φ(λx) = λ−1φ(x), for all elements x of
the cone, and and λ > 0.

Theorem 1.1. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones in a finite-dimensional linear space. If C has no one-dimensional factors, then φ
is antihomogeneous.

In [13], it was shown that there can be an antihomogeneous order-antimorphism be-
tween two finite-dimensional cones if and only if both cones are symmetric, that is,
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2 CORMAC WALSH

homogeneous and self-dual. Combining this with the theorem above, we get the follow-
ing.

Corollary 1.2. Let φ : C → C ′ be an order antimorphism between two proper open
convex cones in a finite-dimensional linear space. Then C and C ′ are symmetric cones.

The technique in [13] was to consider the Funk metric on the cone, which is a non-
symmetric metric defined using the order and homogeneity structures. Each antihomoge-
neous antimorphism on a cone reverses this metric [9]. So, it was fruitful to study the two
horofunction boundaries of this metric, those in the forward and backward directions.

Since in this paper we do not assume antihomogeneity, the metric techniques do not
work. Instead, we will use techniques similar to those in [12], [10], and [3]. Namely,
we study how the map acts on line segments parallel to extreme rays of the cone. This
means that our proof is essentially finite dimensional. Indeed, there are many interesting
cones in infinite dimension that have few or no extreme rays.

A step in our proof may be of independent interest. We show that if the domain
cone has a product structure then so does the image cone, and this product structure is
respected by the order antimorphism.

Theorem 1.3. Let φ : C → C ′ be an order antimorphism between two proper open
convex cones in a finite-dimensional linear space. Assume that C has the decomposition
C = C1 × · · · × Cn. Then, C ′ has a decomposition C ′ = C ′1 × · · · × C ′n, and φ takes the
form

φ(x1, . . . , xn) =
(
φ1(x1), . . . , φn(xn)

)
, for all (x1, . . . , xn) ∈ C.

It is also interesting to consider the infinite dimensional case. For isomorphisms, there
are some results in [12] and [10]. The theory here is somewhat unsatisfactory however.
A typical assumption is that the cone is the convex hull of its extreme rays, which is a
very strong assumption in infinite dimension.

One may also try to find an infinite-dimensional version of Corollary 1.2. A natural
generalisation of the concept of an ordered vector space is an order unit space. On the
other hand, there is no straightforward generalisation of symmetric cones. However, one
can consider the infinite-dimensional version of the Euclidean Jordan algebras to be the
JB-algebras. In [8], the question was raised whether the existence of an antihomogeneous
order antimorphism on an order-unit spaces implies that it is a JB-algebra? Corollary 1.2
suggests that the antihomogeneity assumption may not even be necessary.

2. Preliminaries

2.1. Isomorphisms and Antimorphisms. Let C be an open convex cone in a real
finite-dimensional vector space V . This means that C is an open convex set that is
invariant under multiplication by positive scalars. If C contains no full lines, then C is
called a proper open convex cone.

The cone C induces a partial order ≤C on V as follows: x ≤C y if y − x ∈ clC. Here
we are using cl to denote the closure of a set. The interior is denoted int. An order
interval is a set of the form [x, y] := {w ∈ C | x ≤C w ≤C y}.

Let φ : C → C ′ be a map between two proper open convex cones in V . We say that φ
is isotone if x ≤C y implies φ(x) ≤C′ φ(y). If φ is a bijection and both it and its inverse
are isotone, then we say that φ is an order isomorphism.

Likewise, φ is said to be antitone if x ≤C y implies φ(y) ≤C′ φ(x), and is said to be
an order antimorphism if it is a bijection and it and its inverse are antitone.
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We say that φ is homogeneous of degree α ∈ R if φ(λx) = λαφ(x), for all x ∈ C and
λ > 0. Maps that are homogeneous of degree −1 we call antihomogeneous, and maps
that are homogeneous of degree 1 we just call homogeneous.

2.2. Product cones. Let C1, C2, and C be non-empty convex cones in the linear space
V . We say that C is the direct product of C1 and C2 if C = C1 +C2 and linC1∩ linC2 =
{0}. Here lin denotes the linear span of a set. In this case we write C = C1 × C2.

If C = C1 × C2, then linC is the (linear space) direct sum of linC1 and linC2.
A cone is said to be irreducible if it can not be written as a product. Given any proper

open convex cone C, we can decompose it into a finite number of factors C = C1×· · ·×Cn,
each of which is irreducible. This decomposition is unique up to ordering of the factors.
We say that C has no one-dimensional factors if none of these factors are one-dimensional.

The order structure on a product cone is the product of the orders on the factors, that
is, (x1, x2) ≤C (y1, y2) if and only if x1 ≤C1

y1 and x2 ≤C2
y2.

The following theorem was proved in [9]. Versions of this theorem with stronger
assumptions appeared in [12] and [3].

Theorem 2.1. Let φ : C → C ′ be an order isomorphism between two proper open convex
cones in a finite-dimensional linear space. If C has no one-dimensional factors, then φ
is the restriction to C of a linear map.

2.3. Symmetric cones. A proper open convex cone C in a real finite-dimensional vec-
tor space V is called symmetric if it is homogeneous and self-dual. Recall that C is
homogeneous if its linear automorphism group Aut(C) := {A ∈ GL(V ) | A(C) = C} acts
transitively on it, and it is self-dual if there exists an inner product 〈·, ·〉 on V for which
C = C?, where

C? := {y ∈ V | 〈y, x〉 > 0 for all x ∈ clC}
is the open dual of C.

By the Koecher–Vinberg theorem, there is a one-to-one correspondence between sym-
metric cones and finite-dimensional real Euclidean Jordan algebras. Indeed, each sym-
metric cone arises as the set of square elements of such an algebra.

The map x 7→ x−1 taking the Jordan algebra inverse of an element is an involution on
the cone of square elements. This map is also antihomogeneous and an antimorphism. It
agrees on symmetric cones with Vinberg’s ∗-map, which can be defined more generally.

For more about symmetric cones, see [4].

3. Proofs

3.1. Continuity of order antimorphisms. It was shown in [12] that order isomor-
phisms between cones are necessarily continuous. The same result holds for antimor-
phisms, with a similar proof.

Lemma 3.1. Let φ : C ′ → C be an order antimorphism between two proper open convex
cones. Then, φ is continuous.

Proof. Let xn be a sequence in C converging to a point x ∈ C. Take some point p ∈ C,
and let ε > 0 be small enough that x − εp is contained in C. So, xn is eventually in
the order interval Iε := [x − εp, x + εp], and hence φ(xn) is eventually in the interval
I ′ε := [φ(x+ εp), φ(x− εp)]. The latter is a compact set, and so φ(xn) converges if it has
only one limit point. Consider a limit point y. We have y ∈ I ′ε, and hence φ−1(y) ∈ Iε.
Since ε was arbitrary, this implies that φ−1(y) = x. We conclude that φ(xn) converges
to φ(x). �
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3.2. Extreme rays. Recall that a convex subset E of a convex set D is said to be an
extreme set if the endpoints of any line segment in D are contained in E whenever any
interior point of the line segment is. The only zero-dimensional extreme set of the closure
of a proper open convex cone C is the origin {0}. We call the one-dimensional extreme
sets of clC its extreme rays, and denote the set of them by RC . An extreme vector of C
is a non-zero element of an extreme ray of C.

The importance of extreme rays when studying antimorphisms is made clear by the
following lemma.

Lemma 3.2. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones. Let x and y be distinct points in C such that the line through them is parallel to
an extreme ray of C, Then, the line through φ(x) and φ(y) is parallel to an extreme ray
of C ′.

Proof. The proof of this lemma is the similar to the proofs in [10] and [3] for the case
of order isomorphisms. The main idea is to characterise the line segments parallel to
extreme rays as the order intervals that are total. Recall that a total set is one in which
every two elements are comparable. �

3.3. A characterisation of product cones. There is simple relation between the ex-
treme rays of a product cone and those of its factors.

Proposition 3.3. The extreme rays of a proper open convex cone that can be written as
a product C = C1 × C2 are given by

RC =
{
R× {0} | R ∈ RC1

}
∪
{
{0} ×R | R ∈ RC2

}
.

Proof. A set is an extreme set of clC if and only if it can be written as the product of an
extreme set of clC1 and an extreme set of clC2. For such a set to be one-dimensional,
it must be the product of a zero-dimensional extreme set of one of the factors and a
one-dimensional extreme set of the other. �

We wish to characterise irreducible cones in terms of the linear dependencies of their
extreme rays. Let C be a proper open convex cone. We say that a set of extreme rays
of C is linearly independent if one obtains a linearly independent set when one takes
a single non-zero representative of each ray. A set of extreme rays that is not linearly
independent is linearly dependent.

Consider now the minimal dependent subsets of the set of extreme rays, that is, the
subsets that are linearly dependent but do not contain any proper linearly dependent
subset. Minimal dependent sets are also known as a circuits in matroid theory. Define
the following equivalence relation between extreme rays R and R′ in RC . Write R ∼ R′
if either R = R′ or there exists a minimal dependent subset of RC containing both.
This relation is obviously reflexive and symmetric; its transitivity is more subtle—see
Theorem 3.36 of [5]. The next proposition shows that irreducibility of the cone C is
equivalent to there being only one equivalence class of elements of RC .

Proposition 3.4. A proper open convex cone C is irreducible if and only if every pair
of distinct elements of RC is contained in a minimal dependent subset of RC .

Proof. First assume that C = C1×C2 is a product cone. Take R1 ∈ RC1 and R2 ∈ RC2 .
According to Proposition 3.3, the rays R1 × {0} and {0} × R2 are in RC , and they are
clearly distinct. Let D be a dependent subset of RC containing R1 × {0} and {0} × R2

Again from Proposition 3.3, there are sets D1 ⊂ RC1
and D2 ⊂ RC2

such that each of
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the elements of D is either of the form R × {0} with R ∈ D1, or {0} × R with R ∈ D2.
Note that R1 ∈ D1 and R2 ∈ D2. For each R ∈ D1∪D2, choose a non-zero representative
xR. We have, for some coefficients {λR}; R ∈ D1 ∪ D2, not all of which are zero,∑

R∈D1

λR(xR, 0) +
∑
R∈D2

λR(0, xR) = 0.

Looking at the components separately, we see that each of the two sums is zero. So, D
is not a minimal dependent subset of RC .

Now assume that there are a pair of elements of RC that are not contained in a
minimal dependent set. So, there are at least two equivalence classes of rays in RC with
respect to the relation ∼. Let D1 be one of these equivalence classes, and let D2 be its
complement. Define the cone C1 to be the interior of the cone generated by the elements
of D1, and the cone C2 to be the interior of the one generated by the elements of D2.
Also, let V1 := linD1 and V2 := linD2 be the linear subspaces in which these cones lie.
Clearly, C = C1 + C2.

Choose a basis B1 of V1 consisting of extreme vectors of C, each one lying in one of
the extreme rays in D1. Likewise, choose a basis B2 of V2 consisting extreme vectors each
lying in one of the extreme rays in D2. Observe that no subset of B1 ∪ B2 is a minimal
dependent set. It follows that B1 ∪B2 is independent. We conclude that V1 ∩ V2 = {0}.
Thus, C is the product of C1 and C2. �

3.4. Antimorphisms on product cones. In this section, we will prove Theorem 1.3,
that is, that order antimorphisms on product cones respect the product structure.

Let C be a proper open convex cone. We topologise it set of extreme rays RC by
taking the Kuratowski–Painlevé topology on the set of closed sets of V . In this topology,
a sequence of closed sets (Dn)n∈N is said to converge to a closed set D if each of the
following hold:

• for each x ∈ D, there exists xn ∈ Dn for n large enough, such that (xn)n
converges to x.

• if (Dnk
)k∈N is a subsequence of the sequence of sets and xk ∈ Dnk

for each
k ∈ N, then convergence of (xk)k∈N to x implies that x ∈ D.

Note that a sequence of rays starting at the origin converge in this topology if and
only if their directions converge. Also, a sequence of closed line segments converge if and
only if both sequences of endpoints converge, after possible reversing some of the line
segments.

Let φ : C → C ′ be an antimorphism from C to another proper open convex cone C ′.
Recall that by Lemma 3.2 every line segment in C that is parallel to an extreme ray of
C is mapped by φ to a line segment parallel to an extreme ray of C ′. Fix an extreme
ray R ∈ RC and consider the map ΞR : C → RC′ defined so that, for each x ∈ C, line
segments in C parallel to R that pass through x are mapped to line segments parallel to
ΞR(x).

Lemma 3.5. For each R ∈ RC , the map ΞR is continuous.

Proof. Let xn be a sequence in C converging to x ∈ C. Take a closed line segment
L ⊂ C that starts at x, and for each n ∈ N, let Ln be the line segment obtained from
L by parallel transporting from x to xn. For n large enough, Ln lies in C. Observe
that Ln converges to L in the Kuratowski–Painlevé topology, as n tends to infinity. By
Lemma 3.1, φ is a homeomorphism, and so we get that φ(Ln) converges to φ(L). We
deduce that ΞR(xn) converges to ΞR(x). �



6 CORMAC WALSH

We can now prove Theorem 1.3. For simplicity, we start with the case of two factors.

Lemma 3.6. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones. Assume that C has a product structure: C = C1 × C2. Then, C ′ can also be
written as the product of two cones: C ′ = C ′1 × C ′2. Moreover, φ respects the product
structure, that is, there exist order antimorphisms φ1 : C1 → C ′1 and φ2 : C2 → C ′2 such
that

φ
(
(x1, x2)

)
=
(
φ1(x1), φ2(x2)

)
, for all x1 ∈ C1 and x2 ∈ C2.

Proof. Take an extreme ray R′ of C ′, and define the map ΞR′ : C ′ → RC so that, for
each x ∈ C ′, any line segment in C ′ parallel to R′ that passes through x is mapped by
φ−1 to a line segment parallel to ΞR′(x). The map ΞR′ is continuous by Lemma 3.5.
So, since there is a continuous path between any two points in C ′, there must be one
between any two points in the image ΞR′(C ′). Given the form of the extreme rays of C
described in Proposition 3.3, we deduce that every ray in ΞR′(C ′) must be associated to
the same factor of C, in other words, ΞR′(C ′) must be a subset of either RC1

or RC2
.

Let R1 be the set of those R′ ∈ RC′ for which the former is the case, and R2 be the
set of those for which the latter is. Denote by C ′1 and C ′2, respectively, the interiors of
the cones generated by these two sets of rays, and V ′1 and V ′2 , respectively, the linear
spaces generated. Clearly, C ′ = C ′1 + C ′2 and V ′ = V ′1 + V ′2 .

Let v ∈ V ′, and suppose we can write

v =

m∑
i=0

λixi =

n∑
i=0

µiyi,

where the xi are extreme vectors of C ′1, the yi are extreme vectors of C ′2, and the λi and

µi are non-zero coefficients. Consider the partial sums Xj :=
∑j
i=0 λixi, with 0 ≤ j ≤ m,

and Yj :=
∑j
i=0 µiyi, with 0 ≤ j ≤ n. By choosing a point z ∈ C ′ far enough away from

the origin, we can ensure that z +Xj and z + Yj are in C ′ for all j.
Since, for each j, the points z + Xj and z + Xj+1 differ by multiple of an extreme

vector of C ′1, their images φ−1(z + Xj) and φ−1(z + Xj+1) differ by a multiple of an
extreme vector of C1. Summing, we obtain that φ−1(z) − φ−1(z + v) is contained in
linC1. Similar reasoning shows that this vector is also contained in linC2. We deduce
that it is zero, which implies that v is zero, since φ−1 is bijective. We have proved that
V ′1 ∩ V ′2 = {0}. In conclusion, C ′ is the product of C ′1 and C ′2.

Let w := (w1, w2) and z := (z1, z2) be points in C ′ sharing a first component, that
is, w1 = z1. So, z = w +

∑
j λjxj , where the xj are a finite number of extreme vectors

of C ′2, and the λj are non-zero coefficients. Using a similar argument to before, we get
that the difference between φ−1(w) and φ−1(z) lies in linC2, and hence these pre-images
have the same first component. Similarly, if w and z have the same second component,
then the same is true for φ−1(w) and φ−1(z).

So there exist maps ν1 : C ′1 → C1 and ν2 : C ′2 → C2 such that φ−1((w1, w2)) =
(ν1(w1), ν2(w2)), for all w1 ∈ C ′1 and w2 ∈ C ′2, The injectivity and surjectivity of ν1
and ν2 follow easily from the corresponding properties of φ−1. Define φ1 := ν−11 and
φ2 := ν−12 . The map (x1, x2) 7→ (φ1(x1), φ2(x2)) is the inverse of φ−1, and hence equal
to φ. �

Proof of Theorem 1.3. We treat the factors of C one-by-one, applying Lemma 3.6 each
time. �
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3.5. Simplicial slices. In the case of order isomorphisms, one can show that a pair of
line segments parallel to the same extreme ray of the cone remain parallel under the
mapping. This is not true in general for order antimorphisms, but we will see that it is
true when one restricts to certain subcones that we call simplicial slices.

An (open) simplicial cone is a cone that is linearly isomorphic to intRn+, for some
n ≥ 1. In other words, it is a cone over an open simplex. An open cone is a simplicial
cone if and only if it is a lattice with respect to its own ordering; see [6, page 221].

Let C be a proper open convex cone in a finite-dimensional linear space V . We say
that a cone S ⊂ V is a simplicial slice of C if S is a non-empty simplicial cone that can
be written as S = L∩C, where L is a linear subspace of V , and each of the extreme rays
of S is an extreme ray of C.

Observe that if S is a simplicial slice of C, then the partial order on S coming from
the cone structure of S is the same as the partial order inherited from C.

The following is Proposition 3 of [10].

Proposition 3.7. Let three pairwise disjoint half-lines be given such that every point of
each lies on a line that meets the other two. Then, all three half-lines are parallel to one
plane. Moreover, if two of them lie in one plane, then the third also lies in that plane.

Recall that, for each extreme ray R ∈ RC , we have defined the map ΞR : C → RC′ so
that, for each x ∈ C, any line segment in C that passes through x and is parallel to R is
mapped to a line segment parallel to ΞR(x).

Lemma 3.8. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones in a finite-dimensional linear space. Let S be a simplicial slice of C, and let R be
an extreme ray of S. Then, ΞR is constant on S.

Proof. It suffices to show that ΞR(x1) = ΞR(x2) for every pair of distinct points x1 and
x2 in S such that x2 − x1 is an extreme vector of S. This is clearly true if x2 − x1 lies
in R, so assume the contrary. Denote by R′ the extreme ray of S in which x2 − x1 lies.

Take the midpoint x3 := (x1 + x2)/2 of the two points. Let L1 be the open line
segment parallel to R with one endpoint at x1 and the other on the boundary of C.
The endpoint on the boundary is also on the boundary of S, since S is a simplicial slice.
Define the line segments L2 and L3 in the same way, starting from points x2 and x3,
respectively.

These three line segments are clearly pairwise disjoint. Because S is simplicial, every
point lying on one of the segments lies on a line parallel to R′ that meets the other two
segments.

Consider the images under φ of the line segments; see figure 1. Each is a half line
starting at φ(x1), φ(x2), or φ(x3), and parallel to ΞR(x1), ΞR(x2), or ΞR(x3), respectively.

From the properties of L1, L2, and L3 stated in the previous paragraph, we get
using Lemma 3.2 that their images φ(L1), φ(L2), and φ(L3) satisfy the assumptions of
Lemma 3.7. Therefore, these images are all parallel to some plane. This means that
ΞR(x1), ΞR(x2), and ΞR(x3) are co-planar, and hence at least two of them must be
identical. We conclude that two of the half lines φ(L1), φ(L2), and φ(L3) are parallel
and therefore lie in a plane. Applying Lemma 3.7 again, we get that all three of them
lie in the plane.

This plane also contains the line segment φ(M), where M is the line segment between
x1 and x2. Here we are using Lemma 3.2, to get that φ(M) is a line segment parallel
to an extreme ray ΞR′(x1) of C ′. So, the extreme rays ΞR(x1), ΞR(x2), and ΞR′(x1) are
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L1

L3

L2

φ(L2)

φ(L1)

φ(L3)

Figure 1. Diagram for the proof of Lemma 3.8.

co-planar, and hence at least two of them are equal, necessarily the first two, because
φ(M) is not parallel to either φ(L1) or φ(L2). �

Next we show that simplicial slices are mapped to simplicial slices.

Lemma 3.9. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones in a finite-dimensional linear space. Let S be a simplicial slice of C. Then, there
is a simplicial slice S′ of C ′ such that φ(S) = S′.

Proof. Denote by {Ri} the extreme rays of the simplicial slice S. By Lemma 3.8, for
each i, there is some extreme ray R′i of C ′ such that each line segment in S parallel to the
ray Ri is mapped by φ to a line segment parallel to R′i. Let U be the linear hull of the
union of the rays {R′i}. Take a point x ∈ S, and define the affine space A := φ(x) + U .

Let y be any point in S. There exists a finite sequence of points x0, . . . , xn such that
x0 = x, xn = y, and, for each j ∈ {0, . . . , n− 1}, the line segment between xj and xj+1

is parallel to one of the Ri. So, for each j, the line segment between φ(xj) and φ(xj+1)
is parallel to one of the R′i. We conclude that all the φ(xj) lie in A, in particular φ(y).
So, φ(S) is contained in A ∩ C ′.

The reverse inclusion is proved in a similar manner.
Let z ∈ S and consider the sequence of points zn := nz. Given any point w of C,

the sequence zn is eventually greater than w. So, for any w′ in C ′, the sequence φ(zn)
is eventually less than w′. It follows that φ(zn) converges to the origin. We have shown
that the origin is in the affine space A. So, A is actually equal to the linear subspace U
of V ′.

Let S′ := U ∩ C ′, which we have seen is equal to φ(S). Observe that the order on S′

inherited from C ′ is the same as the order coming from the closed cone clS′. So, the
restriction of φ to S is an order antimorphism between S and S′. Since S with its cone
order is a lattice, so also is S′. This implies that S′ is a simplicial cone.

Each ray R′i is in clS′ and is an extreme ray of C ′. Hence, each of these rays is also
an extreme ray of S′. But the dimension of U is at most the number of rays {R′i}. So,
S′ can have at most this number of extreme rays. This means that the set of extreme
rays of S′ is exactly the set of rays {R′i}. It is now clear that every extreme ray of S′ is
an extreme ray of C ′. This completes the proof that S′ is a simplicial slice of C ′. �

We will need that there are many simplicial slices. In fact, every extreme ray of a
cone is an extreme ray of some simplicial slice.

Lemma 3.10. Let R be extreme ray of a proper open convex cone C. Then, there exists
a simplicial slice S of C such that R is an extreme ray of S.
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Proof. Let r ∈ R\{0}. Choose any point q in C. The linear span of r and q defines a
two-dimensional subspace of V , the intersection of which with C is a two-dimensional
cone having R as a boundary component. The other boundary component is a ray that
lies in the boundary of C but is not necessarily extreme. Let E be the smallest proper
extreme set of clC that contains this ray.

Observe that the linear span of R ∪ E intersects C; indeed, it contains q. Choose a
basis E of linE consisting of extreme vectors of C. We have that lin E does not intersect
C, whereas lin({r} ∪ E) does.

Consider any element r′ of E . If lin({r} ∪ E\{r′}) intersects C, then remove r′ from
E . Continue removing elements of E one-by-one in this way as long as it is possible to
find one satisfying this condition.

Write E ′ := {r} ∪ E . The procedure of the previous paragraph results in a situation
where lin E ′ intersects C, but lin(E ′\{r′}) does not, for any r′ ∈ E . In particular, E ′ is a
linearly independent set of vectors.

Let S be the relatively open simplicial cone generated by E ′. The extreme rays of S
are the rays {λr′ | λ ≥ 0}; r′ ∈ E ′. Each of these is also an extreme ray of C.

Define H := lin E ′ ∩ clC. Since H is convex and contains E ′, we have clS ⊂ H,
where the closure is taken in the space lin E ′. Furthermore, for each e ∈ E ′, the linear
space lin(E ′\{e}) is a tangent hyperplane to H in the linear space lin E ′. It follows that
H ⊂ clS. We have shown that clS = H. We conclude that S = lin E ′ ∩ C. �

3.6. The antihomogeneity defect map. Suppose we are given a bijection φ between
two proper open convex cones C and C ′. For each λ > 0, define the antihomogeneity
defect map:

∆λ := φ−1 ◦Mλ ◦ φ ◦Mλ.

Here Mλ means multiplication by the scalar λ. The map ∆λ measures how far away
from being antihomogeneous the map φ is. Indeed, if φ is antihomogeneous, then ∆λ is
the identity map. If φ is an order antimorphism, then ∆λ is an order isomorphism. In
any case, ∆λ is a bijection from C to itself.

We wish to show that, in the case of antimorphisms on irreducible cones, the defect
map is the identity. Our strategy will be to first show that it is a homothety. Recall that
a homothety is a linear map of the form x 7→ αx, with α ∈ R.

Lemma 3.11. Let C be an irreducible proper open convex cone in a finite-dimensional
vector space V , and let L : V → V be linear map such that every extreme vector of C is
an eigenvector of L. Then, L is a homothety.

Proof. The conclusion is trivial if C is one-dimensional, so assume the contrary.
Let e1 and e2 be extreme vectors of C that are not scalar multiples of one another.

Since C is irreducible, there exists by Proposition 3.4 a minimal dependent set E of
extreme vectors of C containing both e1 and e2. Write E =: {e1, e2, . . . , en}. Because E
is minimal dependent, we have, for some non-zero real coefficients {ai},

e1 = a2e2 + · · ·+ anen.

For each i, let λi be the eigenvalue of ei with respect to L. Applying L to the above
equation, we get

λ1e1 = λ2a2e2 + · · ·+ λnanen.
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So, since the vectors e2, . . . , en are linearly independent, we must have λ1 = λ2 = · · · =
λn. We deduce that all extreme vectors of C have the same eigenvalue. Since there is a
basis of V of such vectors, this proves the lemma. �

The following lemma explores further the relation between the defect map and the
homogeneity of φ.

Lemma 3.12. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones. If the defect map ∆λ is a homothety for each λ > 0, then φ is homogeneous of
some degree α ∈ R.

Proof. Let λ and λ′ be positive real numbers. Since ∆λ is linear, it commutes with
multiplication by scalars. Therefore,

∆λ′∆λ = φ−1 ◦Mλ′ ◦ φ ◦ (φ−1 ◦Mλ ◦ φ ◦Mλ) ◦Mλ′ = ∆λ′λ.

Since, for each λ > 0, the defect map is a homothety, we can write it ∆λ(y) = µ(λ)y for
all y ∈ C, with µ(λ) a positive scalar. Consider the function f : R→ R, defined by

f(x) := log ◦µ ◦ exp(x).

From what we have just seen, f obeys the functional equation f(x′ + x) = f(x′) + f(x),
for x′ and x in R. Moreover, φ is continuous by Lemma 3.1, and so f is continuous. We
deduce that there exists c ∈ R such that f(x) = cx, for all x ∈ R; see [7, Theorem 1.1].

This implies that µ(λ) = λc, for all λ > 0. Therefore, λφ(y) = φ(λc−1y), for all λ > 0
and y ∈ C. This gives an absurdity if c equals 1, so evidently this is not the case. We
deduce that φ is homogeneous of degree 1/(c− 1). �

3.7. Differentiability of antimorphisms. In this section, we establish a couple of
lemmas that together show that if there exists an order antimorphism between two cones
that is homogeneous of some degree, then the cones are linearly isomorphic. This is
accomplished by first showing that the map is Lipschitz with respect to the Thompson
metric on the cones, and then using Rademacher’s theorem.

Recall that the Thompson metric on a cone C is defined in the following way:

dC(x, y) := log max
{
MC(x, y),MC(y, x)

}
,

where the gauge is

MC(x, y) := inf{λ > 0 | x ≤ λy}.

The following result appears in [11, Proposition 1.5].

Lemma 3.13. Let φ : C → C ′ be an antitone map between two cones that is homogeneous
of degree −α, with α > 0. Then, φ is α-Lipschitz with respect to the Thompson metric,
that is,

dC′(φ(x), φ(y)) ≤ αdC(x, y), for all x and y in C.

Proof. Write r := dC(x, y). So, MC(x, y) is less than or equal to exp r, which implies
that x ≤ exp(r)y. Using the properties of φ, we get φ(x) ≥ exp(−αr)φ(y). Therefore
MC′(φ(y), φ(x)) ≤ exp(αr). A similar expression holds when x and y are interchanged.
The conclusion follows. �

Rademacher’s theorem states that a Lipschitz map from an open subset of a Euclidean
space to another Euclidean space is differentiable almost everywhere, that is, differen-
tiable everywhere except on a set of measure zero.
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Lemma 3.14. Let φ : C → C ′ be an order antimorphism between two proper open convex
cones in a finite-dimensional linear space. If φ and φ−1 are Lipschitz in the Thompson
metric, then there exists a linear isomorphism L : C ′ → C.

Proof. The Thompson metric is Lipschitz equivalent to the Euclidean metric on every
Thompson-metric ball of finite radius. So we can use Rademacher’s theorem to get that
φ is differentiable almost everywhere on each of these balls, and hence almost everywhere
on the whole domain. The same is true of φ−1.

So, we can find x ∈ C such that φ is differentiable at x and φ−1 is differentiable at
φ(x). Let L := −Dφ(x)φ

−1 be the differential of φ−1 at φ(x). The differential Dxφ of φ

at x is then −L−1.
It follows easily from the antitonicity of φ and φ−1 that L−1 and L, respectively, are

isotone. Thus, L is a linear isomorphism. �

3.8. The proof of the theorem.

Proof of Theorem 1.1. By Theorem 1.3, the map φ respects the product structure of
the cone C. Thus, it suffices to prove the result for the component of φ acting on each
irreducible factor. By assumption, none of these factors are one-dimensional. So, without
loss of generality, we may assume that C is irreducible and not one-dimensional.

Take λ > 0, and consider the antihomogeneity defect map ∆λ, defined in section 3.6.
This map is an order isomorphism between C and C ′, and hence, since C has no one-
dimensional factors, must be linear.

Let R be an extreme ray of C. By Lemma 3.10, this ray is an extreme ray of some
simplicial slice S of C. By Lemma 3.9, there is a simplicial slice S′ of C ′ such that
φ(S) = S′. Restricted to S, the map φ is an order antimorphism between two simplicial
cones, and thus, by Theorem 1.3 takes the form φ(x1, . . . , xn) = (φ1(x1), . . . , φn(xn)),
where n is the dimension of S and S′. Here we are using coordinates on S and S′ coming
from their respective linear isomorphisms with (0,∞)n. It follows that the defect map of
this restriction also respects the product structure of S. Moreover it agrees with ∆λ on
S, and is hence linear. We conclude that ∆λ(x1, . . . , xn) = (α1x1, . . . , αnxn), for some
positive real numbers α1, . . . , αn. This shows that R is mapped to itself by the linear
map ∆λ.

Since this is true for every extreme ray of C, we deduce from Lemma 3.11 that ∆λ

is a homothety. But this holds for every λ > 0, and so by Lemma 3.12 the map φ is
homogeneous of some degree α ∈ R, that is, it satisfies φ(λx) = λαφ(x) for all λ > 0.
Since φ is antitone and bijective, we have α < 0.

By Lemma 3.13, the map φ is −α-Lipschitz with respect to the Thompson metric. The
inverse map φ−1 is also homogeneous, this time of degree 1/α, and so, by Lemma 3.13
again, is −(1/α)-Lipschitz.

So, we get from Lemma 3.14 that there exists a linear isomorphism L from C ′ to C.
Consider the composition ψ := L ◦ φ. This is an order antimorphism from C to itself.
Therefore, ψ2 is an order isomorphism from C to itself, and is hence linear since C has no
one-dimensional factors. But ψ is homogeneous of degree α, and so ψ2 is homogeneous
of degree α2. We conclude that α = −1. �

Proof of Corollary 1.2. Write C = C1×· · ·×Cn as a product of indecomposable factors.
We must show that each factor is symmetric.

Every one-dimensional factor is linearly isomorphic to (0,∞), and hence symmetric.
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Consider a factor Ci that is not one-dimensional. By Theorem 1.3, φ respects the
product structure, and so there is an order antimorphism φi : Ci → C ′i, where C ′i is a
factor of C ′. By Theorem 1.1, the map φi is antihomogeneous. It is therefore a gauge-
reversing map, and hence Ci is a symmetric cone by the result of [13]. �
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