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I

Several lectures of the Kobe-Lyon summer school1 recalled a deep interaction between Gröbner bases for D-modules and linear rewriting theory. The objective of this note is to survey the historical background of these two fields largely developed in algebra throughout the twentieth century and to present their deep relations. Completion methods are the main streams for these computational theories. In Gröbner bases theory, they were motivated by algorithmic problems in elimination theory such as computations in quotient polynomial rings modulo an ideal, manipulating algebraic equations and computing Hilbert series. In rewriting theory, they were motivated by computation of normal forms and linear basis for algebras and computational problems in homological algebra.

In this note we present the precursory ideas of the french mathematician M. Janet on the algebraic formulation of completion methods for polynomial systems. Indeed, the problem of completion already appear in the seminal work of M. Janet in 1920 in his thesis [START_REF] Janet | Sur les systèmes d'équations aux dérivées partielles[END_REF], that proposed a very original approach by formal methods in the study of linear partial differential equations systems, PDE systems for short. Its constructions were formulated in terms of polynomial systems, but without the notion of ideal and of Noetherian induction. These two notions were introduced by E. Noether in 1921 [START_REF] Noether | Idealtheorie in ringbereichen[END_REF] for commutative rings.

The work of M. Janet was forgotten for about a half-century. It was rediscovered by F. Schwarz in 1992 in [START_REF] Schwarz | An algorithm for determining the size of symmetry groups[END_REF]. Our exposition in this note does not follow the historical order. The first section deals with the problems that motivate the questions on PDE undertaken by M. Janet. In Section 2, we present completion for monomial PDE systems as introduced by Janet in his monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]. This completion used an original division procedure on monomials. In Section 3, we present axiomatisation of this Janet's division, called involutive division, and due to V. P. Gerdt. The last two sections concern the case of polynomial PDE systems, with the Janet's completion method used to reduce a linear PDE system to a canonical form and the axiomatisation of the reductions involved in terms of rewriting theory.

From analytical mechanical problems to involutive division

From Lagrange to Janet. The analysis on linear PDE systems was mainly motivated in 18th century by resolution of analytical mechanical problems. The seminal work of J.-L. Lagrange gave the first systematic study of PDE systems launched by such problems. The case of PDE of one unknown function of several variables has been treated by J. F. Pfaff. The Pfaff problem will be recalled in 1.1. This theory was developed in two different directions: toward the general theory of differential invariants and the existence of solutions under given initial conditions. The differential invariants approachs will be discussed in 1.1 and 1.1.4. The question of the existence of solution satisfying some initial conditions was formulated in the Cauchy-Kowalevsky theorem recalled in 1.1.3.

Exterior differential systems. Following the work of H. Grassmann in 1844 exhibiting the rules of the exterior algebra computation, É. Cartan introduced exterior differential calculus in 1899. This algebraic calculus allowed him to describe a PDE system by an exterior differential system that is independent of the For a monomial PDE system (Σ) of the form B α 1 +...+αn Bx α 1 1 . . . Bx αn n ϕ = f α (x 1 , x 2 , . . . , x n ),

where (α 1 , . . . , α n ) belongs to a subset I of N n , M. Janet associated the set of monomials lm(Σ) = {x α 1 1 . . . x αn n | (α 1 , . . . , α n ) P I}. The compatibility conditions of the system (Σ) corresponds to the factorizations of the monomials ux in cone J (lm(Σ)), where u is in lm(Σ) and x is a non-multiplicative variable of u with respect to lm(Σ), in the sense given in 2.3.1. By definition, for any monomial u in lm(Σ) and x non-multiplicative variable of u with respect to lm(Σ), the monomial ux admits such a factorization if and only if lm(Σ) is complete, see Proposition 2.2.5.

The main procedure presented in Janet's monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] completes in finite number of operations a finite set of monomials U into a complete set of monomials r U that contains U. This procedure consists in analyzing all the local default of completeness, by adding all the monomials ux where u belongs to U and x is a non-multiplicative variable for u with respect to U. This procedure will be recalled in 2.2.9. A generalization of this procedure to any involutive division was given by V. P. Gerdt in [START_REF] Gerdt | Gröbner bases and involutive methods for algebraic and differential equations[END_REF], and recalled in 3.2.12.

Extending this procedure to a set of polynomials, M. Janet applied it to linear PDE systems, giving a procedure that transforms a linear PDE system into a complete PDE system having the same set of solutions. This construction is presented in Section 4.6. In Section 5, we present such a procedure for an arbitrary involutive division given by V. P. Gerdt and Y. A. Blinkov in [START_REF] Gerdt | Involutive bases of polynomial ideals[END_REF] and its relation to the Buchberger completion procedure in commutative polynomial rings, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF].

The space of initial conditions. In order to stratify the complement of the involutive cone cone J (U) M. Janet introduced the notion of complementary monomial, see 2.1.13, as the monomials that generate this complement in a such a way that the involutive cone of U and the involutive cone of the set U A of complementary monomials form a partition of the set of all monomials, see Proposition 2.2.2.

For each complementary monomial v in lm(Σ) A each analytic function in the multiplicative variables of v with respect to lm(Σ) A provides an initial condition of the PDE system (Σ) as stated by Theorem 2.3.3.

Polynomial partial differential equations systems.

In Section 4, we present the analysis on polynomial PDE systems as M. Janet described in his monograph, [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]. To deal with polynomials he defined some total orders on the set of derivatives, corresponding to total orders on the set of monomials. We recall them in Section 4.1. The definitions on monomial orders given by M. Janet clarified the same notion previously introduced by C. Riquier in [START_REF] Ch | De l'existence des intégrales dans un système différentiel quelconque[END_REF]. In particular, he made more explicit the notion of parametric and principal derivatives in order to distinguish the leading derivative in a polynomial PDE. In this way, he extended its algorithms on monomial PDE systems to the case of polynomial PDE systems. In particular, using these notions, he defined the property for a polynomial PDE system to be complete. Namely, a polynomial PDE system is complete if the associated set of monomials corresponding to leading derivatives of the system is complete. Moreover, he extended also the notion of complementary monomials to define the notion of initial condition for a polynomial PDE system as in the monomial case. Initial conditions. In this way, the notion of completeness is a suitable framework to discuss the existence and the unicity of the initial conditions for a linear PDE system. M. Janet proved that if a linear polynomial PDE system of the form D i ϕ = ÿ j a i,j D i,j ϕ, i P I, of one unknown function ϕ and all the functions a i,j are supposed to be analytic in a neighborhood of a point P in C n and is complete with respect to some a total order, then it admits at most one analytic solution satisfying the initial condition formulated in terms of complementary monomials, see Theorems 4.3.4 and 4.3.6.

Integrability conditions. A linear polynomial PDE system of the above form is said to be completely integrable if it admits an analytic solution for any given initial condition. M. Janet gave an algebraic characterization of complete integrability by introducing integrability conditions formulated in terms of factorization of leading derivative of the PDE by non-multiplicative variables. These integrability conditions are given explicitly in 4.4.4 as generalization to the polynomial situation of the integrability conditions formulated above for monomial PDE systems in Subsection 2.3. M. Janet proved that a linear polynomial PDE system is completely integrable if and only if any integrability condition is trivial, as stated in Theorem 4.4.7.

Janet's procedure of reduction of linear PDE systems to a canonical form. In order to extend algorithmically Cauchy-Kowalevsky's theorem on the existence and uniqueness of solutions of initial condition problems as presented in 1.1.3, M. Janet considered normal forms of linear PDE systems with respect to a suitable total order on derivatives, satisfying some analytic conditions on coefficients and a complete integrability condition on the system, as defined in 4.5.2. Such normal forms of PDE systems are called canonical by M. Janet. Procedure 7 is the Janet's procedure that decides if a linear PDE system can be transformed into a completely integrable system. If the system cannot be reduced to a canonical form, the procedure returns the obstructions of the system to be transformed into a completely integrable system. This procedure depends on a total order on derivatives of unknown functions of the PDE system. For this purpose, M. Janet introduced a general method to define a total order on derivatives using a parametrization of a weight order on variables and unknown functions, as recalled in 4.1.5. The Janet procedure uses a specific weight order called canonical and defined in 4.6.2.

The first step of Janet's procedure consists in applying autoreduction procedure, defined in 4.6.4, in order to reduce any PDE of the system with respect to the total order on derivatives. Namely two PDE of the system cannot have the same leading derivative, and any PDE of the system is reduced with respect to the leading derivatives of the others PDE, as specified in Procedure 5.

The second step consists in applying the completion procedure, Procedure 6. That is, the set of leading derivatives of the system defines a complete set of monomials in the sense given in 4.3.2.

Having transformed the PDE system to an autoreduced and complete system, one can discuss about its integrability conditions. M. Janet shown that this set of integrability conditions is a finite set of relations that does not contain principal derivative, as explained in 4.4.4. Hence, these integrability conditions are J-normal forms and uniquely defined. By Theorem 4.4.7, if all of these normal forms are trivial, then the system is completely integrable. Otherwise, if there is a non-trivial condition in the set of integrability conditions that contains only unknown functions and variables, then this relation imposes a relation on the initial conditions of the system, else if there is no such relation, the procedure is applied again on the PDE system completed by all the integrability conditions. Note that this procedure depends on the Janet division and on a total order on the set of derivatives.

By this algorithmic method, M. Janet has generalized in certain cases Cauchy-Kowalevsky's theorem at the time where the algebraic structures have not been introduced to compute with polynomial ideals. This is pioneering work in the field of formal approaches to analysis on PDE systems. Algorithmic methods to deals with polynomial ideals were developed throughout the twentieth century and extended to wide range of algebraic structures. In the next subsection, we present some milestones on these formal mathematics.

Constructive methods and rewriting in algebra through the twentieth century

The constructions developed by M. Janet in his formal theory of linear partial differential equation systems are based on the structure of ideal, that he called module of forms. This notion corresponds to those introduced previously by D. Hilbert in [START_REF] Hilbert | Ueber die Theorie der algebraischen Formen[END_REF] with the terminology of algebraic form. Notice that N. M. Gunther dealt with such a structure in [START_REF] Günther | Über die kanonische Form der Systeme kanonischer homogener Gleichungen[END_REF]. The axiomatization of the notion of ideal on an arbitrary ring were given by E. Noether in [START_REF] Noether | Idealtheorie in ringbereichen[END_REF]. As we will explain in this note, M. Janet introduced algorithmic methods to compute a family of generators of an ideal having the involutive property and called involutive bases. This property is used to obtain a normal form of linear partial differential equation systems.

Janet's computation of involutive bases is based on a refinement of classical polynomial division called involutive division. He defined a division that was suitable for reduction of linear partial differential equation systems. Thereafter, other involutive divisions were studied in particular by J. M. Thomas [START_REF] Thomas | Differential systems. IX + 118 p[END_REF] and by J.-F. Pommaret [START_REF] Pommaret | Systems of partial differential equations and Lie pseudogroups[END_REF], we refer to Section 3.3 for a discussion on these divisions.

The main purpose is to complete a generating family of an ideal into an involutive bases with respect to a given involutive division. This completion process is quite similar to those introduced with the classical division in Gröbner bases theory. In fact, involutive bases appears to be particular cases of Gröbner bases. The principle of completion had been developed independently in rewriting theory, that proposes a combinatorial approach of equivalence relation motivated by several computational and decision problems in algebra, computer science and logic. Some milestones on algebraic rewriting and constructive algebra. The main results in the work of M. Janet rely on constructive methods in linear algebra using the principle of computing normal forms by rewriting and the principle of completion of a generating set of an ideal. These two principles have been developed during all of the twentieth century in many algebraic contexts with different formulations and at several occasions. We review below some important milestones in this long and wealth history from Kronecker to the more recent developments. [START_REF] Kronecker | Grundzüge einer arithmetischen Theorie der algebraischen Grössen[END_REF] and gave the first result in elimination theory using this notion.

L. Kronecker introduced the notion of resultant of polynomials in

1886. K. Weierstrass proved a fundamental result called preparation theorem on the factorization of analytic functions by polynomials. As an application he showed a division theorem for rings of convergent series, [START_REF] Weierstrass | Abhandlungen aus der Functionenlehre[END_REF].

1890. D. Hilbert proved that any ideals of a ring of commutative polynomials on a finite set of variables over a field and ring of integers are finitely generated, [START_REF] Hilbert | Ueber die Theorie der algebraischen Formen[END_REF]. This is the first formulation of the Hilbert basis theorem stating that a polynomial ring over a Noetherian ring is Noetherian.

1913.

In a paper on number theory, L.E. Dickson proved a monomial version of the Hilbert basis theorem by a combinatorial method, [Dic13, Lemma A].

1913.

In a serie of forgotten papers, N. Günther develop algorithmic approaches for polynomials rings, [START_REF] Günther | Über einige Zusammenhänge zwischen den homogenen Gleichungen[END_REF][START_REF] Günther | Über die kanonische Form der Systeme kanonischer homogener Gleichungen[END_REF][START_REF] Günter | Über die Elimination[END_REF]. A review of the Günther theory can be found in [START_REF] Gunther | Sur les modules des formes algébriques[END_REF].

1914. M. Dehn described the word problem for finitely presented groups, [START_REF] Dehn | Über die Topologie des dreidimensionalen Raumes[END_REF]. Using systems of transformations rules, A. Thue studied the problem for finitely presented semigroups, [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF]. It was only much later in 1947, that the problem for finitely presented monoids was shown to be undecidable, independently by E. L. Post [START_REF] Post | Recursive unsolvability of a problem of Thue[END_REF] and A. Markov [START_REF] Markov | On the impossibility of certain algorithms in the theory of associative systems[END_REF][START_REF] Markov | On the impossibility of certain algorithms in the theory of associative systems[END_REF].

1916. F. S. Macaulay was one of the pioneers in commutative algebra. In his book The algebraic theory of modular systems, [START_REF] Macaulay | The algebraic theory of modular systems[END_REF], following the fundamental Hilbert basis theorem, he initiated an algorithmic approach to treat generators of polynomial ideals. In particular, he introduced the notion of H-basis corresponding to a monomial version of Gröbner bases.

1920. M. Janet defended his doctoral thesis, [START_REF] Janet | Sur les systèmes d'équations aux dérivées partielles[END_REF], that presents a formal study of systems of partial differential equations following works of Ch. Riquier and É. Delassus. In particular, he analyzed completly integrable systems and Hilbert functions on polynomial ideals.

1921.

In her seminal paper, Idealtheorie in Ringbereichen, [START_REF] Noether | Idealtheorie in ringbereichen[END_REF], E. Noether gave the foundation of general commutative ring theory, and gave one of the first general definitions of a commutative ring. She also formulated the theorem of finite chains [Noe21, Satz I, Satz von der endlichen Kette].

1923. E. Noether stated in [START_REF] Noether | Eliminationstheorie und allgemeine Idealtheorie[END_REF][START_REF] Noether | Eliminationstheorie und Idealtheorie[END_REF] concepts of elimination theory in the language of ideals that she had introduced in [START_REF] Noether | Idealtheorie in ringbereichen[END_REF].

1926. G. Hermann, a student of E. Noether [START_REF] Hermann | Die Frage der endlich vielen Schritte in der Theorie der Polynomideale[END_REF], initiated purely algorithmic approaches on ideals, such as ideal membership problem and primary decomposition ideals. This work appears as a fundamental contribution for emergence of computer algebra.

1927. F. S. Macaulay showed in [START_REF] Macaulay | Some properties of enumeration in the theory of modular systems[END_REF] that the Hilbert function of a polynomial ideal I is equal to the Hilbert function of the monomial ideal generated by the set of leading monomials of polynomials in I with respect a monomial order. As a consequence the coefficients of the Hilbert function of a polynomial ideal are polynomial for sufficiently big degree.

1937.

Based on early works by Ch. Riquier and M. Janet, in [Tho37] J. M. Thomas reformulated in the algebraic language of B. L. van der Waerden, Moderne Algebra, [van30, van31], the theory of normal forms of systems of partial differential equations.

1937.

In [START_REF] Gröbner | Über das macaulaysche inverse system und dessen bedeutung für die theorie der linearen differentialgleichungen mit konstanten koeffizienten[END_REF], W. Gröbner formulated the isomorphism between the ring of polynomials with coefficients in an arbitrary field and the ring of differential operators with constant coefficients, see Proposition 2.1.2. The identification of these two rings was used before in the algebraic study of systems of partial differential equations but without being explicit.

1942.

In a seminal paper on rewriting theory, M. Newman presented rewriting as a combinatorial approach to study equivalence relations, [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]. He proved a fundamental rewriting result stating that under termination hypothesis, the confluence properties is equivalent to local confluence.

1949.

In its monograph Moderne algebraische Geometrie. Die idealtheoretischen Grundlagen, [START_REF] Gröbner | Moderne algebraische Geometrie. Die idealtheoretischen Grundlagen[END_REF], W. Gröbner surveyed algebraic computation on ideal theory with applications to algebraic geometry.

1999, 2002.

J.-C. Faugère developed efficient algorithms for computing Gröbner bases, algorithm F4, [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF] then and algorithm F5, [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5 )[END_REF].

2012.

T. Bächler, V. P. Gerdt, M. Lange-Hegermann and D. Robertz algorithmized in [BGLHR12] the Thomas decomposition of algebraic and differential systems.

Conventions and notations

The set of non-negative integers is denoted by N. In this note, K[x 1 , . . . , x n ] denotes the polynomial ring on the variables x 1 , . . . , x n over a field K of characteristic zero. For a subset G of polynomials of K[x 1 , . . . , x n ], we will denote by Id(G) the ideal of K[x 1 , . . . , x n ] generated by G. A polynomial is either zero or it can be written as a sum of a finite number of non-zero terms, each term being the product of a scalar in K by a monomial.

Monomials. We will denote by M(x 1 , . . . , x n ) the set of monomials in the ring K[x 1 , . . . , x n ]. For a subset I of {x 1 , . . . , x n } we will denote by M(I) the set of monomials in M(x 1 , . . . , x n ) whose variables lie in I. A monomial u in M(x 1 , . . . , x n ) is written as u = x α 1 1 . . . x αn n , were the α i are non-negative integers. The integer α i is called the degree of the variable x i in u, it will be also denoted by deg i (u). For α = (α 1 , . . . , α n ) in N n , we denote x α = x α 1 1 . . . x αn n and |α| = α 1 + . . . + α n . For a finite set U of monomials of M(x 1 , . . . , x n ) and 1 ď i ď n, we denote by deg i (U) the largest possible degree in variable x i of the monomials in U, that is

deg i (U) = max deg i (u) | u P U .
We call the cone of a set U of monomials of M(x 1 , . . . , x n ) the set of all multiple of monomials in U defined by cone(U) =

ď uPU uM(x 1 , . . . , x n ) = { uv | u P U, v P M(x 1 , . . . , x n ) }.
Homogeneous polynomials. An homogenous polynomial of K[x 1 , . . . , x n ] is a polynomial all of whose non-zero terms have the same degree. An homogenous polynomial is of degree p all of whose non-zero terms have degree p. We will denote by K[x 1 , . . . , x n ] p the space of homogenous polynomials of degree p. The dimension of this space is given by the following formula:

Γ p n := dim K[x 1 , . . . , x n ] p = (p + 1)(p + 2) . . . (p + n -1) 1 ¨2 ¨. . . ¨(n -1) .

Monomial order.

Recall that a monomial order on M(x 1 , . . . , x n ) is a relation ď on M(x 1 , . . . , x n ) satisfying the following three conditions i) ď is a total order on M(x 1 , . . . , x n ),

ii) ď is compatible with multiplication, that is, if u ď u 1 , then uw ď u 1 w for any monomials u, u 1 , w in M(x 1 , . . . , x n ),

iii) ď is a well-order on M(x 1 , . . . , x n ), that is, every nonempty subset of M(x 1 , . . . , x n ) has a smallest element with respect to ď.

Exterior differential systems

The leading term, leading monomial and leading coefficient of a polynomial f of K[x 1 , . . . , x n ], with respect to a monomial order ď, will be denoted respectively by lt ď (f), lm ď (f) and lc ď (f). For a set F of polynomials in K[x 1 , . . . , x n ], we will denote by lm ď (F) the set of leading monomials of the polynomials in F. For simplicity, we will use notations lt(f), lm(f), lc(f) and lm(F) if there is no possible confusion.

E

Motivated by problems in analytical mechanics, L. Euler (1707 -1783) and J.-L. Lagrange (1736 -1813) initiated the so-called variational calculus, cf. [START_REF] Lagrange | Méchanique Analitique[END_REF], which led to the problem of solving partial differential equations, PDE for short. In this section, we briefly explain the evolutions of these theory to serve as a guide to the M. Janet contributions. We present the historical background of exterior differential systems and of the questions on PDE. For a deeper discussion of the theory of differential equations and the Pfaff problem, we refer the reader to [START_REF] Forsyth | Theory of differential equations. Part I. Exact equations and Pfaff's problem[END_REF][START_REF] Weber | Vorlesungen über das Pfaff'sche Problem und die Theorie der partiellen Differentialgleichungen erster Ordnung[END_REF] or [START_REF] Cartan | Sur certaines expressions différentielles et le problème de Pfaff[END_REF].

Pfaff's problem

1.1.1. Partial differential equations for one unknown function. In 1772, J.-L. Lagrange [START_REF] Lagrange | Sur l'intégration des équations à différences partielles du premier ordre[END_REF] considered a PDE of the following form F(x, y, ϕ, p, q) = 0 with p = Bϕ Bx and q = Bϕ By ,

i.e., a PDE of one unknown function ϕ of two variables x and y. Lagrange's method to solve this PDE can be summarized as follows.

i) Express the PDE (1) in the form q = F 1 (x, y, ϕ, p) with p = Bϕ Bx and q = Bϕ By .

(2)

ii) 'Temporally, forget the fact p = Bϕ Bx ' and consider the following 1-form Ω = dϕ -pdx -qdy = dϕ -pdx -F 1 (x, y, ϕ, p)dy, by regarding p as some (not yet fixed) function of x, y and ϕ.

iii) If there exist functions M and Φ of x, y and ϕ satisfying MΩ = dΦ, then Φ(x, y, ϕ) = C for some constant C. Solving this new equation, we obtain a solution ϕ = ψ(x, y, C) to the equation (2).

Pfaffian systems.

In 1814-15, J. F. Pfaff (1765 -1825) [START_REF] Pfaff | Allgemeine Methode, partielle Differentialgleichungen zu integrieren (1815)[END_REF] has treated a PDE for one unknown function of n variables, which was then succeeded to C. G. Jacobi (1804 -1851) (cf. [START_REF] Jacobi | Ueber die Integration der partiellen Differentialgleichungen erster Ordnung[END_REF]). Recall that any PDE of any order is equivalent to a system of PDE of first order. Thus we may only think of system of PDE of first order with m unknown function

F k x 1 , . . . , x n , ϕ 1 , . . . , ϕ m , Bϕ a Bx i (1 ď a ď m, 1 ď i ď n) = 0, for 1 ď k ď r.

Pfaff's problem

Introducing the new variables p a i , the system is defined on the space with coordinates (x i , ϕ a , p a i ) and is given by

           F k (x i , ϕ a , p a i ) = 0, dϕ a - n ÿ i=1 p a i dx i = 0, dx 1 ∧ . . . ∧ dx n ‰ 0.
Noticed that the last condition means that the variables x 1 , . . . , x n are independent. Such a system is called a Pfaffian system. One is interested in the questions, whether this system admits a solution or not, and if there exists a solution whether it is unique under some conditions. These questions are Pfaff's problems.

1.1.3. Cauchy-Kowalevsky's theorem. A naive approach to Pfaff's problems, having applications to mechanics in mind, is the question of the initial conditions. In series of articles published in 1842, A. Cauchy (1789 -1857) studied the system of PDE of first order in the following form:

Bϕ a Bt = f a (t, x 1 , ¨¨¨, x n ) + m ÿ b=1 n ÿ i=1 f i a,b (t, x 1 , . . . , x n ) Bϕ b Bx i , for 1 ď a ď m,
where f a , f i a,b and ϕ 1 , . . . , ϕ m are functions of n+1 variables t, x 1 , . . . , x n . S. Kowalevsky (1850 -1891) [von75] in 1875 considered the system of PDE in the following form: for some r a P Z ą0 (1 ď a ď m),

B ra ϕ a Bt ra = m ÿ b=1 ra-1 ÿ j=0 j+|α|ďra f j,α a,b (t, x 1 , . . . , x n ) B j+|α| ϕ b Bt j Bx α ,
where, f j,α a,b and ϕ 1 , . . . , ϕ m are functions of n + 1 variables t, x 1 , . . . , x n , and where for α = (α 1 , ¨¨¨, α n ) in (Z ě0 ) n , we set |α| = ř n i=1 α i and Bx α = Bx α 1 1 . . . Bx αn n . They showed that under the hypothesis on the analyticity of the coefficients, such a system admits a unique analytic local solution satisfying a given initial condition, that is now called the Cauchy-Kowalevsky theorem.

Completely integrable systems.

A first geometric approach to this problem was taken over by G. Frobenius (1849Frobenius ( -1917) ) [START_REF] Frobenius | Ueber das Pfaffsche Problem[END_REF] and independently by G. Darboux (1842Darboux ( -1917) ) [START_REF] Darboux | Sur le problème de Pfaff[END_REF]. Let X be a differentiable manifold of dimension n. We consider the Pfaffian system:

ω i = 0 1 ď i ď r,
where ω i 's are 1-forms defined on a neighbourhood V of a point x in X. Suppose that the family

{(ω i ) y } 1ďiďr Ă T ẙ X
is linearly independent for y in V. For 0 ď p ď n, let us denote by Ω p X (V) the space of differentiable p-forms on V. A p-dimensional distribution D on X is a subbundle of TX whose fibre is of dimension p. A distribution D is involutive if, for any vector field ξ and η taking values in D, the Lie bracket [ξ, , η] := ξη -ηξ takes values in D as well. Such a Pfaffian system is called completely integrable.

G. Frobenius and G. Darboux showed that the ideal I of À n p=0 Ω p X (V), generated by the 1-forms ω 1 , . . . , ω r is a differential ideal, i.e. dI Ă I, if and only if the distribution D on V defined as the annihilator of ω 1 , . . . , ω r is involutive.

Exterior differential systems

The Cartan-Kähler theory

Here, we give a brief exposition of the so-called Cartan-Kähler theory from view point of its history. In particular, we will present the notion of systems in involution. For the expositions by the founders of the theory, we refer the reader to [START_REF] Cartan | Les systèmes différentiels extérieurs et leurs applications géométriques[END_REF] and [START_REF] Kähler | Einführung in die Theorie der Systeme von Differentialgleichungen[END_REF], for a modern introduction by leading experts, we refer to [BCG + 91] and [START_REF] Malgrange | Systèmes différentiels involutifs, volume 19 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF].

1.2.1. Differential forms. H. Grassmann (1809 -1877), [START_REF] Grassmann | Die lineale Ausdehnungslehre[END_REF], introduced in 1844 the first equational formulation of the structure of exterior algebra with the anti-commutativity rules,

x ∧ y = -y ∧ x.
Using this notion, É. Cartan (1869Cartan ( -1951)), [START_REF] Cartan | Sur certaines expressions différentielles et le problème de Pfaff[END_REF] defined in 1899 the exterior differential and differential p-form. He showed that these notions are invariant with respect to any coordinate transformation. Thanks to this differential structures, several results obtained in 19th century were reformulated in a clear manner.

1.2.2. Exterior differential systems. An exterior differential system Σ is a finite set of homogeneous differential forms, i.e. Σ Ă Ť p Ω p X . É. Cartan, [START_REF] Cartan | Sur l'intégration des systèmes d'équations aux différentielles totales[END_REF], in 1901 studied exterior differential systems generated by 1-forms, i.e. Pfaffian systems. Later, E. Kähler (1906Kähler ( -2000) ) [START_REF] Kähler | Einführung in die Theorie der Systeme von Differentialgleichungen[END_REF] generalized the Cartan theory to any differential ideal I generated by an exterior differential system. By this reason, the general theory on exterior differential systems is nowadays called the Cartan-Kähler theory.

In the rest of this subsection, we briefly describe the existence theorem for such a system. Since the argument developed here is local and we need the Cauchy-Kowalevsky theorem, we assume that every function is analytic in x 1 , . . . , x n unless otherwise stated.

Integral elements.

Let Σ be an exterior differential system on a real analytic manifold X of dimension n such that the ideal generated by Σ is an differential ideal. For 0 ď p ď n, set Σ p = Σ X Ω p X . We fix x in X. For p ą 0, the pair (E p , x), for a p-dimensional vector subspace E p Ă T x X is called an integral p-element if ω| Ep = 0 for any ω in Σ p x := Σ p X Ω p X,x , where Ω p X,x denotes the space of differentila p-forms defined on a neighbourhood of x P X. We denote the set of integral elements of dimension p by IΣ p

x . An integral manifold Y is a submanifold of X whose tangent space T y Y at any point y in Y is an integral element. Since the exterior differential system defined by Σ is completely integrable, there exists independent r-functions ϕ 1 (x), ¨¨¨, ϕ r (x), called integral of motion or first integral, defined on a neighbourhood V of a point x P U such that their restrictions on V X Y are constants.

The polar space H(E p ) of an integral element E p of Σ at origin x is the vector subspace of T x X generated by those ξ P T x X such that E p + Rξ is an integral element of Σ.

Regular integral elements.

Let E 0 be the real analytic subvariety of X defined as the zeros of Σ 0 and let U the subset of smooth points. A point in E 0 is called integral point. A tangent vector ξ in T x X is called linear integral element if ω(ξ) = 0 for any ω P Σ 1

x with x P U. We define inductively the properties called "regular" and "ordinary" as follows:

(i) The 0th order character is the integer s 0 = max xPU {dim RΣ 1

x }. A point x P E 0 is said to be regular if dim RΣ 1 x = s 0 , and a linear integral element ξ P T x X is called ordinary if x is regular.

(ii) Set E 1 = Rξ, where ξ is an ordinary linear integral element. The 1st order character is the integer s 1 satisfying s 0 + s 1 = max xPU {dim H(E 1 )}. The ordinary integral 1-element (E 1 , x) is said to be regular if dim H(E 1 ) = s 0 + s 1 . Any integral 2-element (E 2 , x) is called ordinary if it contains at least one regular linear integral element.

(iii) Assume that all these are defined up to (p -1)th step and that s 0 + s 1 + ¨¨¨+ s p-1 ă n -p + 1.

The pth order character is the integer s p satisfying

p ÿ i=0 s i = max xPU {dim H(E p )}.
An integral p-element (E p , x) is said to be regular if

p ÿ i=0 s i = dim H(E p ).
The integral p-element (E p , x) is said to be ordinary if it contains at least one regular integral element (E p-1 , x).

Let h be the smallest positive integer such that ř h i=0 s i = n -h. In such a case, there does not exist an integral (h + 1)-element. The integer h is called the genus of the system Σ. In such a case, for 0 ă p ď h, one has p-1 ÿ i=0 s i ď n -p. 1.2.5. Theorem. Let 0 ă p ď h be an integer.

(i) The case ř p-1 i=0 s i = n -p : let (E p , x) be an ordinary integral p-element and let Y p-1 be an integral manifold of dimension p -1 such that (T x Y p-1 , x) is a regular integral (p -1)-element contained in (E p , x). Then, there exists a unique integral manifold Y p of dimension p containing Y p-1 such that T x Y p = E p .

(ii) The case ř p-1 i=0 s i ă n -p : let (E p , x) be an integral p-element and let Y p-1 be an integral manifold of dimension p -1 such that (T x Y p-1 , x) is a regular integral (p -1)-element contained in (E p , x). Then, for each choice of n -p -ř p-1 i=0 s i differentiable functions on x 1 , ¨¨¨, x p , there exists a unique integral manifolds Y p of dimension p containing Y p-1 such that T x Y p = E p . This theorem states that a given chain of ordinary integral elements

(E 0 , x) Ă (E 1 , x) Ă ¨¨¨Ă (E h , x), dim E p = p (0 ď p ď h),
one can inductively find an integral manifold Y p of dimension p such that Y 0 = {x}, Y p-1 Ă Y p and T x Y p = E p . Notice that to obtain Y p from Y p-1 , one applies the Cauchy-Kowalevsky theorem to the system of PDE defined by Σ p and the choice of arbitrary differentiable functions in the above statement provide initial data consisting of
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1.2.6. Systems in involution. In many applications, the exterior differential systems one considers admit p-independent variables x 1 , . . . , x p . In such a case, we are only interested in the p-dimensional integral manifolds among which it imposes no additional relation between x 1 , . . . , x p . In general, an exterior differential system Σ for n -p unknown functions and p independent variables x 1 , . . . , x p is said to be in involution if it satisfies the two following conditions (i) its genus is more than or equal to p, (ii) the defining equations of the generic ordinary integral p-element introduce no linear relation among dx 1 , . . . , dx p .

1.2.7. Reduced characters. Consider a family F of integral elements of dimensions 1, 2, ¨¨¨, p -1 than can be included in an integral p-element at a generic integral point x P X. Take a local chart of with origin x. The reduced polar system H red (E i ) of an integral element x is the polar system of the restriction of the exterior differential system Σ to the submanifold

{x 1 = x 2 = ¨¨¨= x p = 0}.
The integers s 1 0 , s 1 1 , ¨¨¨, s 1 p-1 , called the reduced characters, are defined in such a way that s 1 0 +s 1 1 +¨¨¨+s 1 i is the dimension of the reduced polar system H red (E i ) at a generic integral element. For convenience, one sets

s 1 p = n -p -(s 1 0 + s 1 1 + ¨¨¨+ s 1 p-1
). Let Σ be an exterior differential system of n -p unknown functions of p independent variables such that the ideal generated by Σ is an differential ideal. É. Cartan showed that it is a system in involution iff the most general integeral p-element in F depends upon s 1 1 + 2s 1 2 + ¨¨¨+ ps 1 p independent parameters.

Recent developments.

In 1957, M. Kuranishi (1924-), [START_REF] Kuranishi | Cartan's prolongation theorem of exterior differential systems[END_REF], considered the problem of the prolongation of a given exterior differential system and treated the cases what É. Cartan called total.

Here, M. Kuranishi as well as É. Cartan studied locally in analytic category. After an algebraic approach to the integrability due to V. Guillemin and S. Sternberg, [START_REF] Guillemin | An algebraic model of transitive differential geometry[END_REF], in 1964, I. Singer and S. Sternberg, [START_REF] Singer | The infinite groups of Lie and Cartan. I. The transitive groups[END_REF], in 1965 studied some classes of infinite dimensional which is even applicable to C ∞ -category. In 1970's, with the aid of Jet bundles and the Spencer cohomology, J. F. Pommaret (cf. [START_REF] Pommaret | Systems of partial differential equations and Lie pseudogroups[END_REF]) reworked on the formal integrable involutive differential systems which generalized works of M. Janet, in the language of sheaf theory. For other geometric aspects not using sheaf theory, see the books by P. Griffiths (1938-), [START_REF] Griffiths | Exterior differential systems and the calculus of variations[END_REF], and R. Bryant et al., [BCG + 91].

M

In this section, we present the method introduced by M. Janet called inverse calculation of the derivation in his monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]. In [Jan29, Chapter I] M. Janet considered monomial PDE, that is PDE of the form

B α 1 +α 2 +...+αn ϕ Bx α 1 1 Bx α 2 2 . . . Bx αn n = f α 1 α 2 ...αn (x 1 , x 2 , . . . , x n ), (3) 
where ϕ is an unknown function and the f α 1 α 2 ...αn are several variables analytic functions. By an algebraic method he analyzed the solvability of such an equation, namely the existence and the uniqueness of an analytic function u solution of the system. Notice that the analyticity condition guarantees the commutativity of partial differentials operators. This property is crucial for the constructions that he developed in the ring of commutative polynomials. Note that the first example of PDE that does not admit any solution was found by H. Lewy in the fifties in [START_REF] Lewy | An example of a smooth linear partial differential equation without solution[END_REF].

Ring of partial differential operators and multiplicative variables

2.1.1. Historical context. In the beginning of 1890's, following collaboration with C. Méray (1835-1911), C. Riquier (1853-1929) initiated his research on finding normal forms of systems of (infinitely many) PDE for finitely many unknown functions with finitely many independent variables (see [START_REF] Ch | Les systèmes d'équations aux dérivées partielles[END_REF] and [START_REF] Ch | La méthode des fonctions majorantes et les systèmes d'équations aux dérivées partielles[END_REF] for more details).

In 1894, A. Tresse [START_REF] Tresse | Sur les invariants différentie1s des groupes continus de transformations[END_REF] showed that such systems can be always reduced to systems of finitely many PDE. This is the first result on Noeterianity of a module over a ring of differential operators. Based on this result, É. Delassus (1868 -19..) formalized and simplified Riquier's theory. In these works, one already finds an algorithmic approach analysing ideals of the ring K[ B Bx 1 , . . . , B Bxn ]. It was M. Janet (1888Janet ( -1983)), already in his thesis [START_REF] Janet | Sur les systèmes d'équations aux dérivées partielles[END_REF] published in 1920, who had realized that the latter ring is isomorphic to the ring of polynomials with n variables K[x 1 , ¨¨¨, x n ] at the time where several abstract notions on rings introduced by E. Noether in Germany had not been known by M. Janet in France. It was only in 1937 that W. Gröbner (1899Gröbner ( -1980) ) proved this isomorphism.

Proposition ([Grö37, Sect. 2.]). There exists a ring isomorphism

Φ : K[x 1 , . . . , x n ] -→ K[ B Bx 1 , . . . , B Bx n ],
from the ring of polynomials with n variables x 1 , . . . , x n with coefficients in an arbitrary field K to the ring of differential operators with constant coefficients.

2.1.3. Derivations and monomials. M. Janet considers monomials in the variables x 1 , . . . , x n and use implicitly the isomorphism Φ of Proposition 2.1.2. To a monomial x α = x α 1 1 x α 2 2 . . . x αn n he associates the differential operator

D α := Φ(x α ) = B |α| Bx α 1 1 Bx α 2 2 . . . Bx αn n .
In [Jan29, Chapter I], M. Janet considered finite monomial PDE systems. The equations are of the form (3) and the system having a finitely many equations, the set of monomials associated to the PDE system is finite. The first result of the monograph is a finiteness result on monomials stating that a sequence of monomials in which none is a multiple of an earlier one is necessarily finite. He proved this result by induction on the number of variables. We can formulate this result as follows.

Lemma ([Jan29, §7]).

Let U be a subset of M(x 1 , . . . , x n ). If, for any monomials u and u 1 in U, the monomial u does not divide u 1 , then the set U is finite.

This result corresponds to Dickson's Lemma, [START_REF] Dickson | Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors[END_REF], which asserts that any monomial ideal of K[x 1 , . . . , x n ] is finitely generated.
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2.1.5. Stability of the multiplication. M. Janet paid a special attention to families of monomials with the following property. A subset of monomial U of M(x 1 , . . . , x n ) is called multiplicatively stable if for any monomial u in M(x 1 , . . . , x n ) such that there exists u 1 in U that divides u, then u is in U. In other words, the set U is closed under multiplication by monomials in M(x 1 , . . . , x n ).

As a consequence of Lemma 2.1.4, if U is a multiplicatively stable subset of M(x 1 , . . . , x n ), then it contains only finitely many elements which are not multiples of any other elements in U. Hence, there exists a finite subset U f of U such that for any u in U, there exists u f in U f such that u f divides u.

2.1.6. Ascending chain condition. M. Janet observed an other consequence of Lemma 2.1.4: the ascending chain condition on multiplicatively stable monomial sets that he formulated as follows. Any ascending sequence of multiplicatively stable subsets of M(x 1 , . . . , x n )

U 1 Ă U 2 Ă . . . Ă U k Ă . . .
is finite. This corresponds to the Noetherian property on the set of monomials in finitely-many variables.

Inductive construction. Let us fix a total order on variables

x n ą x n-1 ą . . . ą x 1 . Let U be a finite subset of M(x 1 , . . . , x n ). Let us define, for every 0 ď α n ď deg n (U), [α n ] = {u P U | deg n (u) = α n }. The family ([0], . . . , [deg n (U)]) forms a partition of U. We define for every 0 ď α n ď deg n (U) [α n ] = {u P M(x 1 , . . . , x n-1 ) | ux αn n P U }.
We set for every 0 ď i ď deg n (U)

U 1 i = ď 0ďαnďi {u P M(x 1 , . . . , x n-1 ) | there exists u 1 P [α n ] such that u 1 |u }.
We set

U k = { ux k n | u P U 1 k } if k ă deg n (U), { ux k n | u P U 1 deg n (U) } if k ě deg n (U). and M(U) = Ť kě0 U k .
By this inductive construction, M. Janet obtains the monomial ideal generated by U. Indeed, M(U) consists in the following set of monomial

{ u P M(x 1 , . . . , x n ) | there exists u 1 in U such that u 1 |u }. 2.1.8. Example. Consider the subset U = { x 3 x 2 2 , x 3 3 x 2 1 } of monomials in M(x 1 , x 2 , x 3 ). We have [0] = H, [1] = {x 3 x 2 2 }, [2] = H, [3] = {x 3 3 x 2 1 }. Hence, [0] = H, [1] = {x 2 2 }, [2] = H, [3] = {x 2 1 }.
The set M(U) is defined using of the following subsets:

U 1 0 = H, U 1 1 = {x α 1 1 x α 2 2 | α 2 ě 2}, U 1 2 = U 1 1 , U 1 3 = {x α 1 1 x α 2 2 | α 1 ě 2 ou α 2 ě 2}.
2.1.9. Janet's multiplicative variables, [Jan20, §7]. Let us fix a total order x n ą x n-1 ą . . . ą x 1 on variables. Let U be a finite subset of M(x 1 , . . . , x n ). For all 1 ď i ď n, we define the following subset of U:

[α i , . . . , α n ] = {u P U | deg j (u) = α j for all i ď j ď n}.
That is [α i , . . . , α n ] contains monomials of U of the form vx α i i . . . x αn n , with v in M(x 1 , . . . , x i-1 ). The sets [α i , . . . , α n ], for α i , . . . , α n in N, form a partition of U. Moreover, for all 1 ď i ď n -1, we have [α i , α i+1 , . . . , α n ] Ď [α i+1 , . . . , α n ] and the sets [α i , . . . , α n ], where

α i P N, form a partition of [α i+1 , . . . , α n ].
Given a monomial u in U, the variable x n is said to be multiplicative for u in the sense of Janet if

deg n (u) = deg n (U).
For i ď n -1, the variable x i is said to be multiplicative for u in the sense of Janet if

u P [α i+1 , . . . , α n ] and deg i (u) = deg i ([α i+1 , . . . , α n ]).
We will denote by Mult U J (u) the set of multiplicative variables of u in the sense of Janet with respect to the set U, also called J-multiplicative variables.

Note that, by definition, for any u and u 1 in [α i+1 , . . . , α n ], we have

{x i+1 , . . . , x n } X Mult U J (u) = {x i+1 , . . . , x n } X Mult U J (u 1 ).
As a consequence, we will denote by Mult U J ([α i+1 , . . . , α n ]) this set of multiplicative variables.

Example.

Consider the subset U = {x 2 x 3 , x 2 2 , x 1 } of M(x 1 , x 2 , x 3 ) with the order x 3 ą x 2 ą x 1 . We have deg 3 (U) = 1, hence the variable x 3 is J-multiplicative for x 3 x 2 and not J-multiplicative for x 2 2 and x 1 .

For α P N, we have

[α] = {u P U | deg 3 (u) = α}, hence [0] = {x 2 2 , x 1 }, [1] = {x 2 x 3 }. We have deg 2 (x 2 2 ) = deg 2 ([0]), deg 2 (x 1 ) ‰ deg 2 ([0]) and deg 2 (x 2 x 3 ) = deg 2 ([1]
), hence the variable x 2 is J-multiplicative for x 2 2 and x 2 x 3 and not J-multiplicative for x 1 . We have

[0, 0] = {x 1 }, [0, 2] = {x 2 2 }, [1, 1] = {x 2 x 3 } and deg 1 (x 2 2 ) = deg 1 ([0, 2]), deg 1 (x 1 ) = deg 1 ([0, 0]) and deg 1 (x 3 x 2 ) = deg 1 ([1, 1]), hence the vari- able x 1 is J-multiplicative for x 1 , x 2
2 and x 3 x 2 .

2.1.11. Janet divisor. Let U be a subset of M(x 1 , . . . , x n ). A monomial u in U is called Janet divisor of a monomial w in M(x 1 , . . . , x n ) with respect to U, if there is a decomposition w = uv, where any variable occurring in v is J-multiplicative with respect to U.

2.1.12. Proposition. Let U be a subset of M(x 1 , . . . , x n ) and w be a monomial in M(x 1 , . . . , x n ). Then w admits in U at most one Janet divisor with respect to U.
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Proof. If u is a Janet divisor of w with respect to U, there is v in M(Mult U J (u)) such that w = uv. We have deg n

(v) = deg n (w) -deg n (u). If deg n (w) ě deg n (U), then the variable x n is J-multiplicative and deg n (v) = deg n (w) -deg n (U). If deg n (w) ă deg n (U), then x n cannot be J-multiplicative and deg n (v) = 0.
As a consequence, for any Janet divisors u and u1 in U of w, we have deg n (u) = deg n (u 1 ) and u, u 1 P [α] for some α P N.

Suppose now that u and u 1 are two distinct Janet divisor of w in U. There exists

1 ă k ď n such that u, u 1 P [α k , . . . , α n ] and deg k-1 (u) ‰ deg k-1 (u 1 ). Suppose that deg k-1 (u) ą deg k-1 (u 1
), then the variable x k-1 cannot be J-multiplicative for u 1 with respect to U. It follows that u 1 cannot be a Janet divisor of w. This leads to a contradiction, hence u = u 1 .

Complementary monomials.

Let U be a finite subset of M(x 1 , . . . , x n ). The set of complementary monomials of U is the set of monomial denoted by U A defined by

U A = ď 1ďiďn U A(i) , (4) 
where

U A(n) = {x β n | 0 ď β ď deg n (U) and [β] = H}, and for every 1 ď i ă n U A(i) = x β i x α i+1 i+1 . . . x αn n [α i+1 , . . . , α n ] ‰ H, 0 ď β ă deg i ([α i+1 , . . . , α n ]), [β, α i+1 , . . . , α n ] = H .
Note that the union in (4) is disjoint, since for i ‰ j we have U A(i) X U A(j) = H.

Multiplicative variables of complementary monomials.

For any monomial u in U A , we define

the set A Mult U A
of multiplicative variables for u with respect to complementary monomials in U A as follows. If the monomial u is in U A(n) , we set

A Mult U A(n) J (u) = {x 1 , . . . , x n-1 }.
For 1 ď i ď n -1, for any monomial u in U A(i) , there exists α i+1 , . . . , α n such that u P [α i+1 , . . . , α n ].

Then A Mult U A(i) J (u) = {x 1 , . . . , x i-1 } Y Mult U J ([α i+1 , . . . , α n ]).
Finally, for u in U A , there exists an unique 1 ď i u ď n such that u P U A(iu) . Then we set

A Mult U A J (u) = A Mult U A(iu) J (u).

Example, [Jan29, p. 17]. Consider the subset

U = { x 3 3 x 2 2 x 2 1 , x 3 3 x 3 1 , x 3 x 2 x 3 1 , x 3 x 2 } of monomials in M(x 1 , x 2 ,
x 3 ) with the order x 3 ą x 2 ą x 1 . The following table gives the multiplicative variables for each monomial:

x 3 3 x 2 2 x 2 1 x 3 x 2 x 1 x 3 3 x 3

Completion procedure

The set of complementary monomials are

U A(3) = {1, x 2 3 }, U A(2) = {x 3 3 x 2 , x 3 }, U A(1) = {x 3 3 x 2 2 x 1 , x 3 3 x 2 2 , x 3 3 x 2 1 , x 3 3 x 1 , x 3 3 , x 3 x 2 x 2 1 , x 3 x 2 x 1 }.
The following table gives the multiplicative variables for each monomial:

1, x 2 3 x 2 x 1 x 3 3 x 2 x 3 x 1 x 3 x 1 x 3 3 x 2 2 x 1 , x 3 3 x 2 2 x 3 x 2 x 3 3 x 2 1 , x 3 x 1 , x 3 3 x 3 x 3 x 2 x 2 1 , x 3 x 2 x 1 x 2

Completion procedure

In this subsection, we present the notion of complete system introduced by M. Janet in [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]. In particular, we recall the completion procedure that he gave in order to complete a finite set of monomials.

Complete systems.

Let U be a set of monomials of M(x 1 , . . . , x n ). For a monomial u in U (resp. in U A ), M. Janet defined the involutive cone of u with respect to U (resp. to U A ) as the following set of monomials:

cone J (u, U) = { uv | v P M(Mult U J (u)) }, (resp. cone A J (u, U) = { uv | v P M( A Mult U A J (u)) } ).
The involutive cone of the set U is defined by

cone J (U) = ď uPU cone J (u, U), (resp. cone A J (U) = ď uPU A cone A J (u, U) ).
M. Janet called complete a set of monomials U when cone(U) = cone J (U). An involutive cone is called class in Janet's monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]. The terminology "involutive" first appear in [Ger97] by V. P. Gerdt and became standard now. We refer the reader to [START_REF] Mansfield | A simple criterion for involutivity[END_REF] for a discussion on relation between this notion with the notion of involutivity in the work of É. Cartan.

Proposition ([Jan29, p. 18]).

For any finite set U of monomials of M(x 1 , . . . , x n ), we have the following partition

M(x 1 , . . . , x n ) = cone J (U) > cone A J (U).

A proof of completeness by induction.

Let U be a finite set of monomials in M(x 1 , . . . , x n ).

We consider the partition [0], . . . , [deg n (U)] of monomials in U by their degrees in x n . Let α 1 ă α 2 ă . . . ă α k be the positive integers such that [α i ] is non-empty. Recall that [α i ] is the set of monomials u in M(x 1 , . . . , x n-1 ) such that ux α i n is in U. With these notations, the following result gives an inductive method to prove that a finite set of monomials is complete.

Proposition ([Jan29, p. 19]). The finite set U is complete if and only if the two following conditions are satisfied:

i) the sets [α 1 ], . . . , [α k ] are complete,
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1 ď i ă k, the set [α i ] is contains in cone J ([α i + 1]).
As an immediate consequence of this proposition, M. Janet obtained the following characterisation.

Proposition ([Jan29, p. 20]).

A finite set U of monomials of M(x 1 , . . . , x n ) is complete if and only if, for any u in U and any x non-multiplicative variable of u with respect to U, ux is in cone J (U).

Example, [Jan29, p. 21].

Consider the subset U = { x 5 x 4 , x 5 x 3 , x 5 x 2 , x2 4 , x 4 x 3 , x 2 3 } of M(x 1 , . . . , x 5 ). The multiplicative variables are given by the following table

x 5 x 4 x 5 x 4 x 3 x 2 x 1 x 5 x 3 x 5 x 3 x 2 x 1 x 5 x 2 x 5 x 2 x 1 x 2 4 x 4 x 3 x 2 x 1 x 3 x 4 x 3 x 2 x 1 x 2 3 x 3 x 2 x 1
In order to prove that this set of monomials is complete, we apply Proposition 2.2.5. The completeness follows from the identities:

x 5 x 3 .x 4 = x 5 x 4 .x 3 , x 5 x 2 .x 4 = x 5 x 4 .x 2 , x 5 x 2 .x 3 = x 5 x 3 .x 2 ,

x 2 4 .x 5 = x 5 x 4 .x 4 , x 4 x 3 .x 5 = x 5 x 4 .x 3 , x 4 x 3 .x 4 = x 2 4 .x 3 , x 2 3 .x 5 = x 5 x 3 .x 3 , x 2 3 .x 4 = x 4 x 3 .x 3 .

Examples.

For every 1 ď p ď n, the set of monomials of degree p is complete. Any finite set of monomials of degree 1 is complete.

Theorem (Janet's Completion Lemma, [Jan29, p. 21]).

For any finite set U of monomials of M(x 1 , . . . , x n ) there exists a finite set J(U) satisfying the following three conditions:

i) J(U) is complete, ii) U Ď J(U), iii) cone(U) = cone(J(U)).
2.2.9. Completion procedure. From Proposition 2.2.5, M. Janet deduced the completion procedure Complete(U), Procedure 1, that computes a completion of finite set of monomials U, [Jan29, p. 21]. M. Janet did not give a proof of the termination of this procedure. We will present a proof of the correction and termination of this procedure in Section 3.2.

Example, [Jan29, p. 28].

Consider the set U = { x 3 x 2 2 , x 3 3 x 2 1 } of monomials of M(x 1 , x 2 , x 3 ) with the order x 3 ą x 2 ą x 1 . The following table gives the multiplicative variables for each monomial: 

x 3 3 x 2 1 x 3 x 2 x 1 x 3 x 2
r U J (u) such that ux is not in cone J ( r U) do Choose such u and x, r U ← r U Y {ux}. end end
We complete the set U as follows. The monomial x 3 x 2 2 .x 3 is not in cone J (U), we set r U ← U Y {x 2 3 x 2 2 } and we compute multiplicative variables with respect to r U:

x 3 3 x 2 1 x 3 x 2 x 1 x 2 3 x 2 2 x 2 x 1 x 3 x 2 2 x 2 x 1 The monomial x 3 x 2 2 .x 3 is in cone J ( r U) but x 2 3 x 2 2 .x 3 is not in cone J ( r U), then we set r U ← r U Y {x 3 3 x 2 2 }.
The multiplicative variable of this new set of monomials is

x 2 3 x 2 2 x 3 x 2 x 1 x 3 3 x 2 1 x 3 x 1 x 2 3 x 2 2 x 2 x 1 x 3 x 2 2 x 2 x 1
The monomial x 3 x 2 1 .x 2 is not in cone J ( r U), the other products are in cone J ( r U), and we prove that the system

r U = { x 3 x 2 2 , x 3 3 x 2 1 , x 3 3 x 2 2 , x 3 3 x 2 x 2 1 , x 2 3 x 2 2 } is complete.

Inverse of derivation

In this subsection, we recall the results of M. Janet from [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] on solvability of monomial PDE systems of the form (Σ)

D α ϕ = f α (x 1 , x 2 , . . . , x n ) α P N n , ( 5 
)
where ϕ is an unknown function and the f α are analytic functions of several variables. As recalled in 2.1.1, an infinite set of partial differential equations can be always reduced to a finite set of such equations. This is a consequence of Dickson's Lemma whose formulation due to M. Janet is given in Lemma 2.1.4. By this reason, we can assume that the system (Σ) is finite without loss of generality. Using Proposition 2.1.2, M. Janet associated to each differential operator D α a monomial x α in M(x 1 , . . . , x n ).

In this way, to a PDE system (Σ) on variables x 1 , . . . , x n he associated a finite set lm(Σ) of monomials. By Theorem 2.2.8, any such a set lm(Σ) of monomials can be completed into a finite complete set J(lm(Σ)) having the same cone as lm(Σ).

Computation of inverse of derivation.

Let us now assume that the set of monomials lm(Σ) is finite and complete. The cone of lm(Σ) being equal to the involutive cone of lm(Σ), for any monomial u in lm(Σ) and non-multiplicative variable x i in NMult lm(Σ) J (u), there exists a decomposition

ux i = vw,
where v is in lm(Σ) and w belongs to M(Mult

lm(Σ) J (v)).
For any such a decomposition, it corresponds a compatibility condition of the PDE system (Σ), that is, for u = x α , v = x β and w = x γ with α, β and γ in N n ,

Bf α Bx i = D γ f β .
Let us denote by (C Σ ) the set of all such compatibility conditions. M. Janet showed that with the completeness hypothesis this set of compatibility conditions is sufficient for the PDE system (Σ) to be formally integrable in the sense of [START_REF] Pommaret | Systems of partial differential equations and Lie pseudogroups[END_REF].

The space of initial conditions. Let us consider the set lm(Σ)

A of complementary monomials of the finite complete set lm(Σ). Suppose that the PDE system (Σ) satisfies the set (C Σ ) of compatibility conditions. M. Janet associated to each monomial v = x β in lm(Σ) A with β P N n an analytic function

ϕ β (x i 1 , . . . , x i kv ),
where {x i 1 , . . . , x i kv } = A Mult lm(Σ) A J (v). By Proposition 2.2.2, the set of such analytic functions provides a compatible initial condition. Under these assumptions, M. Janet proved the following result.

Theorem ([Jan29, p. 25]

). Let (Σ) be a finite monomial PDE system such that lm(Σ) is complete. If (Σ) satisfies the compatibility conditions (C Σ ), then it always admits a unique solution with initial conditions given for any v = x β in lm(Σ) A with β P N n by

D β ϕ x j =0 @x j P A NMult lm(Σ) A J (v) = ϕ β (x i 1 , . . . , x i kv ),
where {x i 1 , . . . , x i kv } = A Mult lm(Σ) A J (v).
These initial conditions are called initial conditions by M. Janet. The method to obtain this initial conditions is illustrated by the two following examples.

Example, [Jan29, p. 26].

Consider the following monomial PDE system (Σ) of unknown function ϕ of variables x 1 , . . . , x 5 :

B 2 ϕ Bx 5 Bx 4 = f 1 (x 1 , . . . , x 5 ), B 2 ϕ Bx 5 Bx 3 = f 2 (x 1 , . . . , x 5 ), B 2 ϕ Bx 5 Bx 2 = f 3 (x 1 , . . . , x 5 ), B 2 ϕ Bx 2 4 = f 4 (x 1 , . . . , x 5 ), B 2 ϕ Bx 4 Bx 3 = f 5 (x 1 , . . . , x 5 ), B 2 ϕ Bx 2 3 = f 6 (x 1 , . . . , x 5 ).
The set (C Σ ) of compatibility relations of the PDE system (Σ) is a consequence of the identities used in Example 2.2.6 to prove the completeness of the system:

x 5 x 3 .x 4 = x 5 x 4 .x 3 ,

Bf 2 Bx 2 = Bf 1 Bx 3 , x 5 x 2 .x 4 = x 5 x 4 .x 2 , x 5 x 2 .x 3 = x 5 x 3 .x 2 , Bf 3 Bx 4 = Bf 1 Bx 2 , Bf 3 Bx 3 = Bf 2 Bx 2 , x 2 4 .x 5 = x 5 x 4 .x 4 , Bf 4 Bx 5 = Bf 1 Bx 4 , x 4 x 3 .x 5 = x 5 x 4 .x 3 , x 4 x 3 .x 4 = x 2 4 .x 3 , Bf 5 Bx 5 = Bf 1 Bx 3 , Bf 5 Bx 4 = Bf 4 Bx 3 , x 2 3 .x 5 = x 5 x 3 .x 3 , x 2 3 .x 4 = x 4 x 3 .x 3 , Bf 6 Bx 5 = Bf 2 Bx 3 , Bf 6 Bx 4 = Bf 5
Bx 3 . The initial conditions are obtained using the multiplicative variables of the set lm(Σ) A of complementary monomials of lm(Σ). We have

lm(Σ) A(5) = lm(Σ) A(4) = lm(Σ) A(1) = H, lm(Σ) A(3) = {1, x 3 , x 4 }, lm(Σ) A(2) = {x 5 }.
The multiplicative variables of these monomials are given by the following table

1, x 3 , x 4 x 1 , x 2 , x 5 x 1 , x 5 .
By Theorem 2.3.3, the PDE system (Σ) admits always a unique solution with any given initial conditions of the following type

Bϕ Bx 4 x 3 =x 4 =x 5 =0 = ϕ 0,0,0,1,0 (x 1 , x 2 ) Bϕ Bx 3 x 3 =x 4 =x 5 =0
= ϕ 0,0,1,0,0 (x 1 , x 2 ) ϕ| x 3 =x 4 =x 5 =0 = ϕ 0,0,0,0,0 (x 1 , x 2 ) Bϕ Bx 5 x 2 =x 3 =x 4 =0 = ϕ 0,0,0,0,1 (x 1 , x 5 ).

2.3.5.

Example. In a last example, M. Janet considered a monomial PDE system where the partial derivatives of the left hand side do not form a complete set of monomials. It is the PDE system (Σ) of unknown function ϕ of variables x 1 , x 2 , x 3 given by

B 3 ϕ Bx 2 2 Bx 3 = f 1 (x 1 , x 2 , x 3 ), B 5 ϕ Bx 2 1 Bx 3 3 = f 2 (x 1 , x 2 , x 3 ).
We consider the set of monomials lm(Σ) = {x 3 x 2 2 , x 3 3 x 2 1 }. In Example 2.2.10, we complete lm(Σ) into the following complete set of monomials

J(lm(Σ)) = { x 3 x 2 2 , x 3 3 x 2 1 , x 3 3 x 2 2 , x 3 3 x 2 x 2 1 , x 2 3 x 2 2 }.
The complementary set of monomials are

J(lm(Σ)) A(3) = {1}, J(lm(Σ)) A(2) = {x 2 3 x 2 , x 2 3 , x 3 x 2 , x 3 }, J(lm(Σ)) A(1) = {x 3 3 x 2 x 1 , x 3 3 x 2 , x 3 3 x 1 , x 3 3 }.
The multiplicative variables of these monomials are given by the following table

Monomial involutive bases

J(lm(Σ)) A(3) x 1 , x 2 , J(lm(Σ)) A(2) x 1 . J(lm(Σ)) A(1)
x 3 .

By Theorem 2.3.3, the PDE system (Σ) admits always a unique solution with any given initial conditions of the following type

ϕ| x 3 =0 = ϕ 0,0,0 (x 1 , x 2 ), Bϕ Bx 3 x 2 =x 3 =0 = ϕ 0,0,1 (x 1 ), B 2 ϕ Bx 3 Bx 2 x 2 =x 3 =0 = ϕ 0,1,1 (x 1 ) B 2 ϕ Bx 2 3 x 2 =x 3 =0 = ϕ 0,0,2 (x 1 ), B 3 ϕ Bx 2 3 Bx 2 x 2 =x 3 =0 = ϕ 0,1,2 (x 1 ), B 3 ϕ Bx 3 3 x 1 =x 2 =0
= ϕ 0,0,3 (x 3 ),

B 4 ϕ Bx 3 3 Bx 1 x 1 =x 2 =0 = ϕ 1,0,3 (x 3 ), B 4 ϕ Bx 3 3 Bx 2 x 1 =x 2 =0 = ϕ 0,1,3 (x 3 ), B 5 ϕ Bx 3 3 Bx 2 Bx 1 x 1 =x 2 =0
= ϕ 1,1,3 (x 3 ).

M

In this section, we recall a general approach of involutive monomial divisions introduced by V. P. Gerdt in [START_REF] Gerdt | Gröbner bases and involutive methods for algebraic and differential equations[END_REF], see also [START_REF] Gerdt | Involutive bases of polynomial ideals[END_REF]GB98b]. In particular, we give the axiomatic properties of an involutive division. The partition of variables into multiplicative and non-multiplicative can be deduced from this axiomatic. In this way, we explain how the notion of multiplicative variable in the sense of Janet can be deduced from a particular involutive division.

Involutive division

3.1.1. Involutive division. An involutive division I on the set of monomials M(x 1 , . . . , x n ) is defined by a relation | U I in U ˆM(x 1 , . . . , x n ), for every subset U of M(x 1 , . . . , x n ), satisfying, for all monomials u, u 1 in U and v, w in M(x 1 , . . . , x n ), the following six conditions

i) u| U I w implies u|w, ii) u| U I u, for all u in U, iii) u| U I uv and u| U I uw if and only if u| U I uvw, iv) if u| U I w and u 1 | U I w, then u| U I u 1 or u 1 | U I u, v) if u| U I u 1 and u 1 | U I w, then u| U I w, vi) if U 1 Ď U and u P U 1 , then u| U I w implies u| U 1 I w.
When no confusion is possible, the relation | U I will be also denoted by | I .

Involutive division

Multiplicative monomial.

If u| U I w, by i) there exists a monomial v such that w = uv. We say that u is an I-involutive divisor of w, w is an I-involutive multiple of u and v is I-multiplicative for u with respect to U. When the monomial uv is not an involutive multiple of u with respect to U, we say that v is I-non-multiplicative for u with respect to U.

We define in a same way the notion of multiplicative (resp. non-multiplicative) variable. We denote by Mult U I (u) (resp. NMult U I (u)) the set of multiplicative (resp. non-multiplicative) variables for the division I of a monomial u with respect to U. We have

Mult U I (u) = { x P {x 1 , . . . , x n } u| U I ux }
and thus a partition of the set of variables { x 1 , . . . , x n } into sets of multiplicative and non-multiplicative variables. An involutive division I is thus entirely defined by a partition

{x 1 , . . . , x n } = Mult U I (u) \ NMult U I (u),
for any finite subset U of M(x 1 , . . . , x n ) and any u in U, satisfying conditions iv), v) and vi) of Definition 3.1.1. The involutive division I is then defined by setting u | U I w if w = uv and the monomialv belongs to M(Mult U I (u)). Conditions i), ii) and iii) of Definition 3.1.1 are consequence of this definition.

Example. Consider

U = {x 1 , x 2 } in M(x 1 , x 2 ) and suppose that I is an involutive division such that Mult U I (x 1 ) = {x 1 } and Mult U I (x 2 ) = {x 2 }.
Then we have

x 1 I x 1 x 2 , and x 2 I x 1 x 2 .

Autoreduction.

A subset U of M(x 1 , . . . , x n ) is said to be autoreduced with respect to an involutive division I, or I-autoreduced, if it does not contain a monomial I-divisible by another monomial of U.

In particular, by definition of the involutive division, for any monomials u, u 1 in U and monomial w in M(x 1 , . . . , x n ), we have u| I w and u 1 | I w implies u| I u 1 or u 1 | I u. As a consequence, if a set of monomials U is I-autoreduced, then any monomial in M(x 1 , . . . , x n ) admits at most one I-involutive divisor in U.

The Janet division.

We call Janet division the division on M(x 1 , . . . , x n ) defined by the multiplicative variables in the sense of Janet defined in 2.1.9. Explicitely, for a subset U of M(x 1 , . . . , x n ) and monomials u in U and w in M(x 1 , . . . , x n ), we define u| U J w if u is a Janet divisor of w as defined in 2.1.11, that is w = uv, where v P M(Mult U J (u)) and Mult U J (u) is the set of Janet's multiplicative variables defined in 2.1.9.

By Proposition 2.1.12, for a fixed subset of monomial U, any monomial of M(x 1 , . . . , x n ) has a unique Janet divisor in U with respect to U. As a consequence, the conditions iv) and v) of Definition3.1.1 trivially hold for the Janet division. Now suppose that U 1 Ď U and u is a monomial in U 1 . If u| U J w there is a decomposition w = uv with v P M(Mult U J (u)). As Mult U J (u) Ď Mult U 1 J (u), this implies that u| U 1 J w. Hence, the conditions vi) of Definition 3.1.1 holds for the Janet division. We have thus proved 3.1.6. Proposition ([GB98a, Proposition 3.6]). The Janet division is involutive.

Involutive completion procedure

3.2.1. Involutive set. Let I be an involutive division on M(x 1 , . . . , x n ) and let U be a set of monomials. The involutive cone of a monomial u in U with respect to the involutive division I is defined by cone I (u, U) = { uv v P M(x 1 , . . . , x n ) and u| U I uv }.

The involutive cone of U with respect to the involutive division I is the following subset of monomials:

cone I (U) = ď uPU cone I (u, U).
Note that the inclusion cone I (U) Ď cone(U) holds for any set U. Note also that when the set U is I-autoreduced, by involutivity this union is disjoint.

A subset U of M(x 1 , . . . , x n ) is I-involutive if the following equality holds cone(U) = cone I (U).
In other words, a set U is I-involutive if any multiple of an element u in U is also I-involutive multiple of an element v of U. Note that the monomial v can be different from the monomial u, as we have seen in Example 2.2.6.

Involutive completion.

A completion of a subset U of monomials of M(x 1 , . . . , x n ) with respect to an involutive division I, or I-completion for short, is a set of monomials r U satisfying the following three conditions

i) r U is involutive, ii) U Ď r U, iii) cone( r U) = cone(U).

Noetherianity.

An involutive division I is said to be noetherian if all finite subset U of M(x 1 , . . . , x n ) admits a finite I-completion r U.

Proposition ([GB98a, Proposition 4.5]

). The Janet division is noetherian.

Prolongation.

Let U be a subset of M(x 1 , . . . , x n ). We call prolongation of an element u of U a multiplication of u by a variable x. Given an involutive division I, a prolongation ux is multiplicative (resp. non-multiplicative) if x is a multiplicative (resp. non-multiplicative) variable.

Local involutivity.

A subset U of M(x 1 , . . . , x n ) is locally involutive with respect to an involutive division I if any non-multiplicative prolongation of an element of U admit an involutive divisor in U.

That is @u P U @x i P NMult U I (u) Dv P U such that v| I ux i .

Example, [GB98a, Example 4.8].

By definition, if U is I-involutive, then it is locally I-involutive.

The converse is false in general. Indeed, consider the involutive division I on M = M(x 1 , x 2 , x 3 ) defined by Mult M I (x 1 ) = {x 1 , x 3 }, Mult M I (x 2 ) = {x 1 , x 2 }, Mult M I (x 3 ) = {x 2 , x 3 }, with Mult M I (1) = {x 1 , x 2 , x 3 } and Mult M I (u) is empty for deg(u) ě 2. Then the set {x 1 , x 2 , x 3 } is locally I-involutive but not I-involutive.

Continuity.

An involutive division I is continuous if for all finite subset U of M(x 1 , . . . , x n ) and any finite sequence (u 1 , . . . , u k ) of elements in U such that, there exists x i j in NMult U I (u j ) such that

u k | I u k-1 x i k-1 , . . . , u 3 | I u 2 x i 2 , u 2 | I u 1 x i 1 , then u i ‰ u j , for any i ‰ j.
For instance, the involutive division in Example 3.2.7 is not continuous. Indeed, there exists the following cycle of divisions:

x 2 | I x 1 x 2 , x 1 | I x 3 x 1 , x 3 | I x 2 x 3 , x 2 | I x 1 x 2 .
3.2.9. From local to global involutivity. Any I-involutive subset U of M(x 1 , . . . , x n ) is locally Iinvolutive. When the division I is continuous the converse is also true. Indeed, suppose that U is locally I-involutive. Let us show that U is I-involutive when the division I is continuous.

Given a monomial u in U and a monomial w in M(x 1 , . . . , x n ), let us show that the monomial uw admits an I-involutive divisor in U. If u| I uw the claim is proved. Otherwise, there exists a nonmultiplicative variable x k 1 in NMult U I (u) such that x k 1 |w. By local involutivity, the monomial ux k 1 admits an I-involutive divisor v 1 in U. If v 1 | I uw the claim is proved. Otherwise, there exists a non-multiplicative variable x k 2 in NMult U I (v 1 ) such that x k 2 divides uw v 1 . By local involutivity, the monomial v 1 x k 2 admits an I-involutive divisor v 2 in U.

In this way, we construct a sequence (u, v 1 , v 2 , . . .) of monomials in U such that

v 1 | I ux k 1 , v 2 | I v 1 x k 2 , v 3 | I v 2 x k 3 , . . .
By continuity hypothesis, all monomials v 1 , v 2 , . . . are distinct. Moreover, all these monomials are divisor of uw, that admits a finite set of distinct divisors. As a consequence, previous sequence is finite. It follows, that its last term v k is an I-involutive monomial of uw. We have thus proved the following result.

Theorem ([GB98a, Theorem 4.10]).

Let I be a continuous involutive division. A subset of monomials of M(x 1 , . . . , x n ) is locally I-involutive if and only if it is I-involutive.

Proposition ([GB98a, Corollary 4.11]). The Janet division is continuous.

3.2.12. Involutive completion procedure. Procedure 2 generalizes Janet's completion procedure given in 2.2.9 to any involutive division. Let us fix a monomial order ď on M(x 1 , . . . , x n ). Given a set of monomials U, the procedure completes the set U by all possible non-involutives prolongations of monomials in U.

By introducing the notion of constructive involutive division, V. P. Gerdt and Y. A. Blinkov gave in [START_REF] Gerdt | Involutive bases of polynomial ideals[END_REF] some conditions on the involutive division I in order to show the correction and the termination of this procedure. A continuous involutive division I is constructive if for any subset of monomials U of M(x 1 , . . . , x n ) and for any non-multiplicative prolongation ux of a monomial u in U satisfying the following two conditions If I is a constructive division, then the completion procedure completes the set U into an involutive set. We refer the reader to [GB98a, Theorem 4.14] for a proof of correctness and termination of the completion procedure under these hypothesis.

3.2.13.

Example. An application of this procedure on the set of monomials U = { x 3 x 2 2 , x 3 3 x 2 1 } given by M. Janet in [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] is developed in 2.2.10.

Others involutive approaches

For analysis on differential systems several other notions of multiplicative variables were studied by J. M. Thomas 1937 and J.-F. Pommarret in 1978. Others examples of involutive divisions can be found in [GB98b].

Thomas division. In [Tho37],

Thomas introduced an involutive division that differs from those of M. Janet also used in the analysis on differential systems. The multiplicative variables in the sense of Thomas's division for a monomial u with of a finite subset U of M(x 1 , . . . , x n ) are defined as follows:

x i P Mult U T (u) if deg i (u) = deg i (U).
In particular, we have u| U T w if w = uv and for all variable x i in v, we have deg i (u) = deg i (U). The Thomas division is a noetherian and continuous involutive division. We refer the reader to [START_REF] Gerdt | Involutive bases of polynomial ideals[END_REF] for detailed proofs of this results. Note also that the Janet division is a refinement of Thomas division in the sense that for any finite set of monomials U and any monomial u in U, the following inclusions hold Mult U T (u) Ď Mult U J (u) and NMult U J (u) Ď NMult U T (u).

Principal and parametric derivatives.

In order to analyse the existence and the uniqueness of a solution of equation ( 6) under the initial condition (7), M. Janet introduced the notions of parametric and principal derivative defined as follows. The partial derivatives D α ϕ, with α = (α 1 , . . . , α n ), of an analytic function ϕ are determined by i) ϕ 1 and its derivatives for α n = 0, ii) ϕ 2 and its derivatives for α n = 1, in the neighborhood U Q . These derivatives for α n = 0 and α n = 1 are called parametric, those derivatives for α n ě 2, i.e. the derivative of B 2 ϕ Bx 2 n , are called principal. Note that the values of the principal derivative at the point P are entirely given by ϕ 1 and ϕ 2 and by their derivatives thanks to equation (6). Note that the notion of parametric derivative corresponds to a parametrization of initial conditions of the system. Obviously, any derivative of ϕ admits only finitely many anterior derivatives of ϕ. Using this notion of posteriority, M. Janet showed the existence and unicity problem of equation ( 6) under the initial condition (7). In his monograph, M. Janet gave several generalizations of the previous posteriority notion. The first one corresponds to the degree lexicographic order, [Jan29, §22], formulated as follows:

i) for |α| ‰ |β|, the derivative D α ϕ is called posterior (resp. anterior) to D β ϕ, if |α| ą |β| (resp. |α| ă |β|),
ii) for |α| = |β|, the derivative D α ϕ is called posterior (resp. anterior) to D β ϕ if the first non-zero difference

α n -β n , α n-1 -β n-1 , . . . , α 1 -β 1 ,
is positive (resp. negative).

Generalization.

Let us consider the following generalization of equation ( 6):

Dϕ = ÿ iPI a i D i ϕ + f, (8) 
where D and the D i are differential operators such that D i ϕ is anterior to Dϕ for all i in I. The derivative Dϕ and all its derivatives are called principal derivatives of the equation ( 8). All the other derivative of u are called parametric derivatives of the equation (8).

First order PDE systems

4.1.5. Weight order. Further generalization of these order relations were given by M. Janet by introducing the notion of cote, that corresponds to a parametrization of a weight order defined as follows. Let us fix a positive integer s. We define a matrix of weight

C =    C 1,1 . . . C n,1 . . . . . . C 1,s . . . C n,s   
that associates to each variable x i non-negative integers C i,1 , . . . , C i,s , called the s-weights of x i . This notion was called cote by M. Janet in [Jan29, §22] following the terminology introduced by Riquier, [START_REF] Ch | Les systèmes d'équations aux dérivées partielles[END_REF]. For each derivative D α ϕ, with α = (α 1 , . . . , α n ) of an analytic function ϕ, we associate a s-weight Γ (C) = (Γ 1 , . . . , Γ s ) where the Γ k are defined by

Γ k = n ÿ i=1 α i C i,k .
Given two monomial partial differential operators D α and D β as in 4.1.3, we say that D α ϕ is posterior (resp. anterior) to D β ϕ with respect to a weigh matrix

C if i) |α| ‰ |β| and |α| ą |β| (resp. |α| ă |β|),
ii) otherwise |α| = |β| and the first non-zero difference

Γ 1 -Γ 1 1 , Γ 2 -Γ 1 2 , . . . , Γ s -Γ 1 s ,
is positive (resp. negative).

In this way, we define an order on the set of monomial partial derivatives, called weight order. Note that, we recover the Janet order defined in 4.1.3 by setting C i,k = δ i+k,n+1 .

First order PDE systems

We consider first resolution of first order PDE systems.

Complete integrability.

In [Jan29, §36], M. Janet considered the following first order PDE system

(Σ) Bϕ By λ = f λ (y 1 , ¨¨¨, y h , z 1 , ¨¨¨, z k , ϕ, q 1 , ¨¨¨, q k ) (1 ď λ ď h) ( 9 
)
where ϕ is an unknown function of independent variables y 1 , . . . , y h , z 1 , . . . , z k , with h + k = n and q i = Bϕ Bz i . Moreover, we suppose that the functions f λ are analytic in a neighborhood of a point P. M. Janet wrote down explicitly the integrability condition of the PDE systems (Σ) defined in ( 9 with monomials in M(x 1 , . . . , x n ), we associate to the set of operators D i 's, i in I, defined in 4.3.1, a set lm ď J (Σ) of monomials. By definition, the set lm ď J (Σ) contains the monomials associated to leading derivatives of the PDE system (Σ) with respect to Janet's order.

The PDE system (Σ) is said to be complete with respect to Janet's order ď J if the set of monomials lm ď J (Σ) is complete in the sense of 2.2.1. Procedure 6 consists in a completion procedure that transforms a finite linear PDE system into an equivalent complete linear PDE system.

By definition the set of principal derivatives corresponds, by isomorphism of Proposition 2.1.2, to the multiplicative cone of the monomial set lm ď J (Σ). Hence, when (Σ) is complete, the set of principal derivatives corresponds to the involutive cone of lm ď J (Σ). By Proposition 2.2.2, there is a partition

M(x 1 , . . . , x n ) = cone J (lm ď J (Σ)) > cone A J (lm ď J (Σ)).
It follows that set of parametric derivatives of a complete PDE system (Σ) corresponds to the involutive cone of the set of monomials lm ď J (Σ) A .

Initial conditions.

Consider the set lm ď J (Σ) A of complementary monomials of lm ď J (Σ), as defined in 2.1.13. To a monomial x β in lm ď J (Σ) A , with β = (β 1 , . . . , β n ) in N n and

A Mult lmď J (Σ) A J (x β ) = {x i 1 , . . . , x i k β },
we associate an arbitrary analytic function

ϕ β (x i 1 , . . . , x i k β ).
Using these functions, M. Janet defined an initial condition:

(C β ) D β ϕ x j =0 @x j P A NMult lm ď J (Σ) A J (x β ) = ϕ β (x i 1 , . . . , x i k β ).
Then he formulated an initial condition of the equation ( 11) with respect to Janet's order as the following set

{ C β | x β P lm ď J (Σ) A }. (12) 

Theorem ([Jan29, §39]

). If the PDE system (Σ) in ( 11) is complete with respect to Janet's order ď J , then it admits at most one analytic solution satisfying the initial condition (12).

PDE systems with several unknown functions.

The construction of initial conditions given in 4.3.3 for one unknown function can be extended to linear PDE systems on C n with several unknown functions using a weight order. Let us consider a linear PDE system of m unknown analytic functions ϕ 1 , . . . , ϕ m of the following form

(Σ) D α ϕ r = ÿ (β,s)PN n ˆ{1,2,...,m} a r,s α,β D β ϕ s , α P I r , (13) 
for 1 ď r ď m, where I r is a finite subset of N n and the a r,s α,β are analytic functions.

Polynomial partial differential equations systems

For such a system, we define a weight order as follows. Let us fix a positive integer s. To any variable x i we associate s + 1 weights C i,0 , C i,1 , . . . , C i,s by setting C i,0 = 1 and the C i,1 , . . . , C i,s as defined in 4.1.5. For each unknown function ϕ j , we associate s + 1 weights T 

Γ (j) k = n ÿ i=1 α i C i,k + T (j) k (0 ď k ď s).
We define the notions of anteriority and posteriority on derivatives with respect to this weight order, denoted by ď wo , as it is done in 4.3.1 for systems of one unknown function. In particular, we define the notions of principal and parametric derivatives in a similar way to systems of one unknown function.

Now suppose that the system (13) is written in the form

(Σ) D α ϕ r = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r a r,s α,β D β ϕ s , α P I r . ( 14 
)
We can formulate the notion of completeness with respect to the weight order ď wo as in 4.3.2. Let consider lm ďwo (Σ, ϕ r ) be the set of monomials associated to leading derivatives D α of all PDE in (Σ) such that α belongs to I r . The PDE system (Σ) is complete with respect to ď wo , if for any 1 ď r ď m, the set of monomials lm ďwo (Σ, ϕ r ) is complete in the sense of 2.2.1. Finally, we can formulate as in ( 12) an initial condition for the linear PDE system (14) with respect to such a weight order:

{ C β,r | x β P lm ďwo (Σ, ϕ r ) A , for 1 ď r ď m }. (15) 

Theorem ([Jan29, §40]

). If the PDE system (Σ) in ( 14) is complete with respect to a weight order ď wo , then it admits at most one analytic solution satisfying the initial condition (15).

M. Janet said that this result could be proved in a way similar to the proof of Theorem 4.3.4.

Completely integrable higher-order linear PDE systems

In this subsection we will introduce integrability conditions for higher-order linear PDE systems of several unknown functions. The main result, Theorem 4.4.7, algebraically characterizes the complete integrability property for complete PDE systems. It states that, under the completeness property, the complete integrability condition is equivalent to have all integrability conditions trivial. In this subsection, we will assume that the linear PDE systems are complete. In Subsection 4.6 we will provide Procedure 6 that transforms a linear PDE system of the form (14) into a complete linear PDE system with respect to a weight order.

Formal solutions.

Let consider a linear PDE system (Σ) of the form (14) of unknown functions ϕ 1 , . . . , ϕ m and independent variables x 1 , . . . , x n . We suppose that (Σ) is complete, hence the set of monomials lm ďwo (Σ, ϕ r ) = {x α | α P I r } is complete for all 1 ď r ď m. For the remaining part of this subsection, we will denote lm ďwo (Σ, ϕ r ) by U r . Let denote by (cone J,ďwo (Σ)) the following PDE system, for 1 ď r ď m,

Φ(u)(D α ϕ r ) = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r Φ(u) a r,s α,β D β ϕ s ,
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for α P I r and u P M(Mult(x α , U r )).

We use the PDE system (cone J,ďwo (Σ)) to compute the values of the principal derivative at a point P 0 = (x 0 1 , . . . , x 0 n ) of C n . We call formal solutions of the PDE system (Σ) at the point P 0 the elements ϕ 1 , . . . , ϕ m in C[[x 1 -x 0 1 , . . . , x n -x 0 n ]] which are solutions of (Σ). If the system (Σ) admits an analytic solution then these formal solutions are convergent series and give analytic solutions of (Σ) on a neighbourhood of the point P 0 .

Initial conditions.

The question is to determine under which condition the system (Σ) admits a solution for any given initial condition. These initial conditions are parametrized by the set U A r of complementary monomials of the set of monomials U r as in 4.3.3. Explicitly, for 1 ď r ď m, to a

monomial x β in U A r , with β in N n and A Mult U A r J (x β ) = {x i 1 , .
. . , x i kr }, we associate an arbitrary analytic function ϕ β,r (x i 1 , . . . , x i kr ).

Formulating initial condition as the following data:

(C β,r ) D β ϕ r x j =x 0 j @x j P A NMult U A r J (x βr ) = ϕ β,r (x i 1 , . . . , x i kr ).
We set the initial condition of the system (Σ) in ( 13) to be the following set

ď 1ďrďm { C β,r | x βr P U A r }. (16) 
Note that M. Janet call degree of generality of the solution of the PDE system (Σ) the dimension of the initial conditions of the system, that is Max

uPU A r A Mult U A r J (u) .
4.4.3. J-normal form. Suppose that the PDE system (Σ) is complete. Given a linear equation E amongst the unknown functions ϕ 1 , . . . , ϕ m and variables x 1 , . . . , x n . A J-normal form of E with respect to the system (Σ) is an equation obtained from E by the reduction process that replaces principal derivatives by parametric derivatives with a similar procedure to RightReduce given in Procedure 5.

Integrability conditions.

Given 1 ď r ď m and α P I r , let x i be in NMult Ur J (x α ) a nonmultiplicative variable. Let us differentiate the equation

D α ϕ r = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r a r,s α,β D β ϕ s
by the partial derivative Φ(x i ) = B Bx i . We obtain the following PDE

Φ(x i )(D α ϕ r ) = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r Ba r,s α,β Bx i D β ϕ s + a r,s α,β Φ(x i )(D β ϕ s ) . ( 17 
)
Using system (cone J,ďwo (Σ)), we can rewrite the PDE (17) into an PDE formulated in terms of parametric derivatives and independent variables. The set of monomials U r being complete, there exists α 1 in N n with x α 1 in U r and u in M(Mult Ur J (x α 1 )) such that x i x α = ux α 1 . Then Φ(x i )D α = Φ(u)D α 1 as a consequence, we obtain the following equation

ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r Ba r,s α,β Bx i D β ϕ s + a r,s α,β Φ(x i )(D β ϕ s ) = ÿ (β 1 ,s)PN n ˆ{1,2,...,m} D β 1 ϕ s ăwoD α 1 ϕ r Φ(u)(a r,s α 1 ,β 1 D β 1 ϕ s ).
(18) Using equations of system (cone J,ďwo (Σ)), we replace all principal derivatives in the equation ( 18) by parametric derivatives and independent variables. The order ď wo being well-founded this process is terminating. Moreover, when the PDE system (Σ) is complete this reduction process is confluent in the sense that any transformations of an equation ( 18) ends on a unique J-normal forms. This set of J-normal forms is denoted by IntCond J,ďwo (Σ). 4.4.5. Remarks. The system (Σ) being complete any equation ( 18) is reduced to a unique normal form. Such a normal form allows us to judge whether a given integrability condition is trivial or not.

Recall that the parametric derivatives correspond to the initial conditions. Hence, a non-trivial relation in IntCond J,ďcwo (Σ) provides a non-trivial relation among the initial conditions. In this way, we can decide whether the system (Σ) is completely integrable or not.

Completely integrable systems.

A complete linear PDE system (Σ) of the form ( 14) is said to be completely integrable if it admits an analytic solution for any given initial condition (16). For the geometrical interpretation of these condition, we refer the reader to 1.1.4.

Theorem ([Jan29, §42]). Let (Σ) be a complete finite linear PDE system of the form (14). Then the system (Σ) is completely integrable if and only if any relation in IntCond J,ďwo (Σ) is a trivial identity.

A proof of this result is given in [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]§43]. Note that the later condition is equivalent to say that any relation ( 18) is an algebraic consequence of a PDE equation of the system (cone J,ďwo (Σ)).

Canonical forms of linear PDE systems

In this subsection, we recall from [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] the notion of canonical linear PDE system. A canonical system is a normal form with respect to a weight order on derivatives, and satisfying some analytic conditions, allowing to extend the Cauchy-Kowalevsky's theorem given in 1.1.3. Note that this terminology refers to a notion of normal form, but it does not correspond to the well known notion for a rewriting system meaning both terminating and confluence. In this notes, we present canonical systems with respect to weight order as it done in Janet's monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF], but we notice that this notion can be defined with any total order on derivative. 4.5.1. Autoreduced PDE systems. Let (Σ) be a finite linear PDE system. Suppose that a weight order ď wo is fixed on the set of unknown functions ϕ 1 , . . . , ϕ m of (Σ) and their derivatives, as defined in 4.3.5. We suppose also that each equation of the system (Σ) can be expressed in the following form

(Σ (α,r) ) D α ϕ r = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r a (α,r) (β,s) D β ϕ s ,
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so that (Σ) = ď (α,r)PI Σ (α,r) , (19) 
the union being indexed by a multiset I. The support of the equation (Σ (α,r) ) is defined by

Supp(Σ (α,r) ) = { (β, s) | a (α,r) (β,s) ‰ 0 }.
For 1 ď r ď m, consider the set of monomials lm ďwo (Σ, ϕ r ) corresponding to leading derivatives, that is monomials x α such (α, r) belongs to I. The system (Σ) is said to be i) J-left-reduced with respect to ď wo if for any (α, r) in I there is no (α 1 , r) in I and non-trivial monomial x γ in M(Mult

lmď wo (Σ,ϕ r ) J (x α 1 )) such that x α = x γ x α 1 ,
ii) J-rigth-reduced with respect to ď wo if, for any (α, r) in I and any (β, s) in Supp(Σ (α,r) ), there is no (α 1 , s) in I and non-trivial monomial x γ in M(Mult

lmď wo (Σ,ϕ r ) J (x α 1 )) such that x β = x γ x α 1 ,
iii) J-autoreduced with respect to ď wo if it is both J-left-reduced and J-right-reduced with respect to ď wo .

Canonical PDE systems.

A PDE system (Σ) is said to be J-canonical with respect a weight order ď wo if it satisfies the following five conditions i) it consists of finitely many equations and each equation can be expressed in the following form

D α ϕ r = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăwoD α ϕ r a (α,r) (β,s) D β ϕ s , ii) the system (Σ) is J-autoreduced with respect to ď wo , iii) the system (Σ) is complete, iv) the system (Σ) is completely integrable, v) the coefficients a (α,r) (β,s)
of the equations in i) and the initial conditions of (Σ) are analytic.

Under these assumptions, the system (Σ) admits a unique analytic solution satisfying appropriate initial conditions parametrized by complementary monomials as in 4.3.3.

Remark.

We note that the notion of canonicity given by Janet in [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] does not impose the condition being J-autoreduced, even if Janet had mentioned this autoreduced property for some simple cases. The autoreduced property implies the minimality of the system. This fact was formulated by V. P. Gerdt and Y. A. Blinkov in [GB98b] with the notion of minimal involutive basis.

Polynomial partial differential equations systems

4.5.4. Example. In [Jan29, §44], M. Janet studied the following linear PDE system of one unknown function ϕ . In Example 2.2.6, we have shown that the left hand sides of the equations of this system form a complete set of monomials. Let us define the following weights for the variables:

(Σ)                      p 54 =
x 1 x 2 x 3 x 4 x 5 1 0 1 1 2 0 0 0 1 1
We deduce the following weights for the second derivatives: 

p
0 1 1 2 2 2 3 3 4 0 0 1 0 1 2 1 2 2
As seen in Example 2.3.4, given any four analytic functions ϕ 0 (x 1 , x 2 ), ϕ 3 (x 1 , x 2 ), ϕ 4 (x 1 , x 2 ), ϕ 5 (x 1 , x 5 ), there exists a unique solution of the PDE system (Σ). Note that the initial condition is given by

ϕ| x 3 =x 0 3 ,x 4 =x 0 4 ,x 5 =x 0 5 = ϕ 0,0,0,0,0 (x 1 , x 2 ), Bϕ Bx 3 x 3 =x 0 3 ,x 4 =x 0 4 ,x 5 =x 0 5 = ϕ 0,0,1,0,0 (x 1 , x 2 ), Bϕ Bx 4 x 3 =x 0 3 ,x 4 =x 0 4 ,x 5 =x 0 5 = ϕ 0,0,0,1,0 (x 1 , x 2 ), Bϕ Bx 5 x 2 =x 0 2 ,x 3 =x 0 3 ,x 4 =x 0 4 = ϕ 0,0,0,0,1 (x 1 , x 5 ).
We set A = p 54 -p 11 x 5 x 4 x 3 x 2 x 1 B = p 53 -p 41 x 5 x 3 x 2 x 1 C = p 52 -p 31 x 5

x 2 x 1 D = p 44 -p 52

x 4 x 3 x 2 x 1 E = p 43 -p 21 x 3 x 2 x 1 F = p 33 -p 42 x 3 x 2 x 1 where the variable on the right correspond to the multiplicative variables of the first term. In order to decide if the system (Σ) is completely integrable it suffices to check if the following terms B 4 , C 4 , C 3 , D 5 , E 5 , E 4 , F 5 , F 4 are linear combinations of derivative of the terms A, B, C, D, E, F with respect to their multiplicative variables. Here Y i denotes the derivative B Bx i Y of a term Y. Finally, we observe that

B 4 = A 3 -D 1 -C 1 , C 4 = A 2 -E 1 , C 3 = B 2 -F 1 , D 5 = A 4 -B 1 -C 5 , E 5 = A 3 -C 1 , E 4 = D 3 + B 2 , F 5 = B 3 -A 2 + E 1 , F 4 = E 3 -D 2 -C 2 .
As a consequence the system (Σ) is completely integrable, hence it is J-canonical.

Reduction of a PDE system to a canonical form

In his monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF], M. Janet did not mention about the correctness of the procedures that he introduced in order to reduce a finite linear PDE system to a canonical form. In this section, we explain how to transform a finite linear PDE system with several unknown functions by derivation, elimination and autoreduction, into an equivalent linear PDE system that is either in canonical form or in incompatible system. For linear PDE systems with constant coefficients, the correctness of the procedure can be verified easily.

4.6.1. Equivalence of PDE system. Janet's procedure transforms by reduction and completion a finite linear PDE system into a new PDE system. The PDE system obtained in this way is equivalent to the original system. In his work, M. Janet dit not explain this notion of equivalence that can be described as follows. Consider two finite linear PDE systems with m unknown functions and n independent variables

(Σ l ) m ÿ j=1 p l i,j ϕ j = 0, i P I l ,
for l = 1, 2, where p l i,j are linear differential operators. We say that the PDE systems (Σ 1 ) and (Σ 2 ) are equivalent if the set of solutions of the two systems are the same. This notion can be also formulated by saying that the D-modules generated by the families of differentials operators (p 1 i,1 , . . . , p 1 i,m ) for i P I 1 and (p 2 i,1 , . . . , p 2 i,m ) for i P I 2 are equals.

A canonical weight order.

Consider a finite linear PDE system (Σ) of m unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n . To these variables and functions we associate the following weights

x 1 x 2 . . . x n-1 x n ϕ 1 ϕ 2 . . . ϕ m 1 1 . . . The weight order on monomial partial derivatives defined in 4.1.5 induced by this weight system is total. This order is called canonical weight order following M. Janet and denoted by ď cwo .

4.6.3. Combination of equations. Consider the PDE system (Σ) with the canonical weight order ď cwo defined in 4.6.2. We suppose that the system (Σ) is given in the same form as (19) and that each equation of the system is written in the following form r) .

(E (α,r) i ) D α ϕ r = ÿ (β,s)PN n ˆ{1,2,...,m} D β ϕ s ăcwoD α ϕ r a (β,s) (α,r),i D β ϕ s , i P I (α,
For such an equation, the leading pair (α, r) of the equation E (α,r) i will be denoted by ldeg ďcwo (E α,r i ). We will denote by Ldeg ďcwo (Σ) the subset of N n ˆ{1, . . . , m} consisting of leading pairs of equations of the system (Σ):

Ldeg ďcwo (Σ) = { ldeg ďcwo (E) | E is an equation of Σ }.
The canonical weight order ď cwo induces a total order on N n ˆ{1, . . . , m} denoted by ă lp . We will denote by K(α, r, i) the set of pairs (β, s) of running indices in the sum of the equation E (α,r) i

. Given i and j in I (α,r) , we set

(α i,j , r i,j ) = Max (β, s) P K(α, r, i) Y K(α, r, j) | a (β,s) (α,r),i ‰ a (β,s) (α,r),j . We define b (α i,j ,r i,j ) (α,r) =        a (α i,j ,r i,j ) (α,r),i if (α i,j , r i,j ) P K(α, r, i) \ K(α, r, j), -a (α i,j ,r i,j ) (α,r),i if (α i,j , r i,j ) P K(α, r, j) \ K(α, r, i), a (α i,j ,r i,j ) (α,r),i -a (α i,j ,r i,j ) (α,r),i if (α i,j , r i,j ) P K(α, r, i) X K(α, r, j), (20) 
and we denote by E (α,r) i,j the equation

D α i,j ϕ r i,j = ÿ (β,s)PK(α,r,j) (β,s)ă lp (α i,j ,r i,j ) c (β,s) (α i,j ,r i,j ),j D β ϕ s - ÿ (β,s)PK(α,r,i) (β,s)ă lp (α i,j ,r i,j ) c (β,s) (α i,j ,r i,j ),i D β ϕ s , (21) 
where, for any k = i, j, c

(β,s) (α i,j ,r i,j ),k = a (β,s) (α,r),k {b (α i,j ,r i,j ) (α,r) 
.

Procedure 3: Add ďcwo (Σ, E) Input:

-A canonical weight order ď cwo for ϕ 1 , . . . , ϕ m and x 1 , . . . , x n .

-(Σ) a finite linear PDE system with unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n given in the same form as (19) such that the leading derivatives are different. -E be a linear PDE in the same form as (19). s) be the equation of the system (Σ) whose leading pair is (β, s). C ← Combine ďcwo (E (β,s) , E) Add ďcwo (Γ, C) end end Output: Γ a PDE system equivalent to the system obtained from (Σ) by adding equation E.

begin

Γ ← Σ (β, s) ← ldeg ďcwo (E) if (β, s) R Ldeg ďcwo (Γ ) then Γ ← Γ Y {E} end else let E (β,
Procedure 4: LeftReduce J,ďcwo (Σ) Input:

-A canonical weight order ď cwo for ϕ 1 , . . . , ϕ m and x 1 , . . . , x n .

-(Σ) a finite linear PDE system with unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n given in the same form as (19) such that the leading derivatives are different.

begin r) be the equation obtained from the equation E (α 1 ,r) by applying the operator D γ to the two sides. C ← Combine ďcwo (E (α,r) , D γ E (α 1 ,r) ) Add ďcwo (Γ, C) end end Output: Γ a J-left-reduced PDE system with respect to ď cwo that is equivalent to (Σ).

Γ ← Σ I ← Ldeg ďcwo (Γ ) U r ← {x α | (α, r) P I} while exist (α, r), (α 1 , r) in I and non-trivial monomial x γ in M(Mult Ur J (x α 1 )) such that x α = x γ x α 1 do Γ ← Γ \ {E (α,r) } Let D γ E (α 1 ,
Procedure 5: RightReduce J,ďcwo (Σ) Input:

-A canonical weight order ď cwo for ϕ 1 , . . . , ϕ m and x 1 , . . . , x n .

-(Σ) a finite linear PDE system with unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n given in the same form as (19) and that is J-left reduced with respect to ď cwo .

begin

Γ ← Σ Γ 1 ← Γ I ← Ldeg ďcwo (Γ )
{{ The canonical weight order ď cwo induces a total {{ order on the set I of leading pairs denoted by ď lp (δ, t) ← max(I) with respect to ď lp while Γ 1 ‰ H do Γ 1 ← Γ 1 \ {E (δ,t) } I ← I \ {(δ, t)} S ← Supp(E (δ,t) ) U r ← {x α | (α, r) P I} while exist (β, r) in S, (α, r) in I and non-trivial monomial x γ in M(Mult Ur J (x α )) such that x β = x γ x α do

Γ ← Γ \ {E (δ,t) } C ← E (δ,t) -a (β,r) (δ,t) D β ϕ r + a (β,r) (δ,t) D γ (Rhs(E (α,r) )) Add ďcwo (Γ, C) end end end
Output: Γ a J-right-reduced PDE system with respect to ď cwo that is equivalent to (Σ). ). Procedure 3 adds to a set of PDE equations (Σ) an equation E by combination.

Note that at each step of the procedure RightReduce J,ďcwo the running system Γ remains J-left reduced. As consequence by combining this procedure with the procedure LeftReduce J,ďcwo we obtain the following autoreduce procedure that transform a PDE system into a autoreduced PDE system. 4.6.4. Procedure Autoreduce J,ďcwo (Σ). Let us fix a canonical weight order ď cwo for ϕ 1 , . . . , ϕ m and x 1 , . . . , x n . Let (Σ) be a finite linear PDE system given in the same form as (19) with unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n . We suppose that the leading derivatives of (Σ) are all different. The procedure Autoreduce J,ďcwo transforms the PDE system (Σ) into an J-autoreduced PDE system that is equivalent to (Σ) by applying successively the procedures LeftReduce J,ďcwo and RightReduce J,ďcwo . An algebraic version of this procedure is given in Procedure 9. Let us remark that the autoreduction procedure given in Janet's monographs corresponds to the LeftReduce J,ďcwo , it does not deal with right reduction of equations.

Note that, the procedure Autoreduce J,ďcwo fails if and only if the procedure Combine ďcwo fails. This occurs when the procedure Combine ďcwo is applied on equations E (α,r) i and E (α,r) j and some coefficients b

(α i,j ,r i,j ) (α,r)
, as defined in (20), vanish on some point of C n . In particular, the procedure Autoreduce J,ďcwo does not fail when all the coefficients are constant. This constraint on the coefficients of the system concerns only the left reduction and were not discussed in Janet's monograph. As a consequence, we have the following result. 4.6.5. Theorem. If (Σ) is a finite linear PDE system with constant coefficients, the procedure Autoreduce J,ďcwo terminates and produces a finite autoreduced PDE system that is equivalent to (Σ). 4.6.6. Completion procedure of a PDE system. Consider a finite linear PDE system (Σ) with the canonical weight order ď cwo given in 4.6.2. If the system (Σ) is J-autoreduced, then the following procedure Complete J,ďcwo (Σ) transforms the system (Σ) into a finite complete J-autoreduced linear PDE system. This procedure of completion appears in Janet's monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] but not given in an explicit way. 4.6.7. Completion and integrability conditions. In Procedure 6, the set P r contains all the obstructions of the system to be complete. The procedure Complete J,ďcwo add to the system the necessary equations in order to eliminate all these obstructions. The equations added to the system have the following form

D β ϕ r = Rhs(E (β,r) ) -a (δ,r) (β,r) D δ ϕ r + a (δ,r) (β,r) D γ (Rhs(E (α,r) ))
with δ ‰ β and lead to the definition of new integrability condition of the form (18) by using the construction given in 4.4.4. 4.6.8. Janet's procedure. Given a finite linear PDE system (Σ) with the canonical weight order ď cwo defined in 4.6.2, Janet's procedure Janet J,ďcwo either transforms the system (Σ) into a PDE system (Γ ) that is J-canonical with respect to ď cwo or computes an obstruction to transform the system (Σ) to such a form. In the first case, the solutions of the J-canonical system (Γ ) are solutions of the initial system (Σ). In the second case, the obstruction corresponds to a non-trivial relation on the initial conditions. We refer the reader to [START_REF] Schwarz | An algorithm for determining the size of symmetry groups[END_REF] or [START_REF] Robertz | Formal algorithmic elimination for PDEs[END_REF] for a deeper discussion on this procedure and its implementations.

Procedure 6: Complete J,ďcwo (Σ) Input:

-A canonical weight order ď cwo for ϕ 1 , . . . , ϕ m and x 1 , . . . , x n .

-(Σ) a finite J-autoreduced linear PDE system with unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n given in the same form as (19) and whose leading derivatives are different. r) in P r , whose leading pair (β, r) is minimal with respect to ď cwo .

begin Γ ← Σ Ξ ← H for r = 1, . . . , m do while Ξ = H do I ← Ldeg ďcwo (Γ ) U r ← {x α | (α, r) P I} P r ← BE Bx | E P Γ, x P NMult Ur J (x δ ) with (δ, r) = ldeg(E) and xx δ R cone J (U r ) C ← 0 while P r ‰ H and C = 0 do choose E (β,
P r ← P r \ {E (β,r) } C ← E (β,r) S C ← Supp(C)
while exist (δ, r) in S C , (α, r) in I and x γ in M(Mult Ur J (x α )) such that

x δ = x γ x α do C ← C -a (δ,r) (β,r) D δ ϕ r + a (δ,r) (β,r) D γ (Rhs(E (α,r) )) S C ← Supp(C) end end if C ‰ 0 then Γ ← Autoreduce J,ďcwo (Γ Y {C}) end else Ξ ← Γ end end end end
Output: (Ξ) a linear J-autoreduced PDE system equivalent to (Σ) and that is complete with respect to ď cwo .

Applying successively the procedures Autoreduce J and Complete J , the first step of the procedure consists in reducing the PDE system (Σ) into a PDE system (Γ ) that is J-autoreduced and complete with respect to ď cwo .

Then it computes the set IntCond J,ďcwo (Γ ) of integrability conditions of the system (Γ ). Recall from 4.4.4 that this set is a finite set of relations that does not contain principal derivative. Hence, these integrability conditions are J-normal forms with respect to Γ . The system (Γ ) being complete, these normal forms are unique and by Theorem 4.4.7, if all of these normal forms are trivial, then the system (Γ ) is completely integrable. Otherwise, the procedure takes a non-trivial condition R in the set IntCond J,ďcwo (Γ ) and distinguishes two cases. If the relation R is among functions ϕ 1 , . . . , ϕ m and variables x 1 , . . . , x n , then this relation imposes a relation on the initial conditions of the system (Γ ). In the other case, the set IntCond J,ďcwo (Γ ) contains at least one PDE having a derivative of one of the functions ϕ 1 , . . . , ϕ m and the procedure Janet J,ďcwo is applied again to the PDE system (Σ) completed by all the PDE equations in IntCond J,ďcwo (Γ ).

Procedure 7: Janet J,ďcwo (Σ) Input:

-A canonical weight order ď cwo for ϕ 1 , . . . , ϕ m and x 1 , . . . , x n .

-(Σ) a finite linear PDE system with unknown functions ϕ 1 , . . . , ϕ m of independent variables x 1 , . . . , x n given in the same form as (19) and whose leading derivatives are different.

begin

Γ ← Autoreduce J,ďcwo (Σ) Γ ← Complete J,ďcwo (Γ ) C ← IntCond J,ďcwo (Γ )
if C consists only of trivial identities then return The PDE system (Σ) is transformable to a J-canonical system (Γ ). end if C contains a non-trivial relation R among functions ϕ 1 , . . . , ϕ m and variables x 1 , . . . , x n then return The PDE system (Σ) is not reducible to a J-canonical system and the relation R imposes a non-trivial relation on the initial conditions of the system (Γ ). end else // C contains a non-trivial relation among functions ϕ 1 , . . . , ϕ m , variables x 1 , . . . , x n , // and at least one derivative of one of the functions ϕ 1 , . . . , ϕ m . Σ ← Σ Y {C} Janet J,ďcwo (Σ). end end Output: Complete integrability of the system (Σ) and its obstructions to be reduced to a J-canonical form with respect to ď cwo .

4.6.9. Remarks. If the procedure stops at the first loop, that is when C consists only of trivial identities, then the system (Σ) is reducible to the J-canonical form (Γ ) equivalent to (Σ).

When the set C contains an integrability condition having at least one derivative of the unknown functions, the procedure is applied again to the system (Σ) Y C. Notice that, it could be also possible to recall the procedure on (Γ ) Y C, but as done in Janet's monograph [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF], we choose to restart the procedure on (Σ) Y C in order to have a PDE system where each equation has a clear meaning, either it comes from the initial problem or the integrability condition.

Finally, note that the procedure Janet J,ďcwo fails on a PDE system (Σ) if and only if the procedure Autoreduce J,ďcwo fails on (Σ) Y C, where C consists of the potential non-trivial relations among the unknown functions and variables added during the process, as explained in 4.6.4. In particular, by Theorem 4.6.5, if (Σ) is a finite linear PDE system with constant coefficients, the procedure Autoreduce J,ďcwo terminates and produces a finite autoreduced PDE system that is equivalent to (Σ). 4.6.10. Example. In [Jan29, §47], M. Janet studied the following PDE system:

(Σ) p 33 = x 2 p 11 , p 22 = 0,
where p i 1 ...i k denotes the derivative

B k ϕ Bx i 1 . . . Bx i k
of an unknown function ϕ of independent variables x 1 , x 2 , x 3 . The set of monomials of the left hand side of the system (Σ) is U = {x 2 3 , x 2 2 }. The set U is not complete. Indeed, for instance the monomial x 3 x 2 2 is not in the involutive cone cone J (U). If we complete the set U by the monomial x 3 x 2 2 we obtain a complete set r U := U Y {x 3 x 2 2 }. The PDE system (Σ) is then equivalent to the following PDE system Note that p 322 = B x 3 p 22 = 0. The table of multiplicative variables with respect to the set r U is given by

x 2 3 x 3 x 2 x 1 x 3 x 2 2 x 2 x 1 x 2 2 x 2 x 1
We deduce that there exists only one non-trivial compatibility condition, formulated as follows

p 3322 =B x 3 p 322 = B 2 x 2 p 33 , (x 3 .x 3 x 2 2 = (x 2 ) 2 .x 2 3 ) =B 2 x 2 (x 2 p 11 ) = 2p 211 + x 2 p 2211 = 2p 211 = 0, (p 2211 = B 2 x 1 p 22 = 0).
Hence, p 211 = 0 is a non-trivial relation of the system (Γ ). As a consequence, the PDE system (Σ) is not completely integrable. Then, we consider the new PDE system given by

(Σ 1 )      p 33 = x 2 p 11 , p 22 = 0, p 211 = 0.
The associated set of monomials U 1 = {x 2 3 , x 2 2 , x 2 x 2 1 } is not complete. It can be completed into the complete set Ă U 1 := U 1 Y {x 3 x 2 2 , x 3 x 2 x 2 1 }. The PDE system (Σ 1 ) is then equivalent to the following PDE system

(Γ 1 )                p 33 =
x 2 p 11 , p 322 = 0, p 3211 = 0, p 22 = 0, p 221 = 0.

Note that p 322 = B x 3 p 22 and p 3211 = B x 3 p 211 . The multiplicative variables with respect to the set of monomials U 1 is given by the following table

x 2 3 x 3 x 2 x 1 x 3 x 2 2 x 2 x 1 x 3 x 2 x 2 1 x 1 x 2 2 x 2 x 1 x 2 x 2 1 x 1
We deduce that the only non-trivial compatibility relation is

p 33211 =B x 3 (p 3211 ) = 0 =B 2 x 1 B x 2 (p 33 ) = B 2 x 1 B x 2 (x 2 p 11 ) =B 2 x 1 (p 11 + x 2 p 211 ) = p 1111 (p 211 = 0).
We deduce that p 1111 = 0 is a non-trivial relation of the system (Γ 1 ). Hence, the system (Σ 1 ) is not completely integrable. Then, we consider the new PDE system given by

(Σ 2 )            p 33 =
x 2 p 11 , p 22 = 0, p 211 = 0, p 1111 = 0.

The associated set of monomials U 2 = {x 2 3 , x 2 2 , x 2 x 2 1 , x 4 1 } is not complete. It can be completed into the set of monomials Ă U 2 := U 2 Y {x 3 x 2 2 , x 3 x 2 x 2 1 , x 3 x 4 1 }. The PDE system (Σ 2 ) is equivalent to the following system

(Γ 2 )                      p 33 =
x 2 p 11 , p 322 = 0, p 31111 = 0, p 22 = 0, p 211 = 0, p 1111 = 0.

Note that p 322 = B x 2 p 22 and p 31111 = B x 3 p 1111 . All the compatibility conditions are trivial identities, by Theorem 4.4.7 we deduce that the PDE (Σ 2 ), obtained from the initial PDE system (Σ) by adding compatibility conditons, is completely integrable. 4.6.11. Remark. Let us mention, that using a similar procedure presented in this section, M. Janet in [Jan29, §48] gave a constructive proof of a result obtained previously by A. Tresse [START_REF] Tresse | Sur les invariants différentie1s des groupes continus de transformations[END_REF], that a infinite linear PDE system can be reduced to a finite linear PDE system.

Algebra, geometry and PDE

The notion of ideal first appeared in the work of R. Dedekind. This notion appeared also in a seminal paper [START_REF] Hilbert | Ueber die Theorie der algebraischen Formen[END_REF] of D. Hilbert, were he developed the theory of ideals in polynomial rings. In particular, he proved noetherianity results as the noetherianity of the ring of polynomials over a field, now called Hilbert's basis theorem. In its works on PDE systems, [Jan22a, Jan22b, Jan24], M. Janet used the notion of ideal generated by homogeneous polynomials under the terminology of module of forms, that he defined as follows. He called form a homogeneous polynomial with several variables and he defined a module of forms as an algebraic system satisfying the two following conditions: i) if a form f belongs to the system, then the form hf belongs to the system for every form h, ii) if f and g are two forms in the system of the same order, then the form f + g belongs to the system. Finally, in [Jan29, §51], M. Janet recall Hilbert's basis theorem.

Characteristic functions of homogeneous ideals.

In [Jan29, §51], M. Janet recalled the Hilbert description of the problem of finding the number of independent conditions so that a homogenous polynomial of order p belongs to a given homogeneous ideal. This independent conditions correspond to the independent linear forms that vanish all homogenous polynomials of degree p in the ideal. M. Janet recalled from [START_REF] Hilbert | Ueber die Theorie der algebraischen Formen[END_REF] that this number of independent conditions is expressed as a polynomial in p for sufficiently big p.

Let I be a homogenous ideal of K[x 1 , . . . , x n ] generated by polynomials f 1 , . . . , f k . Given a monomial order on M(x 1 , . . . , x n ), we can suppose that all the leading coefficients are equal to 1. For any p ě 0, consider the homogenous component of degree p so that I = À p I p with

I p := I X K[x 1 , . . . x n ] p .
Let us recall that dim I p ď dim K[x 1 , . . . , x n ] p = Γ p n . The number of independent conditions so that a homogenous polynomial of order p belongs to the ideal I is given by the difference χ(p) := Γ p ndim I p . This is the number of monomials of degree p that cannot be divided by the monomials lm(f 1 ), . . . , lm(f k ). The function χ(p) corresponds to a coefficient of the Hilbert series of the ideal I and is called characteristic function of the ideal I by M. Janet, or postulation in [Jan29, §52]. We refer the reader to [START_REF] Eisenbud | Commutative algebra[END_REF] for the definition of Hilbert series of polynomial rings and its applications. In the Section 4.8, we will show that the function χ(p) is polynomial for sufficiently big p. Finally, note that the set of monomials that cannot be divided by the monomials lm(f 1 ), . . . , lm(f k ) forms a finite number of classes of complementary monomials. involutive methods were developed for polynomial and differential systems, [START_REF] Thomas | Differential systems. IX + 118 p[END_REF][START_REF] Pommaret | Systems of partial differential equations and Lie pseudogroups[END_REF]. In these approaches, a differential system is involutive when its non-multiplicative derivatives are consequences of multiplicative derivatives. In [Ger97, GB98a], V. P. Gerdt gave an algebraic charaterization of the involutivity for polynomial systems. The Gerdt's approach is developed in the next section.

P

In this section, we present the algebraic definition of involutivity for polynomial systems given by V. P. Gerdt in [START_REF] Gerdt | Gröbner bases and involutive methods for algebraic and differential equations[END_REF][START_REF] Gerdt | Involutive bases of polynomial ideals[END_REF]. In particular, we relate the notion of involutive basis for a polynomial ideal to the notion of Gröbner basis.

Involutive reduction on polynomials

5.1.1. Involutive basis. Recall that a monomial ideal I of K[x 1 , . . . , x n ] is an ideal generated by monomials. An involutive basis of the ideal I with respect to an involutive division division I is an involutive set of monomials U that generates I. By Dickson Lemma, [START_REF] Dickson | Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors[END_REF], any monomial ideal I admits a finite set of generators. When the involutive division I is noetherian as defined in 3.2.3, this generating set admits a finite I-completion that forms an involutive basis of the ideal I. As a consequence, we deduce the following result.

Proposition.

Let I be a noetherian involutive division on M(x 1 , . . . , x n ). Any monomial ideal of K[x 1 , . . . , x n ] admits an I-involutive basis.

The objective of this section is to show how to extend this result to polynomial ideals with respect to a monomial order. In the remainder of this subsection we assume that a monomial order ď is fixed on M(x 1 , . . . , x n ).

Multiplicative variables for a polynomial.

Let I be an involutive division on M(x 1 , . . . , x n ). Let F be a set of polynomials of K[x 1 , . . . , x n ] and f be a polynomial in F. We define the set of I-multiplicative (resp. I-non-multiplicative) variables of the polynomial f with respect to F and the monomial order ď by setting

Mult F I,ď (f) = Mult lmď(F) I (lm ď (f)), ( resp. NMult F I,ď (f) = NMult lmď(F) I (lm ď (f)) ).
Note that the I-multiplicative variables depend on the monomial order ď used to determine leading monomials of polynomials of F.

Polynomial reduction.

The polynomial division can be describe as a rewriting operation as follows. Given polynomials f and g in K[x 1 , . . . , x n ], we say that f is reducible modulo g with respect to ď, if there is a term λu in f whose monomial u is divisible by lm ď (g) for the usual monomial division.

In that case, we denote such a reduction by f g ď / / h, where h = f -λu lt ď (g) g.

Involutive reduction on polynomials

For a set G of polynomials of K[x 1 , . . . , x n ], we define a rewriting system corresponding to the division modulo G by considering the relation reduction G ď / / defined by

G ď / / = ď gPG g ď / / .
We will denote by G ď / / ˚the reflexive and transitive closure of the relation G ď / / .

Involutive reduction.

In a same way, we define a notion of reduction with respect to an involutive division I on M(x 1 , . . . , x n ). Let g be a polynomial in

K[x 1 , . . . , x n ]. A polynomial f in K[x 1 , . . . , x n ]
is said to be I-reducible modulo g with respect to the monomial order ď, if there is a term λu of f, with λ P K -{0} and u P M(x 1 , . . . , x n ), such that

u = lm ď (g)v and v P M(Mult lmď(G) I (g)).
Such a I-reduction is denoted by f g ď / / I h, where

h = f - λ lc ď (g) gv = f - λu lt ď (g) g.
5.1.6. Involutive normal forms. Let G be a set of polynomials of K[x 1 , . . . , x n ]. A polynomial f is said to be I-reducible modulo G with respect to the monomial order ď, if there exists a polynomial g in G such that f is I-reducible modulo g. We will denote by G ď / / I this reduction relation defined by

G ď / / I = ď gPG g ď / / I .
The polynomial f is said to be in I-irreducible modulo G if it is not I-reducible modulo G. A I-normal form of a polynomial f is a I-irreducible polynomial h such that there is a sequence of reductions from f to h:

f G ď / / I f 1 G ď / / I f 2 G ď / / I . . . G ď / / I h,
The procedure InvReduction I,ď (f, G) computes a normal form of f modulo G with respect to the division I. The proofs of its correctness and termination can be achieved as in the case of the division procedure for the classical polynomial division, see for instance [BW93, Proposition 5.22]. 5.1.7. Remarks. Note that the involutive normal form of a polynomial f is not unique in general, it depends on the order in which the reductions are applied. Suppose that, for each polynomial f we have a I-normal form with respect to the monomial order ď, that is denoted by nf G I,ď (f). Denote by nf G ď (f) a normal form of a polynomial f obtained by the classical division procedure. In general, the equality nf G ď (f) = nf G I,ď (f) does not hold. Indeed, suppose that G = {x 1 , x 2 } and consider the Thomas division T defined in 3.3.1. We have nf G ď (x 1 x 2 ) = 0, while nf G T,ď (x 1 x 2 ) = x 1 x 2 because the monomial x 1 x 2 is a T-irreducible modulo G. Output: h a I-normal form of the polynomial f with respect to the monomial order ď 5.1.8. Autoreduction. Recall from 3.1.4 that a set of monomials U is I-autoreduced with respect to an involutive division I if it does not contain a monomial I-divisible by another monomial of U. In that case, any monomial in M(x 1 , . . . , x n ) admits at most one I-involutive divisor in U.

A set G of polynomials of K[x 1 , . . . , x n ] is said to be I-autoreduced with respect to the monomial order ď, if it satisfies the two following conditions: i) (left I-autoreducibility) the set of leading monomials lm ď (G) is I-autoreduced, ii) (right I-autoreducibility) for any g in G, there is no term λu ‰ lt ď (g) of g, with λ ‰ 0 and u P cone I (lm ď (G)).

Note that the condition i), (resp. ii)) corresponds to the left-reducibility (resp. right-reducibility) property given in 4.5.2. Any finite set G of polynomials of K[x 1 , . . . , x n ] can be transformed into a finite I-autoreduced set that generates the same ideal by Procedure 9. The proofs of correctness and termination are immediate consequences of the property of involutive division.

Proposition ([GB98a, Theorem 5.4]).

Let G be an I-autoreduced set of polynomials of K[x 1 , . . . , x n ] and f be a polynomial in K[x 1 , . . . , x n ]. Then nf G I,ď (f) = 0 if and only if the polynomial f can be written in the form f = ÿ i,j β i,j g i v i,j , where g i P G, β i,j P K and v i,j P M(Mult lmď(G) I (lm ď (g i ))), with lm ď (v i,j ) ‰ lm ď (v i,k ) if j ‰ k.

Proof. Suppose that nf G I,ď (f) = 0, then there exists a sequence of involutive reductions modulo G: f = f 0 g 1 / / I f 1 g 2 / / I f 2 g 3 / / I . . . g k-1 / / I f k = 0, terminating on 0. For any 1 ď i ď k, we have f i = f i-1 -λ i,j lcď(g i ) g i v i,j , with v i,j P M(Mult lmď(G) I (lm ď (g i ))). This show the equality. Output: H an I-autoreduced set generating the same ideal as G does.

Conversely, suppose that f can be written in the given form. Then the leading monomial lm ď (f) admits an involutive I-divisor in lm ď (G). Indeed, the leading monomial of the decomposition of f has the following form: lm ď ÿ i,j g i v i,j = lm ď (g i 0 )v i 0 ,j 0 .

The monomial lm ď (g i 0 ) is an involutive divisor of lm ď (f) and by autoreduction hypothesis, such a divisor is unique. Hence the monomial lm ď (g i 0 )v i 0 ,j 0 does not divide other monomial of the form lm ď (g i )v i,j . We apply the reduction g i 0 v i 0 ,j 0 g i 0 ď / / I 0 on the decomposition. In this way, we define a sequence of reductions ending on 0. This proves that nf G I,ď (f) = 0.

5.1.10. Unicity and additivity of involutive normal forms. From decomposition 5.1.9, we deduce two important properties on involutive normal forms. Let G be a I-autoreduced set of polynomials of K[x 1 , . . . , x n ] and f be a polynomial. Suppose that h 1 = nf G I,ď (f) and h 2 = nf G I,ď (f) are two involutive normal forms of f. From the involutive reduction procedure that computes this two normal forms, we deduces two decompositions

h 1 = f - ÿ i,j β i,j g i v i,j , h 2 = f - ÿ i,j
β 1 i,j g i v 1 i,j .

As a consequence, h 1 -h 2 admits a decomposition as in Proposition 5.1.9, hence nf G I,ď (h 1 -h 2 ) = 0. The polynomial h 1 -h 2 being in normal form, we deduce that h 1 = h 2 . This shows the unicity of the involutive normal form modulo an autoreduced set of polynomials.

Example.

We set U = {x 1 , x 2 }. We consider the deglex order induced by x 2 ą x 1 and the Thomas division T. The monomial x 1 x 2 is T-irreducible modulo U. Hence, it does not admits zero as T-normal form and the set U cannot be an T-involutive basis of the ideal generated by U. In turn the set {x 1 , x 2 , x 1 x 2 } is a T-involutive basis of the ideal generated by U.

We now consider the Janet division J. We have deg 2 (U) = 1, [0] = {x 1 } and [1] = {x 2 }. The J-multiplicative variables are given by the following table:

u Mult U J (u) x 1 x 1 x 2 x 1 x 2
It follows that the monomial x 1 x 2 is not J-reducible by x 1 modulo U. However, it is J-reducible by x 2 . Hence the set U form a J-involutive basis.

As an immediate consequence of involutive bases, the involutive reduction procedure provides a decision method of the ideal membership problem, as stated by the following result.

Proposition ([GB98a, Corollary 6.4]).

Let I be an ideal of K[x 1 , . . . , x n ], and G be an I-involutive basis of I with respect to a monomial order ď. For any polynomial f of K[x 1 , . . . , x n ], we have f P I if and only if nf G I,ď (f) = 0.

Proof. If nf G I,ď (f) = 0, then the polynomial f can be written in the form 5.1.9. This shows that f belongs to the ideal I. Conversely, suppose that f belongs to I, then it can be decomposed in the form

f = ÿ i h i g i ,
where h i = ř j λ i,j u i,j P K[x 1 , . . . , x n ]. The set G being I-involutive, we have nf G I,ď (u i,j g i ) = 0, for any monomials u i,j and g i in G. By linearity of the operator nf G I,ď (-), we deduce that nf G I,ď (f) = 0.

5.2.6. Local involutivity. V. P. Gerdt and Y. A. Blinkov introduced in [GB98a] the notion of local involutivity for a set of polynomials. A set G of polynomials of K[x 1 , . . . , x n ] is said to be locally involutive if the following condition holds @g P G, @x P NMult lmď(G) I

(lm ď (g)), nf G I,ď (gx) = 0.

For a continuous involutive division I, they prove that a I-autoreduced set of polynomials is involutive if and only if it is locally involutive, [GB98a, Theorem 6.5]. This criterion of local involutivity is essential for computing the completion of a set of polynomials into an involutive basis. Note that this result is analogous to the critical pair lemma in rewriting theory stating that a rewriting system is locally confluent if and only if all its critical pairs are confluent, see e.g. [GM18, Sect. 3.1]. Together with the Newman Lemma stating that for terminating rewriting, local confluence and confluence are equivalent properties, this gives a constructive method to prove confluence in a terminating rewriting system by analyzing the confluence of critical pairs. 5.2.7. Completion procedure. For a given monomial order ď on M(x 1 , . . . , x n ) and a continuous and constructive involutive division I, as defined in [GB98a, Definition 4.12], the Procedure 10 computes an I-involutive basis of an ideal from a set of generators of the ideal. We refer the reader to [GB98a, Sect. 8] or [START_REF] Evans | Noncommutative Involutive Bases[END_REF]Sect. 4.4] for correctness of this procedure and conditions for its termination. This procedure is in the same vein as the completion procedure for rewriting systems by Knuth-Bendix, [START_REF] Knuth | Simple word problems in universal algebras[END_REF], and completion procedure for commutative polynomials by Buchberger, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF]. Output: G an I-involutive basis of the ideal generated by F with respect to the monomial order ď.

Example: computation of an involutive basis.

Let I be the ideal of Q[x 1 , x 2 ] generated by the set F = {f 1 , f 2 }, where the polynomial f 1 and f 2 are defined by

f 1 = x 2 2 -2x 1 x 2 + 1, f 2 = x 1 x 2 -3x 2 1 -1.
We compute an involutive basis of the ideal I with respect to the Janet division J and the deglex order induced by x 2 ą x 1 . We have lm(f 1 ) = x 2 2 and lm(f 2 ) = x 1 x 2 , hence the following J-reductions

x 2 2 f 1 / / J 2x 1 x 2 -1, x 1 x 2 f 2 / / J 3x 2 1 + 1.

Involutive bases

The polynomial f 1 is J-reducible by f 2 , we have

f 1 f 2 / / J x 2 2 -2(3x 2 1 + 1) + 1 = x 2 2 -6x 2 1 -1.
Thus, we set f 3 = x 2 2 -6x 2 1 -1 and we consider the reduction

x 2 2 f 3 / / J 6x 2 1 + 1.

The set F 1 = {f 2 , f 3 } is J-autoreduced and generates the ideal I.

Let us compute the multiplicative variables of the polynomials f 2 and f 3 . We have deg 2 (F 1 ) = deg 2 ({x 2 2 , x 1 x 2 }) = 2, [1] = {x 1 x 2 } and [2] = {x 2 2 }. Hence the J-multiplicative variables are given by the following table:

f lm(f) Mult F 1 J (f) f 2 x 1 x 2 x 1 f 3 x 2 2 x 1 x 2
The polynomial f 2 x 2 = x 1 x 2 2 -3x 2 1 x 2 -x 2 is the only non-multiplicative prolongation to consider. This prolongation can be reduced as follows f 2 x 2 f 3 / / J 6x 3 1 + x 1 -3x 2 1 x 2 -x 2 f 2 / / J -3x 3 1 -2x 1 -x 2 .

We set f 4 = -3x 3 1 -2x 1 -x 2 , whose associated reduction is

x 3 1 f 4 / / J - 2 3 x 1 - 1 3 x 2 ,
and we set F 1 = {f 2 , f 3 , f 4 }. We have deg 2 (F 1 ) = 2, [0] = {x 3 1 }, [1] = {x 1 x 2 } and [2] = {x 2 2 }. Hence the J-multiplicative variables are given by the following table:

f lm(f) Mult F 1 J (f) f 2 x 1 x 2 x 1 f 3 x 2 2 x 1 x 2 f 4 x 3 1 x 1
There are two non-multiplicative prolongations to consider:

f 2 x 2 = x 1 x 2 2 -3x 2 1 x 2 -x 2 , f 4 x 2 = -3x 3 1 x 2 -2x 1 x 2 -x 2 2 .
We have lm(f 2 x 2 ) = x 1 x 2 2 ă lm(f 4 x 2 ) = x 3 1 x 2 . Hence the prolongation f 2 x 2 must first be examined. We have the following reductions: f 2 x 2 f 3 / / J 6x 3 1 + x 1 -3x 2 1 x 2 -x 2 f 2 / / J -3x 3 1 -2x 1 -x 2 f 4 / / J 0.

Procedure 1 :

 1 Complete(U) Input: U a finite set of monomials in M(x 1 , . . . , x n ) Output: A finite set J(U) satisfying the condition of Theorem 2.2.8. begin r U ← U while exists u P r U and x P NMult

3. Monomial involutive bases Procedure 2 :

 2 Involutive completion procedure. Input: U a finite set of monomials of M(x 1 , . . . , x n ) begin r U ← U while exist u P r U and x P NMult r U I (u) such that ux does not have I-involutive divisor in r U do Choose such a u and x corresponding to the smallest monomial ux with respect to the monomial order ď r U ← r U Y {ux} end end Output: r U the minimal involutive completion of the set U. i) ux does not have an I-involutive divisor in U, ii) any non-multiplicative prolongation vy ‰ ux of a monomial v in U that divides ux has an I-involutive divisor in U, the monomial ux cannot be I-involutively divided by a monomial w in cone I (U) with respect to U Y {w}.

4. 1

 1 .3. Janet's orders on derivatives. Let α = (α 1 , . . . , α n ) and β = (β 1 , . . . , β n ) be in N n . Let ϕ be an analytic function. The derivative D α ϕ is said to be posterior (resp. anterior) to D β ϕ if |α| ą |β| (resp. |α| ă |β|) or |α| = |β| and α n ą β n (resp. α n ă β n ).

s

  these data, we define the s + 1 weights Γ of the partial derivative D α ϕ j with α = (α 1 , . . . , α n ) in N n by setting

  The equation (21) corresponds to a combination of the two equations E

Procedure 8 :

 8 InvReduction I,ď (f, G) Input: a polynomial f in K[x 1 , . . . , x n ] and a finite subset G of K[x 1 , . . . , x n ]. begin h ← f while exist g in G and a term t of h such that lm ď (g)| lmď(G) I t lcď(t) do choose such a g h ← h -t ltď(g) g end end

Procedure 10 :

 10 InvolutiveCompletionBasis I,ď (F)Input: F a finite set of polynomials in K[x 1 , . . . , x n ]. begin F 1 ← Autoreduce I,ď (F) G ← H while G = H do P ← {fx | f P F 1 , x P NMult F 1 I,ď (f)} p 1 ← 0 while P ‰ H and p 1 = 0 do choose p in P such that lm ď (p) is minimal with respect to ď. P ← P \ {p} p 1 ← InvReduction I,ď (p, F 1 ) end if p 1 ‰ 0 then F 1 ← Autoreduce I,ď (F 1 Y {p 1 }) end else G ← F 1 end end end

Higher-order finite linear PDE systems 4.3.2. Completeness with respect to Janet's order.

  Let us fix an order x n ą x n-1 ą . . . ą x 1 on variables. By the isomorphism of Proposition 2.1.2, that identifies monomial partial differential operators

					4.3.	
						) namely
	by the following equality					
	B By λ	Bϕ By µ	=	B By µ	Bϕ By λ	,

  Procedure 9: Autoreduce I,ď (G) Input: G a finite subset of K[x 1 , . . . , x n ].while exists h P H and g P H \ {h} such that h is I-reducible modulo g with respect to ď do

	begin
	H ← G
	H 1 ← H
	choose such a h
	H 1 ← H \ {h} h 1 ← nf H 1 I,ď (h) if h 1 = 0 then
	H ← H 1
	end
	else
	H ← H 1 Y {h 1 }
	end
	end
	end
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Pommaret division.

In [START_REF] Pommaret | Systems of partial differential equations and Lie pseudogroups[END_REF], Pommaret studied an involutive division that is defined globally, that is the multiplicative variables for the Pommaret division does not depend of a given subset of monomials. In this way, Pommaret's division can be defined on an infinite set of monomials.

We fix an order on the variables x 1 ą x 2 ą . . . ą x n . Given a monomial u = x α 1 1 . . . x α k k , with α k ą 0, the Pommaret multiplicative variables for u are defined by x j P Mult M(x 1 ,...,xn) P (u), if j ě k, and x j P NMult M(x 1 ,...,xn) P (u), if j ă k.

We set Mult M(x 1 ,...,xn) P

(1) = {x 1 , . . . , x n }. The Pommaret division is a continuous involutive division that is not noetherian, [START_REF] Gerdt | Involutive bases of polynomial ideals[END_REF]. The Janet division is also a refinement of the Pommaret division, that is, for an autoreduced finite set of monomials U, the following inclusions hold for any monomial u in U, Mult U P (u) Ď Mult U J (u) and NMult U J (u) Ď NMult U P (u). Finally, let us remark that the separation of variables into multiplicative and non-multiplicative ones in the Pommaret division was used first by Janet in [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF]§20]. For this reason, the terminology Pommaret division is not historically correct. We refer the reader to the monograph by W. M. Seiler [Sei10, Section 3.5] for an historical account.

P

In this section, we extend the results presented in Section 2 on monomial systems to linear (polynomial) systems. All PDE systems are considered in analytic categories, namely all unknown functions, coefficients and initial conditions are supposed to be analytic. In a first part, we recall the notion of principal derivative with respect to an order on derivatives introduced by M. Janet. This notion is used to give an algebraic characterization of complete integrability conditions of a PDE system. Then we present a procedure that decides whether a given finite linear PDE system can be transformed into a completely integrable linear PDE system. Finally, we recall the algebraic formulation of involutivity introduced by M. Janet in [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF].

Parametric and principal derivatives

4.1.1. Motivations. In [Jan29, Chapter 2], M. Janet first considered the following PDE of one unknown function on C n :

where the functions a i,j (x), a i (x), b r (x), c(x) and f(x) are analytic functions in a neighborhood of a point P = (x 0 1 , . . . , x 0 n ) in C n . Given two analytic functions ϕ 1 and ϕ 2 in a neighborhood U Q of a point Q = (x 0 1 , . . . , x 0 n-1 ) in C n-1 , M. Janet studied the existence of solutions of equation (6) under the following initial condition:

holds in a neighborhood of the point Q. In 4.4.2, we will formulate such condition for higher-order linear PDE systems with several unknown functions, called initial condition.

for any 1 ď λ, µ ď h. Following (9), we deduce that

Hence, the integrability condition is expressed as

for any 1 ď λ ‰ µ ď h. When the PDE system (Σ) defined in (9) satisfies relation (10), the system (Σ) is said to be completely integrable.

Theorem.

Suppose that the PDE system (Σ) in ( 9) is completely integrable. Let P be a point in C n and ϕ(z 1 , . . . , z k ) be an analytic function in the neighborhood of the point π(P), where π : C n → C k denotes the canonical projection (y 1 , . . . , y h , z 1 , . . . z k ) Þ → (z 1 , . . . , z k ). Then, the system (Σ) admits only one analytic solution satisfying u = ϕ ˝π in a neighborhood of the point P.

Higher-order finite linear PDE systems

In [Jan29, §39], M. Janet discussed the existence of solutions of a finite linear PDE system of one unknown function ϕ in which each equation is of the following form:

All the functions a i,j are supposed analytic in a neighborhood of a point P in C n .

4.3.1.

Principal and parametric derivatives. Consider Janet's order ď J on derivatives as the generalization defined in 4.1.3. We suppose that each equation of the system (Σ) defined by (11) satisfies the following two conditions: i) D i,j ϕ is anterior to D i ϕ, for any i in I, ii) all the D i 's for i in I are distinct.

We extend the notion of principal derivative introduced in 4.1.4 for one PDE equation to a system of the form (11) as follows. The derivative D i ϕ, for i in I, and all its derivatives are called principal derivatives of the PDE system (Σ) given in (11) with respect to Janet's order. Any other derivative of ϕ is called parametric derivative.

Algebra, geometry and PDE

4.7.2. Geometrical remark. M. Janet gave the following geometrical observation about the characteristic function. Suppose that p is sufficiently big so that the function χ(p) is polynomial. Let λ -1 be the degree of the leading term of the polynomial χ(p). Consider the projective variety V(I) defined by

The integer µ = lc(χ(p))(λ -1)! corresponds to the degree of the variety V(I), [START_REF] Hilbert | Ueber die Theorie der algebraischen Formen[END_REF]. If χ(p) = 0 then the variety V(I) is empty, in the others cases V(I) is a sub-variety of P n-1 of dimension λ -1.

Example, [Jan29, §53]. Consider the monomial ideal

The characteristic function χ(p) of the ideal I is constant equal to 3. The unique point that annihilates the ideal I is (0, 0, 1) with multiplicity 3. This result is compatible with the fact that the zeros of the ideal J generated by the following polynomials

consists of the three points (a, c, 1), (a, d, 1), (b, c, 1).

The ideal-PDE dictionary.

Let I be a homogeneous ideal of K[x 1 , . . . , x n ] generated by a set F = {f 1 , . . . , f k } of polynomials. For a fixed monomial order on M(x 1 , . . . , x n ), we set U = lm(F). Consider the ring isomorphism

To any polynomial f in I we associate a PDE Φ(f)ϕ = 0. In this way, the ideal I defines a PDE system (Σ(I)). Let λ and µ be the integers associated to the characteristic function χ(p) as defined in 4.7.2. The maximal number of arguments of the arbitrary analytic functions used to define the initial conditions

of the PDE system (Σ(I)), as defined in (12), corresponds to λ, explicitly

where U A denotes the set of complementary monomials of U. Moreover, the number of arbitrary analytic functions with λ arguments in the initial conditions

Conversely, let (Σ) be a PDE system with one unknown function ϕ of independent variables x 1 , . . . , x n . Consider the set, denoted by ldo(Σ), made of differential operators associated to the principal derivatives of PDE in (Σ), with respect to Janet's order on derivatives defined in 4.1.3. By isomorphism Φ, to any monomial differential operator

Let us denote by I(Σ) the ideal of K[x 1 , . . . , x n ] generated by Φ -1 (ldo(Σ)). Note that, by construction the ideal I(Σ) is monomial and for any monomial u in I(Σ) the derivative Φ(u)ϕ is a principal derivative of the PDE system (Σ) as defined in Section 4.3.1. In [Jan29, §54], M. Janet called characteristic form any element of the ideal I(Σ).

In this way, M. Janet concluded that the degree of generality of the solutions of a linear PDE system with one unknown function is described by the leading term of the charateristic function of the ideal of characteristic forms defined in 4.7.1. 4.7.5. The particular case of first order systems. Consider a completely integrable first order linear PDE system (Σ). The number λ, defined in 4.7.4, that is equal to the maximal number of arguments of the arbitrary functions used to define the initial conditions of the system (Σ), is also equal in this case to the cardinal of the set U A of complementary monomials of the set of monomials U = Φ -1 (ldo(Σ)).

Involutive systems

In this subsection, we recall the algebraic formulation of involutive systems as introduced by M. Janet. This formulation first appeared in its work in [START_REF] Janet | Les caractères des modules de formes et les systèmes d'équations aux dérivées partielles[END_REF] and [START_REF] Janet | Sur les formes canoniques invariantes des systèmes algébriques et différentiels[END_REF]. But notice that this notion comes from the work of É. Cartan in [START_REF] Cartan | Sur la structure des groupes infinis de transformations[END_REF].

Characters and derived systems.

Let I be a proper ideal of K[x 1 , . . . , x n ] generated by homogeneous polynomials. M. Janet introduced the characters of the homogeneous component I p as the non-negative integers σ 1 , σ 2 , . . . , σ n defined inductively by the following formula

Note that the sum σ 1 + σ 2 + . . . + σ n corresponds to the codimension of

Given a positive integer λ, we set

We define the non-negative integers σ

n by the relations

For λ = 1, M. Janet called J p+1 the derived system of I p . Let us mention some properties on these numbers proved by M. Janet.

Lemma. We set σ

h and σ 2 h = σ

(2)

. . + nσ n , the two following relations hold:

We refer the reader to [START_REF] Janet | Leçons sur les systèmes d'équations aux dérivées partielles[END_REF] for a proof of the relations of Lemma 4.8.2.

Conclusive remarks

4.8.3. Involutive systems. The homogenous component I p is said to be in involution when the following equality holds:

Following properties ii)-a) of Lemma 4.8.2, if the component I p is in involution, then the component I p+k is in involution for all k ě 0.

Proposition ([Jan29, §56 & §57]). The characters of a homogeneous component I p satisfy the two following properties

Polynomiality of characteristic function.

Suppose that the homogeneous component I p is in involution. We show that the characteristic function χ(P) defined in 4.7.1 is polynomial for P ě p. Using Lemma 4.8.2, we show by induction that for any 1 ď h ă n and any positive integer λ, we have the following relation:

The codimension of

This proves the polynomiality of the characteristic function of the ideal I for sufficiently big p.

Conclusive remarks

Recall that the so-called Cartan-Kähler theory is about the Pfaffian systems on a differentiable (or analytic) manifold and its aim is to judge whether a given system is prolongeable to a completely integrable system or an incompatible system. Their method relies on a geometrical argument, which is to construct integral submanifolds of the system inductively. Here, a step of the induction is to find an integral submanifold of dimension i + 1 containing the integral submanifold of dimension i, and their theory does not allow one to see whether such step can be achieved or not. Janet's method is, even if it works only locally, completely algebraic and algorithmic so that it partially completes the parts where one cannot treat with Cartan-Kähler theory.

By these works, there are two seemingly different notions of involutivity; the one by G. Frobenius, G. Darboux and É. Cartan and the other by M. Janet. The fact is that at each step of the induction in the Cartan-Kähler theory, one has to study a system of PDE. Its system is called in involution (cf. compare those in Sections 1.2.6 with 4.8) if it can be written in a canonical system, as defined in 4.5.2, if necessary after a change of coordinates. Following the algebraic definition of involutivity by M. Janet, several

Polynomial involutive bases

In a same manner we prove the following additivity formula for any polynomial f and f 1 :

Involutive bases

We fix a monomial order ď on M(x 1 , . . . , x n ).

Involutive bases.

Let I be an ideal of

x n ] is an I-involutive basis of the ideal I with respect the monomial order ď, if G is I-autoreduced and satisfies the following property:

In other words, for any polynomial g in G and monomial u in M(x 1 , . . . , x n ), there is a sequence of involutive reductions:

In particular, we recover the notion of involutive sets of monomials given in 3.2.1. Indeed, if G is an I-involutive basis, then lm ď (G) is an I-involutive set of monomials of M(x 1 , . . . , x n ).

Proposition. Let I be an involutive division on

Proof. Let f be a polynomial of K[x 1 , . . . , x n ]. By definition of involutive reduction, if f is I-reducible modulo G, then it is reducible for the relation G ď / / . Conversely, suppose that f is reducible by a polynomial g in G. That is there exists a term λu in f, where λ is a nonzero scalar and u is a monomial of M(x 1 , . . . , x n ) such that u = lm ď (g)v, where v P M(x 1 , . . . , x n ). The set G being involutive, we have nf G I,ď (gv) = 0. Following Proposition 5.1.9, the polynomial gv can written in the form:

where g i P G, β i,j P K and v i,j P M(Mult

). In particular, this shows that the monomial u admits an involutive divisor in G.

Unicity of normal forms.

Let us mention an important consequence of Proposition 5.2.2 given in [GB98a, Theorem 7.1]. Let G be a J-involutive subset of K[x 1 , . . . , x n ], for any reduction procedure that computes a normal form nf G ď (f) of a polynomial f in K[x 1 , . . . , x n ] and any involutive reduction procedure that computes an involutive normal form nf G I,ď (f), as a consequence of unicity of the involutive normal form and Proposition 5.2.2, we have

Hence, there is no polynomial to add. The other non-multiplicative prolongation is f 4 x 2 , that can be reduced to an J-irreducible polynomial as follows:

All the non-multiplicative prolongations are J-reducible to 0, it follows that the set F 1 is a Janet basis of the ideal I.

Involutive bases and Gröbner bases

In this subsection, we recall the notion of Gröbner basis and we show that any involutive basis is a Gröbner basis. We fix a monomial order ď on M(x 1 , . . . , x n ).

Gröbner bases.

A subset G of K[x 1 , . . . , x n ] is a Gröbner basis with respect to the monomial order ď if it is finite and satisfies one of the following equivalent conditions

with µ = ppcm(lm ď (g 1 ), lm ď (g 2 )), is the S-polynomial of g 1 and g 2 with respect to the monomial order ď, ix) any critical pair µ

We refer the reader to [BW93, Theorem 5.35] for proofs of these equivalences, see also [GHM19, Section 3], [START_REF] Malbos | Noncommutative linear rewriting: applications and generalizations[END_REF]. The equivalence of conditions i)-iv) are classical results for terminating rewriting systems. Note that condition viii) corresponds to the Buchberger criterion, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF], and condition ix) is a formulation of this criterion in rewriting terms. We refer to [BN98, Chapter 8] for the rewriting interpretation of the Buchberger algorithm.

A Gröbner basis of an ideal I of K[x 1 , . . . , x n ] with respect to a monomial order ď is a Gröbner basis with respect to ď that generates the ideal I. This can be also be formulated saying that G is a generating set for I such that Id(lt(G)) = Id(lt(I)).

Involutive bases and Gröbner bases.

Let I be an ideal of K[x 1 , . . . , x n ]. Suppose that G is an involutive basis of the ideal I with respect to an involutive division I and the monomial order ď. In particular, the set G generates the ideal I. For every g 1 and g 2 in G, we consider the S-polynomial S ď (g 1 , g 2 ) with respect to ď. By definition, the polynomial S ď (g 1 , g 2 ) belongs to the ideal I. By involutivity of the set G and following 5.2.3 and Proposition 5.2.5, we have nf G (S ď (g 1 , g 2 )) = nf G I (S ď (g 1 , g 2 )) = 0.

In this way, G is a Gröbner basis of the ideal I by the Buchberger criterion viii). We have thus proved the following result due to V.P. Gerdt and Y.A. Blinkov.

Theorem ([GB98a, Corollary 7.2]).

Let ď be a monomial order on M(x 1 , . . . , x n ) and I be an involutive division on K[x 1 , . . . , x n ]. Any I-involutive basis of an ideal I of K[x 1 , . . . , x n ] is a Gröbner basis of I.

The involutive division used to define involutive bases being a refinement of the classical division with respect to which the Gröbner bases are defined, the converse of this result is false in general. 

R [BCG