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FROM ANALYTICAL MECHANICAL PROBLEMS
TO REWRITING THEORY THROUGH M. JANET

KENIT [OHARA PHILIPPE MALBOS

Abstract — This note surveys the historical background of the Grobner basis theory for D-modules
and linear rewriting theory. The objective is to present a deep interaction of these two fields largely
developed in algebra throughout the twentieth century. We recall the work of M. Janet on the
algebraic analysis on linear partial differential systems that leads to the notion of involutive division.
We present some generalizations of the division introduced by M. Janet and their relations with
Grobner basis theory.

M.S.C. 2010 — 01-08, 13P10, 12H05, 35A25, 58A15, 68Q42.
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INTRODUCTION

Several lectures of the Kobe-Lyon summer schoo][] recalled a deep interaction between Grobner bases for
D-modules and linear rewriting theory. The objective of this note is to survey the historical background
of these two fields largely developed in algebra throughout the twentieth century and to present their
deep relations. Completion methods are the main streams for these computational theories. In Grobner
bases theory, they were motivated by algorithmic problems in elimination theory such as computations
in quotient polynomial rings modulo an ideal, manipulating algebraic equations and computing Hilbert
series. In rewriting theory, they were motivated by computation of normal forms and linear basis for
algebras and computational problems in homological algebra.

In this note we present the precursory ideas of the french mathematician M. Janet on the algebraic
formulation of completion methods for polynomial systems. Indeed, the problem of completion already
appear in the seminal work of M. Janet in 1920 in his thesis [Jan20], that proposed a very original
approach by formal methods in the study of linear partial differential equations systems, PDE systems
for short. Its constructions were formulated in terms of polynomial systems, but without the notion of
ideal and of Noetherian induction. These two notions were introduced by E. Noether in 1921 [Noe21]
for commutative rings.

The work of M. Janet was forgotten for about a half-century. It was rediscovered by F. Schwarz
in 1992 in [Sch92]. Our exposition in this note does not follow the historical order. The first section
deals with the problems that motivate the questions on PDE undertaken by M. Janet. In Section [2] we
present completion for monomial PDE systems as introduced by Janet in his monograph [Jan29]. This
completion used an original division procedure on monomials. In Section [3| we present axiomatisation
of this Janet’s division, called involutive division, and due to V. P. Gerdt. The last two sections concern
the case of polynomial PDE systems, with the Janet’s completion method used to reduce a linear PDE
system to a canonical form and the axiomatisation of the reductions involved in terms of rewriting theory.

From analytical mechanical problems to involutive division

From Lagrange to Janet. The analysis on linear PDE systems was mainly motivated in 18th century
by resolution of analytical mechanical problems. The seminal work of J.-L. Lagrange gave the first
systematic study of PDE systems launched by such problems. The case of PDE of one unknown function
of several variables has been treated by J. F. Pfaff. The Pfaff problem will be recalled in [I.1] This
theory was developed in two different directions: toward the general theory of differential invariants and
the existence of solutions under given initial conditions. The differential invariants approachs will be
discussed in[I.T]and [I.1.4] The question of the existence of solution satisfying some initial conditions
was formulated in the Cauchy-Kowalevsky theorem recalled in [I.1.3]

Exterior differential systems. Following the work of H. Grassmann in 1844 exhibiting the rules of the
exterior algebra computation, E. Cartan introduced exterior differential calculus in 1899. This algebraic
calculus allowed him to describe a PDE system by an exterior differential system that is independent of the
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choice of coordinates. This leaded to the so called Cartan-Kéhler theory, that we will review in Section
[I.2] We will present a geometrical property of involutivity on exterior differential systems in[I.2.6] that
motivates the formal methods introduced by M. Janet for analysis on linear PDE systems.

Generalizations of Cauchy-Kowalevsky’s theorem. Another origin of the work of M. Janet is the
Cauchy-Kowalevsky’s theorem that gives the initial conditions of solvability of a family of PDE systems
that we describe in E. Delassus, C. Riquier and M. Janet attempted to generalize this result to a
wider class of linear PDE systems which in turn leaded them to introduce the computation of a notion of
normal form for such systems.

The Janet monograph. Section [2] presents the historical motivations that leaded M. Janet to introduce
an algebraic algorithm in order to compute normal form of linear PDE systems. In particular, we
recall the problem of computation of inverse of derivation introduced in the monograph of M. Janet,
& Legons sur les systéemes d’équations aux dérivées partielles > on the analysis on linear PDE systems,
published in 1929, [Jan29]]. In this monograph M. Janet introduced formal methods based on polynomial
computations for analysis on linear PDE systems. He developed an algorithmic approach for analyzing
ideals in the polynomial ring K[%, ceey %] of differential operators with constant coefficients. Having
the ring isomorphism between this ring and the ring K[x;,...,xn] of polynomials with n variables
in mind, M. Janet gave its algorithmic construction in this latter ring. He began by introducing some
remarkable properties of monomial ideals. In particular, he recovered the Dickson’s Lemma, [Dic13]], on
the finiteness generation of monomial ideal. This property is essential for Noetherian properties on the
set of monomials. Note that, M. Janet wasn’t familiar with the axiomatisation of the algebraic structure
of ideal and the property of Noetherianity already introduced by E. Noether in [Noe21]] and [Noe23|.
Note also that the Dickson lemma was published in 1913 in a paper on numbers theory in an American
journal. Due to the first world war, it would take long times before these works were accessible to french
mathematical community. The Janet’s algebraic constructions given in his monograph will be recalled in
Section |2 for monomial systems and in Section 4f for polynomial systems.

Janet’s multiplicative variables. The computation on monomial and polynomial ideals performed by
M. Janet are founded on the notion of multiplicative variable that he introduced in his thesis, [Jan20].
Given an ideal generated by a set of monomials, he distinguished the family of monomials contained
in the ideal and those contained in the complement of the ideal. The notion of multiplicative and non-
multiplicative variables appear in order to stratify these two families of monomials. We will recall this
notion of multiplicativity on variables in[2.1.10} This leads to a refinement of the classical division on
monomials, nowadays called Janet’s division.

Involutive division and Janet’s completion procedure. The notion of multiplicative variable is local
in the sense that it is defined with respect to a subset U of the set of all monomials. A monomial uin U
is said to be a Janet divisor of a monomial w with respect to U, if w = uv and all variables occurring
in v are multiplicative with respect to U. In this way, we distinguish the set cones(U) of monomials
having a Janet divisor in U, called multiplicative or involutive cone of U, to the set cone(U) of multiple of
monomials in U for the classical division. The Janet division being a refinement of the classical division,
the set coneg(U) is a subset of cone(U). M. Janet called a set of monomials U complete when this
inclusion is an equality.



For a monomial PDE system (X) of the form

aoc1+...+ocn

mq’ = folX1,%2y ...y Xn),
where (xq,...,0,) belongs to a subset I of N™, M. Janet associated the set of monomials
Im(Z) = {x{"...x% | (ay...,00n) € I}. The compatibility conditions of the system (Z) corre-

sponds to the factorizations of the monomials ux in coney(Im(X)), where u is in Im(X) and x is a
non-multiplicative variable of u with respect to Im(Z), in the sense given in[2.3.1] By definition, for any
monomial u in Im(X) and x non-multiplicative variable of u with respect to Im(X), the monomial ux
admits such a factorization if and only if Im(X) is complete, see Propositionm

The main procedure presented in Janet’s monograph [Jan29] completes in finite number of operations
a finite set of monomials U into a complete set of monomials U that contains U. This procedure consists
in analyzing all the local default of completeness, by adding all the monomials ux where u belongs to U
and x is a non-multiplicative variable for u with respect to U. This procedure will be recalled in[2.2.9]
A generalization of this procedure to any involutive division was given by V. P. Gerdt in [Ger97]], and
recalled in3.2.12]

Extending this procedure to a set of polynomials, M. Janet applied it to linear PDE systems, giving
a procedure that transforms a linear PDE system into a complete PDE system having the same set of
solutions. This construction is presented in Section 4.6 In Section[5] we present such a procedure for
an arbitrary involutive division given by V. P. Gerdt and Y. A. Blinkov in [[GB98al and its relation to the
Buchberger completion procedure in commutative polynomial rings, [Buc63l.

The space of boundary conditions. In order to stratify the complement of the involutive cone coneg(U)
M. Janet introduced the notion of complementary monomial, see|2.1.9| as the monomials that generate
this complement in a such a way that the involutive cone of U and the involutive cone of the set Ut of
complementary monomials form a partition of the set of all monomials, see Proposition[2.2.2]

For each complementary monomial v in Im(Z)" each analytic function in the multiplicative vari-
ables of v with respect to Im(X)* provides a boundary condition of the PDE system (Z) as stated by

Theorem 2.3.3]

Polynomial partial differential equations systems. In Sectionfd] we present the analysis on polynomial
PDE systems as M. Janet described in his monograph, [Jan29]. To deal with polynomials he defined
some total orders on the set of derivatives, corresponding to total orders on the set of monomials. We
recall them in Section .1} The definitions on monomial orders given by M. Janet clarified the same
notion previously introduced by C. Riquier in [Riq93]]. In particular, he made more explicit the notion of
parametric and principal derivatives in order to distinguish the leading derivative in a polynomial PDE. In
this way, he extended its algorithms on monomial PDE systems to the case of polynomial PDE systems.
In particular, using these notions, he defined the property for a polynomial PDE system to be complete.
Namely, a polynomial PDE system is complete if the associated set of monomials corresponding to
leading derivatives of the system is complete. Moreover, he extended also the notion of complementary
monomials to define the notion of boundary condition for a polynomial PDE system as in the monomial
case.

Boundary conditions. In this way, the notion of completeness is a suitable framework to discuss the
existence and the unicity of the boundary conditions for a linear PDE system. M. Janet proved that if a



linear polynomial PDE system of the form

Dip = Z aiiDije, i€l
j

of one unknown function ¢ and all the functions a;; are supposed to be analytic in a neighborhood of a
point P in C™ and is complete with respect to some a total order, then it admits at most one analytic solution
satisfying the boundary condition formulated in terms of complementary monomials, see Theorems[4.3.4]
and

Integrability conditions. A linear polynomial PDE system of the above form is said to be completely
integrable if it admits an analytic solution for any given boundary condition. M. Janet gave an algebraic
characterization of complete integrability by introducing integrability conditions formulated in terms
of factorization of leading derivative of the PDE by non-multiplicative variables. These integrability
conditions are given explicitly in [4.4.4] as generalization to the polynomial situation of the integrability
conditions formulated above for monomial PDE systems in Subsection [2.3] M. Janet proved that a linear
polynomial PDE system is completely integrable if and only if any integrability condition is trivial, as
stated in Theorem

Janet’s procedure of reduction of linear PDE systems to a canonical form. In order to extend
algorithmically Cauchy-Kowalevsky’s theorem on the existence and uniqueness of solutions of initial
condition problems as presented in[I.1.3] M. Janet considered normal forms of linear PDE systems with
respect to a suitable total order on derivatives, satisfying some analytic conditions on coeflicients and a
complete integrability condition on the system, as defined in[4.5.2] Such normal forms of PDE systems
are called canonical by M. Janet.

Janet’s procedure, recalled in[7] decides if a linear PDE system can be transformed into a completely
integrable system. If the system cannot be reduced to a canonical form, the procedure returns the
obstructions of the system to be transformed into a completely integrable system. This procedure
depends on a total order on derivatives of unknown functions of the PDE system. For this purpose,
M. Janet introduced a general method to define a total order on derivatives using a parametrization of
a weight order on variables and unknown functions, as recalled in 4.1.5] The Janet procedure uses a
specific weight order called canonical and defined in

The first step of Janet’s procedure consists in applying autoreduction procedure, defined in[4.6.4] in
order to reduce any PDE of the system with respect to the total order on derivatives. Namely two PDE of
the system cannot have the same leading derivative, and any PDE of the system is reduced with respect
to the leading derivatives of the others PDE, as defined in[5]

The second step consists in applying the completion procedure, defined inf6] That is, the set of leading
derivatives of the system defines a complete set of monomials in the sense given in[4.3.2]

Having transformed the PDE system to an autoreduced and complete system, one can discuss about its
integrability conditions. M. Janet shown that this set of integrability conditions is a finite set of relations
that does not contain principal derivative, as explained in[4.4.4] Hence, these integrability conditions are
J-normal forms and uniquely defined. By Theorem4.4.7} if all of these normal forms are trivial, then the
system is completely integrable. Otherwise, if there is a non-trivial condition in the set of integrability
conditions that contains only unknown functions and variables, then this relation imposes a relation on
the boundary conditions of the system, else if there is no such relation, the procedure is applied again on



the PDE system completed by all the integrability conditions. Note that this procedure depends on the
Janet division and on a total order on the set of derivatives.

By this algorithmic method, M. Janet has generalized in certain cases Cauchy-Kowalevsky’s theorem
at the time where the algebraic structures have not been introduced to compute with polynomial ideals.
This is pioneering work in the field of formal approaches to analysis on PDE systems. Algorithmic
methods to deals with polynomial ideals were developed throughout the twentieth century and extended
to wide range of algebraic structures. In the next subsection, we present some milestones on these formal
mathematics.

Constructive methods and rewriting in algebra through the twentieth century

The constructions developed by M. Janet in his formal theory of linear partial differential equation systems
are based on the structure of ideal, that he called module of forms. This notion corresponds to those
introduced previously by D. Hilbert in [Hil90] with the terminology of algebraic form. Notice that N.
M. Gunther dealt with such a structure in [|Giin13b]. The axiomatization of the notion of ideal on an
arbitrary ring were given by E. Noether in [Noe21l]. As we will explain in this note, M. Janet introduced
algorithmic methods to compute a family of generators of an ideal having the involutive property and
called involutive bases. This property is used to obtain a normal form of linear partial differential equation
systems.

Janet’s computation of involutive bases is based on a refinement of classical polynomial division
called involutive division. He defined a division that was suitable for reduction of linear partial differential
equation systems. Thereafter, other involutive divisions were introduced in particular by J. M. Thomas
[Tho37] and by J.-F. Pommaret [Pom78]].

The main purpose is to complete a generating family of an ideal into an involutive bases with respect
to a given involutive division. This completion process is quite similar to those introduced with the
classical division in Grobner bases theory. In fact, involutive bases appears to be particular cases of
Grobner bases. The principle of completion had been developed independently in rewriting theory,
that proposes a combinatorial approach of equivalence relation motivated by several computational and
decision problems in algebra, computer science and logic.

Some milestones on algebraic rewriting and constructive algebra. The main results in the work of
M. Janet rely on constructive methods in linear algebra using the principle of computing normal forms by
rewriting and the principle of completion of a generating set of an ideal. These two principles have been
developed during all of the twentieth century in many algebraic contexts with different formulations and
at several occasions. We review below some important milestones in this long and wealth history from
Kronecker to the more recent developments.

1882. L. Kronecker introduced the notion of resultant of polynomials in [Kro82]] and gave the first result
in elimination theory using this notion.

1886. K. Weierstrass proved a fundamental result called preparation theorem on the factorization of
analytic functions by polynomials. As an application he showed a division theorem for rings of
convergent series, [Wei80].



1890

1913.

1913.

1914.

1916.

1920.

1921.

1923.

1926.

1927.

1937.

1937.

D. Hilbert proved that any ideals of a ring of commutative polynomials on a finite set of variables
over a field and ring of integers are finitely generated, [Hil90|]. This is the first formulation of the
Hilbert basis theorem stating that a polynomial ring over a Noetherian ring is Noetherian.

In a paper on number theory, L.E. Dickson proved a monomial version of the Hilbert basis theorem
by a combinatorial method, [Dic13, Lemma A].

In a serie of forgotten papers, N. Giinther develop algorithmic approaches for polynomials rings,
[Glin13cl IGilin13b, [Giin13al]. A review of the Giinther theory can be found in [Gun41]].

M. Dehn described the word problem for finitely presented groups, [Dehl10]. Using systems of
transformations rules, A. Thue studied the problem for finitely presented semigroups, [Thul4]. It
was only much later in 1947, that the problem for finitely presented monoids was shown to be
undecidable, independently by E. L. Post [Pos47]] and A. Markov [Mar47a, [Mar47bl.

F. S. Macaulay was one of the pioneers in commutative algebra. In his book The algebraic theory

of modular systems, [Macl6], following the fundamental Hilbert basis theorem, he initiated an
algorithmic approach to treat generators of polynomial ideals. In particular, he introduced the
notion of H-basis corresponding to a monomial version of Grobner bases.

M. Janet defended his doctoral thesis, [Jan20], that presents a formal study of systems of partial
differential equations following works of Ch. Riquier and E. Delassus. In particular, he analyzed
completly integrable systems and Hilbert functions on polynomial ideals.

In her seminal paper, Idealtheorie in Ringbereichen, [Noe21l, E. Noether gave the foundation of
general commutative ring theory, and gave one of the first general definitions of a commutative
ring. She also formulated the theorem of finite chains [Noe2 1}, Satz I, Satz von der endlichen Kette].

E. Noether stated in [Noe23| [Noe24|] concepts of elimination theory in the language of ideals that
she had introduced in [Noe21]].

G. Hermann, a student of E. Noether [Her26], initiated purely algorithmic approaches on ideals,
such as ideal membership problem and primary decomposition ideals. This work appears as a
fundamental contribution for emergence of computer algebra.

F. S. Macaulay showed in [Mac27]] that the Hilbert function of a polynomial ideal I is equal to the
Hilbert function of the monomial ideal generated by the set of leading monomials of polynomials
in I with respect a monomial order. As a consequence the coefficients of the Hilbert function of a
polynomial ideal are polynomial for sufficiently big degree.

Based on early works by Ch. Riquier and M. Janet, in [Tho37] J. M. Thomas reformulated in
the algebraic language of B. L. van der Waerden, Moderne Algebra, [van30, lvan31]], the theory of
normal forms of systems of partial differential equations.

In [Gr637)], W. Grobner formulated the isomorphism between the ring of polynomials with co-
efficients in an arbitrary field and the ring of differential operators with constant coefficients, see
Proposition [2.1.2] The identification of these two rings was used before in the algebraic study of
systems of partial differential equations but without being explicit.
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In a seminal paper on rewriting theory, M. Newman presented rewriting as a combinatorial
approach to study equivalence relations, [New42]]. He proved a fundamental rewriting result stating
that under termination hypothesis, the confluence properties is equivalent to local confluence.

In its monograph Moderne algebraische Geometrie. Die idealtheoretischen Grundlagen, [Gro49],
W. Grobner surveyed algebraic computation on ideal theory with applications to algebraic geometry.

A. Shirshov introduced in [Shi62] an algorithmic method to compute normal forms in a free Lie
algebra with respect to a family of elements of the Lie algebra satisfying a confluence property, the
method is based on a completion procedure and he proved a version of Newman’s lemma for Lie
alegbras, called composition lemma. He deduced a constructive proof of the Poincaré-Birkhoff-Witt
theorem.

H. Hironaka introduced in [Hir64|] a division algorithm and introduced the notion of standard
basis, that is analogous to the notion of Grobner basis, for power series rings in order to solve
problems of resolution of singularities in algebraic geometry.

Under the supervision of W. Grobner, B. Buchberger developed in his PhD thesis the algorithmic
theory of Grobner bases for commutative polynomial algebras, [Buc65,Buc70,[Buc06]]. Buchberger
gave a characterization of Grobner bases in terms of S-polynomials and an algorithm to compute
such bases, with a complete implementation in the assembler language of the computer ZUSE Z
23 V.

D. Knuth and P. Bendix defined in [KB70] a completion procedure that complete with respect to
a termination a set of equations in an algebraic theory into a confluent term rewriting system. The
procedure is similar to the Buchberger’s completion procedure. We refer the reader to [Buc87]] for
an historical account on critical-pair/completion procedures.

H. Grauert introduced in [Gra72]] a generalization of Weierstrass’s preparation division theorem
in the language of Banach algebras.

M. Nivat formulated a critical pair lemma for string rewriting systems and proved that for a
terminating rewriting system, the local confluence is decidable, [Niv/3].

1978. L. Bokut in [Bok76] and G. Bergman in [Ber78] extended Grobner bases and Buchberger
algorithm to associative algebras. They obtained the confluence Newman’s Lemma for rewriting
systems in free associative algebras compatible with a monomial order, called respectively Diamond
Lemma for ring theory and composition Lemma.

J.-F. Pommaret introduced in [Pom78]| a global involutive division simpler than those introduced
by M. Janet.

F.-O. Schreyer in his PhD thesis [Sch80] gave a method that computes syzygies in commutative
multivariate polynomial rings using the division algorithm, see [Eis95, Theorem 15.10].

G. Huet gave in [Hue80] a proof of Newman’s lemma using a Noetherian well-founded induction
method.



1985. Grobner basis theory was extended to Weyl algebras by A. Galligo in [Gal835]].
1997. V. P. Gerdt introduced in [[Ger97|] an axiomatization of the involutive monomial division.

1999, 2002. J.-C. Faugere developed efficient algorithms for computing Grobner bases, algorithm F4,
[Fau99|] then and algorithm F5, [FauO2].

Conventions and notations

The set of non-negative integers is denoted by N. In this note, K[x1,...,xn] denotes the polynomial
ring on the variables x1,...,%n over a field K of characteristic zero. For a subset G of polynomials
of K[x1,...,xnl, we will denote by 1d(G) the ideal of K[x,...,xn] generated by G. A polynomial is
either zero or it can be written as a sum of a finite number of non-zero ferms, each term being the product
of a scalar in K by a monomial.

Monomials. We will denote by M(x1,...,xy) the set of monomials in the ring K[x;,...,xy]. For a
subset I of {x1,...,xn} we will denote by M(I) the set of monomials in M(x1,...,xn) whose variables
lie in I. A monomial u in M(x1,...,Xxn) is written as u = x;" ... x5, were the oy are non-negative
integers. The integer o is called the degree of the variable x; in u, it will be also denoted by deg; (u).
For o = (e, ..., &) in N™, we denote x* = x{" ... x%" and || = &1 + ... + &n.

For a set U of monomials of M(x1,...,xn) and 1 <1i < n, we denote by deg; (U) the largest possible
degree in variable x; of the monomials in U, that is

deg;(U) = max (deg;(u) [uelU).
We call the cone of the set U the set of all multiple of monomials in U defined by

cone(U) = UuM(x1,...,xn) ={uwv|uel, ve M(X1,...,%Xn) 1

uel

Homogeneous polynomials. An homogenous polynomial of K[x1, ..., X,] is a polynomial all of whose
non-zero terms have the same degree. An homogenous polynomial is of degree p all of whose non-zero
terms have degree p. We will denote by Klx, ..., Xn], the space of homogenous polynomials of degree
p. The dimension of this space is given by the following formula:

p+NDp+2)...cp+n—-1)
1.2-...-n—1) '

P =dim (K[x1,...,xnlp ) =

Monomial order. Recall that a monomial order on M(x1,...,xn) is a relation < on M(x7,...,Xn)
satisfying the following three conditions
i) <isatotal order on M(X1,...,Xn),

ii) < is compatible with multiplication, that is, if u < u’, then uw < u’w for any monomials u, u’, w
in M(x1,...,%Xn),

iii) < is a well-order on M(x1,...,Xy), that is, every nonempty subset of M(x1, ..., X, ) has a smallest
element with respect to <.



1. Exterior differential systems

The leading term, leading monomial and leading coefficient of a polynomial f of K[x1,...,xy], with
respect to a monomial order <, will be denoted respectively by lt<(f), Im<(f) and lc<(f). For a set F of
polynomials in K[x, ..., xn], we will denote by Im (F) the set of leading monomials of the polynomials
in F. For simplicity, we will use notations 1t(f), Im(f), Ic(f) and Im(F) if there is no possible confusion.

1. EXTERIOR DIFFERENTIAL SYSTEMS

Motivated by problems in analytical mechanics, L. Euler (1707 - 1783) and J.-L. Lagrange (1736 - 1813)
initiated the so-called variational calculus, cf. [Lag88||, which led to the problem of solving partial
differential equations, PDE for short. In this section, we briefly explain the evolutions of these theory to
serve as a guide to the M. Janet contributions. We present the historical background of exterior differential
systems and of the questions on PDE. For a deeper discussion of the theory of differential equations and
the Pfaff problem, we refer the reader to [For90, vWO0O| or [Car99].

1.1. Pfaff’s problem

1.1.1. Partial differential equations for one unknown function. In 1772, J.-L. Lagrange [Lag72]
considered a PDE of the following form

. oQ 0@
(%Yy,9,p,q9) =0 with p o and (¢ PR (1)

i.e. a PDE of one unknown function ¢ of two variables x and y. Lagrange’s method to solve this PDE
can be summarized as follows.

i) Express the PDE () in the form

_ ih p=C® _%e
q - F] (X>U> (p)p) with p - ax and q - ay : (2)

ii) ‘Temporally, forget the fact p = %’ and consider the following 1-form
Q =d¢ —pdx—qdy = de —pdx — Fi(x,y, ¢, p)dy,
by regarding p as some (not yet fixed) function of x,y and @.

iii) If there exist functions M and ® of x,y and ¢ satisfying MQ = d®, then ®(x,y, ¢) = C for some
constant C. Solving this new equation, we obtain a solution ¢ = 1 (x,y, C) to the equation .

1.1.2. Pfaffian systems. In 1814-15,J. F. Pfaff (1765 - 1825) [Pfa02] has treated a PDE for one unknown
function of n variables, which was then succeeded to C. G. Jacobi (1804 - 1851) (cf. [Jac27]). Recall
that any PDE of any order is equivalent to a system of PDE of first order. Thus we may only think of
system of PDE of first order with m unknown function

op“
é’x-l

Fie(X1y e ey Xy @y ey @™, (IT<a<ml<i<n))=0, for 1<k<m
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1.1. Pfaff’s problem

Introducing the new variables p{’, the system is defined on the space with coordinates (x;, ¢, p{) and is
given by
Fie(xi, (Paﬂ?f) =0,

de® —Zp“dxl— ,

dx1/\.../\dxn7é0.

Noticed that the last condition means that the variables x1,...,x, are independent. Such a system is
called a Pfaffian system. One is interested in the questions, whether this system admits a solution or not,
and if there exists a solution whether it is unique under some conditions. These questions are Pfaff’s
problems.

1.1.3. Cauchy-Kowalevsky’s theorem. A naive approach to Pfaff’s problems, having applications to
mechanics in mind, is the question of the initial conditions. In series of articles published in 1842, A.
Cauchy (1789 - 1857) studied the system of PDE of first order in the following form:

o = fa(ty X1, ,Xx +22f (t,x x)M for T<a<m
ot 1y" n PR ab Ty n axi» < s M,
where g, fil’b and @', ..., @™ are functions of n+1 variables t, x1, ..., Xn. S. Kowalevsky (1850 - 1891)

[von75]] in 1875 considered the system of PDE in the following form: for some 14 € Z~o (1 < a < m),

1 .

ara Ta (9]+‘od(pb
jy 0

ot Z ]Z fap(tx1, o3 g ey

]+|(X|<Ta
where, fj(;oé and @',...,@™ are functions of n + 1 variables t,xq,...,Xxn, and where for
@ = (&1, -+ y&n) in (Zzo)", we set || = D, «; and Ox* = 0xy'...0x§™. They showed that

under the hypothesis on the analyticity of the coefficients, such a system admits a unique analytic local
solution satisfying a given initial condition, that is now called the Cauchy-Kowalevsky theorem.

1.1.4. Completely integrable systems. A first geometric approach to this problem was taken over by
G. Frobenius (1849 - 1917) [Fro77|] and independently by G. Darboux (1842 - 1917) [Dar82]]. Let X be
a differentiable manifold of dimension n. We consider the Pfaffian system:

w; =0 1<i<gn,
where w;’s are 1-forms defined on a neighbourhood V of a point x in X. Suppose that the family

{(wi)yh<isr © TJX

is linearly independent for y in V. For 0 < p < n, let us denote by Qf (V) the space of differentiable
p-forms on V. A p-dimensional distribution D on X is a subbundle of TX whose fibre is of dimension p.
A distribution D is involutive if, for any vector field & and n taking values in D, the Lie bracket

(& ,n] == &n —nE

takes values in D as well. Such a Pfaffian system is called completely integrable.

G. Frobenius and G. Darboux showed that the ideal I of @3:0 Qg)((V), generated by the
1-forms ws, ..., w; is a differential ideal, i.e. dI < I, if and only if the distribution D on V defined as
the annihilator of wy, ..., w; is involutive.

11



1. Exterior differential systems

1.2. The Cartan-Kihler theory

Here, we give a brief exposition of the so-called Cartan-Kihler theory from view point of its history. In
particular, we will present the notion of systems in involution. For the expositions by the founders of the
theory, we refer the reader to [Car43l and [Kah34], for a modern introduction by leading experts, we refer
to [BCGT91].

1.2.1. Differential forms. H. Grassmann (1809 - 1877), [Grad44], introduced in 1844 the first equational
formulation of the structure of exterior algebra with the anti-commutativity rules,

x ANy =—y/Ax.

Using this notion, E. Cartan (1869 - 1951), [Car99] defined in 1899 the exterior differential and differential
p-form. He showed that these notions are invariant with respect to any coordinate transformation. Thanks
to this differential structures, several results obtained in 19th century were reformulated in a clear manner.

1.2.2. Exterior differential systems. An exterior differential system X is a finite set of homogeneous
differential forms, i.e. £ < Up Qi. E. Cartan, [CarO1]], in 1901 studied exterior differential systems
generated by 1-forms, i.e. Pfaffian systems. Later, E. Kéhler (1906 - 2000) [Kdh34]] generalized the
Cartan theory to any differential ideal I generated by an exterior differential system. By this reason, the
general theory on exterior differential systems is nowadays called the Cartan-Kdhler theory.

In the rest of this subsection, we briefly describe the existence theorem for such a system. Since the
argument developed here is local and we need the Cauchy-Kowalevsky theorem, we assume that every
function is analytic in X1, ..., Xy unless otherwise stated.

1.2.3. Integral elements. Let X~ be an exterior differential system on a real analytic manifold X of
dimension 1 such that the ideal generated by X is an differential ideal. For0 < p < mn,setXP =X n QE.
We fix x in X. For p > 0, the pair (E,,x), for a p-dimensional vector subspace E, < T, X is called
an integral p-element if wlg, = 0 for any w in =3P n Q_];( , Where Q.p denotes the space of
differentila p-forms defined on a neighbourhood of x € X. We denote the set of integral elements of
dimension p by I1Z¥.

An integral manifold Y is a submanifold of X whose tangent space T,Y at any point y in Y is an
integral element. Since the exterior differential system defined by X is completely integrable, there
exists independent r-functions @1(x), - - - , @r+(x), called integral of motion or first integral, defined on a
neighbourhood V of a point x € U such that their restrictions on V N 'Y are constants.

The polar space H(E,) of an integral element E, of X at origin x is the vector subspace of T, X
generated by those & € T, X such that E, + R is an integral element of X.

1.2.4. Regular integral elements. Let E( be the real analytic subvariety of X defined as the zeros of £°
and let U the subset of smooth points. A point in Ey is called integral point. A tangent vector & in T, X
is called linear integral element if w(&) = 0 for any w € Z! with x € U. We define inductively the
properties called "regular” and "ordinary" as follows:

(i) The Oth order character is the integer sg = maxyey{dim RZL}. A point x € Ey is said to be regular
if dimRZ] = so, and a linear integral element & e T, X is called ordinary if x is regular.

12



1.2. The Cartan-Kéhler theory

(ii) Set E; = RE, where & is an ordinary linear integral element. The Tst order character is the
integer sy satisfying so + s1 = maxyey{dim H(E;)}. The ordinary integral 1-element (E;,x) is
said to be regular if dimH(E;) = sp + s1. Any integral 2-element (E,, x) is called ordinary if it
contains at least one regular linear integral element.

(iii) Assume that all these are defined up to (p — T)th step and that so +s7 +---+sp_ 1 <n—p+1.

The pth order character is the integer s, satisfying

xeU

P
Z si = max{dim H(E,)}.
i=0
An integral p-element (Ep, x) is said to be regular if
P
D st =dimH(E,).
i=0
The integral p-element (E;,x) is said to be ordinary if it contains at least one regular integral

element (E,_1,x).

Let h be the smallest positive integer such that Z?:o si = n — h. In such a case, there does not exist an
integral (h+ 1)-element. The integer h is called the genus of the system X. In such a case, for0 < p < h,

one has
p—1
2 Si<Nn—p.
i=0

1.2.5. Theorem. Let O < p < h be an integer.

(i) The case Z?:_o] si = n—p : let (Ey,x) be an ordinary integral p-element and let Y,_1 be an
integral manifold of dimension p — 1 such that (T,Yp_1,%) is a regular integral (p — 1)-element
contained in (E,,x). Then, there exists a unique integral manifold Yy, of dimension p containing
Yp—1 such that TyYp = E,.

(ii) The case Zf:_o] si < n—7p :let (Ep,x) be an integral p-element and let Yp_1 be an integral
manifold of dimension p — 1 such that (T,Yp_1,x) is a regular integral (p — 1)-element contained
in (Ep,x). Then, for each choice of n —p — 2{:0] si differentiable functions on X1, - -+ ,Xp, there
exists a unique integral manifolds Y, of dimension p containing Yy, 1 such that T,Y, = E,.

This theorem states that a given chain of ordinary integral elements
(EO)X)C(E1)X)C"'C(Eh)x)) dlmEp:p (nggh))

one can inductively find an integral manifold Y}, of dimension p such that Yy = {x}, Y,-1 < Y,
and T,Y}, = E,. Notice that to obtain Y, from Y,_1, one applies the Cauchy-Kowalevsky theorem to the
system of PDE defined by %P and the choice of arbitrary differentiable functions in the above statement
provide initial data consisting of

13



2. Monomial partial differential equations systems

1.2.6. Systems in involution. In many applications, the exterior differential systems one considers admit

p-independent variables x1, ..., X,. In such a case, we are only interested in the p-dimensional integral
manifolds among which it imposes no additional relation between x1,...,Xp. In general, an exterior
differential system X for n — p unknown functions and p independent variables x7, ..., X, is said to be

in involution if it satisfies the two following conditions
(i) its genus is more than or equal to p,

(ii) the defining equations of the generic ordinary integral p-element introduce no linear relation
among dxq, ..., dxp.

1.2.7. Reduced characters. Consider a family JF of integral elements of dimensions 1,2,--- ;p — 1
than can be included in an integral p-element at a generic integral point x € X. Take a local chart of with
origin x. The reduced polar system H™4(E;) of an integral element x is the polar system of the restriction
of the exterior differential system X to the submanifold

xi=xp=--=x%x, =0}

The integers s, $7, - - , 51’3_1 , called the reduced characters, are defined in such a way that s{+s{+- - -+s/
is the dimension of the reduced polar system H™(E;) at a generic integral element. For convenience,
onesets S, =M —p —(sg+ 8]+ +5, 1)

Let X be an exterior differential system of n —p unknown functions of p independent variables such that
the ideal generated by X is an differential ideal. E. Cartan showed that it is a system in involution iff the

most general integeral p-element in I depends upon sj + 2s; + - - + ps]’3 independent parameters.

1.2.8. Recent developments. In 1957, M. Kuranishi (1924- ), [Kur57]], considered the problem of the
prolongation of a given exterior differential system and treated the cases what E. Cartan called total.
Here, M. Kuranishi as well as E. Cartan studied locally in analytic category. After an algebraic approach
to the integrability due to V. Guillemin and S. Sternberg, [GS64], in 1964, 1. Singer and S. Sternberg,
[SS63], in 1965 studied some classes of infinite dimensional which is even applicable to C*-category.
In 1970’s, with the aid of Jet bundles and the Spencer cohomology, J. F. Pommaret (cf. [Pom78])
reworked on the formal integrable involutive differential systems which generalized works of M. Janet,
in the language of sheaf theory. For other geometric aspects not using sheaf theory, see the books by
P. Griffiths (1938-), [Gri83]], and R. Bryant et al., [BCG91].

2. MONOMIAL PARTIAL DIFFERENTIAL EQUATIONS SYSTEMS

In this section, we present the method introduced by M. Janet called inverse calculation of the derivation
in his monograph [Jan29]. In [Jan29, Chapter I] M. Janet considered monomial PDE, that is PDE of the

form
aoq +oo+...+on )

X1 OX? L oXp"

= foq ®2 .0 Oln (X1 y X2y e )Xn)) (3)

where @ is an unknown function and the fy, «,...«, are several variables analytic functions. Its objective
is to compute an analytic function u solution of the system.

14



2.1. Ring of partial differential operators and multiplicative variables

2.1. Ring of partial differential operators and multiplicative variables

2.1.1. Historical context. In the beginning of 1890’s, following collaboration with C. Méray (1835-
1911), C. Riquier (1853-1929) initiated his research on finding normal forms of systems of (infinitely
many) PDE for finitely many unknown functions with finitely many independent variables (see [Riq10]
and [Rig28]] for more details).

In 1894, A. Tresse [Tre94] showed that such systems can be always reduced to systems of finitely
many PDE. This is the first result on Noeterianity of a module over a ring of differential operators. Based
on this result, E. Delassus (1868 - 19..) formalized and simplified Riquier’s theory. In these works, one
already finds an algorithmic approach analysing ideals of the ring K[%, RN %].

It was M. Janet (1888 - 1983), already in his thesis [Jan20|] published in 1920, who had realized that
the latter ring is isomorphic to the ring of polynomials with n variables K[x1, - - - , x,] at the time where
several abstract notions on rings introduced by E. Noether in Germany had not been known by M. Janet
in France. It was only in 1937 that W. Grobner (1899-1980) proved this isomorphism.

2.1.2. Proposition ([Gro37, Sect. 2.]). There exists a ring isomorphism

0 0
D Klxty.ooyxn — Kl=—,..., —],

5X1 axn
from the ring of polynomials with n variables X1, ..., xn with coefficients in an arbitrary field K to the
ring of differential operators with constant coefficients.
2.1.3. Derivations and monomials. M. Janet considers monomials in the variables X1, ..., X, and use
implicitly the isomorphism @ of Proposition To a monomial x* = x7"x52 ... x% he associates
the differential operator

ol

D% = ®(x%)

S oxTTOxSE L oxp

In [Jan29, Chapter I], M. Janet considered finite monomial PDE systems. The equations are of the
form (3) and the system having a finitely many equations, the set of monomials associated to the PDE
system is finite. The first result of the monograph is a finiteness result on monomials stating that a
sequence of monomials in which none is a multiple of an earlier one is necessarily finite. He proved this
result by induction on the number of variables. We can formulate this result as follows.

2.1.4. Lemma ([Jan29, §7]). Let U be a subset of M(x1,...,xn). If, for any monomials w and ' in U,
the monomial u does not divide W', then the set U is finite.

This result corresponds to Dickson’s Lemma, [Dicl3|], which asserts that any monomial ideal
of K[xq,...,xn] is finitely generated.

2.1.5. Stability of the multiplication. M. Janet paid a special attention to families of monomials with
the following property. A subset of monomial U of M(x1,...,Xy) is called multiplicatively stable if for
any monomial w in M(x1, ..., Xy ) such that there exists u’ in U that divides u, then u is in U. In other
words, the set U is closed under multiplication by monomials in M(x1,...,Xn).

As a consequence of Lemma if U is a multiplicatively stable subset of M(x1,...,Xn), then it
contains only finitely many elements which are not multiples of any other elements in U. Hence, there
exists a finite subset Uy of U such that for any u in U, there exists u¢ in Uy such that uys divides u.
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2. Monomial partial differential equations systems

2.1.6. Ascending chain condition. M. Janet observed an other consequence of Lemma the
ascending chain condition on multiplicatively stable monomial sets that he formulated as follows. Any
ascending sequence of multiplicatively stable subsets of M(x1,...,Xn)

UycUc...clUc...
is finite. This corresponds to the Noetherian property on the set of monomials in finitely-many variables.

2.1.7. Inductive construction. Let us fix a total order on variables x,, > x,,_1 > ... > x;. Let Ube a
finite subset of M(x1,...,Xn). Let us define, for every 0 < a,, < deg, (U),

[on] ={ueU| deg,(u) = an }.
The family ([0], ..., [deg, (U)]) forms a partition of U. We define for every 0 < o < deg, (U)
lotn] ={uwe M(x1,...,Xn1) | uxp™ e UL
We set for every 0 < i < deg,, (U)

w = U {fue M(x1,...,%n_1) | there exists u’ € [xn] such that u'hu}.

O<an<i

We set
{uxk [ueW} ifk < deg, (W),

Uy =
{uxk [ue U} ifk = deg,(U).

and M(U) = [J Ux. By this inductive construction, M. Janet obtains the monomial ideal generated
k=0
by U. Indeed, M (U) consists in the following set of monomial

{uwe M(xq,...,xn) | there exists 1" in U such that u'hu}.
2.1.8. Example. Consider the subset U = {XgX%, xgx% } of monomials in M(x1, X2, x3). We have
O=g, M={xx3}, Rl=g, Bl={3x}
Hence,
=g, =03, =g, BI=K).
The set M(U) is defined using of the following subsets:
U=, W={x"%?2ax=>2}, U=U;, U3={x7"%2]0x1=>20ua,=>2}.

2.1.9. Complementary monomials. Let U be a finite subset of M(x1,...,xn). The set of complemen-
tary monomials of U is the set of monomial denoted by U+ defined by

uJ_ — U ul(i) ,
I<isn

where
U = {x5 |0 < B < deg,,(U) and [B] = &},

and forevery 1 <i<n
UMD = [Pt @ | sy vy o) # @, 0< B < degi([otisny ooy anl)y [By &istyeneyotn] = & )

Note that, for i # j we have UL A YLl) = .
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2.1. Ring of partial differential operators and multiplicative variables

2.1.10. Janet’s multiplicative variables, [Jan20, §7]. Let us fix a total order x,, > X1 > ... > Xj0n

variables. Let U be a finite subset of M(x1,...,%n). Forall 1 < 1i < n, we define the following subset
of U:

[Kiy..oyan] ={uel| degj(u) =o5 forall i<j<mn}
That is [, . .., &, contains monomials of U of the form vx{Xi X3 with vin M(xq,y ..., Xi—1). The
sets [0, ..., &nl, fOr &4, ...,y in N, form a partition of U. Moreover, forall T < i< n—1, we
have [, ®it1y.-y Xn) S [Xit1y...,xn] and the sets [&, ..., xn], where «; € N, form a partition
of [otiy1y...yOnl.

Given a monomial u in U, the variable x,, is said to be multiplicative for u in the sense of Janet if
deg, (u) = deg, (U).
For i < n — 1, the variable x; is said to be multiplicative for w in the sense of Janet if
WE [XiiTyenny Onl and deg;(u) = deg;([oti+1y .-y Xnl).

We will denote by Multg(u) the set of multiplicative variables of u in the sense of Janet with respect to
the set U, also called J-multiplicative variables.

Note that, by definition, for any uw and u’ in [&i,1,..., xn], we have
{Xit1y -+ oy X} O Multy (W) = {Xi41, . . ., Xn} 0 Multy (0).
As a consequence, we will denote by Multg([oqﬂ, ..., 0n]) this set of multiplicative variables.

2.1.11. Example. Consider the subset U = {x,x3, X%, x1} of M(x1,x2,x3) with the order x3 > x2 > x7.
We have deg;(U) = T, hence the variable x3 is J-multiplicative for x3x, and not J-multiplicative for X%
and x1.

For o € N, we have [o] ={u e U | degz(u) = «}, hence

0] = {x3,x1}, 1] = {x2x3}.

We have degz(x%) = deg,([0]), deg,(x1) # deg,([0]) and deg,(x,x3) = deg,([1]), hence the variable x;
is J-multiplicative for x% and x,x3 and not J-multiplicative for x;. We have

0,00 = {x1}, 10,21 ={x3}, [1,1] ={xax3}

and deg; (x%) = deg;([0,2]), deg;(x1) = deg;([0,0]) and deg;(x3x2) = deg;([1,1]), hence the vari-
able x; is J-multiplicative for x1, x% and x3X;.

2.1.12. Janet divisor. Let U be a subset of M(x1,...,Xn). A monomial u in U is called Janet divisor
of a monomial w in M(xy,...,xn) with respect to U, if there is a decomposition w = uv, where any
variable occurring in v is J-multiplicative with respect to U.

2.1.13. Proposition. Let U be a subset of M(X1,...,%Xn) and w be a monomial in M(X1,...,Xn).
Thenw admits in U at most one Janet divisor with respect to U.
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2. Monomial partial differential equations systems

Proof. If u is a Janet divisor of w with respect to U, there is v in M(Multg(u)) such that w = uv. We
have deg, (v) = deg,(w) — deg,, (u). If deg, (w) > deg, (U), then the variable x,, is J-multiplicative
and deg, (v) = deg,(w) — deg, (U). If deg,(w) < deg, (U), then x, cannot be J-multiplicative
and deg,, (v) = 0.

As a consequence, for any Janet divisors u and u’ in U of w, we have deg,(u) = deg,(u’)
and u, u’ € [«] for some o € N.

Suppose now that u and 1’ are two distinct Janet divisor of w in U. There exists 1 < k < n such
that u,u’ € [y, ..., on] and deg,_;(u) # deg,_;(u’). Suppose that deg,_;(u) > deg,_;(u’), then
the variable x;_; cannot be J-multiplicative for u’ with respect to U. It follows that u’ cannot be a Janet
divisor of w. This leads to a contradiction, hence u = u’. OJ

2.1.14. Multiplicative variables of complementary monomials. For any monomial u in U™, we

have Lo
Mult};i (uw) ={x1y...,xn1%
For 1 < i< n — 1, for any monomial u in UL, there exists a1, ..., oty such that w € [&iy1, ..., Xnl.
Then "
1(i
Mult},L (u) ={x1,...,xi_1} U Mult}f([oqg, ceeyOnl).

Finally, for w in U", there exists an unique 1 < i, < 1 such that u e U ), Then we set
MultélL (u) = Multglﬁu} (u).

2.1.15. Example, [Jan29, p. 17]. Consider the subset U = {xix%x%, xgx?, X3X2%3, X3X2 } of monomials
in M(x71, X2, x3) with the order x3 > x; > x;. The following table gives the multiplicative variables for
each monomial:

3,242

X3X2X? X2 X
X3X2 X2

The set of complementary monomials are
13 2 12 3 10 3.2 3.2 3.2 3 3 2
utB = {I,x3}, U (2) = {x3x2,x3}, U M = {X3x5%1, X3X3, X3XT, X3X1, X3, X3X2XT, X3X2X1 }.

The following table gives the multiplicative variables for each monomial:

1, xé X2 X
XgXZ X3 X1
X3 X1
XéX%X] , X%X% X3 X2
X%X%, X3X1, Xg X3
XngX%, X3X2X1 X2

2.2. Completion procedure

In this subsection, we present the notion of complete system introduced by M. Janet in [Jan29]. In
particular, we recall the completion procedure that he gave in order to complete a finite set of monomials.
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2.2, Completion procedure

2.2.1. Complete systems. Let U be a set of monomials of M(x1,...,%,). For a monomial u in U, M.
Janet defined the involutive cone of W with respect to U as the following set of monomials:

coneg(u,U) ={uv|ve M(Multg(u)) 1
The involutive cone of the set U is defined by

coney(U) = U coneg(u, U).

uell

M. Janet called complete a set of monomials U when cone(U) = coney(U). An involutive cone is called
class in Janet’s monograph [Jan29]. The terminology "involutive" first appear in [[Ger97] by V. P. Gerdt
and became standard now. We refer the reader to [Man96|| for a discussion on relation between this notion
with the notion of involutivity in the work of E. Cartan, see and Kroneker, see m

2.2.2. Proposition ([Jan29, p. 18]). For any finite set U of monomials of M(x1,...,Xn), we have the
following partition
M(x1y...,%Xn) = coneg(U) UConeg(ui).

2.2.3. A proof of completeness by induction. Let U be a finite set of monomials in M(x1,...,Xn).
We consider the partition [0],..., [deg,(U)] of monomials in U by their degrees in x,. Let order
® < ®y < ... < x be the positive integers such that [c;] is non-empty. Recall that [«;] is the set of
monomials win M(x1,...,Xn_1) such that uxn' is in U. With these notations, the following result gives
an inductive method to prove that a finite set of monomials is complete.

2.2.4. Proposition ([Jan29, p. 19]). The finite set U is complete if and only if the two following conditions
are satisfied:

i) the sets (1], ..., (o] are complete,

ii) for any 1 <i <k, the set [«i] is contains in coneg([o; + 1]).

As an immediate consequence of this proposition, M. Janet obtained the following characterisation.

2.2.5. Proposition ([Jan29, p. 20]). A finite set U of monomials of M(xq,...,xn) is complete if and
only if, for any win U and any x non-multiplicative variable of w with respect to U, ux is in coneg(U).

2.2.6. Example, [Jan29, p. 21]. Consider the subset U = { x5x4, X5X3, X5X2, xﬁ, X4X3, X%} of M(x1,...,%5).
The multiplicative variables are given by the following table
X5X4 | X5 X4 X3 X2 X1
X5X3 | X5 X3 X2 X
X5X2 | X5 X2 X1
XAZ‘ X4 X3 X2 X1
X3X4 X3 X2 X1
2
X3 X3 X2 X

In order to prove that this set of monomials is complete, we apply Proposition [2.2.5] The completeness
follows from the identities:
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2. Monomial partial differential equations systems

X5X3.X4 = X5X4.X3,
X5X2.X4 = X5X4.X2, X5X2.X3 = X5X3.X2,
Xlzl.X5 = X5X4.X4,
X4X3.X5 = X5X4.X3, X4X3.X4 = X%.Xg,
X%.Xg, = X5X3.X3, X%.X4 = X4X3.X3.

2.2.7. Examples. For every 1 < p < n, the set of monomials of degree p is complete. Any finite set of
monomials of degree 1 is complete.

2.2.8. Theorem (Janet’s Completion Lemma, [Jan29, p. 21]). For any finite set U of monomials
of M(X1, ..., Xn) there exists a finite set J(U) satisfying the following three conditions:

i) J(W) is complete,
i) U < J(U),
iii) cone(U) = cone(J(U)).

2.2.9. Completion procedure. From Proposition M. Janet deduced the completion procedure
Complete(U), Procedure |1} that computes a completion of finite set of monomials U, [Jan29, p. 21].
M. Janet does not give a proof of the termination of this procedure. We will present a proof of the
correction and termination of this procedure in Section [3.2]

Procedure 1: Complete(U)

Input: U a finite set of monomials in M(x1,...,Xn)

Output: A finite set J(U) satisfying the condition of Theoremm

begiP

U—Uu

while exists w e U and x € NMult}}(u) such that ux is not in coneg(ﬁ) do

(~3h00s~e such u and x,
U — U v {ux}.
end

end

2.2.10. Example, [Jan29, p. 28]. Consider the set U = {xyc%, xgx%} of monomials of M(x1,x2,x3)

with the order x3 > x» > x;. The following table gives the multiplicative variables for each monomial:
ng% X3 X2 X

X3X% X2 X1

We complete the set U as follows. The monomial X3X%.X3 is not in coney(U), we set Ue— Uy {x%x%}
and we compute multiplicative variables with respect to U:

ng% X3 X2 X1
Xéx% X2 X1
X3X% X2 Xi

20



2.3. Inverse of derivation

The monomial X3x§.X3 is in coney (ﬂ) but x%x%.m is not in coneg(ﬁ), then we set U « U u {xgx%}. The
multiplicative variable of this new set of monomials is

2,2

X%X% X3 X2 X
X3X% X2 X1

The monomial ng%.xz is not in coneg(ﬁ), the other products are in coneg(ﬁ), and we prove that the

system

~ 2 3.2 3.2 3. .2 2.2
U = {x3x3, X3X7, X3X3, X3X2X7, X3X3 }

is complete.

2.3. Inverse of derivation

We study resolution of monomial PDE systems of the form
(2) D% = fo(X1,X2y+ vy Xn) xe N, 4)

where @ is an unknown function and the f, are analytic functions of several variables. As recall in[2.1.1]
an infinite set of partial differential equations can be always reduced to a finite set of such equations. By
this reason, we can assume that the system (X) is finite without loss of generality. Using Proposition
M. Janet associated to each differential operator D* a monomial x* in M(x1,...,xn). In this way, to a
PDE system (L) on variables x1, .. ., X, he associated a finite set Im(X) of monomials. By Theorem
any such a set Im(Z) of monomials can be completed into a finite complete set J(Im(X)) having the same
cone as Im(X).

2.3.1. Computation of inverse of derivation. Let us now assume that the set of monomials Im(X) is
finite and complete. The cone of Im(X) being equal to the involutive cone of Im(X), for any monomial u

in Im(XZ) and non-multiplicative variable x; in NMultgm(Z) (u), there exists a decomposition
ux; = vw,

where v is in Im(X) and w belongs to M(Multlgm(z) (v)). For any such a decomposition, it corresponds a
compatibility condition of the PDE system (Z), that is, for u = x*, v = xf and w = x¥ with «, 3 and v
in N™,
Of
(%q

= Dyfﬁ.

Let us denote by (Cyx) the set of all such compatibility conditions. M. Janet showed that with the
completeness hypothesis this set of compatibility conditions is sufficient for the PDE system (Z) to be
integrable.
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2. Monomial partial differential equations systems

2.3.2. The space of boundary conditions. Let us consider the set Im(X)" of complementary monomials
of the finite complete set Im(X). Suppose that the PDE system (X) satisfies the set (Cs) of compatibility
conditions. M. Janet associated to each monomial v = xP in Im(X)* with 3 € N™ an analytic function

(pﬁ(xip---)xikv))

1
where {Xi,, ..., Xy} = Multlgm(z) (v). By Proposition[2.2.2] the set of such analytic functions provides
a compatible boundary condition. Under these assumptions, M. Janet proved the following result.

2.3.3. Theorem ([Jan29, p. 25]). Let (X) be a finite PDE system such that Im(X) is complete. If ()
satisfies the compatibility conditions (Cg), then it always admits a unique solution with boundary
conditions given for any v = xP in Im(Z)* with p € N by

DPo L o= @p(Xiyy ey Xip )
X=0 Vg eNMult™ ) () T PTIe Bie D

1
where {Xi;, ..., Xy } = Mult;m(z) (v).

These boundary conditions are called initial conditions by M. Janet. The method to obtain this
boundary conditions is illustrated by the two following examples.

2.3.4. Example, [Jan29, p. 26]. Consider the following PDE system (Z) of unknown function ¢ of
variables x1,...,Xs:

oRL0) FoRE0) FoRL0)
=1 =1 =f
6X56X4 1 (Xh )X5)> aX5(9X3 Z(Xh >X5)a 6X56X2 3(X1a )X5))
(92(0 az(p az(p
— =1 =T — =1 .
6xﬁ 4(X1) )XS)» (3X4(9X3 S(Xh )XS)) 67(% G(Xh )X5)

The set (Cyx) of compatibility relations of the PDE system (X) is a consequence of the identities used in
Example to prove the completeness of the system:

of of
X5X3.X4 = X5X4.X3, e = o
_ _ ofs _ ofp ofy _ of
X5X2.X4 = X5X4.X2, X5X2.X3 = X5X3.X2, | 5, T oxy? Oxs . oxa’
2 xe — ofa _ ot
T TR 2 o BEY
X4X3.X5 = X5X4.X3, X4X3.X4 = X}.X3, ﬁ = ﬁ, ﬁ = ﬁ,
2 5o — 25, = ofg _ 0fy 0Of¢ _ Ofs
X3.X5 = X5X3.X3, X3.X4 = X4X3.X3, Oxs  Ox3’ Oxg  ox3°

The boundary conditions are obtained using the multiplicative variables of the set Im(X)® of comple-
mentary monomials of Im(X). We have

Im(2)10) = Im(2)* = im(D)* = &, Im(2)E®) = {1)x3, x4},  Im(2)1? = {x5}.

The multiplicative variables of these monomials are given by the following table
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2.3. Inverse of derivation

1,%3, X4 | X1, %2,
X5 X1, X5.

By Theorem [2.3.3] the PDE system (X) admits always a unique solution with any given boundary
conditions of the following type

op

o = ©0,0,0,1,0(X1,%2)
X4 xX3=X4=x5=0

0@

= = 90,0,1,0,0(x1,%2)

0X3

X3=X4=X5 =0
Plys—xg—x5=0 = 90,0,0,0,0(X1,%2)

0@

pe = ©0,0,0,0,1(X1,X5).
X5

X2 =x3=x4=0

2.3.5. Example. In a last example, M. Janet considered a PDE system where the partial derivatives of
the left hand side do not form a complete system. The PDE system (L) of unknown function ¢ of
variables x1, X2, X3
RL0) P¢
0x30x3 Ox30%3

We consider the set of monomials Im(XZ) = {X3X%, xgx%}. In Example[2.2.10, we complete Im(X) into the
following complete set of monomials

= f1(x1,%2,%3), = f2(x1,%2,%3).

J(Im(X)) = {X3X%» ng%) ng%) XgXZX%) X§X% b

The complementary set of monomials are
Jam(£)* = {1}, JAm(2)? = g, G, xaxa, ), JIm(E) MY = dxax, xdxa, xdx, ).
The multiplicative variables of these monomials are given by the following table

JIm(£)@ | .

Jm(2)LM | x3.

By Theorem [2.3.3] the PDE system (Z) admits always a unique solution with any given boundary
conditions of the following type

o %
®lys—0 = ®0,0,0(x1,%2), o = ©0,0,1(x1), s = @o,1,1(x1)
X3 x2=x3=0 X30X2 x2=x3=0
0% 3¢ P
) = @0,02(x1), 20 = @o1,.2(x1), e = ©0,03(x3),
X3 X2:X3:0 X3 XZ X2:X3:O X3 X]:X2:O
7o orosle), o0 oorale), o1130%)
N =@103(x3)y, 3 =¢013(x3)y, T3 = @1,13(x3).
Ox30%1 | oo 0x30%2 |, o Ox30%20%1 | o
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3. Monomial involutive bases

3. MONOMIAL INVOLUTIVE BASES

In this section, we recall a general approach of involutive monomial divisions introduced by V. P. Gerdt
in [Ger97], see also [GB98a, (GB98bl]. In particular, we give the axiomatic properties of an involutive
division. The partition of variables into multiplicative and non-multiplicative can be deduced from this
axiomatic. In this way, we explain how the notion of multiplicative variable in the sense of Janet can be
deduced from a particular involutive division.

3.1. Involutive division

3.1.1. Involutive division. An involutive division J on the set of monomials M(x1,...,xy) is defined
by a relation Iy in U x M(x1,...,Xn), for every finite subset U of M(x1,...,X,), satisfying, for all
monomials u, u’ in U and v, w in M(x1,...,Xn), the following six conditions

i) ul}fw implies ujw,
ii) u|§lu, for all win U,
iii) ul}fuv and ul%‘uw if and only if ul%luvw,
iv) if ulyw and u’|§iw, then u|}iu’ or u’lyu,
v) if ulyu’ and u’\}‘w, then u\}‘w,
vi) if U’ € U and u e U, then ulf'w implies uly/w.
When no confusion is possible, the relation I?]l will be also denoted by |s.

3.1.2. Multiplicative monomial. If ulgiw, by i) there exists a monomial v such that w = uv. We say
that u is an J-involutive divisor of w, w is an J-involutive multiple of w and v is J-multiplicative for u
with respect to U. When the monomial uv is not an involutive multiple of u with respect to U, we say
that v is J-non-multiplicative for u with respect to U.

We define in a same way the notion of multiplicative (resp. non-multiplicative) variable. We denote
by Multy(u) (resp. NMulty(u)) the set of multiplicative (resp. non-multiplicative) variables for the
division J of a monomial u with respect to U. We have

Mult%l(u) ={xe{x1,...,xn} ‘ u|1jiw‘}

and thus a partition of the set of variables { x1, ..., Xy } into sets of multiplicative and non-multiplicative
variables. An involutive division J is thus entirely defined by a partition

{X1yeeyXn}t = Mult%((u) L NMult%((u),

for any finite subset U of M(x1,...,xn) and any u in U, satisfying conditions iv), v) and vi) of
Definition The involutive division J is then defined by setting u Igl w if w = uv and the
monomialv belongs to M(Multy(u)). Conditions i), ii) and iii) of Definition are consequence of
this definition.
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3.2. Involutive completion procedure

3.1.3. Example. Consider U = {x7,x2} in M(x1,x;) and suppose that J is an involutive division such
that Mult%l(m ) ={x1}and Multy(xz) = {x,}. Then we have

X1 J[g X1X2, and X2 J(j X1X2.

3.1.4. Autoreduction. A subset U of M(xq,...,%n) is said to be autoreduced with respect to an
involutive division J, or J-autoreduced, if it does not contain a monomial J-divisible by another monomial
of U.

In particular, by definition of the involutive division, for any monomials u, 1’ in U and monomial w
in M(x1,...,Xn), we have ulsw and u/[yw implies ulsu’ or u’jsu. As a consequence, if a set of
monomials U is J-autoreduced, then any monomial in M(xq,...,X,) admits at most one J-involutive
divisor in U.

3.1.5. The Janet division. We call Janer division the division on M(x1, ..., X, ) defined by the multi-
plicative variables in the sense of Janet defined in[2.1.10, Explicitely, for a subset U of M(x1,...,%n)
and monomials w in U and w in M(x1,..., X, ), we define ulgw if u is a Janet divisor of w as defined

in that is w = uv, where v € M(Multg(u)) and Multg(u) is the set of Janet’s multiplicative
variables defined in

By Proposition for a fixed subset of monomial U, any monomial of M(x1, ..., X ) has aunique
Janetdivisor in U with respect to U. As a consequence, the conditions iv) and v) of Definition3.1.T]trivially
hold for the Janet division. Now suppose that U’ < U and u is a monomial in U'. If ulgw there is a

decomposition w = uv with v € M(Mult}f(u)). As Mult}f'(u) - Mult}]i(u), this implies that ulg'w.
Hence, the conditions vi) of Definition holds for the Janet division. We have thus proved

3.1.6. Proposition ([GB98a, Proposition 3.6]). The Janet division is involutive.

3.2. Involutive completion procedure

3.2.1. Involutive set. Let J be an involutive division on M(x1,...,xn) and let U be a set of monomials.
The involutive cone of a monomial u in U with respect to the involutive division J is defined by

coneg(u,U) ={wv | v e M(xy,...,xn) and ulyuv 3
The involutive cone of U with respect to the involutive division J is the following subset of monomials:

coneg(U) = U coneg(u, U).

uell

Note that the inclusion conej(U) < cone(U) holds for any set U. Note also that when the set U is
J-autoreduced, by involutivity this union is disjoint.
A subset U of M(x1,...,Xn) is J-involutive if the following equality holds

cone(U) = coney(U).

In other words, a set U is J-involutive if any multiple of an element w in U is also J-involutive multiple
of an element v of U. Note that the monomial v can be different from the monomial u, as we have seen

in Example [2.2.6]
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3. Monomial involutive bases

3.2.2. Involutive completion. A completion of a subset U of monomials of M(x1,...,Xxn) with respect

to an involutive division J, or J-completion for short, is a set of monomials u satisfying the following
three conditions

i) U is involutive,
i) Uc U,

iii) cone(U) = cone(U).

3.2.3. Noetherianity. Aninvolutive division J is said to be noetherian if all finite subset U of M (x1, ..., Xn)
admits a finite J-completion u.

3.2.4. Proposition ([GB98a, Proposition 4.5]). The Janet division is noetherian.

3.2.5. Prolongation. Let U be a subset of M(x1,...,xn). We call prolongation of an element u of U
a multiplication of u by a variable x. Given an involutive division J, a prolongation ux is multiplicative
(resp. non-multiplicative) if x is a multiplicative (resp. non-multiplicative) variable.

3.2.6. Local involutivity. A subset U of M(x1,...,Xn) is locally involutive with respect to an involutive

division J if any non-multiplicative prolongation of an element of U admit an involutive divisor in U.
That is

Yuel Vx4€ NMulty(u) Jve U suchthat v|gux;.

3.2.7. Example. By definition, if U is J-involutive, then it is locally J-involutive. The converse is false
in general. Indeed, consider the involutive division J on M = M(x1, X2, x3) defined by

Mult)' (x1) = {x1,x3}, Mult)'(xz) = {x1,x2}, Mul*(x3) = {x2, %3},

with Multgw(l ) ={x1,%x2,x3} and Multgw(u) is empty for deg(u) > 2. Then the set {x1, X2, X3} is locally
J-involutive but not J-involutive.

3.2.8. Continuity. An involutive division J is continuous if for all finite subset U of M(x1,..., %) and
any finite sequence (ur, ..., ux) of elements in U such that, there exists x;; in NMult?,l(uj) such that

WilyWie 1 Xy py - v e 5 U3JTUXG,, UplgUrXy,,
then u; # w, for any i # j.
For instance, the involutive division in Example is not continuous. Indeed, there exists the

following cycle of divisions:

X2lixixz,  xilyx3x1,  x3lixax3,  xalyxixz.
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3.2. Involutive completion procedure

3.2.9. From local to global involutivity. Any J-involutive subset U of M(x1,...,%y) is locally J-
involutive. When the division J is continuous the converse is also true. Indeed, suppose that U is locally
J-involutive. Let us show that U is J-involutive when the division J is continuous.

Given a monomial w in U and a monomial w in M(x1,...,Xn), let us show that the monomial uw
admits an J-involutive divisor in U. If ulyuw the claim is proved. Otherwise, there exists a non-
multiplicative variable xy, in NMulty(u) such that xi,[w. By local involutivity, the monomial ux,
admits an J-involutive divisor vy in U. If vilyuw the claim is proved. Otherwise, there exists a
non-multiplicative variable x;, in NMultgl (v1) such that xy, divides % By local involutivity, the
monomial viXy, admits an J-involutive divisor v in U.

In this way, we construct a sequence (1, v1,Vy,...) of monomials in U such that

Vilouxig,  Valivixe,,  V3lgvaxis,

By continuity hypothesis, all monomials vi, vy, . .. are distinct. Moreover, all these monomials are divisor
of uw, that admits a finite set of distinct divisors. As a consequence, previous sequence is finite. It
follows, that its last term vy is an J-involutive monomial of uw. We have thus proved the following result.

3.2.10. Theorem ([GB98a, Theorem 4.10]). Let J be a continuous involutive division. A subset of
monomials of M(X1, ..., xn) is locally J-involutive if and only if it is J-involutive.

3.2.11. Proposition ([GB98a, Corollary 4.11]). The Janet division is continuous.

3.2.12. Involutive completion procedure. Proceduregeneralizes Janet’s completion procedure given
in to any involutive division. Let us fix a monomial order < on M(x1,...,X,). Given a set
of monomials U, the procedure completes the set U by all possible non-involutives prolongations of
monomials in U.

Procedure 2: Involutive completion procedure.

Input: U a finite set of monomials of M(x1,...,Xn)

begill

U+—Uu

while exist 1 e U and x € NMultg[ (w) such that ux does not have J-involutive divisor in U do

Choose such a u and x corresponding to the smallest monomial ux with respect to the
IIIOIIOINIIial order X
U~ U u{ux}

end

end

Output: U the minimal involutive completion of the set U.

By introducing the notion of constructive involutive division, V. P. Gerdt and Y. A. Blinkov gave
in [GB98al] some conditions on the involutive division J in order to show the correction and the termination
of this procedure. A continuous involutive division J is constructive if for any subset of monomials U
of M(x1,...,Xn) and for any non-multiplicative prolongation ux of a monomial u in U satisfying the
following two conditions
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3. Monomial involutive bases

i) ux does not have an J-involutive divisor in U,

ii) any non-multiplicative prolongation vy # ux of amonomial vin U that divides ux has an J-involutive
divisor in U,

the monomial ux cannot be J-involutively divided by a monomial w in cones(U) with respect to U U {w}.

If J is a constructive division, then the completion procedure completes the set U into an involutive
set. We refer the reader to [GB98a, Theorem 4.14] for a proof of correctness and termination of the
completion procedure under these hypothesis.

3.2.13. Example. An application of this procedure on the set of monomials U = {XgX%, x%x% } given by
M. Janet in [Jan29] is developed in[2.2.10}

3.3. Others involutive approaches

For analysis on differential systems several other notion of multiplicative variables were introduced by
J. M. Thomas 1937 and J.-F. Pommarret in 1978. Others examples of involutive divisions can be found
in [GB98b].

3.3.1. Thomas division. In [[Tho37], Thomas introduced an involutive division that differs from those
of M. Janet also used in the analysis on differential systems. The multiplicative variables in the sense of
Thomas’s division for a monomial u with of a finite subset U of M(x1,...,xy) are defined as follows:

xi € Mult(u) if deg;(u) = deg;().

In particular, we have ulgw if w = uv and for all variable x; in v, we have deg;(u) = deg;(U). The
Thomas division is a noetherian and continuous involutive division. We refer the reader to [GB98a]] for
detailed proofs of this results. Note also that the Janet division is a refinement of Thomas division in the
sense that for any finite set of monomials U and any monomial u in U, the following inclusions hold

Mult#(u) c Mult}f(u) and NMult}f(u) c NMultg(u).

3.3.2. Pommaret division. In [Pom78|], Pommaret introduced an involutive division that is defined
globally, that is the multiplicative variables for the Pommaret division does not depend of a given subset
of monomials. In this way, Pommaret’s division can be defined on an infinite set of monomials.

We fix an order on the variables x; > x; > ... > X,. Given a monomial u = xf“ .. .x,‘:k,
with o > 0, the Pommaret multiplicative variables for u are defined by
M(X7yeeyXn) ip s M(X1 yeenyXm) ip s
Xj € Multy, (w), ifj=xk, and X € NMult;, ™ (w), ifj<k
We set Mult%i[(x‘ eon) (1) ={x1,...,xn}. The Pommaret division is a continuous involutive division that

is not noetherian, [GB98a]. The Janet division is also a refinement of the Pommaret division, that is, for
an autoreduced finite set of monomials U, the following inclusions hold for any monomial u in U,

Mult(u) € Multf (u) and NMult} (1) € NMultf (u).
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4. Polynomial partial differential equations systems

4. POLYNOMIAL PARTIAL DIFFERENTIAL EQUATIONS SYSTEMS

In this section, we extend the results presented in Section [2| on monomial systems to linear (polyno-
mial) systems. All PDE systems are considered in analytic categories, namely all unknown functions,
coeflicients and boundary conditions are supposed to be analytic. In a first part, we recall the notion of
principal derivative with respect to an order on derivatives introduced by M. Janet. This notion is used to
give an algebraic characterization of complete integrability conditions of a PDE system. Then we present
a procedure that decides whether a given finite linear PDE system can be transformed into a completely
integrable linear PDE system. Finally, we recall the algebraic formulation of involutivity introduced by
M. Janet in [Jan29].

4.1. Parametric and principal derivatives

4.1.1. Motivations. In [Jan29| Chapter 2], M. Janet first considered the following PDE of one unknown
function on C™:

o*¢ e o .\ 0
@ = Z ai’j(X)m + ] 2 ai(X)m +§ br(x)aixr +c(x)o + f(x), )

1<i,j<n <i<n

where the functions ai;j(x), aj(x), by(x), c(x) and f(x) are analytic functions in a neighborhood of a

point P = (x?, ...,x%) in C™. Given two analytic functions @7 and @, in a neighborhood Ug of a
point Q = (x?, e >X?1—1) in C~', M. Janet studied the existence of solutions of equation () under the
following initial condition:
0P
Ply, —x0 = @1 — =@ (6)
Xn=Xpn ) axn Xn:x% )

holds in a neighborhood of the point Q. In}4.4.2] we will formulate such condition for higher-order linear
PDE systems with several unknown functions, called boundary condition.

4.1.2. Principal and parametric derivatives. In order to analyse the existence and the uniqueness of
a solution of equation (5)) under the initial condition (6]), M. Janet introduced the notions of parametric
and principal derivative defined as follows. The partial derivatives D%, with & = (1, ..., &n), of an
analytic function ¢ are determined by

i) ¢ and its derivatives for &, = 0,
ii) 7 and its derivatives for &, = 1,

in the neighborhood Ugq. These derivatives for o, = 0 and o, = 1 are called parametric, those

derivatives for o, > 2, i.e. the derivative of g—x‘ze, are called principal. Note that the values of the
principal derivative at the point P are entirely given by @7 and ¢, and by their derivatives thanks to
equation (5). Note that the notion of parametric derivative corresponds to a parametrization of initial

conditions of the system.
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4. Polynomial partial differential equations systems

4.1.3. Janet’s orders on derivatives. Let « = (1,...,n) and B = (B1,...,Bn) bein N™. Let @ be
an analytic function. The derivative D*¢ is said to be posterior (resp. anterior) to DP ¢ if

|| > |B] (resp. |&| < [B]) or || =Bl and oty > B (resp. an < PBr).

Obviously, any derivative of ¢ admits only finitely many anterior derivatives of ¢. Using this notion
of posteriority, M. Janet showed the existence and unicity problem of equation (5) under the initial
condition (6).

In his monograph, M. Janet gave several generalizations of the previous posteriority notion. The first
one corresponds to the degree lexicographic order, [Jan29, §22], formulated as follows:

i) for || # |B], the derivative D% is called posterior (resp. anterior) to DP e, if || > |B| (resp.

| < [BD),

i) for || = ||, the derivative D*¢ is called posterior (resp. anterior) to DP if the first non-zero
difference

(Xn_f’n) o‘n—1_6n—1> )0‘1_61)

is positive (resp. negative).

4.1.4. Generalization. Let us consider the following generalization of equation ():

Do = > aiDig +f, (7

iel

where D and the D; are differential operators such that Dj¢ is anterior to D¢ for all i in I. The
derivative D and all its derivatives are called principal derivatives of the equation (7). All the other
derivative of u are called parametric derivatives of the equation ({7).

4.1.5. Weight order. Further generalization of these order relations were given by M. Janet by introduc-
ing the notion of cote, that corresponds to a parametrization of a weight order defined as follows. Let us
fix a positive integer s. We define a matrix of weight

C]y] cee CnJ
C=| : :
C],S “ee Cn’s
that associates to each variable x; non negative integers Cij,...,Ci, called the s-weights of x;.
This notion was called cote by M. Janet in [Jan29, §22] following the terminology introduced by
Riquier, [Riq10]. For each derivative D%, with & = (&q,..., &) of an analytic function @, we

associate a s-weight T'(C) = (I7, ..., ) where the T} are defined by
n
Fk = Z cx-lCi,k.
i=1

Given two monomial partial differential operators D* and DP as in|4.1.3] we say that D% is posterior
(resp. anterior) to DP ¢ with respect to a weigh matrix C if

30



4.2. First order PDE systems

i) || # Bl and || > |B] (resp. [ox] < |BI),
ii) otherwise ||l = |B] and the first non-zero difference
n-rf, nh-ry, ... =T/
is positive (resp. negative).

In this way, we define an order on the set of monomial partial derivatives, called weight order. Note that,
we recover the Janet order defined in by setting Cix = difkn+1-

4.2. First order PDE systems

We consider first resolution of first order PDE systems.

4.2.1. Complete integrability. In [Jan29, §36], M. Janet considered the following first order PDE system

e _
(X) ay}\ (Uh "’yhazh"')Z‘k)(p>q1)"')qk) (1<A<h) (8)
where ¢ 1s an unknown function of independent variables yi,...,Yn,21,...,2x, With h +k = n

and q; = a . Moreover, we suppose that the functions f; are analytlc in a nelghborhood of a point P.
M. Janet wrote down explicitly the integrability condition of the PDE systems (X) defined in (8]) namely

by the following equality
7 <9<P> _ 7 <(9<P)
oyr \ 0yu OYu \ OYx '

for any 1 < A, u < h. Following (8)), we deduce that
a(acp) _fu 00 Oy Z&f *¢
oyr \ Oyu é’y)\ Oyx 0@ & og; oyroz;’

o, . & of, (61‘;\ 5fA) oty 0f, e
=S Ty :
oy oe ; oqi \ oz T Z | 0q; 8q] 02;0z;

Hence, the integrability condition is expressed as

o [ oe o (do
o () 70 ()
g O < of, (of of of of & Ofy [ Of of 9
=0,
forany 1 < A # p < h. When the PDE system (X) defined in (8) satisfies relation (9), the system (X) is
said to be completely integrable.

4.2.2. Theorem. Suppose that the PDE system (X) in (E?]) is completely integrable. Let P be a point in C™
and ©(z1,...,z) be an analytic function in the neighborhood of the point 7(P), where 1t : C™ — C¥
denotes the canonical projection (Yi,...,Yn,Z1y-.-2k) — (Z1y...,2k). Then, the system (X) admits
only one analytic solution satisfying W = 7" @ in a neighborhood of the point P.
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4. Polynomial partial differential equations systems

4.3. Higher-order finite linear PDE systems

In [Jan29, §39], M. Janet discussed the existence of solutions of a finite linear PDE system of one
unknown function @ in which each equation is of the following form:

(£)  Dip =) aDijop, iel (10)
j

All the functions a;;j are supposed analytic in a neighborhood of a point P in C™.

4.3.1. Principal and parametric derivatives. Consider Janet’s order <j on derivatives as defined
in We suppose that each equation of the system (X) defined by satisfies the following two
conditions:

i) Dy is anterior to Dy, for any iin I,
ii) all the D;’s for i in I are distinct.

We extend the notion of principal derivative introduced in .1.4] for one PDE equation to a system
of the form (10} as follows. The derivative Di, for 1 in I, and all its derivatives are called principal
derivatives of the PDE system (X) given in with respect to Janet’s order. Any other derivative of ¢
is called parametric derivative.

4.3.2. Completeness with respect to Janet’s order. Let us fix an order X, > X7 > ... > X on
variables. By the isomorphism of Proposition[2.1.2] that identifies monomial partial differential operators
with monomials in M(x1,...,X,), we associate to the set of operators D;’s, i in I, defined in a
set Im< | (X) of monomials. By definition, the set lm<] (X) contains the monomials associated to leading
derivatives of the PDE system (X) with respect to Janet’s order.

The PDE system (X) is said to be complete with respect to Janet’s order < if the set of monomi-
als Im (X) is complete in the sense of In|§] we will give a completion procedure that transforms a
finite linear PDE system into an equivalent complete linear PDE system.

By definition the set of principal derivatives corresponds, by isomorphism of Proposition [2.1.2] to
the multiplicative cone of the monomial set Im, (X). Hence, when (X) is complete, the set of principal
derivatives corresponds to the involutive cone of Img, (£). By Proposition there is a partition

M(x1, ..., xn) = coneg(Imx, (X)) I coney (Imy, (2)4).
It follows that set of parametric derivatives of a complete system () corresponds to the involutive cone
of the set of monomials Im; (£)+.

4.3.3. Boundary conditions. Consider the set Im; (£)* of complementary monomials of Im« ;(2),as
defined in To a monomial xP in lm<I(Z)i, with § = (B1,...,Bn) in N and

Im<. (Z)+
Multgm\l( )

(Xﬁ) = {Xi1 yooe )Xikﬁ })
we associate an arbitrary analytic function

(P[S(Xip-")xikﬁ)-
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4.3. Higher-order finite linear PDE systems

Using these functions, M. Janet defined a boundary condition:

(Cp) DP g ey @h = @p(Xiyy ey Xy )-
x;j=0 Vx;ENMult, J (xB)

Then he formulated a boundary condition of the equation ([10) with respect to Janet’s order as the following

set

{Cp I xP elms (D)* ). (1D

4.3.4. Theorem ([Jan29, §391). If the PDE system (%) in (I0) is complete with respect to Janet’s
order <, then it admits at most one analytic solution satisfying the boundary condition (1.

4.3.5. PDE systems with several unknown functions. The construction of boundary conditions given
in for one unknown function can be extended to linear PDE systems on C™ with several un-
known functions using a weight order. Let us consider a linear PDE system of m unknown analytic
functions @', ..., @™ of the following form

(£)  D¥%'= > aipDPe’,  ael (12)
(B,s)eEN™x{1,2,...,m}
for T <r < m, where I" is a finite subset of N" and the a’; are analytic functions.
For such a system, we define a welght order as follows. Let us fix a positive integer s. To any variable
Xl we associate s + 1 weights Cip, Cy1,..., Cis by setting Cio = 1 and the Gy, 1, ., Ci s as defined in
5t For each unknown functlon @, we assoc1ate s + 1 weights To ,T1 .. ,T Wlth these data, we
define the s 4+ 1 weights Fo , F] ey FS of the partial derivative D*¢J with « = («1,..., &) in N™
by setting

n
:Z(Xici,k+T1£]) (0<k<s).
i=1
We define the notions of anteriority and posteriority on derivatives with respect to this weight order,
denoted by <y, as it is done in[4.3.1] for systems of one unknown function. In particular, we define the
notions of principal and parametric derivatives in a similar way to systems of one unknown function.
Now suppose that the system (12) is written in the form

(L) D%" = Z a&fﬁDE’(ps, axel. (13)
(B,s)eEN™x{1,2,...,m}
DP @S <woD%e"

We can formulate the notion of completeness with respect to the weight order <, as in [4.3.2] Let
consider Im<, (X, @") be the set of monomials associated to leading derivatives D% of all PDE in (X)
such that « belongs to I". The PDE system (X) is complete with respect to <y, if forany 1 < r < m,
the set of monomials Im<_,_(Z, ¢") is complete in the sense of Finally, we can formulate as in

=WwWo

a boundary condition for the linear PDE system with respect to such a weight order.

4.3.6. Theorem ([Jan29, §40]). If the PDE system (L) in is complete with respect to a weight
order <o, then it admits at most one analytic solution satisfying the boundary condition (I1).

M. Janet said that this result could be proved in a way similar to the proof of Theorem[4.3.4]
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4. Polynomial partial differential equations systems

4.4. Completely integrable higher-order linear PDE systems

In this subsection we will introduce integrability conditions for higher-order linear PDE systems of
several unknown functions. The main result, Theorem algebraically characterizes the complete
integrability property for complete PDE systems. It states that, under the completeness property, the
complete integrability condition is equivalent to have all integrability conditions trivial. In this subsection,
we will assume that the linear PDE systems are complete. Note that, we will see in [6] a procedure that
transforms a linear PDE system of the form (I3)) into a complete linear PDE system with respect to a
weight order.

4.4.1. Formal solutions. Let consider a linear PDE system (X) of the form of unknown func-
tions @', ..., @™ and independent variables x1,. .., X,. We suppose that (L) is complete, hence the set
of monomials Im< (X, ") = {x* | o € I"} is complete for all 1 < r < m. For the remaining part of
this subsection, we will denote Im<,, (X, ®") by U,. Let denote by (coney <,,, (X)) the following PDE

=WwWo
system, for 1 <r < m,

(D% = Y o (aDPe’),
(B,s)eEN™x{1,2,...,m}
Dﬁ(p5<w0D‘x(pT

for & € I" and u € M(Mult(x*, U;)).

We use the PDE system (conej <, (X)) to compute the values of the principal derivative at a
point P® = (x?, ...,X%) of C™. We call formal solutions of the PDE system (Z) at the point P° the
elements @', ..., @™ in C[[x; — x?, .+ «yXn — x2]] which are solutions of (Z). If the system (Z) admits
an analytic solution then these formal solutions are convergent series and give analytic solutions of (X)
on a neighbourhood of the point P°.

4.4.2. Boundary conditions. The question is to determine under which condition the system (X) admits
a solution for any given boundary condition. These boundary conditions are parametrized by the set U-
of complementary monomials of the set of monomials U, as in Explicitly, for 1 < r < m, toa
monomial xP in U, with § in N™ and MultgrL (xB) = {Xi;y -+, Xi, }, We associate an arbitrary analytic
function

(pB,T(Xﬁ Yooy Xikr )

Formulating boundary condition as the following data:

(CB,T) DB(pT

1 =@ r(Xi ey Xi )
xj:x? ijeNMultgT (xPm) B, n P e

We set the boundary condition of the system () in to be the following set

J (CorIxPrens). (14)
I<r<m
Note that M. Janet call degree of generality of the solution of the PDE system (X) the dimension of the
boundary conditions of the system, that is

Max ‘MultqglTL (w)].

'UEVuT
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4.4. Completely integrable higher-order linear PDE systems

4.4.3. J-normal form. Suppose that the PDE system (X) is complete. Given a linear equation E amongst
the unknown functions @', ..., @™ and variables X1, ..., Xn. A J-normal form of E with respect to the
system (L) is an equation obtained from E by the reduction process that replaces principal derivatives by
parametric derivatives with a similar procedure to RightReduce given in

4.4.4. Integrability conditions. Given 1 < r < m and o € I", let x; be in NMultar(x“) a non-
multiplicative variable. Let us differentiate the equation

D%p" = Z a&fﬁDB(ps
(B,s)eN™x{1,2,...,m}
DB(pS <woD%@"

by the partial derivative @ (x;) = 6%1 We obtain the following PDE

oahs
—=EDPes + a&f@(xi)(Dﬁ@S)) : (15)

@ (x)(D%¢") = -

(B,s)eN™x{1,2,...,m} <

DB(p5<WOD"‘(pT
Using system (coney <., (X)), we can rewrite the PDE into an PDE formulated in terms of parametric
derivatives and independent variables. The set of monomials U, being complete, there exists &’ in N™
with x*" in U, and u in M(Mult}f’(x“')) such that x;x* = ux®". Then ®(x;)D* = ®(u)D* as a
consequence, we obtain the following equation

oahs ,
2 ( afﬁ.’BD%s +a&’f@®(Xi)(Dﬁ<ps)> = > @(u)(ag? g DP ).
(B,s)EN™x{1,2,....m} v (B’,s)eN™x{1,2,...m}
DB(pS<WoDD((pr DI3/(PS<WODoc/(pr

(16)
Using equations of system (coneg <., (X)), we replace all principal derivatives in the equation by
parametric derivatives and independent variables. The order <, being well-founded this process is
terminating. Moreover, when the PDE system (X) is complete this reduction process is confluent in the
sense that any transformations of an equation ends on a unique J-normal forms. This set of J-normal
forms is denoted by IntCondy <, (Z).

<WO

4.4.5. Remarks. The system (X) being complete any equation is reduced to a unique normal form.
Such a normal form allows us to judge whether a given integrability condition is trivial or not.

Recall that the parametric derivatives correspond to the boundary conditions. Hence, a non-trivial
relation in IntCondy <, (X) provides a non-trivial relation among the boundary conditions. In this way,
we can decide whether the system (X) is completely integrable or not.

4.4.6. Completely integrable systems. A complete linear PDE system (X) of the form is said to
be completely integrable if it admits an analytic solution for any given boundary condition (I4). For the
geometrical interpretation of these condition, we refer the reader to[I.1.4]

4.4.7. Theorem ([Jan29, §42]). Let (X) be a complete finite linear PDE system of the form . Then
the system (L) is completely integrable if and only if any relation in IntCondy < (X) is a trivial identity.

A proof of this result is given in [Jan29, §43]. Note that the later condition is equivalent to say that
any relation is an algebraic consequence of a PDE equation of the system (conej <, . (Z)).
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4. Polynomial partial differential equations systems

4.5. Canonical forms of linear PDE systems

In this subsection, we recall from [Jan29] the notion of canonical linear PDE system. A canonical system
is a normal form with respect to a weight order on derivatives, and satisfying some analytic conditions,
allowing to extend the Cauchy-Kowalevsky’s theorem given in[I.1.3] Note that this terminology refers
to a notion of normal form, but it does not correspond to the well known notion for a rewriting system
meaning both terminating and confluence. In this notes, we present canonical systems with respect to
weight order as it done in Janet’s monograph [Jan29|], but we notice that this notion can be defined with
any total order on derivative.

4.5.1. Autoreduced PDE systems. Let (X) be a finite linear PDE system. Suppose that a weight
order <y is fixed on the set of unknown functions @', ..., @™ of (X) and their derivatives, as defined
in We suppose also that each equation of the system (X) can be expressed in the following form

B
(B,3)eN™x{1,2,... m}
DP @S <o D% "
so that
()= J =7, (17)
(x,1)el

the union being indexed by a multiset I. The support of the equation (X(®") is defined by

Supp(Z(®™)) ={(B,s) | agT) # 0.

)

For 1 < v < m, consider the set of monomials Im<, (X, ¢") corresponding to leading derivatives,

that is monomials x* such (&, 1) belongs to I. The system (Z) is said to be

i) J-left-reduced with respect to <y, if for any (x,v) in I there is no (o’, ) in I and non-trivial
monomial xY in M(Mult;m<w° (2.0 )(x"‘/)) such that x* = x¥x®’,

ii) J-rigth-reduced with respect to <.y, if, for any («,7) in I and any (P, s) in Supp(Z(®™), there is
no (o, s) in I and non-trivial monomial xY in J\/E(Multlamswo (207 (x*')) such that xP = x¥x*’,

iii) J-autoreduced with respect to <y, if it is both J-left-reduced and J-right-reduced with respect to
<

NWOo-

4.5.2. Canonical PDE systems. A PDE system (X) is said to be J-canonical with respect a weight
order <, if it satisfies the following five conditions

i) it consists of finitely many equations and each equation can be expressed in the following form

I
(B,s)eN™x{1,2,...,m}
DP @3 <woD*@"

ii) the system (X) is J-autoreduced with respect to <o,
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4.5. Canonical forms of linear PDE systems

iii) the system (X) is complete,

iv) the system (X) is completely integrable,

(et,r
s

v) the coefficients Qg % of the equations in i) and the boundary conditions of (X) are analytic.

Under these assumptions, the system () admits a unique analytic solution satisfying appropriate boundary
conditions parametrized by complementary monomials as in[4.3.3]

4.5.3. Example. In [Jan29, §44], M. Janet studied the following linear PDE system of one unknown
function ¢

P54 = P11y
P53 = P41,
(£) P52 = P31,
P44 = P52,
P43 = P21y
P33 = P42,

2

™ (px . In Example|2.2.6, we have shown that the left hand sides of the equations of
10X
this system form a complete set of monomials. Let us define the following weights for the variables:

where pi; denotes

X1 X2 X3 X4 Xp
1T 0 1 1 2
0O 0 0 1 1

We deduce the following weights for the second derivatives:

Pal P11 | P52 s
P22 P42 | P31 | P41 | P44 P54 | P55
P32 P53
P33 | P43
0 1 1 2 2 2 3 3 4
0 0 1 0 1 2 1 2 2

As seen in Example [2.3.4] given any four analytic functions

(PO(X],XZ)) (P3(X1)X2)a @4(X1)X2)) (P5(X],X5),

there exists a unique solution of the PDE system (X). Note that the boundary condition is given by

@l =xg xs=x0 x5 =0 = ©0,0,0,00(X1,X2),

op

o = ©0,0,1,0,0(X1,%2),
X3 X3:X2,X4:X2,X5:X(5>

op

o = ©0,0,0,1,0(X1,%2),
X4 X3:X§,X4:X2,X5:X2

op

— = 0,0,0,0,1(X1,X5).

aXS

X2 :xg X3 :xg Xa :xg

We set
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4. Polynomial partial differential equations systems

A=DPsa—Pn | X5 X4 X3 X2 X
B =1ps3—par | x5 X3 X2 X
C=ps2—p3 | x5 X2 X
D = psys —ps2 X4 X3 X2 Xg
E =ps3 — P2 X3 X2 X
F=7p33—pa X3 X2 X

where the variable on the right correspond to the multiplicative variables of the first term. In order to
decide if the system (X) is completely integrable it suffices to check if the following terms

B4) C4> C3) D5) ES) E4) F5> F4

are linear combinations of derivative of the terms A, B, C, D, E, F with respect to their multiplicative
variables. Here Y; denotes the derivative %Y of a term Y. Finally, we observe that

By = A3 —Dy—Cy,

C4:A2—E1, C3:BZ_F1»

D5 = A4 — By — Cs,

Es = A3 — Cy, B4 = D3 + By,

Fs =Bz — A, + Eq, Fs=E3—Dy —C,.

As a consequence the system (Z) is completely integrable, hence it is J-canonical.

4.6. Reduction of a PDE system to a canonical form

In his monograph [Jan29], M. Janet did not mention about the correctness of the procedures that he
introduced in order to reduce a finite linear PDE system to a canonical form. In this section, we explain
how to transform a finite linear PDE system with several unknown functions by derivation, elimination
and autoreduction, into an equivalent linear PDE system that is either in canonical form or in incompatible
system. For linear PDE systems with constant coefficients, the correctness of the procedure can be verified
easily.

4.6.1. Equivalence of PDE system. Janet’s procedure transforms by reduction and completion a finite
linear PDE system into a new PDE system. The PDE system obtained in this way is equivalent to the
original system. In his work, M. Janet dit not explain this notion of equivalence that can be described as
follows. Consider two finite linear PDE systems with m unknown functions and n independent variables

m
(ZH  Ypel =0, iel
j=1

for 1 = 1,2, where p%’j are linear differential operators. We say that the PDE systems (') and (X?) are
equivalent if the set of solutions of the two systems are the same. This notion can be also formulated by
saying that the D-modules generated by the families of differentials operators (p{] yooo ,plm) forieI'
and (pizm ... ,pim) for i € 1% are equals.
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4.6. Reduction of a PDE system to a canonical form

4.6.2. A canonical weight order. Consider a finite linear PDE system (X) of m unknown func-
tions @', ..., @™ of independent variables X, . .., xn. To these variables and functions we associate the
following weights

X1 X Xn1 Xn | @ @F ... @M
T 1 T 1]0 0 0
0 0 o 01 2 m
0 0 o 1]0 0 0
0 0 1 0olo0o o 0
o 1 ... 0 olo o .. 0
1 0 ... 0 0|0 0 ... 0

The weight order on monomial partial derivatives defined in[4.1.5]induced by this weight system is total.
This order is called canonical weight order following M. Janet and denoted by <¢y0.

4.6.3. Combination of equations. Consider the PDE system (X) with the canonical weight order <cy,o
defined in We suppose that the system (X) is given in the same form as and that each equation
of the system is written in the following form

(ngxﬁ)) D%’ = Z agifg 1Lfow(ps) ie o)
(B,s)eEN™x{1,2,...,m}
DP @S <cwoD¥"

For such an equation, the leading pair (o, ) of the equation Eg“’r) will be denoted by ldeg (E®T).
We will denote by Ldeg_ . (X) the subset of N™ x {1,..., m} consisting of leading pairs of equations
of the system (X):

Ldeg.  (X) ={ldeg._  (E)|E isanequationof Z}.

The canonical weight order <, induces a total order on N™ x {1,..., m} denoted by <;,. We will

denote by K(«, 1,1) the set of pairs ({3, s) of running indices in the sum of the equation EE‘X’”. Given i
and j in I(®7) we set

(i, Ti,5) = Max ((B,s) € K(a,1,1) U K(e,7,7) | a%iiil # aga:i),j)'
We define

(&i,5,T1,5 . . .
(z,;)),ri g if (oti, mi) € Ko 1,1) \ Koty 1,3,

(i,5,T1,5) 1597 . . .

b(zvr]]r J - _aEZ)rJ)\]{ ]) lf (Cx‘h])‘rl)]) € K(Cx') r)]) \ K(Cx‘) T) 1)) (18)

(oi,5571,5) (xijoriy) s . .
(z;); B (zyrl); ] if (Cxi,j)ri,j) € K(Cx) T, 1) N K(OC, T)))»

and we denote by EE?’T) the equation

D(Xi’j ri,j — Z C(B)S] DB s Z C(B)S) D[.)) S 19
¢ (airighi— P (aprighi— P (19)
(B,s)eK(a,1,j) (B,s)eK(a,r,1)
(Bys)=<qp (g 554 5) (Bys)=<qp (e 554 5)
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4. Polynomial partial differential equations systems

where, for any k = 1,3,
C(ft‘:,S) k/ “WTH

(i,j5Ti,5),k
The equation (19) corresponds to a combination of the two equations E " and E (T and it will be

denoted by Combine_ ( EE‘X T), E]g“ T)). Procedure [3|adds to a set of PDE equations (Z) an equation E
by combination.

Procedure 3: Add<_, (%, E)
Input:
- A canonical weight order <cwo for @',..., @™ and x1, ..., Xn.
- (X) a finite linear PDE system with unknown functions @', ..., @™ of independent variables

X1y ..., Xn given in the same form as l.i such that the leadlng derivatives are different.
-Ebea hnear PDE in the same form as 1.)

begin

MNe—2X

(Bs) ¢ ldeg,, (E)

if (B,s) ¢ Ldeg.__(T) then

| T+« Tu{E}

end

else
let E(A) be the equation of the system (X) whose leading pair is (3, s).
C « Combine~__ (EPs) E)

end

end

Output: " a PDE system equivalent to the system obtained from (X) by adding equation E.

Note that at each step of the procedure RightReduce; _ - the running system I' remains J-left
reduced. As consequence by combining this procedure with the procedure LeftReduce; <, we obtain
the following autoreduce procedure that transform a PDE system into a autoreduced PDE system.

4.6.4. Procedure Autoreduce; <,  (X). Let us fix a canonical weight order <, for o', ™
and Xx1,...,Xxn. Let (X) be a finite linear PDE system given in the same form as with unknown
functions @', ..., @™ of independent variables x1, .. . , Xn. We suppose that the leading derivatives of (Z)
are all different. The procedure Autoreduce; <, . transforms the PDE system (X) into an J-autoreduced
PDE system that is equivalent to (X) by applying successively the procedures LeftReduce; < = and
RightReduce; _ . An algebraic version of this procedure is given in E} Let us remark that the
autoreduction procedure given in Janet’s monographs corresponds to the LeftReduce; it does not
deal with right reduction of equations.

Note that, the procedure Autoreducey

y<cwo?

<ewo 1ails if and only if the procedure Comblne<cwo fails.

This occurs when the procedure Combine_,  is applied on equations Ei ) and Ej“’ and some

coefficients bE “1 ])’r”), as defined in li vanish on some point of C™. In particular, the proce-

dure Autoreduceg <ewo does not fail when all the coefficients are constant. This constraint on the
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4.6. Reduction of a PDE system to a canonical form

Procedure 4: LeftReduce; < ()

Ncwo

Input:
- A canonical weight order <cwo for @', ..., @™ and x1, ..., Xn.
- (X) a finite linear PDE system with unknown functions @', ..., @™ of independent variables
X1y ..., Xy given in the same form as such that the leading derivatives are different.
begin
N

[ Ldeg_ (T)

Uy — {x* | (e, 7) € T}

while (exist (o, 1), (&, 1) in 1 and non-trivial monomial XY in M(Multg " (x*")) such that
x* = xVx"") do

e T\ {E®")}

Let DYE(®'7) be the equation obtained from the equation E(r) by applying the operator
DY to the two sides.

C « Combine<__ (E(®") DYE'M)

end

end

Output: I a J-left-reduced PDE system with respect to <y, that is equivalent to ().

coeflicients of the system concerns only the left reduction and were not discussed in Janet’s monograph.
As a consequence, we have the following result.

4.6.5. Theorem. If (X) is a finite linear PDE system with constant coefficients, the procedure
Autoreducey < = terminates and produces a finite autoreduced PDE system that is equivalent to (L).
4.6.6. Completion procedure of a PDE system. Consider a finite linear PDE system (Z) with the
canonical weight order <, given in If the system (X) is J-autoreduced, then the following
procedure Complete; . (X) transforms the system (L) into a finite complete J-autoreduced linear
PDE system. This procedure of completion appears in Janet’s monograph [Jan29] but not given in an
explicit way.

4.6.7. Completion and integrability conditions. In the completion procedure@ the set P contains all
the obstructions of the system to be complete. The procedure Complete; .~ add to the system the

necessary equations in order to eliminate all these obstructions. The equations added to the system have
the following form

5, 5,
DP@" =Rhs(EP7) — a8 D" + afy") DY (Rhs(E*"))

with & # {3 and lead to the definition of new integrability condition of the form by using the
construction given in4.4.4]
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4. Polynomial partial differential equations systems

Procedure 5: RightReduce; . (X)

Input:
- A canonical weight order <cwo for @', ..., @™ and x1, ..., Xn.
- (Z) a finite linear PDE system with unknown functions @', ..., @™ of independent variables
X1y ..., Xn given in the same form as and that is J-left reduced with respect to <cwo-
begin
X%
Me«T

[ Ldeg._, (T)

// The canonical weight order <¢yo induces a total
// order on the set 1 of leading pairs denoted by <1y,
(8,t) « max(I) with respect to <y,

while I'" # &5 do

I« I\ {E&Y)

[ T\{(5,t)}

S « Supp(E(®Y)

Uy — {x*| (1) € T}

that xP = xyx"‘) do
I I\ {EGY}
C e EBY — oP'DP " + affy/ DY (Rhs(E(®))
end

end

end

while (exist (B,1)inS, (a, 1) in I and non-trivial monomial X in J\/[(Multélr (x*)) such

Output: I" a J-right-reduced PDE system with respect to <y, that is equivalent to (Z).
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4.6. Reduction of a PDE system to a canonical form

Procedure 6: Complete; . (X)
Input:
- A canonical weight order <cwo for @', ..., @™ and x1, ..., Xn.
- (£) a finite J-autoreduced linear PDE system with unknown functions @', ..., @™ of independent
variables x1, ..., Xy given in the same form as and whose leading derivatives are different.
begin
X
=—
forr=1,...,mdo
while = = ¢J do
[ Ldeg._  (T)
Uy — {x* [ (a,7) € T}
Py — {S—E |EeT, xe NMultélr (x®) with (8,1) = Ideg(E) and xx® ¢ coneg(ur)}
C«0
while P, # & and C =0 do
choose EA") in P, whose leading pair ({3, 1) is minimal with respect to <cwo-
P, — P\ {E(BM)
C « E(B»r]
Sc¢ « Supp(C)
while exist (8,1) in Sc, (o, 1) in land XY in J\/[(MultaT (x%)) such that x® = xYx*
do
C C—a Do + a5 DY(Rhs(E(®7)))
B P T g
Sc « Supp(C)
end
end
if C # O then
| T« Autoreduce; <, (I" U{C})
end
else
| Z«T
end
end
end
end

Output: (=) a linear J-autoreduced PDE system equivalent to (X) and that is complete with
respect to <cwo-
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4. Polynomial partial differential equations systems

4.6.8. Janet’s procedure. Given a finite linear PDE system (X) with the canonical weight order <cwo
defined in Janet’s procedure Janetg < either transforms the system (X) into a PDE system (')
that is J-canonical with respect to <y, Or computes an obstruction to transform the system (X) to such a
form. In the first case, the solutions of the J-canonical system (T") are solutions of the initial system (X).
In the second case, the obstruction corresponds to a non trivial relation on the boundary conditions. We
refer the reader to [Sch92] or [Rob14] for a deeper discussion on this procedure and its implementations.

Applying successively the procedures Autoreduce; and Complete,, the first step of the procedure
consists in reducing the PDE system (X) into a PDE system (I") that is J-autoreduced and complete with
respect to <¢wo-

Then it computes the set IntCondy <, (') of integrability conditions of the system (I'). Recall
from [4.4.4] that this set is a finite set of relations that does not contain principal derivative. Hence,
these integrability conditions are J-normal forms with respect to I'. The system (I") being complete,
these normal forms are unique and by Theorem if all of these normal forms are trivial, then the
system (") is completely integrable. Otherwise, the procedure takes a non-trivial condition R in the
set IntCondj <_, . (I') and distinguishes two cases. If the relation R is among functions @', ..., o™and
variables X1, ..., Xn, then this relation imposes a relation on the boundary conditions of the system (I").
In the other case, the set IntCondy <., (') contains at least one PDE having a derivative of one of the
functions @', ..., @™ and the procedure J anet; is applied again to the PDE system (X) completed
by all the PDE equations in IntCondy M.

4.6.9. Remarks. If the procedure stops at the first loop, that is when C consists only trivial identities,
then the system (X) is reducible to the J-canonical form (I") equivalent to (Z).

When the set C contains an integrability condition having at least one derivative of the unknown
functions, the procedure is applied again to the system (X) u {C}. Notice that, it could be also possible to
recall the procedure on (I") U {C}, but as done in Janet’s monograph, we choose to restart the procedure
on (X) U {C} in order to have a PDE system where each equation has a clear meaning, either it comes
from the initial problem or the integrability condition.

Finally, note that the procedure Janet; < . fails on a PDE system (X) if and only if the procedure
Autoreduce; <, fails on () and the potential non trivial relations among the unknown functions and
variables added during the process, as explained in[4.6.4

4.6.10. Example. In [Jan29. §47], M. Janet studied the following PDE system:

(£) {P33= X2P11,
P2 = 0,

)<CWO

7<CWO (

Ko

5)(1] e aXik
ables x7,%2,x3. The set of monomials of the left hand side of the system (L) is U = {x%,x%}. The
set U is not complete. Indeed, for instance the monomial X3X% is not in the involutive cone coney(U).

where py, i, denotes the derivative of an unknown function ¢ of independent vari-

If we complete the set U by the monomial X3x§ we obtain a complete set U:=Uu {XgX%}. The PDE
system (X) is then equivalent to the following PDE system

P33 = X2P11,
() P32 = 0,
pn= 0.
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4.6. Reduction of a PDE system to a canonical form

Procedure 7: Janet; - (X)
Input:
- A canonical weight order <cwo for @',..., @™ and x1,...,Xn.
- (X) a finite linear PDE system with unknown functions @', ..., @™ of independent variables
X1y ..., Xn given in the same form as and whose leading derivatives are different.
begin
I" < Autoreduce; < (X)

I" < Complete; . (T
C « IntCondy, I

if C consists only of trivial identities then

<CWO (

return The PDE system (X) is transformable to a J-canonical system (T").

end
if C contains a non trivial relation R among functions @', ..., @™ and variables X1, . . ., Xn
then
return The PDE system (X) is not reducible to a J-canonical system and the relation R
imposes a non trivial relation on the boundary conditions of the system (I").

end

else
/1 C contains a non trivial relation among functions @', ..., @™, variables X1, ..., Xn,
// and at least one derivative of one of the functions @', ..., ™.
Y Xu{C}
Janet; . (X).

end

end

Output: Complete integrability of the system (X) and its obstructions to be reduced to a
J-canonical form with respect to <cwo-
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4. Polynomial partial differential equations systems

Note that p32; = 0y, P22 = 0. The table of multiplicative variables with respect to the set Uis given by

2
X3 X3 X2 X1
X3X% X2 X1

2
X5 X2 Xi

We deduce that there exists only one non trivial compatibility condition, formulated as follows

2 2 2.2
P3322 =0x3P322 = Ox, P33, (x3.x3%3 = (x2)7.x5)

:952 (x2P11) = 2p211 + X2p2211 = 2p211 =0, (P22 = 572(1 P22 =0).

Hence, p211 = 0 is a non trivial relation of the system (). As a consequence, the PDE system (X) is not
completely integrable. Then, we consider the new PDE system given by

P33 =  X2P11,
(') p2= 0
P21 = O.

The associated set of monomials U’ = {X%,X%,xzx%} is not complete. It can be completed into the

complete set W=U"u {X3x%, X3x2x%}. The PDE system (X') is then equivalent to the following PDE
system

P33 = X2P11y
psz2= 0,
(M <paain= 0,
P2= 0,
p2z21 = 0.
Note that p3y; = 0y, P22 and p3211 = Ox;P211. The multiplicative variables with respect to the set of
monomials U’ is given by the following table
x2 X3 X2 X
3 3 2 1
X3X% X2 X
X3X2X$ X1
X% X2 X
sz% X1

We deduce that the only non-trivial compatibility relation is

P33211 =0x; (P3211) =0
:a)zi] aXZ (p33) = a)zq aXz (sz” )
=05 (p11 +x2p211) =P (p211 = 0).
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4.7. Algebra, geometry and PDE

We deduce that py117 = 0 is a non-trivial relation of the system (I''). Hence, the system (L’) is not
completely integrable. Then, we consider the new PDE system given by

P33 = X2P11,
= 0
(Z”) pZZ )
p2in = 0,
piinn = 0.

The associated set of monomials U” = {x3,%3,x,x},x]} is not complete. It can be completed into the
set of monomials U” :=U" U {mx%, X3X2X%, x3x}}. The PDE system (£”) is equivalent to the following
system

P33 = X2P115
psz2= 0,
(rry P = 0,
p2= 0,
pon= 0,
pun = 0.
Note that p32; = 0x, P22 and p31111 = Ox;P1111. All the compatibility conditions are trivial identities,

by Theorem we deduce that the PDE (LZ”), obtained from the initial PDE system (X) by adding
compatibility conditons, is completely integrable.

4.6.11. Remark. Let us mention, that using a similar procedure presented in this section, M. Janet
in [Jan29, §48] gave a constructive proof of a result obtained previously by A. Tresse [Ire94], that a
infinite linear PDE system can be reduced to a finite linear PDE system.

4.7. Algebra, geometry and PDE

The notion of ideal first appeared in the work of R. Dedekind. This notion appeared also in a seminal
paper [Hil90] of D. Hilbert, were he developed the theory of ideals in polynomial rings. In particular,
he proved noetherianity results as the noetherianity of the ring of polynomials over a field, now called
Hilbert’s basis theorem. In its works on PDE systems, [Jan22al Jan22bl Jan24]], M. Janet used the notion
of ideal generated by homogeneous polynomials under the terminology of module of forms, that he
defined as follows. He called form a homogeneous polynomial with several variables and he defined a
module of forms as an algebraic system satisfying the two following conditions:

i) if a form f belongs to the system, then the form hf belongs to the system for every form h,
ii) if f and g are two forms in the system of the same order, then the form f + g belongs to the system.

Finally, in [Jan29, §51], M. Janet recall Hilbert’s basis theorem.
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4. Polynomial partial differential equations systems

4.7.1. Characteristic functions of homogeneous ideals. In [Jan29, §51], M. Janet recalled the Hilbert
description of the problem of finding the number of independent conditions so that a homogenous
polynomial of order p belongs to a given homogeneous ideal. This independent conditions correspond to
the independent linear forms that vanish all homogenous polynomials of degree p in the ideal. M. Janet
recalled from [Hil90] that this number of independent conditions is expressed as a polynomial in p for
sufficiently big p.

Let I be ahomogenous ideal of K[x1,. .., x,] generated by polynomials f1, . . ., fx. Given a monomial
order on M(x1,...,Xn), We can suppose that all the leading coefficients are equal to 1. For any p > 0,
consider the homogenous component of degree p so that [ = (—Bp I, with

L =1 Kxi,...xnlp.

Let us recall that
dim I, < dim (K[)q,...,xn]p) =TP.

The number of independent conditions so that a homogenous polynomial of order p belongs to the ideal I
is given by the difference

x(p) =TF —dimI,.

This is the number of monomials of degree p that cannot be divided by the monomials Im(f7), ..., Im(fy).
The function x (p) corresponds to a coefficient of the Hilbert series of the ideal I and is called characteristic
function of the ideal I by M. Janet, or postulation in [Jan29, §52]. In the Section we will show that
the function x(p) is polynomial for sufficiently big p. Finally, note that the set of monomials that cannot
be divided by the monomials Im(f7),...,Ilm(fy) forms a finite number of classes of complementary
monomials.

4.7.2. Geometrical remark. M. Janet gave the following geometrical observation about the character-
istic function. Suppose that p is sufficiently big so that the function x(p) is polynomial. Let A — 1 be the
degree of the leading term of the polynomial x(p). Consider the projective variety V(I) defined by

V() ={aeP""|f(a)=0forall finI}.

The integer 1 = Ic(x(p))(A — 1)! corresponds to the degree of the variety V/(I), [Hil90]. If x(p) = 0
then the variety V(I) is empty, in the others cases V/(I) is a sub-variety of P~ of dimension A — 1.

4.7.3. Example, [Jan29, §53]. Consider the monomial ideal I of K[x1, x, x3] generated by x%, X1X2,X3.
The characteristic function x(p) of the ideal I is constant equal to 3. The unique point that annihilates the
ideal T is (0,0, 1) with multiplicity 3. This result is compatible with the fact that the zeros of the ideal |
generated by the following polynomials

(x1 — ax3)(x1 — bxz), (x1 — ax3)(x2 — cx3), (x2 —ex3)(x2 — dx3).

consists of the three points
(a)c)1)) (a) d)1)) (b)c)1)‘
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4.8. Involutive systems

4.7.4. The ideal-PDE dictionary. Let I be a homogeneous ideal of K[xq,...,xn] generated by a
set F = {fy,..., fx} of polynomials. For a fixed monomial order on M(x1,...,Xxn), we set U = Im(F).
Consider the ring isomorphism @ from Kixi,- - ,x,] to K[%, e ,%] given in [2.1.2 To any
polynomial f in I we associate a PDE ®(f)¢@ = 0. In this way, the ideal I defines a PDE system (X(I)).
Let A and p be the integers associated to the characteristic function x(p) as defined in The maximal
number of arguments of the arbitrary analytic functions used to define the boundary conditions

{Cp I xPeut
of the PDE system (X(I)), as defined in (L), corresponds to A, explicitly

A = max |Multgl (v)],
VGVu

where U denotes the set of complementary monomials of U. Moreover, the number of arbitrary analytic
functions with A arguments in the boundary conditions { Cp | xP € UL }is equal to p, that is

w=[{veU | Mul (v)] =2}

Conversely, let (X) be a PDE system with one unknown function ¢ of independent variables x1, . . ., Xn.
Consider the set, denoted by Ido(Z), made of differential operators associated to the principal derivatives

of PDE in (X), with respect to Janet’s order on derivatives defined in By isomorphism O,
ol«l

to any monomial differential operator —e——%
XV oxEm

in 1do(X), we associate a monomial x?” cooxgm
in M(X1y...yXn).

Let us denote by I(Z) the ideal of K[x, . .., Xn] generated by @' (Ido(Z)). Note that, by construction
the ideal I(X) is monomial and for any monomial w in I(X) the derivative ® (u) is a principal derivative
of the PDE system (X) as defined in Section In [Jan29, §54], M. Janet called characteristic form
any element of the ideal I1(X).

In this way, M. Janet concluded that the degree of generality of the solutions of a linear PDE system
with one unknown function is described by the leading term of the charateristic function of the ideal of
characteristic forms defined in[4.7.11

4.7.5. The particular case of first order systems. Consider a completely integrable first order linear
PDE system (X). The number A, defined in that is equal to the maximal number of arguments of
the arbitrary functions used to define the boundary conditions of the system (Z), is also equal in this case
to the cardinal of the set U of complementary monomials of the set of monomials U = ®~'(1do(X)).

4.8. Involutive systems

In this subsection, we recall the algebraic formulation of involutive systems as introduced by M. Janet.
This formulation first appeared in its work in [Jan22al] and [Jan22b]. But notice that this notion comes
from the work of E. Cartan in [Car04].
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4. Polynomial partial differential equations systems

4.8.1. Characters and derived systems. Let I be a proper ideal of K[xy,...,X,] generated by homo-
geneous polynomials. M. Janet introduced the characters of the homogeneous component I, as the non
negative integers o1, 02, ..., On defined inductively by the following formula

h
dim <Ip + (Z Klxq, - ,Xn]p_w(i)) = dim(Ip) + 01+ ...+ Oph, 1<h<n

i=1

Note that the sum o7 + 02 + ... + oy, corresponds to the codimension of I, in K[x1, - -, xnlp.
Given a positive integer A, we set

IP+7\ = K[X] y oo .,Xn])\lp.

We define the non negative integers O'g)\), O'g\), ceey O'Q ) by the relations

h
dim <]p+)\ + (Z Klxq, - ,Xn]er)\]Xi)) = dim(Jpia) + 027\) 4+ ...+ 0—8) 1<h<n.
i=1

For A = 1, M. Janet called ], the derived system of 1,. Let us mention some properties on these
numbers proved by M. Janet.

4.8.2. Lemma. We set of = U}Q ) and op = 0'}(12 Jfori<h<mn
i) oj+o0)+...+0, <0o1+20+...+non.

ii) Ifo; 4+ 05+ ...+ 0, =01+ 202 +...+ noy, the two following relations hold:

a) o +0)+...+ 05 =07 +20)+...+noj.

b) o} = on+ Oni1 +...+ on.
We refer the reader to [Jan29] for a proof of the relations of Lemma[4.8.2]

4.8.3. Involutive systems. The homogenous component I, is said to be in involution when the following
equality holds:

oj+0y+...+0,=01+202+...+n0n.

Following properties ii)-a) of Lemma [4.8.2] if the component I, is in involution, then the compo-
nent I,y is in involution for all k > 0.

4.8.4. Proposition ([Jan29, §56 & §57]). The characters of a homogeneous component 1, satisfy the
two following properties

i)or=zo0>...20n.

i) if I, # {0}, then o, = 0.
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4.9. Conclusive remarks

4.8.5. Polynomiality of characteristic function. Suppose that the homogeneous component I, is in
involution. We show that the characteristic function x(P) defined in is polynomial for P > p. Using
Lemma we show by induction that for any 1 < h < n and any positive integer A, we have the

following relation:
n—h—1
A A+ k—1
o = > ( " )Gm-

k=0
The codimension of I, in K[x7, - - -, Xn]p4 is given by
n—1 n—1n—h—1 n—1 /i—1
A A+k—1 A+k—1
IEES SN (BRI e I
h=1 h=1 k=0 i=1 \k=0
n—1 1 1

S (P—ptk—1 o (P-p+i—1
(BB e
i=1 \k=0 i=1

This proves the polynomiality of the characteristic function of the ideal I for sufficiently big p.

4.9. Conclusive remarks

Recall that the so-called Cartan-Kéhler theory is about the Pfaffian systems on a differentiable (or analytic)
manifold and its aim is to judge whether a given system is prolongeable to a completely integrable system
or an incompatible system. Their method relies on a geometrical argument, which is to construct integral
submanifolds of the system inductively. Here, a step of the induction is to find an integral submanifold
of dimension i 4 1 containing the integral submanifold of dimension 1, and their theory does not allow
one to see whether such step can be achieved or not.

Janet’s method is, even if it works only locally, completely algebraic and algorithmic so that it partially
completes the parts where one cannot treat with Cartan-Kéhler theory.

By these works, there are two seemingly different notions of involutivity; the one by G. Frobenius,
G. Darboux and E. Cartan and the other by M. Janet. The fact is that at each step of the induction in the
Cartan-Kihler theory, one has to study a system of PDE. Its system is called in involution (cf. compare
those in Sections[I.2.6|with[4.8) if it can be written in a canonical system, as defined in[4.5.2] if necessary
after a change of coordinates. Following the algebraic definition of involutivity by M. Janet, several
involutive methods were developed for polynomial and differential systems, [[Tho37, [Pom78|]. In these
approaches, a differential system is involutive when its non-multiplicative derivatives are consequences
of multiplicative derivatives. In [[Ger97, |(GB98a], V. P. Gerdt gave an algebraic charaterization of the
involutivity for polynomial systems. The Gerdt’s approach is developed in the next section.

5. POLYNOMIAL INVOLUTIVE BASES

In this section, we present the algebraic definition of involutivity for polynomial systems given by
V. P. Gerdt in [Ger97, |(GB984d]. In particular, we relate the notion of involutive basis for a polynomial
ideal to the notion of Grobner basis.
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5. Polynomial involutive bases

5.1. Involutive reduction on polynomials

5.1.1. Involutive basis. Recall that a monomial ideal 1 of K[x;,...,xy] is an ideal generated by mono-
mials. An involutive basis of the ideal 1 with respect to an involutive division division J is an involutive
set of monomials U that generates I. By Dickson Lemma, [Dic13]], any monomial ideal I admits a finite
set of generators. When the involutive division J is noetherian as defined in this generating set
admits a finite J-completion that forms an involutive basis of the ideal I. As a consequence, we deduce
the following result.

5.1.2. Proposition. Let J be a noetherian involutive division on M(x1,...,xn). Any monomial ideal
of Kx1, ..., xn] admits an J-involutive basis.

The objective of this section is to show how to extend this result to polynomial ideals with respect
to a monomial order. In the remainder of this subsection we assume that a monomial order < is fixed
on M(x1,...,%Xn).

5.1.3. Multiplicative variables for a polynomial. Let J be an involutive division on M(x1,...,Xn).
Let F be a set of polynomials of K[xj,...,xn] and f be a polynomial in F. We define the set of
J-multiplicative (resp. J-non-multiplicative) variables of the polynomial f with respect to F and the
monomial order < by setting

Mult) _ () = Mul("< " (Im< (f)),  (resp. NMult} _ (f) = NMult™<" (Im (£)) ).

Note that the J-multiplicative variables depend on the monomial order < used to determine leading
monomials of polynomials of F.

5.1.4. Polynomial reduction. The polynomial division can be describe as a rewriting operation as
follows. Given polynomials f and g in K[xy,...,X,], we say that f is reducible modulo g with respect
to <, if there is a term Au in f whose monomial u is divisible by Im< (g) for the usual monomial division.

. 9<
In that case, we denote such a reduction by f ——h, where

Au
h=f— .
It<(g)”
For a set G of polynomials of K[x1,...,Xxn], we define a rewriting system corresponding to the division

G
modulo G by considering the relation reduction = defined by

G< 9<

—_— = _—,

geG

G< <
We will denote by —— * the reflexive and transitive closure of the relation ——.
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5.1. Involutive reduction on polynomials

5.1.5. Involutive reduction. Ina same way, we define a notion of reduction with respect to an involutive
division J on M(x1,...,xn). Let g be a polynomial in K[x1,...,xn]. A polynomial f in K[xj,...,Xn]
is said to be J-reducible modulo g with respect to the monomial order <, if there is a term Au of f,
with A € K — {0} and u € M(x4,..., Xy ), such that

u=Img(g)v and veM(Mult;m<(G)(g)).

Such a J-reduction is denoted by f i 7 h, where

A Au
h=f——qgv=~Ff— .
le<(g)? lt<(g)?
5.1.6. Involutive normal forms. Let G be a set of polynomials of K[x1,...,Xn]. A polynomial f is said

to be J-reducible modulo G with respect to the monomial order <, if there exists a polynomial g in G

G
such that f is J-reducible modulo g. We will denote by —ig this reduction relation defined by

G< 9<

Hj: Hj,

geG

The polynomial f is said to be in J-irreducible modulo G if it is not J-reducible modulo G. A J-normal
form of a polynomial f is a J-irreducible polynomial h such that there is a sequence of reductions from f
to h:

G-  G. G G-
f g 1 g f2 g e g hy

The procedure InvReduction; < (f, G) computes a normal form of f modulo G with respect to the
division J. The proofs of its correctness and termination can be achieved as in the case of the division
procedure for the classical polynomial division, see for instance [BW93| Proposition 5.22].

Procedure 8: InvReduction; < (f, G)

Input: a polynomial f in K[xq,...,Xxy] and a finite subset G of K[x1,...,Xxn].

begin
hef

Im<(G) t

while exist g in G and a term t of h such that Im<(g)|, = 40

choose such a g
h«h-—

end

t
1t<(9)9

end

Output: h a J-normal form of the polynomial f with respect to the monomial order <
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5. Polynomial involutive bases

5.1.7. Remarks. Note that the involutive normal form of a polynomial f is not unique in general, it
depends on the order in which the reductions are applied. Suppose that, for each polynomial f we
have a J-normal form with respect to the monomial order <, that is denoted by nf% <(f). Denote
by nfg(f) a normal form of a polynomial f obtained by the classical division procedure. In general,
the equality nfg(f) = nf% <(f) does not hold. Indeed, suppose that G = {x7,x;} and consider the
Thomas division T defined in We have nfg (x1x2) = 0, while nf%<(x1x2) = x1X2 because the
monomial x1x; is a T-irreducible modulo G.

5.1.8. Autoreduction. Recall from that a set of monomials U is J-autoreduced with respect to an
involutive division J if it does not contain a monomial J-divisible by another monomial of U. In that
case, any monomial in M(x1, ..., X, ) admits at most one J-involutive divisor in U.

A set G of polynomials of K[xq,...,xn] is said to be J-autoreduced with respect to the monomial
order <, if it satisfies the two following conditions:

i) (left J-autoreducibility) the set of leading monomials Im< (G) is J-autoreduced,

ii) (right J-autoreducibility) for any g in G, there is no term Au # lt<(g) of g, with A # 0
and u € coneg(lm< (G)).

Note that the condition i), (resp. ii)) corresponds to the left-reducibility (resp. right-reducibility)
property given in Any finite set G of polynomials of K[x1,...,Xy] can be transformed into a finite
J-autoreduced set that generates the same ideal by Procedure[9] The proofs of correctness and termination
are immediate consequences of the property of involutive division.

Procedure 9: Autoreduce; <(G)

Input: G a finite subset of K[x1,...,Xn].

begin

H« G

H « &

while exists h € H and g € H \ {h} such that h is J-reducible modulo g with respect to < do

choose suchah
H’ « H\ {h}
h' « nf}'_(h)
if h/ = 0 then
| HeH
end
else
| H~H u{h'}
end

end
end

Output: H an J-autoreduced set generating the same ideal as G does.
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5.1. Involutive reduction on polynomials

5.1.9. Proposition (|[GB98a, Theorem 5.4]). Let G be an IJ-autoreduced set of polynomials
of K[x1,...,xn] and f be a polynomial in K[x1,...,xn]. Then nij< (f) = 0 if and only if the polynomialf
can be written in the form ‘
f= Z Bijgivij,
1)
where g; € G, Bij € Kandvij e M(Multém<(6)(lm<(gi))), with Im< (vij) # Im<(viy) ifj # k.

Proof. Suppose that nij <(f) = 0, then there exists a sequence of involutive reductions modulo G:

g1 92 g3 Jk—1
f =" 7 T g1 g . —>q T =0,

terminatingon 0. Forany 1 < i < k, wehave f; = fi*1_k2%9ivi»i’ withv;; € M(Multljm<(G] (Im<(gi)))-
This show the equality.

Conversely, suppose that f can be written in the given form. Then the leading monomial Im< (f)
admits an involutive J-divisor in Im<(G). Indeed, the leading monomial of the decomposition of f has

the following form:
Im< (Z ini,j) = Im<(giy JVig,jo-

i)
The monomial Im< (g, ) is an involutive divisor of Im< (f) and by autoreduction hypothesis, such a divisor
is unique. Hence the monomial Im (gj, )v, j, does not divide other monomial of the form Im (g )vi;.

Jio<
We apply the reduction gy, vy, j, -3 5 0 on the decomposition. In this way, we define a sequence of
reductions ending on 0. This proves that nff <(f)=0. O

5.1.10. Unicity and additivity of normal forms. From decomposition we deduce two important
properties on involutive normal forms. Let G be a J-autoreduced set of polynomials of K[x1,...,Xp]
and f be a polynomial. Suppose that h; = nf‘,?< (f) and hy = nfﬁ < (f) are two involutive normal forms
of f. From the involutive reduction proceduré that computes this two normal forms, we deduces two
decompositions
hy =f— Z Bijgivij, hy =f— Z Bi;givi;-

i, i,
As a consequence, hy — h, admits a decomposition as in Proposition hence nij) < (hi —hy) =0.
The polynomial h; — h; being in normal form, we deduce that h; = h;. This shows the unicity of the
involutive normal form modulo an autoreduced set of polynomials.

In a same manner we prove the following additivity formula for any polynomial f and f':

nf§_ (f + f') = nf§_(f) + nf§_(f').

Finally, for any reduction procedure that computes a normal form nf 2 (f) and any involutive reduction
procedure that computes an involutive normal form nfg’: < (f), as a consequence of unicity of the involutive
normal form and Proposition[5.1.11] we have

nfE(f) = nff_(f).
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5. Polynomial involutive bases

5.1.11. Proposition. Let I be an involutive division on K[x1, ..., Xxn] and G be a subset of K[x1, ..., Xn].
A polynomial of K[x1, ..., xn] is reducible with respect to G if and only if it is I-reducible modulo G.

Proof. Let f be a polynomial of K[xi,...,X,]. By definition of involutive reduction, if f is J-reducible

G<
modulo G, then it is reducible for the relation ——. Conversely, suppose that f is reducible by a
polynomial g in G. That is there exists a term Au in f, where A is a nonzero scalar and u is a monomial

of M(x1,...,%xn) such that u = Im<(g)v, where v € M(x1,...,X,). The set G being involutive, we
have nf% <(gv) = 0. Following Proposition , the polynomial gv can written in the form:
gv = Z Bijgivi

5]
where g; € G, Bi; € Kand vy € J\/[(Multljm<(G) (Im<(gi))). In particular, this shows that the monomial

u admits an involutive divisor in G. O

5.2. Involutive bases

We fix a monomial order < on M(x1,...,Xn).

5.2.1. Involutive bases. Let I be an ideal of K[xj,...,xn]. A set G of polynomials of K[x1,...,X,] is
an J-involutive basis of the ideal I with respect the monomial order <, if G is J-autoreduced and satisfies
the following property:

Vg e G, Vue M(x1,y...,%Xn), nf%<(gu) =0.

In other words, for any polynomial g in G and monomial u in M(x1,...,Xy), there is a sequence of
involutive reductions:
Ji< 92« O3« Jr—1<
gu g f1 g T2 g .. —> g0,

with g; in G. In particular, we recover the notion of involutive sets of monomials given in Indeed,
if G is an J-involutive basis, then Im< (G) is an J-involutive set of monomials of M(x1,...,Xn).

5.2.2. Example. We set U = {x1,x2}. We consider the deglex order induced by x; > x; and the Thomas
division J. The monomial x1x; is T-irreducible modulo U. Hence, it does not admits zero as T-normal
form and the set U cannot be an T-involutive basis of the ideal generated by U. In turn the set{x1, X2, X1X2}
is a J-involutive basis of the ideal generated by U.

We now consider the Janet division J. We have deg,(U) = 1, [0] = {x;} and [1] = {x;}. The
J-multiplicative variables are given by the following table:

u ‘ Mult}f(u)
X1 X1
X2 X1 X2

It follows that the monomial x;x; is not J-reducible by x; modulo U. However, it is J-reducible by x;.
Hence the set U form a J-involutive basis.

As an immediate consequence of involutive bases, the involutive reduction procedure provides a
decision method of the ideal membership problem, as stated by the following result.
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5.2. Involutive bases

5.2.3. Proposition ([GB98a, Corollary 6.4]). Let 1 be an ideal of Klxi,...,xn], and G be an
J-involutive basis of 1 with respect to a monomial order <. For any polynomial f of K[x1,...,xn],
we have T € 1 if and only ﬁnfﬁ<(f) =0.

Proof. 1f nfg’: <(f) =0, then the polynomial f can be written in the form This shows that f belongs
to the ideal I. Conversely, suppose that f belongs to I, then it can be decomposed in the form

f=> higi
i

where h; = Zj Aijuij € Klx1,...,xn]. The set G being J-involutive, we have nij’< (uijgi) = 0, for any
monomials u;; and g; in G. By linearity of the operator nng‘ <(—), we deduce that nf% (f)=0. O

5.2.4. Local involutivity. V. P. Gerdt and Y. A. Blinkov introduced in [[GB98a] the notion of local
involutivity for a set of polynomials. A set G of polynomials of K[x,...,X,] is said to be locally
involutive if the following condition holds

Vg e G, ¥x e NMulty"<® (im<(g)), nf$_(gx) =0.

For a continuous involutive division J, they prove that a J-autoreduced set of polynomials is involutive if
and only if it is locally involutive, [GB98al, Theorem 6.5]. This criterion of local involutivity is essential
for computing the completion of a set of polynomials into an involutive basis. Note that this result is
analogous to the critical pair lemma in rewriting theory stating that a rewriting system is locally confluent
if and only if all its critical pairs are confluent, see e.g. [GM16] Sect. 3.1]. Together with the Newman
Lemma stating that for terminating rewriting, local confluence and confluence are equivalent properties,
this gives a constructive method to prove confluence in a terminating rewriting system by analyzing the
confluence of critical pairs.

5.2.5. Completion procedure. For a given monomial order < on M(x1,...,Xy) and a continuous and
constructive involutive division J, as defined in [GB98a, Definition 4.12], the Procedure computes an
J-involutive basis of an ideal from a set of generators of the ideal. We refer the reader to [GB98al Sect. 8]
or [Eva06, Sect. 4.4] for correctness of this procedure and conditions for its termination. This procedure
is in the same vein as the completion procedure for rewriting systems by Knuth-Bendix, [KB70]], and
completion procedure for commutative polynomials by Buchberger, [Buc63]].

5.2.6. Example: computation of an involutive basis. Let I be the ideal of Q[x1,x,] generated by the
set F = {f7, f2}, where the polynomial f; and f, are defined by

4 :X%—2X1X2+],

fz :X1X2—3X%—1.

We compute an involutive basis of the ideal I with respect to the Janet division J and the deglex order
induced by x; > x1. We have Im(f;) = x% et Im(f;) = x1x2, hence the following J-reductions

; b f2 2
X5 —>g2x1%2 — 1, x1xp—>33x7+ 1.
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5. Polynomial involutive bases

Procedure 10: InvolutiveCompletionBasis; _ (F)

Input: F a finite set of polynomials in K[x1, ..., Xp].

begin
F Autoreduce; < (F)
G—o

while G = ¢ do

P {fx | feF/,x e NMult]_ ()}

p' <0

while P # ¢ and p’ = 0do
choose p in P such that Im<(p) is minimal with respect to <.
P — P\ {p)
p’ « InvReduction; - (p, F’)

end

if p’ # 0 then

| F' « Autoreduce; <(F' U {p'})
end

else
| G« F
end

end

end

QOutput: G an J-involutive basis of the ideal generated by F with respect to the monomial order <.
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5.2. Involutive bases

The polynomial f; is J-reducible by f;, we have

f
fl—2m g X3 =233+ D+ 1 =362 — 1.

Thus, we set f3 = x% — 6x% — 1 and we consider the reduction

f
X%i>g 6X%+1.

The set F/ = {f,, f3} is J-autoreduced and generates the ideal 1.

Let us compute the multiplicative variables of the polynomials f, and f;. We have deg,(F’) =
degz({x%, x1x2}) = 2, [1] = {x1x2} and [2] = {x%}. Hence the J-multiplicative variables are given by the
following table:

f | Im(f) | Mult}'()

2 | xi1x2 X1
fg, X% X1 X2

The polynomial fyx; = xpc% — 3X%xz — x2 is the only non-multiplicative prolongation to consider.
This prolongation can be reduced as follows

f3 3 2 f2 3
foxg ——4 6xX7 +x1 —3x7x2 —x2 ——=>3 — 3x7 — 2x1 — X2.

We set T4 = —3X‘? — 2x1 — %2, whose associated reduction is
3 1:4 2 1
X]—>g9 — =X] — =X
1 d 3 1 3 2

and we set F/ = {f,, f3,f4}. We have deg,(F') = 2, [0] = {x?}, (1] = {x1x2} and 2] = {x%}. Hence the
J-multiplicative variables are given by the following table:

f | Im(f) | Mult}'()

f2 | x1x2 X1
f3 x% X1 X2
f4 x? X1

There are two non-multiplicative prolongations to consider:
— 2 2 _ 3 2
faxo = x1x5 — 3x7x2 — X2, faxy = —=3x7x2 — 2x1%2 — X5.

We have Im(f,x;) = xpc% < Im(fsxz) = x?xz. Hence the prolongation f,x; must first be examined. We
have the following reductions:

f3 3 2 fZ 3 f4
foxg——=456x7 +%x1 —3x7x2 —x2—>35 —3x] —2x1 —x—>4 0.
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5. Polynomial involutive bases

Hence, there is no polynomial to add. The other non-multiplicative prolongation is f4x;, that can be
reduced to an J-irreducible polynomial as follows:

2 3
faxg —4 —3x?x2 — 6x% —x% —2——y —3x?x2 — ]ZX% -3

f f
1533 Bxyxa— 93— 0.

All the non-multiplicative prolongations are J-reducible to 0, it follows that the set F’ is a Janet basis of
the ideal I.

5.3. Involutive bases and Grobner bases

In this subsection, we recall the notion of Grébner basis and we show that any involutive basis is a Grobner
basis. We fix a monomial order < on M(X1,...,Xn).

5.3.1. Grobner bases. A subset G of K[x1,...,xn] is a Grobner basis with respect to the monomial
order < if it is finite and satisfies one of the following equivalent conditions

G

i) —— is Church-Rosser,

. < .

ii) —— is confluent,
< .
ili) —— is locally confluent,
. < .
iv) —— has unique normal forms,

G<
v) f——="0, for all polynomial f in Id(G),

vi) every polynomial f in Id(G) \ {0} is reducible modulo G,

vii) for any term t in lt<(Id(G)), there is g in G such that lt<(g) divides t,

viii) S<(g1,92) ——=*0for all g7, g7 in G, where

S<(91,92) = a g1 — s g2,
li<(g1) lt<(g2)

with p = ppem(Im<(g1),1lm<(gz)), is the S-polynomial of g; and g, with respect to the monomial
order <,
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ix) any critical pair

with u = ppem(Im(g7),1m(g;)), of the relation £> is confluent.

We refer the reader to [BW93l Theorem 5.35] for proofs of these equivalences, see also [GHMI17,
Section 3]. The equivalence of conditions i)-iv) are classical results for terminating rewriting systems.
Note that condition viii) corresponds to the Buchberger criterion, [Buc65l], and condition ix) is a formu-
lation of this criterion in rewriting terms. We refer to [BN98| Chapter 8] for the rewriting interpretation
of the Buchberger algorithm.

A Grobner basis of an ideal 1 of K[xy, ..., x,] with respect to a monomial order < is a Grobner basis
with respect to < that generates the ideal I. This can be also be formulated saying that G is a generating
set for I such that Id(1t(G)) = Id(1t(I)).

5.3.2. Involutive bases and Grobner bases. Let I be an ideal of K[x1,...,xn]. Suppose that G is an
involutive basis of the ideal I with respect to an involutive division J and the monomial order <. In
particular, the set G generates the ideal I. For every g; and g, in G, we consider the S-polynomial
S<(g1,92) with respect to <. By definition, the polynomial S<(g1, g2) belongs to the ideal I. By
involutivity of the set G and following and Proposition we have

nf®(S<(g1,92)) = nf$(S<(g1,92)) = 0.

In this way, G is a Grobner basis of the ideal 1 by the Buchberger criterion viii). We have thus proved the
following result due to V.P. Gerdt and Y.A. Blinkov.

5.3.3. Theorem ([GB98al, Corollary 7.2]). Let < be a monomial order on M(x1,...,Xn) and J be an
involutive division on K[x1,...,xn]. Any J-involutive basis of an ideal 1 of K[x1,...,xn] is a Grobner
basis of 1.
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