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Rankin-Cohen deformations of the algebra of Jacobi forms

YOUNGJU CHOIE, FRANÇOIS DUMAS, FRANÇOIS MARTIN, AND EMMANUEL ROYER

Abstract. The aim of this work is to emphasize the arithmetical and algebraic aspects of
the Rankin-Cohen brackets in order to extend them to several natural number-theoretical
situations. We build an analytically consistent derivation on the algebra J̃ ev,∗ of weak

Jacobi forms. From this derivation, we obtain a sequence of bilinear forms on J̃ ev,∗ that
is a formal deformation and whose restriction to the algebraM∗ of modular forms is
an analogue of Rankin-Cohen brackets associated to the Serre derivative. Using a clas-
sification of all admissible Poisson brackets, we generalize this construction to build a

family of Rankin-Cohen deformations of J̃ ev,∗. The algebra J̃ ev,∗ is a polynomial alge-

bra in four generators. We consider some localization Kev,∗ of J̃ ev,∗ with respect to one
of the generators. We construct Rankin-Cohen deformations on Kev,∗. We study their

restriction to J̃ ev,∗ and to some subalgebra of Kev,∗ naturally isomorphic to the algebra
of quasimodular forms.
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1. Introduction

1.1. Rankin-Cohen brackets. Rankin-Cohen brackets for modular forms have been
widely studied. Rankin [Ran85, Ran57, Ran56] determined (quite complicated) nec-
essary conditions that a polynomial has to satisfy so that its evaluation at modular
forms and their derivatives is still a modular form. Cohen [Coh75] gave an explicit
construction of such differential polynomials in two variables. These bilinear opera-
tors have been named Rankin-Cohen brackets by Zagier in [Zag94]. In this work, Zagier
introduced the notion of Rankin-Cohen algebra as a graded vector space with bilinear
operations that satisfy all the algebraic identities satisfied by Rankin-Cohen brackets.
In [CMZ97], Cohen, Manin & Zagier continued the description of a conceptual frame-
work for Rankin-Cohen brackets with the eyes of noncommutative geometry. In order
to do that, they define a lifting to some invariant pseudo-differential operators and
prove that suitable combinations of Rankin-Cohen brackets correspond by this lifting
to noncommutative products of invariant operators. The Hecke operators on pseu-
dodifferential operators are further investigated in [CL07] and [Cho98a]. In [OR03],
Ovsienko & Redou develop in the context of differential geometry the vision of Rankin-
Cohen brackets as a projective version of the transvectants of the classical invariant
theory, following the work of Gordan in 19. century [Gor87, Olv99]. The works of
Pevzner & van Dijk [vDP07], Pevzner & Kobayashi [KP16] and El Gradechi [EG06] em-
phasize the Lie-theoretic nature of the Rankin-Cohen brackets whereas Beliavski, Tang
& Yao [BTY07] deal with quantization theory. Without pretending to be exhaustive on
such a vast and diversified literature, we mention finally the major work by Connes &
Moscovici [CM04].

A reasonwhy Rankin-Cohen brackets are interesting is that they combine derivatives
of modular forms whereas the derivative of a modular form is generally not a modular
form. This lack of stability of the algebra of modular forms by derivation is the raison
d’être of quasimodular forms [Zag08, Section 5] or [MR05,Roy12] since the derivative
of a quasimodular form is still a quasimodular form. The question of a definition of
Rankin-Cohen brackets for quasimodular forms is then natural. A first answer was
given by Martin & Royer in [MR09] (Zagier informed us after the publication of the
paper that he did the same construction in an unpublished note). In this work, maps are
build that have the shape of Rankin-Cohen brackets and send a pair of quasimodular
forms of respective depths s and t to a quasimodular form of depth s + t. Here, the
focus is put to the shape of the brackets and the minimisation of the depth, at the cost
of the lost of the algebraic structure. The brackets indeed do not lead anymore to a
formal deformation. Changing the shape of the brackets (more precisely the shape of
the derivation involved in the definition of the brackets), Dumas & Royer [DR14] build
formal deformations of the algebra of quasimodular forms. See also [CL17].

In the following, we focus on the construction of Rankin-Cohen brackets for the
algebra of weak Jacobi forms. This study has been initiated by Choie and Choie &
Eholzer [Cho97,Cho98b,CE98]. Their brackets rest on the heat operator this involves
second order derivatives. For this reason, they are not a formal deformation since the
first bracket is not a Poisson bracket. In [CE01], Choie & Ehlozer defined a notion of
generalized Rankin-Cohen algebra for the bigraded algebra of Jacobi forms. Since the
definition involves the composition of two derivations, their structure is not a formal
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deformation. In the following, we concentrate on the construction of bilinearmaps that
extend the Rankin-Cohen brackets frommodular forms to Jacobi forms and provide the
algebra of Jacobi forms the structure of a formal deformation.

1.2. A prototype. Let J1 and J2 be the two functions defined by

∀τ ∈ H, ∀z ∈ C, z <Z+ τZ J1(τ,z) =
1

2πi
ζ(τ,z) +

πi

6
zE2(τ)

where H = {z ∈ C :ℑz > 0} is the Poincaré upper half plane, ζ is the Weierstraß zeta
function, E2 is the Eisenstein series of weight 2 and

J2 =Dz J1−
1

12
E2+J

2
1

where Dz =
�

2πi�z (see below (2.13) and (2.3) for the definitions of ζ and E2).

We define a derivation on the algebra bigraded J̃ ev,∗ of weak Jacobi forms (see § 2.1.1)
on SL(2,Z) by

Ob(f ) = Dτ(f )−
k

12
E2 f − J1Dz(f ) + p J2 f

for any f in the space J̃ k,p of weak Jacobi forms of weight k and index p, where Dτ =
�

2πi�τ (we shall say that an element of the algebra J̃ ev,∗ that belongs to some vector space

J̃ k,p is homogeneous, the vector space being called a homogeneous component).

Let µ ∈C. The sequence
(
ORC

µ
n

)
n∈Z≥0

of bilinear forms on J̃ ev,∗ defined by

ORC
µ
n(f ,g) =

n∑

r=0

(−1)r
(
k +µp +n− 1

n− r

)(
ℓ +µq +n− 1

r

)
Obr (f )Obn−r (g)

for all homogeneous forms (f ,g) ∈ J̃ k,p × J̃ ℓ,q is a formal deformation of J̃ ev,∗ that
extends the formal deformation of the Serre-Rankin-Cohen brackets on modular forms,
see (2.11). We shall call such a formal deformation a Rankin-Cohen deformation.

The aim of this work is to generalize this result to provide a systematicmethod of con-

struction of similar Rankin-Cohen deformations on J̃ ev,∗ and recover Rankin-Cohen
deformations on the algebraM≤∞∗ of quasimodular forms on SL(2,Z).

1.3. Main results. The algebraM∗ of modular forms on SL(2,Z) is a polynomial alge-
bra over C with generators the two algebraically independent Eiseinstein series E4 and

E6 defined in (2.2). The algebra of weak Jacobi forms, J̃ ev,∗, is a polynomial extension of
the algebraM∗ by the two algebraically independent functions A and B defined in (2.4).
The generators E4, E6, A and B have a weight and an index as in Table 1 that describe

the bigraduation of J̃ ev,∗. Let (a,b) ∈ C
2, we define a derivation Sea,b on J̃ ev,∗, that ex-

tends Serre derivation Se onM∗, by Sea,b(A) = aB and Sea,b(B) = bE4A (the definition of
Serre derivation is given in (2.10)). We use this derivation to build, for any nonnegative

integer n ∈Z≥0 and any c ∈C, the bilinear map J̃ ev,∗×J̃ ev,∗→ J̃ ev,∗ defined by bilinear
extension of

∀(f ,g) ∈ J̃ k,p × J̃ ℓ,q {f ,g}
[a,b,c]
n =

n∑

r=0

(−1)r
(
k + cp +n− 1

n− r

)(
ℓ + cq +n− 1

r

)
Sera,b(f )Se

n−r
a,b (g)
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for all (k,ℓ) ∈ Z2 and (p,q) ∈ Z2
≥0. We prove in the following Theorem that these brack-

ets are formal deformations and classify them up to modular isomorphism (see Defini-
tion 14).

Theorem A– For all (a,b,c) ∈C3,

(1) the sequence
(
{·, ·}

[a,b,c]
n

)

n∈Z≥0
is a formal deformation of J̃ ev,∗,

(2) {J̃ k,p, J̃ ℓ,q}
[a,b,c]
n ⊂ J̃ k+ℓ+2n,p+q for all (k,p,ℓ,q,n),

(3) the subalgebraM∗ is stable by
(
{·, ·}

[a,b,c]
n

)

n∈Z≥0
and the induced formal deformation

is given by the Serre-Rankin-Cohen brackets,

(4) the formal deformation ({·, ·}
[a,b,c]
n )n∈Z≥0 of J̃ ev,∗ is modular-isomorphic to one of the

following formal deformations:

(i) the formal deformation ({·, ·}
[1,b′ ,c′]
n )n∈Z≥0 for some (b′ , c′) ∈C2;

(ii) the formal deformation ({·, ·}
[0,1,c′]
n )n∈Z≥0 for some c′ ∈C;

(iii) the formal deformation ({·, ·}
[0,0,c′]
n )n∈Z≥0 for some c′ ∈C

that are pairwise non modular-isomorphic for different values of the parameters.

Recall that the algebra M≤∞∗ of quasimodular forms is the polynomial extension
of the algebraM∗ by E2. In order to compare our results with the ones obtained for

quasimodular forms in [DR14], we localize the algebra J̃ ev,∗ with respect to A, setting

Kev,∗ = J̃ ev,∗[A
−1] =M∗[F2,A

±1] where F2 = BA−1 has weight 2 and index 0 (note that,
up to a scalar, F2 is the Weierstraß ℘ function). The algebra Kev,∗ is bigraded by exten-

sion of the bigraduation of J̃ ev,∗.
For (α,β) ∈ C2, let dα and δβ the two derivations of Kev,∗ defined by dα(f ) = Se(f ) +

αkF2 f and δβ(f ) = Se(f ) + βkF2 f if f is a modular form of weight k and

dα(A) = −2αAF2, dα(F2) = −
1

12
E4+2αF22,

δβ(A) = −2βAF2, δβ(F2) = 2β F22 .

We prove the following Proposition.

Proposition B– For any complex parameters α,β, and c, let the sequences ([·, ·]α,cn )n∈Z≥0
and

(
〈·, ·〉

β,c
n

)
n∈Z≥0

of maps Kev,∗ ×Kev,∗ → Kev,∗ be defined by bilinear extension of the for-

mulas:

[f ,g]α,cn =

n∑

i=0

(−1)i
(
k + cp +n− 1

n− i

)(
ℓ + cq +n− 1

i

)
diα(f )d

n−i
α (g),

〈f ,g〉
β,c
n =

n∑

i=0

(−1)i
(
k + cp +n− 1

n− i

)(
ℓ + cq +n− 1

i

)
δiβ(f )δ

n−i
β (g)

for all homogeneous f ∈ Kk,p and g ∈ Kℓ,q. Then,

(1) the sequences ([·, ·]α,cn )n∈Z≥0 and (〈·, ·〉α,cn )n∈Z≥0 are formal deformations of Kev,∗,

(2) [Kk,p,Kℓ,q]
α,c
n ⊂ Kk+ℓ+2n,p+q and 〈Kk,p,Kℓ,q〉

β,c
n ⊂ Kk+ℓ+2n,p+q ,
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(3) the subalgebra Q∗ = M∗[F2] is stable by ([·, ·]α,cn )n∈Z≥0 and
(
〈·, ·〉

β,c
n

)
n∈Z≥0

and the

induced formal deformations of Q∗ are isomorphic to formal deformations on the
algebra of quasimodular forms by the extension of the identity on modular forms
by F2 7→ E2,

(4) the subalgebra J̃ ev,∗ is stable by ([·, ·]
α,c
n )n∈Z≥0 if and only if α = 0 and by (〈·, ·〉α,cn )n∈Z≥0

if and only if β = 0.

Point (3) of Proposition B shows that our construction is a consistent extension of the
brackets constructed in [DR14].

Finally, we extend directly the usual Rankin-Cohen brackets on modular forms into
formal deformations of Kev,∗. For u ∈C, let �u be the derivation of Kev,∗ defined by

�u(E4) = −
1

3
(E6−E4F2) �u(E6) =

1

2
(E2

4−E6F2)

�u(A) = uB �u(B) =
(
u +

1

12

)
BF2−

1

12
E4A .

We prove the following Theorem.

Theorem C– For any complex parameters u and v, let
(
J·, ·Ku,vn

)
n∈Z≥0

be the sequence of

maps Kev,∗ ×Kev,∗→Kev,∗ defined by bilinear extension of

Jf ,gKu,vn =
n∑

r=0

(−1)r
(
k + vp +n− 1

n− r

)(
ℓ + vq +n− 1

r

)
�ru(f )�

n−r
u (g),

for all homogeneous f ∈ Kk,p and g ∈ Kℓ,q. Then, for all (u,v) ∈C
2,

(1) the sequence
(
J·, ·Ku,vn

)
n∈Z≥0

is a formal deformation of Kev,∗,

(2) JKk,p ,Kℓ,qK
u,v
n ⊂ Kk+ℓ+2n,p+q ,

(3) the sequence
(
J·, ·Ku,vn

)
n∈Z≥0

restricts to the formal deformation of the algebra M∗
given by the usual Rankin-Cohen brackets.

We prove that J·, ·Ku,v1 defines a Poisson bracket of J̃ ev,∗ if and only if v = 12u + 1
and conjecture that the sequence

(
J·, ·Ku,vn

)
n∈Z≥0

restricts to a formal deformation of the

algebra J̃ ev,∗ if and only if v = 12u +1.
The following diagram summarizes the ways we follow to build formal deformations

of the algebras of Jacobi forms and quasimodular forms.

J̃ ev,∗ =C[E4,E6,A,B] Kev,∗ =C[E4,E6,A
±1,B]

M∗ = C[E4,E6] Q∗ = C[E4,E6,F2] ≃M
≤∞
∗

2. Framework

2.1. Jacobi forms. The aim of this part is to collect the notions we shall need on weak
Jacobi forms. The main reference is [EZ85].
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2.1.1. The notion of weak Jacobi form. Let H be the upper half plane, k an integer and
m a nonnegative integer. The multiplicative group SL(2,Z) acts on Z2 by right multi-
plication. The semidirect product of SL(2,Z) and Z2 with respect to this action is the
Jacobi group: SL(2,Z)J = SL(2,Z) ⋉Z2. Let F be the set of functions from H×C to C.
Let k andm be two integers. We have the following actions of SL(2,Z) andZ2 on F. Let(
a b
c d

)
∈ SL(2,Z), let (λ,µ) ∈Z2, let Φ ∈ F, then

Φ|
k,m

(
a b
c d

)
(τ,z) = (cτ + d)−ke−2iπ

mcz2

cτ+d Φ

(
aτ + b

cτ + d
,

z

cτ + d

)

Φ‖
m
(λ,µ)(τ,z) = e2iπm(λ2τ+2λz)

Φ(τ,z +λτ +µ)

for all (τ,z) ∈ H×C. These two actions induce an action of SL(2,Z)J on F the following
way: if (γ, (λ,µ)) ∈ SL(2,Z)J , if Φ ∈ F, then we define

Φ8
k,m

(γ, (λ,µ)) =
(
Φ|

k,m
γ
)
‖
m
(λ,µ).

Explicitly, if γ =
(
a b
c d

)
∈ SL(2,Z) and (λ,µ) ∈Z2, then

f 8
k,m

(γ, (λ,µ))(τ,z) =

(cτ + d)−k exp

(
2πim

(
−
c(z+λτ +µ)2

cτ + d
+λ2τ +2λz

))
f

(
aτ + b

cτ + d
,
z +λτ +µ

cτ + d

)

for all (τ,z) ∈ H×C. A function is invariant by the action of SL(2,Z)J if and only if it is
invariant by both the action of SL(2,Z) and the action of Z2.

A Jacobi form of weight k and index m is a holomorphic function Φ : H×C→C that
is invariant by the action of the Jacobi group and that has a Fourier expansion of the
form

Φ(τ,z) =
+∞∑

n=0

∑

r∈Z
r2≤4nm

c(n,r)e2πi(nτ+rz). (2.1)

The vector space J k,m of such functions is finite dimensional. We identify functions on
H×C that are not depending on the second variable with functions onH and define

J k,0 =Mk .

The spaceMk is the space of holomorphic modular forms of weight k on SL(2,Z) and
we have

M∗ =
⊕

k∈2Z≥0
k,2

Mk .

The action 8
k,0

of SL(2,Z)J on J k,0 induces an action of SL(2,Z) onMk . This action is

|
k,0

and we shall simply write |
k
.

The bigraded algebra

J ∗,∗ =
⊕

k,m

J k,m

is not finitely generated and hence we introduce the notion of weak Jacobi form.
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A weak Jacobi form of weight k and index m is a function invariant by the action of
the Jacobi group but with a Fourier expansion of the form

Φ(τ,z) =
+∞∑

n=0

∑

r∈Z
r2≤4nm+m2

c(n,r)e2iπ(nτ+rz)

instead of the one given in (2.1). For any given integer n ≥ 0, the fact that the sum over r
is limited to r2 ≤ 4nm+m2 is a consequence of some periodicity of the coefficients [EZ85,

p. 105]. The vector space J̃ k,m of such functions is still finite dimensional [EZ85,
Theorem 9.2]. As a consequence, we obtain that

J̃ k,0 =Mk .

The principal object of our study is the bigraded algebra

J̃ ev,∗ =
⊕

k∈2Z
m∈Z≥0

J̃ k,m.

2.1.2. Generators. The algebra J̃ ev,∗ is a polynomial algebra on two generators over the
algebraM∗ of modular forms. We describe these two generators.

Let 1 be the constant function taking value 1 everywhere (of one or two variables,
depending on the context). The subgroup of the modular group SL(2,Z) of elements γ
with 1|

k
γ = 1 is

SL(2,Z)∞ =

{
±

(
1 n
0 1

)
: n ∈Z

}
.

The Eisenstein series of weight k ∈Z≥4 is

Ek(τ) =
∑

γ∈SL(2,Z)∞\SL(2,Z)

1|
k
γ(τ) =

1

2

∑

(c,d)∈Z2

(c,d)=1

(cτ + d)−k . (2.2)

Its Fourier expansion is given in terms of the divisor functions

∀u ∈ C ∀n ∈Z∗≥0 σu(n) =
∑

d|n

du

by

∀τ ∈ H Ek(τ) = 1−
2k

Bk

+∞∑

n=1

σk−1(n)q
n

where q = exp(2πiτ) and Bk is the Bernoulli number of order k. We use this Fourier
expansion to define an Eisenstein series of weight two:

E2(τ) = 1− 24
+∞∑

n=1

σ1(n)q
n. (2.3)

For all even k ≥ 2, we shall sometimes use another normalisation:

Gk = −
(2πi)k

k!
Bk Ek .
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If m , 0, the subgroup of the Jacobi group SL(2,Z)J of elements α ∈ SL(2,Z)J with
18

k,m
α = 1 is

SL(2,Z)J∞ =

{(
±

(
1 n
0 1

)
, (0,µ)

)
: n,µ ∈Z

}
.

The Eisenstein series of weight k ≥ 4 and index m is

Ek,m(τ,z) =
∑

α∈SL(2,Z)
J
∞\

SL(2,Z)J

18
k,m

α(τ,z)

=
1

2

∑

(c,d)∈Z2

(c,d)=1

∑

λ∈Z

(cτ + d)−k exp

(
2iπm

(
λ2 aτ + b

cτ + d
+2

λz − cz2

cτ + d

))
.

The Eisenstein series E4 and E6 generate the algebra of modular forms:

M∗ = C[E4,E6].

Let us define

Φ10,1 =
1

144
(E6E4,1−E4E6,1) ∈ J̃ 10,1,

Φ12,1 =
1

144
(E2

4E4,1−E6E6,1) ∈ J̃ 12,1,

and

∆ =
1

1728
(E3

4−E
2
6) ∈M12.

The two generators of J̃ ev,∗ overM∗ are

A =
Φ10,1

∆
∈ J̃ −2,1 and B =

Φ12,1

∆
∈ J̃ 0,1. (2.4)

It follows that

J̃ ev,∗ = C[E4,E6,A,B]

[EZ85, Theorem 9.3].
Using the algorithm proved in [EZ85, p. 39], we can compute the Fourier expansion

of Φ10,1 and Φ12,1 and deduce the ones of A and B. We obtain

A(τ,z) = (ξ1/2 − ξ−1/2)2 − 2(ξ1/2 − ξ−1/2)4q + (ξ1/2 − ξ−1/2)4(ξ − 8+ ξ−1)q2 +O(q3)

and

B(τ,z) = (ξ +10+ ξ−1) + 2(ξ1/2 − ξ−1/2)2(5ξ − 22+5ξ−1)q

+ (ξ1/2 − ξ−1/2)2(ξ2 +110ξ − 294+110ξ−1+ ξ−2)q2 +O(q3)

where ξ = exp(2πiz), z ∈C.
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E4 E6 A B F2

weight 4 6 -2 0 2

index 0 0 1 1 0

Table 1. Weights and indices of the generators

2.1.3. Formal algebraic point of view. We will work with the two commutative polyno-
mial algebras

M∗ =
⊕

k∈2Z≥0,k,2

Mk =C[E4,E6]

and

J̃ ev,∗ =
⊕

k∈2Z,m∈Z≥0

J̃ k,m = C[E4,E6,A,B] =M∗[A,B].

The algebraM∗ is graded by the weight, and the algebra J̃ ev,∗ is bigraded by the weight
and the index.

We introduce the algebra

Kev,∗ = C[E4,E6,A
±1,B] ⊃ J̃ ev,∗.

This is the localization of J̃ ev,∗ with respect to the powers of A. The notions of weight
and index naturally extend to Kev,∗ defining a bigraduation

Kev,∗ =
⊕

k∈2Z
m∈Z

Kk,m.

We set:

F2 = BA−1 .

This function has a number-theoretic meaning since

F2 = −
3

π2
℘ (2.5)

where ℘ is the Weierstraß function [EZ85, Theorem 3.6]. Since

Kev,∗ =C[E4,E6,F2,A
±1] =C[E4,E6,F2][A

±1]

we are led to introduce the subalgebra

Q∗ = C[E4,E6,F2].

The elements of Q∗ appear as the elements in Kev,∗ of index zero. From a number-
theoretical point of view, it follows from (2.5) that Q∗ is the subalgebra generated by
modular forms and the Weierstraß function

Q∗ =M∗[℘]. (2.6)

Table 1 summarizes the weights and indices attached to the generators.
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Another arithmetical point of view consists in seeing Q∗ as a formal analogue to the
algebraM≤∞∗ =M∗[E2] of quasimodular forms. This algebra is graded by the weight.
We have

M∗ ⊂M
≤∞
∗ ≃ Q∗ ⊂ Kev,∗.

The algebra isomorphism involved is

ω : Q∗ → M≤∞∗
P(E4,E6,F2) 7→ P(E4,E6,E2).

The degree related to F2 of any f ∈ Q∗ is the depth of the quasimodular form ω(f ).
The isomorphism (2.1.3) and (2.6) emphasize that, from an algebraic point of view, the
Weierstraß ℘ function is similar to the Eisenstein series E2.

2.2. Formal deformations and Rankin-Cohen brackets. In this section we remind the
basic properties of formal deformations and their isomorphisms. Our primary refer-
ence for this is [LGPV13, Chapter 13]. We exhibit Connes & Moscovici result that
provides a general method to construct formal deformations.

2.2.1. Definition and first properties. For any commutativeC-algebraR, letR[[~]] be the
commutative algebra of formal power series in one variable ~ with coefficients in R. A
formal deformation of R is a family (µj )j∈Z≥0 of bilinear maps µj : R×R→ R such that
µ0 is the product of R and such that the (non commutative) product on R[[~]] defined
by extension of

∀(f ,g) ∈ R2 f ⋆ g =
∑

j≥0

µj (f ,g)~
j

is associative. This associativity translates to

∀n ∈Z≥0 ∀(f ,g,h) ∈ R3
n∑

r=0

µn−r (µr (f ,g),h) =
n∑

r=0

µn−r (f ,µr (g,h))

If (µj )j∈Z≥0 is a formal deformation ofR, if µ1 is skew-symmetric and if µ2 is symmetric,
then µ1 is a Poisson bracket on R.

2.2.2. Isomorphic formal deformations. Let (µj )j∈Z≥0 and (µ′j )j∈Z≥0 be two formal defor-

mations of R. They are isomorphic if there exists a C-linear bijective map φ : R → R
such that

∀j ∈Z≥0 ∀(f ,g) ∈ R2 φ(µj (f ,g)) = µ′j (φ(f ),φ(g)). (2.7)

Assume that µ1 is skew-symmetric and µ2 is symmetric. Formula (2.7) for j = 0 and
j = 1 implies, in particular, that φ is an automorphism of the Poisson algebra (R,µ1).
We denote by ⋆ and # the products onR[[~]] respectively associated to the formal defor-
mations (µj )j∈Z≥0 and (µ′j )j∈Z≥0. The C[[~]]-linear extension φ :R[[~]]→R[[~]] satisfies

∀(f ,g) ∈ R2 φ(f ⋆ g) = φ(f ) # φ(g).
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2.2.3. Connes & Moscovici’s Theorem. If F is a derivation on an algebra R and m ∈ Z≥0,
we define the m-th Pochhammer symbol of F by

F<m> =

{
Id if m = 0

F<m−1> ◦ (F + (m− 1)Id) otherwise

where Id is the identity of R.
The following Proposition is a special case of a Theorem due to Connes & Moscovici.

See [CM04, eq. (1.5)].

Proposition 1– Let V andW be two derivations on R. Assume thatW ◦V −V ◦W = 2V .
For all n ∈Z≥0, let χn : R×R→R be defined by

χn(f ,g) =
n∑

r=0

(−1)r

r!(n− r)!

(
V r ◦ (W + r Id)<n−r>

)
(f ) ·

(
V n−r ◦ (W + (n− r) Id)<r>

)
(g)

for all (f ,g) ∈ R2. Then (χn)n∈Z≥0 is a formal deformation of R.

In this work, the algebraR is a double graded algebra over C. The derivation V will
have degree (2,0): if f belongs to a homogeneous componentRk,p then V (f ) lies in the
homogeneous componentRk+2,p. The derivationW will be a weighted Euler derivation:

there exists a function κ : Z2 → C such that, for all (k,p) ∈ Z2 and for all f ∈ Rk,p we

have W (f ) = κ(k,p)f . Since W is a derivation, κ is additive. There exists (λ,µ) ∈ C2

such that κ(k,p) = λk+µp. It follows thatW ◦V −V ◦W = 2λV and hence λ = 1. Finally,

∀(k,p) ∈Z2, ∀f ∈ Rk,p W (f ) = (k +µp)f .

In this setting, for all µ ∈C, we obtain fromProposition 1 a formal deformation
(
χ
[µ]
n

)

n∈Z≥0
defined on the homogeneous components by

χ
[µ]
n (f ,g) =

n∑

r=0

(−1)r
(
k +µp +n− 1

n− r

)(
ℓ +µq +n− 1

r

)
V r(f )V n−r (g) (2.8)

for all f in Rk,p and g in Rℓ,q .

2.2.4. Examples: Rankin-Cohen brackets on modular forms.
We considerR =M∗.
The classical Rankin-Cohen brackets sequence (RCn)n∈Z≥0 is defined by:

∀(f ,g) ∈Mk ×Mℓ RCn(f ,g) =
n∑

i=0

(−1)i
(
k +n− 1

n− i

)(
ℓ +n− 1

i

)
D

(i)
τ (f )D

(n−i)
τ (g) (2.9)

(see [CS17, §5.3.4]). Rankin-Cohen brackets satisfy

∀n ∈Z≥0 RCn(Mk ,Mℓ) ⊂Mk+ℓ+2n.

The sequence (RCn)n∈Z≥0 is a formal deformation. The product onM∗[~] defined by

∀(f ,g) ∈Mk ×Mℓ f # g =
∑

n≥0

RCn(f ,g)~
n
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corresponds to so called Elhozer product.
The complex derivationDτ does not stabilizeM∗, this is not a derivation ofM∗. Serre

derivation is the derivation ofM∗ defined by

∀f ∈Mk Se(f ) = Dτ(f )−
k

12
E2 f . (2.10)

We replace Dτ in (2.9) by the derivation Se and obtain the Serre-Rankin-Cohen brack-
ets:

∀(f ,g) ∈Mk ×Mℓ SRCn(f ,g) =
n∑

i=0

(−1)i
(
k +n− 1

n− i

)(
ℓ +n− 1

i

)
Sei(f )Sen−i(g) (2.11)

for any n ∈Z≥0. By application of Zagier’s construction [Zag94, Page 67] or by Proposi-
tion 1, the sequence (SRCn)n∈Z≥0 is a formal deformation ofM∗. It also satisfies

∀n ∈Z≥0 SRCn(Mk ,Mℓ) ⊂Mk+ℓ+2n.

Let us precise the relationship between the Serre-Rankin-Cohen brackets (2.11) and
the usual Rankin-Cohen brackets (2.9). Using the values

Se(E2) = −
1

12
(E2

2+E4), Se(E4) = −
1

3
E6, Se(E6) = −

1

2
E2
4,

we express

Se2(f ) = D2
τ f −

k +1

6
E2Dτ f +

k

144

(
(k +1)E2

2+E4

)
f ,

and by iteration

∀f ∈Mk Sei(f ) = Di
τ(f ) +

i−1∑

j=0

Fi,j (k)D
j
τ(f ),

where Fi,j(k) is a quasimodular forms of weight 2(i − j). We deduce that

∀(f ,g) ∈Mk ×Mℓ SRC1(f ,g) = RC1(f ,g)

and for instance

∀(f ,g) ∈Mk ×Mℓ SRC2(f ,g) = RC2(f ,g) +
1

288
kℓ(k + ℓ +2)f g E4 .

2.2.5. Examples: formal deformations on quasimodular forms. The aim of the work in
[DR14] was to build deformations of R =M≤∞∗ having the shape of (RCn)n∈Z≥0 , extend-
ing (SRCn)n∈Z≥0 and preserving the depth. Since we shall recover some of them, we
recall the construction of two families of such extensions.

(1) For any a ∈C, let va be the derivation defined by

va(E2) = −
1

12
E4+2aE

2
2 (2.12)

va(E4) = −
1

3
E6+4aE4E2, va(E6) = −

1

2
E2
4+6aE6E2 .
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We consider the brackets defined for any integer n ≥ 0 by

∀(f ,g) ∈M≤∞k ×M≤∞ℓ [f ,g]va,n =
n∑

r=0

(−1)r
(
k +n− 1

n− r

)(
ℓ +n− 1

r

)
vra(f )v

n−r
a (g).

Then,
i) for all weights k and ℓ, we have

[
M≤∞k ,M≤∞ℓ

]
va,n
⊂M≤∞k+ℓ+2n

ii) the sequence
(
[ , ]va ,n

)
n∈Z≥0

is a formal deformation ofM≤∞∗

iii) for all weights k and ℓ, for all depths s and t, we have
[
M≤sk ,M≤tℓ

]
va,n
⊂M≤s+tk+ℓ+2n

if and only if a = 0.
(2) For any complex numbers α and b, let wα,b be the derivation onM≤∞∗ defined

by

wα,b(E2) = −3bαE2
2, wα,b(E4) = −

1

3
E6+4bE4E2, wα,b(E6) = −

1

2
E2
4+6bE6E2 .

We consider the brackets defined for any integer n ≥ 0 by

[f ,g]αwα,b ,n
=

n∑

r=0

(−1)r
(
k − (3α +2)s+n− 1

n− r

)(
ℓ − (3α +2)t +n− 1

r

)
wr

α,b(f )w
n−r
α,b (g)

for any f ∈Mk−2sE
s
2 and g ∈Mℓ−2t E

t
2. Then,

i) for all weights k and ℓ, we have
[
M≤∞k ,M≤∞ℓ

]α
wα,b ,n

⊂M≤∞k+ℓ+2n

ii) the sequence
(
[ , ]αwα,b ,n

)
n∈Z≥0

is a formal deformation ofM≤∞∗

iii) for all weights k and ℓ, for all depths s and t, we have
[
M≤sk ,M≤tℓ

]α
wα,b ,n

⊂M≤s+tk+ℓ+2n

if and only if b = 0.

These results are proved in [DR14], Theorems B and D respectively.

2.3. A derivation on Jacobi weak forms. The aim of this part is to build a natural
derivation on Jacobi forms that extends Serre derivation. Our construction has been
influenced by a construction of some differential operator by Oberdieck in [Obe14] and
hence we shall call this derivation the Oberdieck derivation (see also [DLM00, GK09,
MTZ08]). References for the Weierstraß ℘ and ζ functions are [Lan87, Ch. 18], [Sil94,
Ch. 1] and [CS17, Ch. 2].
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2.3.1. Two intermediate functions. For all τ ∈ H, let Λτ =Z⊕ τZ. The ζ function associ-
ated to Λτ is defined by

∀z ∈C−Λτ ζ(τ,z) =
1

z
+

∑

ω∈Λτ
ω,0

(
1

z −ω
+

1

ω
+

z

ω2

)
. (2.13)

Sometimes, we shall use the notation ζ(Λτ , z) instead of ζ(τ,z). The function z 7→ ζ(z,τ)
is meromorphic over C. Its poles are the points of Λτ and they are simple.

We define J1 by

∀τ ∈ H, ∀z ∈C−Λτ J1(τ,z) =
1

2πi
ζ(τ,z) +

πi

6
zE2(τ).

To describe the transformation relations satisfied by J1, we define a function X(M), for

any M =
(
a b
c d

)
∈ SL(2,Z) by

X(M) : H×C → C

(τ,z) 7→
cz

cτ + d
.

It satisfies

∀(M,N ) ∈ SL(2,Z)2 X(M)|
1,0
N = X(MN )−X(N ).

Lemma 2– The function J1 satisfies the following transformation properties:

∀(λ,µ) ∈Z2 J1 ‖0(λ,µ) = J1−λ

∀M ∈ SL(2,Z) J1 |1,0M = J1+X(M).

The Fourier expansion of J1 is

J1(τ,z) = −
1

2
+

ξ

ξ − 1
−

+∞∑

n=1



∑

d|n

(
ξd − ξ−d

)

q

n

valid if ξ , 1 and |q| < |ξ | < |q|−1.
Its Laurent expansion around 0 is

J1(τ,z) =
1

2πiz
−

1

2πi

+∞∑

n=0

G2n+2(τ)z
2n+1

valid for all τ ∈ H and z in any punctured neighborhood of 0 containing no point of Λτ .

Proof. We prove the transformation property by the action of Z2. We have

J1(τ,z +λτ +µ)− J1(τ,z) =
1

2πi
(ζ(τ,z +λτ +µ)− ζ(τ,z)) +

πi

6
(λτ +µ)E2(τ).

Let η be the quasi-period map associated to Λτ . Then,

ζ(τ,z +λτ +µ)− ζ(τ,z) = η(λτ +µ).

The map η is a homomorphism of the group Λτ and hence

η(λτ +µ) = λη(τ) +µη(1).
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The Legendre relation implies that τη(1)− η(τ) = 2πi so that

η(λτ +µ) = (λτ +µ)η(1)− 2πiλ.

We have also

η(1) = −
(2πi)2

12
E2(τ).

We deduce
1

2πi
(ζ(τ,z +λτ +µ)− ζ(τ,z)) = −

πi

6
(λτ +µ)E2(τ)−λ

and

J1(τ,z +λτ +µ)− J1(τ,z) = −λ.

We prove the transformation property by the action of SL(2,Z). First, note that if z <
Λτ , then

z
cτ+d < ΛMτ . Let us show that it is sufficient to prove the result for M ∈ {S,T }.

Let M and N be such that

J1 |1,0M = J1+X(M) and J1 |1,0N = J1+X(N ).

Then,

J1 |1,0MN =
(
J1 |1,0M

)
|
1,0
N = (J1+X(M)) |

1,0
N = J1+X(N ) +X(MN )−X(N )

= J1+X(MN ).

The multiplicative group SL(2,Z) is generated by

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

We deduce that if J1 |1,0 S = J1+X(S) and J1 |1,0T = J1 then J1 |1,0M = J1+X(M) for all

M ∈ SL(2,Z).
Let us prove that J1 |1,0T = J1. We have

J1(τ +1, z) =
1

2πi
ζ(Λτ+1, z) +

πi

6
zE2(τ +1)

=
1

2πi
ζ(Λτ, z) +

πi

6
zE2(τ) = J1(τ,z)

since Λτ+1 =Λτ and E2 is periodic of period 1.
Finally, let us prove J1 |1,0 S = J1+X(S). We have

J1

(
−
1

τ
,
z

τ

)
=

1

2πi
ζ
(
−
1

τ
,
z

τ

)
+
πi

6

z

τ
E2

(
−
1

τ

)
.

We compute

ζ
(
−
1

τ
,
z

τ
,
)
= ζ

(
τ−1Λτ ,τ

−1z
)

since Λ−1/τ = τ−1Λτ

= τζ(Λτ , z) by homogeneity

= τζ(τ,z)

and recall that

τ−2E2

(
−
1

τ

)
= E2(τ) +

6

πi
1

τ
.
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Finally,

τ−1 J1

(
−
1

τ
,
z

τ
,
)
=

1

2πi
ζ(z,τ) +

πi

6
zE2(τ) +

z

τ
or, equivalently,

J1 |1,0 S = J1+X(S).

The Fourier expansion of J1 is a consequence of the following expansion for ζ:

1

2πi
ζ(τ,z) =

∑

n≥1

(
ξ−1

1− ξ−1qn
−

ξ

1− ξqn

)
qn −

iπ

6
zE2(τ)−

1

2
−

ξ

1− ξ
.

The Laurent expansion of J1 is a consequence of the following expansion for ζ:

ζ(τ,z) =
1

z
−

+∞∑

k=1

G2k+2(τ)z
2k+1.

�

We define the J2 function by

J2 = Dz J1−
1

12
E2+J

2
1 .

Lemma 3– The function J2 satisfies the following transformations properties:

∀(λ,µ) ∈Z2 J2 ‖0(λ,µ) = J2−2λ J1+λ
2

∀M ∈ SL(2,Z) J2 |2,0M = J2+2J1X(M) +X(M)2.

The Fourier expansion of J2 is

J2(τ,z) =
1

6
− 2

+∞∑

n=1



∑

d|n

n

d

(
ξd − ξ−d

)

q

n

valid if |q| < |ξ | < |q|−1.
Its Laurent expansion around 0 is

J2(τ,z) = −
2

(2πi)2
G2(τ)−

+∞∑

n=0

1

n+1
Dτ(G2n+2)(τ)z

2n+2

valid for all τ ∈ H and z in any punctured neighborhood of 0 containing no point of Λτ .

Proof. To prove the transformation properties, we apply Dz to the transformation rela-
tions satisfied by J1 and get

Dz(J1)|2,0M = Dz(J1) +
1

2πiz
X(M)

and
Dz(J1)‖1(λ,µ) = Dz(J1).

The relations for J2 follow from these equalities and the definition.
From the definition of J2 and the Laurent expansion of J1, we have

(2πi)2 J2(τ,z) = −2G2(τ) +
∑

k≥0


−(2k +5)G2k+4(τ) +

∑

a+b=k

G2a+2(τ)G2b+2(τ)


z

2k+2.
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The Laurent expansion of J2 follows then from an equality due to Ramanujan (see [Sko93,
Eq. (1)]).

As a corollary of the Laurent expansions of J1 and J2, we have that Dz(J2) = 2Dτ(J1).
We get from the Fourier expansion of J1 the following

Dz(J2)(τ,z) = −2
∑

n≥1

n
∑

d|n

(
ξd − ξ−d

)
qn = −2Dz



∑

n≥1

∑

d|n

n

d

(
ξd + ξ−d

)
qn


 .

We deduce that a function H exists such that

J2(τ,z) = −2
∑

n≥1

∑

d|n

n

d

(
ξd + ξ−d

)
qn +H(τ).

We have

J2(τ,0) =H(τ)− 4
∑

n≥1

∑

d|n

n

d
qn =H(τ) +

1

6
(E2(τ)− 1)

and hence

J2(τ,0) =H(τ)−
1

6
−

2

(2πi)2
G2(τ).

The Laurent expansion of J2 implies

J2(τ,0) = −
2

(2πi)2
G2(τ).

We deduce H(τ) = 1/6. �

2.3.2. Oberdieck’s derivation. Let (k,p) ∈ 2Z×Z≥0. For f ∈ J̃ k,p, let

Ob(f ) = Dτ(f )−
k

12
f E2− J1Dz(f ) + p J2 f .

Proposition 4– For (k,p) ∈ 2Z×Z≥0, the mapOb is linear from J̃ k,p to J̃ k+2,p. Moreover,

if (ℓ,q) ∈ 2Z×Z≥0 and (f ,g) ∈ J̃ k,p × J̃ ℓ,q then

Ob(f g) = Ob(f )g + f Ob(g).

Remark 5- This proposition shows that, after extension by linearity, Ob is a derivation

on J̃ ev,∗. Since J̃ 0,1 = CB and J̃ 2,1 = CE4A, the comparison of the Fourier expansions
implies that Ob is characterized by its following values on the generators:

Ob(E4) = −
1

3
E6, Ob(E6) = −

1

2
E2
4, Ob(A) = −

1

6
B, Ob(B) = −

1

3
E4A .

The restriction of Ob to the algebra of modular forms is the Serre derivative.

Proof. The computation of Ob(f g) is left to the reader. Let f ∈ J̃ k,p and M ∈ SL(2,Z).
We have

Dτ

(
f |

k,p
M

)
=

(
pX(M)2 −

k

2πiz
X(M)

)
f |

k,p
M −X(M)

(
Dz(f )|k+1,pM

)
+Dτ(f )|k+2,pM

and

Dz

(
f |

k,p
M

)
= −2pX(M)

(
f |

k,p
M

)
+Dz(f )|k+1,pM.
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Since f |
k,p
M = f we deduce

Dτ(f )|k+2,pM =Dτ(f ) +

(
k

2πiz
X(M)− pX(M)2

)
f +X(M)

(
Dz(f )|k+1,pM

)

and
Dz(f )|k+1,pM = Dz(f ) + 2pX(M)f .

In particular,

Dτ(f )|k+2,pM =Dτ(f ) +

(
Dz(f ) +

k

2πiz
f

)
X(M) + pf X(M)2. (2.14)

From,

(J1Dz(f )) |k+2,pM =
(
J1 |1,0M

)(
Dz(f )|k+1,pM

)

we get

(J1Dz(f )) |k+2,pM = J1Dz(f ) + (Dz(f ) + 2p J1 f )X(M) + 2pf X(M)2. (2.15)

Similarly, (
−

k

12
E2 f

)
|
k+2,p

M = −
k

12
E2 f −

k

2πiz
f X(M) (2.16)

and
(p J2 f ) |k+2,pM = p J2 f +2p J1 f X(M) + pf X(M)2. (2.17)

Equations (2.14), (2.15), (2.16) and (2.17) lead to

Ob(f )|
k+2,p

M = f .

Let (λ,µ) ∈Z2. Then
Dz(f )‖p(λ,µ) = Dz(f )− 2pf λ

and
Dτ(f )‖p(λ,µ) = Dτ(f )−Dz(f )λ+ pf λ2 (2.18)

and so
(− J1Dz(f ))‖p(λ,µ) = − J1Dz(f ) + (Dz(f ) + 2pf J1)λ− 2pf λ

2.

We also have
(p J2 f )‖p(λ,µ) = p J2 f − 2p J1 f λ+ pf λ2. (2.19)

Equations (2.18)–(2.19) lead to

Ob(f )‖
p
(λ,µ) = f .

Finally, let τ ∈ H. We prove that Obτ : z 7→Ob(f )(τ,z) is holomorphic. By invariance
by the action of Z2, it is sufficient to prove that Obτ has no pole in Fτ = {a+ bτ : (a,b) ∈
[0,1[2}. The invariance of f by the action of SL(2,Z) implies that the Laurent expansion
of f around 0 is

f (τ,z) =
+∞∑

ν=0

Q2ν(τ)z
2ν

where Q2ν is a quasimodular form of weight k + 2ν and depth less that or equal to ν
(see [Roy12], [MR05] or [Zag08]). The lack of odd powers in z is a consequence of the
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non existence of odd weight quasimodular form. The only pole of ζ in Fτ is 0 and so
J1 has no other pole than 0 in Fτ . The Laurent expansion of J1 implies that the Laurent
expansion of J1Dz f around z = 0 is bounded and hence J1Dz f has no pole in Fτ . The
function J2 has no other pole in Fτ than 0 as it can be seen from its definition. The
Laurent expansion of J2 implies than 0 is not a pole. Finally, Obτ is holomorphic. �

2.3.3. Oberdieck-Rankin-Cohen brackets. FromOberdieck’s derivationwe build a sequence
(ORCn)n∈Z≥0 , called Oberdieck-Rankin-Cohen brackets, which is a formal deformation

of the algebra J̃ ev,∗.
For any µ ∈ C, the general method described § 2.2.3 provides a formal deformation

(ORC
µ
n)n∈Z≥0 of J̃ ev,∗. We take V = Ob and get

∀(f ,g) ∈ J̃ k,p × J̃ ℓ,q

ORC
µ
n(f ,g) =

n∑

r=0

(−1)r
(
k +µp +n− 1

n− r

)(
ℓ +µq +n− 1

r

)
Obr (f )Obn−r (g)

for all (k,ℓ,p,q) ∈ (2Z)2 ×Z2
≥0. The bracket ORC

µ
1 gives J̃ ev,∗ the structure of a Poisson

algebra. Since it is a Poisson bracket, it is characterized by its values on the generators

ORC
µ
1(E4,E6) = 2(E2

6−E
3
4)

ORC
µ
1(E4,A) = −

2

3
E4B+

µ− 2

3
E6A ORC

µ
1(E4,B) =

µ

3
E6B−

4

3
E2
4A

ORC
µ
1(E6,A) = −E6B+

µ− 2

2
E2
4A ORC

µ
1(E6,B) =

µ

2
E2
4B−2E4E6A

ORC
µ
1(A,B) =

µ

6
B2+

2−µ

3
E4A

2 .

The restriction of
(
ORC

µ
n

)
n∈Z≥0

to the algebra of modular forms is (SRCn)n∈Z≥0 de-

fined in (2.11).

3. Formal deformations for Jacobi forms

The aim of this section is to construct a family of Rankin-Cohen brackets that gener-
alizes the brackets built from Oberdieck’s derivation. The method is purely algebraic.
It begins with the determination of all possible first brackets (Poisson brackets) that
enter our level of specialization (i.e. that comes from arithmetical consideration). We
shall find seven families of Poisson brackets . We prove that only one can be extended,
with our method, to Rankin-Cohen brackets.

3.1. Admissible Poisson brackets on weak Jacobi forms.

3.1.1. Determination of admissible Poisson brackets.

Definition 6– A Poisson bracket {·, ·} on J̃ ev,∗ is admissible if

(1)
∀(f ,g) ∈M2

∗ {f ,g} = RC1(f ,g)
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(2)
∀(k,ℓ,p,q) ∈ 2Z≥0 ×Z× 2Z≥0 ×Z {J̃ k,p , J̃ ℓ,q} ⊂ J̃ k+ℓ+2,p+q .

A Poisson bracket {·, ·} is admissible if and only if

(C1) {E4,E6} = RC1(E4,E6) = −2E
3
4+2E

2
6,

(C2) There exist two linear maps σ1,δ1 onM∗ such that

∀k ∈ 2Z≥0 σ1(Mk) ⊂Mk+2 and δ1(Mk) ⊂Mk ,

∀f ∈M∗ {A, f } = σ1(f )A+δ1(f )B,

(C3) There exist two linear maps σ2,δ2 onM∗ such that

∀k ∈ 2Z≥0 σ2(Mk) ⊂Mk+4 and δ2(Mk) ⊂Mk+2,

∀f ∈M∗ {B, f } = σ2(f )A+δ2(f )B,

(C4) {A,B} = ξ E4A
2+ηB2, with ξ,η ∈C.

Proposition 7– The admissible Poisson brackets on J̃ ev,∗ are defined by the following val-
ues on the generators:

{E4,E6} = −2E
3
4+2E

2
6

{A,E4} = αE6A+γ E4B {A,E6} = βE24A+δE6B

{B,E4} = λE2
4A+εE6B {B,E6} = µE4E6A+θE2

4B (3.1)

{A,B} = ξ E4A
2+η B2

where the ten complex parameters α,β,γ,δ,λ,µ,θ,ε,ξ,η belong to one of the following fam-
ilies:

α β γ δ λ µ θ ε ξ η

A ε 3
2ε +1 γ , 0 γ 4

γ
8
γ

3
2ε − 1 ε 4

γ ε (−3
4ε +

1
2 )γ

B ε + 2
3

3
2ε +1 γ 3

2γ λ 3
2λ

3
2ε ε (34ε +

1
2 )λ −3

4εγ

C1 4 6 γ , 0 −γ 0 0 0 0 0 0

C2 0 0 0 0 λ , 0 −2λ 6 4 0 0

D ε 3
2ε 0 0 0 0 3

2ε ε 0 η

E α , ε + 2
3

3
2α 0 0 0 0 3

2ε ε 0 0

Proof. Sei-Qwon Oh [Oh06] described a method to extend the Poisson structure of a
Poisson algebra R to the algebra of polynomials in one variable with coefficients in R.
Our proof rests on a generalization of this method.

An admissible Poisson bracket onM∗[A,B] extending the Rankin-Cohen bracket RC1

onM∗ has the particular form:

∀f ∈M∗ {A, f } = σ1(f )A+δ1(f )B, {B, f } = σ2(f )A+δ2(f )B

and

{A,B} = pA2+qB2, for p = ξ E4 and q = η where ξ,η are fixed complex numbers.
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The extended bracket is bilinear and skewsymmetric if and only if the four maps
σ1,σ2,δ1,δ2 : M∗ → M∗ are linear. The extended bracket is a bi-derivation (i.e. satis-
fies Leibniz relation with respect to each variable) if and only if the four linear maps
σ1,σ2,δ1,δ2 are derivations of M∗. The extended bracket satisfies Jacobi condition if
and only if σ1,σ2,δ1,δ2 satisfy:

{A, {f ,g}}+ {f , {g,A}}+ {g, {A, f }} = 0

{B, {f ,g}}+ {f , {g,B}}+ {g, {B, f }} = 0

{f , {A,B}}+ {A, {B, f }}+ {B, {f ,A}} = 0 (3.2)

for all (f ,g) ∈M2
∗ . The first and second relations respectively translate into

σ1 ({f ,g}) = {f ,σ1(g)}+ {σ1(f ), g}+ δ1(f )σ2(g)−σ2(f )δ1(g) (3.3)

δ1 ({f ,g}) = {f ,δ1(g)}+ {δ1(f ), g}+ δ1(f )δ2(g)− δ2(f )δ1(g) +σ1(f )δ1(g)− δ1(f )σ1(g)

σ2 ({f ,g}) = {f ,σ2(g)}+ {σ2(f ), g}+σ2(f )σ1(g)−σ1(f )σ2(g) + δ2(f )σ2(g)−σ2(f )δ2(g)

δ2 ({f ,g}) = {f ,δ2(g)}+ {δ2(f ), g}+σ2(f )δ1(g)− δ1(f )σ2(g) (3.4)

for all (f ,g) ∈M2
∗ , where {f ,g} = RC1(f ,g). The third relation in (3.2) translates into

σ1σ2 −σ2σ1 = pσ1 − pδ2 + {p, ·}

δ1δ2 − δ2δ1 = −qσ1 + qδ2 + {q, ·} (3.5)

σ1δ2 − δ2σ1 + δ1σ2 −σ2δ1 = 2pδ1 +2qσ2.

The four derivations σ1,σ2,δ1,δ2 ofM∗ are defined by their values on the generators E4,
E6. The assumptions on the weight in conditions (C2) and (C3) of the definition of an
admissible Poisson bracket imply that

σ1(E4) = αE6, σ2 (E4) = λE2
4, δ1 (E4) = γ E4, δ2(E4) = εE6,

σ1(E6) = βE24, σ2(E6) = µE4E6, δ1(E6) = δE6, δ2(E6) = θE2
4 .

for some α,β,γ,δ,λ,µ,ε,θ in C.
Then applying the identities (3.3), (3.4), (3.5) to E4 and E6 respectively, we obtain the

following algebraic relations between the ten complex numbers α,β,γ,δ,λ,µ,ε,θ,ξ,η

• relations (3.3) are equivalent to

µγ −λδ = 4β − 6α, γθ − βγ = 2δ − 4γ, αδ − δε = 2δ − 2γ,

• relations (3.4) are equivalent to

βλ−λθ = 2µ− 2λ, µε −µα = 2µ− 4λ, µγ −λδ = 6ε − 4θ,

• the first relation of (3.5) is equivalent to

α(2λ−µ) = ξ(α − ε), ξβ − ξθ − 2ξ = µβ − 2λβ, αµ = 2ξ,

• the second relation of (3.5) is equivalent to

ε(δ −γ ) = η(ε −α), 2γθ −θδ = η(θ − β),

• the third relation of (3.5) is equivalent to

εβ −αθ +λγ = 2ξγ +2ηλ, 2αθ − 2βε+µγ = 2ξδ +2ηµ.
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When the four parameters γ,δ,λ,µ are nonzero, we deduce easily from the above

relations that the quotients s = δ/γ and t = µ/λ satisfy 2s − 4 = 2− 2t and 2− 2
s =

4
t − 2.

This implies s + t = 3 and (2s − 3)(s − 1) = 0. Then, either δ = γ and µ = 2λ (this is case
A), or 2δ = 3γ and 2µ = 3λ (this is case B). Straightforward calculations lead to the
calculation of others parameters and to other cases of the above table. �

3.1.2. Admissible Poisson brackets having the shape of a Rankin-Cohen bracket.

Definition 8– A derivation d of J̃ ev,∗ is admissible if d preserves the index and increases
the weight by two.

Our goal in this part is to obtain a differential expression of the admissible brackets

on J̃ ev,∗ similar to the one of first usual Rankin-Cohen bracket. More precisely we find,

when this is possible, an admissible derivation d of J̃ ev,∗ such that {f ,g} = κ(f )f d(g)−
κ(g)gd(f ) for any f and g in homogeneous components of J̃ ev,∗, where κ(f ) is some
scalar depending only of the weight k and the index p of f . Therefore we denote κ(k,p)
instead of κ(f ). Since the bracket is a biderivation, κ must be additive: there exists

complex numbers u and v such that κ(k,p) = uk + vp for any f ∈ J̃ k,p.

Remark 9-We have

∀(k,p) ∈ 2Z×Z≥0 ∀f ∈ J̃ k,p κ(f ) =
κ(4,0)

4
k +κ(0,1)p.

Proposition 10– Let {·, ·} be an admissible Poisson bracket on J̃ ev,∗. The two following
assertions are equivalent.

1) There exist a nonzero admissible derivation d of J̃ ev,∗ and two complex numbers u
and v such that

∀(f ,g) ∈ J̃ k,p × J̃ ℓ,q {f ,g} = κ(f )f d(g)−κ(g)gd(f ),

where κ is defined by

∀f ∈ J̃ k,p κ(f ) = κ(k,p) = uk + vp.

2) The bracket {·, ·} is the admissible bracket corresponding to the case B of the clas-
sification in Proposition 7 (depending on three complex parameters γ,λ,ε), with a
function κ defined by

κ(k,p) = u(k − 3εp) where u , 0 is an arbitrary complex parameter (3.6)

and a derivation d defined by

d(E4) = −
1

3u
E6, d(E6) = −

1

2u
E2
4, d(A) = −

γ

4u
B, d(B) = −

λ

4u
E4A . (3.7)

Remark 11- If we want to emphasize on the parameters for the bracket described in 2),
we shall note {·, ·} = {·, ·}(u;γ,λ,ε).

Proof. It is clear that 2) implies 1). Assume 1) is satisfied. A Poisson bracket on a
finitely generated algebra is characterized by its values on the generators. Moreover,
using Remark 9, we know that, if u and v are defined by u = κ(4,0)/4 and v = κ(0,1),
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then κ(6,0) = 6u and κ(−2,1) = −2u+v. Moreover, d is admissible: there exists complex
numbers x, y, z and t such that

d(E4) = xE6, d(E6) = yE2
4, d(A) = zB, d(B) = tE4A . (3.8)

We write all the values of the bracket on the generators and compare with (3.1): the
complex number u is necessarily non zero and

x = −
1

3u
, y = −

1

2u
, z = −

γ

4u
, t = −

λ

4u
.

Moreover, v = ε/x = −3εu. We deduce that κ is given by (3.6) and that the values of d on
the generators are given by (3.7). It remains to prove that {·, ·} belongs to the family B.
We use α = (−2u + v)x and ε = vx to get α = ε + 2/3. From β = (−2u + v)y and ε = vx we
deduce β = 1+ 3ε/2. Then, δ = −6uz leads to δ = 3γ/2. From µ = −6ut, we get µ = 2λ/2
and from θ = vy, we have θ = 3ε/2. Finally, ξ = (−2u+v)t and η = −vz lead respectively
to ξ = (3ε/2)λ/4 and η = 3εγ/4 . We end the proof in computing κ(f )f dg −κ(g)gdf for
f and g in {E4,E6,A,B} and obtaining each time {f ,g}. �

3.2. A family of formal deformations for Jacobi forms.

3.2.1. Construction. We recall that the Serre derivation Se is the restriction of the Oberdieck
derivation to the algebra of modular forms. We generalize Oberdieck’s derivation in
defining an admissible derivation on Jacobi forms Sea,b for any complex numbers a and
b by

Sea,b(E4) = −
1

3
E6, Sea,b(E6) = −

1

2
E2
4, Sea,b(A) = aB, Sea,b(B) = bE4A . (3.9)

We have Ob = Se−1/6,−1/3. Moreover, for any (a,b), Se is still the restriction of Sea,b to the
algebra of modular forms.

For all (a,b,c) ∈C2, for any n ∈Z≥0, let {·, ·}
[a,b,c]
n be the bilinear map from J̃ ev,∗×J̃ ev,∗

to J̃ ev,∗ defined by bilinear extension of

{f ,g}
[a,b,c]
n =

n∑

r=0

(−1)r
(
k + cp +n− 1

n− r

)(
ℓ + cq +n− 1

r

)
Sera,b(f )Se

n−r
a,b (g) (3.10)

for all homogeneous f ∈ J̃ k,p and g ∈ J̃ ℓ,q .
Let {·, ·} = {·, ·}(u;γ,λ,ε) be a Poisson bracket as in Proposition 10. Then,

{·, ·}(u;γ,λ,ε) = {·, ·}
[−γ/(4u),−λ/(4u),−3ε]
1 . (3.11)

Reciprocally, for any (a,b,c) ∈ C3, we have

{·, ·}
[a,b,c]
1 = {·, ·}(1;−4a,−4b,−c/3).

Remark 12- The subalgebra of modular formsM∗ is stable by {·, ·}
[a,b,c]
n and that its re-

striction toM∗ is SRCn. Note also that we have ORC
µ
n = {·, ·}

[−1/6,−1/3,µ]
n .
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Theorem 13– For all (a,b,c) ∈ C3, the sequence
(
{·, ·}

[a,b,c]
n

)

n∈Z≥0
is a formal deformation

of J̃ ev,∗ that satisfies

{J̃ k,p, J̃ ℓ,q}
[a,b,c]
n ⊂ J̃ k+ℓ+2n,p+q

for all (k,p,ℓ,q,n) ∈ 2Z×Z≥0 × 2Z×Z≥0 ×Z≥0.

Proof. The derivation Sea,b is clearly of degree (2,0). The Theorem is then a consequence

of (2.8) since {·, ·}
[a,b,c]
n = χ

[c]
n for all n ∈Z≥0. �

3.2.2. Classification. The definition of formal deformations ({·, ·}
[a,b,c]
n )n∈Z≥0 depends on

three parameters. Can we classify them up to isomorphism? The question can be con-
sidered at different levels of specialization of the definition of isomorphic formal defor-
mations with respect to the arithmetical context studied here. We give here a complete
answer for the following notion of isomorphism.

Definition 14– Two formal deformations
(
{·, ·}

[a,b,c]
n

)

n∈Z≥0
and

(
{·, ·}

[a′ ,b′ ,c′]
n

)

n∈Z≥0
of J̃ ev,∗

are modular-isomorphic if there exists a C-linear bijective map φ : J̃ ev,∗→ J̃ ev,∗ such that

(1) φ preserves the index and the weight of homogeneous Jacobi forms

(2) φ({f ,g}
[a,b,c]
j ) = {φ(f ),φ(g)}

[a′ ,b′ ,c′]
j for all j ∈Z≥0 and f ,g ∈ J̃ ev,∗.

In particular φ is an C-algebra automorphism of J̃ ev,∗ and a Poisson isomorphism

from (J̃ ev,∗, {·, ·}
[a,b,c]
1 ) to (J̃ ev,∗, {·, ·}

[a′ ,b′ ,c′]
1 ).

Lemma 15– If two formal deformations ({·, ·}
[a,b,c]
n )n∈Z≥0 and ({·, ·}

[a′ ,b′ ,c′]
n )n∈Z≥0 are modular-

isomorphic, then c = c′, and there exists ξ ∈C∗ such that a′ = ξa and b′ = ξ−1b.

Proof. Let φ : J̃ ev,∗→ J̃ be as in Definition 14. By (1), there exists (α,β) ∈ C∗2 such that

φ(E4) = αE4 and φ(E6) = βE6. By (2), we know that φ
(
{E4,E6}

[a,b,c]
1

)
= αβ{E4,E6}

[a′ ,b′ ,c′]
1 ,

i.e. −2α3E3
4+2β

2E2
6 = −2αβE

3
4+2αβE

2
6. We deduce that α = β = 1: the restriction of φ

toM∗ is the identity.

Let f ∈ J̃ k,p. Then φ(f ) ∈ J̃ k,p. The restriction of Sea,b toM∗ is Se. The kernel of Se
is C[∆] (see, for example, [DR14, Proposition 8]) and φ(∆) = ∆. We deduce that

φ
(
{f ,∆}

[a,b,c]
1

)
= −12∆φ

(
Sea,b(f )

)
and {φ(f ),φ(g)}

[a′ ,b′ ,c′]
1 = −12∆Sea′,b′ (φ(f ))

and hence

φ ◦ Sea,b = Sea′ ,b′ ◦φ. (3.12)

It follows that, for all f ∈ J̃ k,p and g ∈ J̃ ℓ,q, we have

{φ(f ),φ(g)}
[a′ ,b′ ,c′]
j = φ

(
(k + c′p)f Sea,b(g)− (ℓ + c′q)g Sea,b(f )

)

and (2) leads to

(c′ − c)
(
pf Sea,b(g)− qg Sea,b(f )

)
= 0.
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We apply this equality to f = AE4 and g = E6 to obtain c′ = c. Moreover, (3.12) applied
to A gives aµ = a′λ and (3.12) applied to B gives b′µ = bλ. We obtain a′ = ξa and
b′ = ξ−1b with ξ = µ/λ. �

Theorem 16– Let (a′ ,b′ , c′) ∈ C3. The formal deformation ({·, ·}
[a′ ,b′ ,c′]
n )n∈Z≥0 of J̃ ev,∗ is

modular-isomorphic to one of the following formal deformations:

1) the formal deformation ({·, ·}
[1,b,c]
n )n∈Z≥0 for some (b,c) ∈ C2

2) the formal deformation ({·, ·}
[0,1,c]
n )n∈Z≥0 for some c ∈ C

3) the formal deformation ({·, ·}
[0,0,c]
n )n∈Z≥0 for some c ∈ C.

These deformations are pairwise non modular-isomorphic for different values of the parame-
ters.

Proof. For any (λ,µ) ∈ C∗2, let us denote by φλ,µ the C-algebra automorphism of J̃ ev,∗

that fixes E4 and E6 and such that φλ,µ(A) = λA and φλ,µ(B) = µB. We compare the

images of any monomial in J̃ ev,∗. It shows that for any (a,b,a′ ,b′) ∈C4,

φλ,µ ◦ Sea′ ,b′ = Sea,b ◦φλ,µ if and only if a′µ = aλ and b′λ = bµ. (3.13)

It is clear by the definition, see (3.10), that, if this condition is satisfied, then the formal

deformations {·, ·}[a
′ ,b′ ,c] and {·, ·}[a,b,c] are isomorphic. Since it follows from (3.13) that

φa′,1◦Sea′ ,b′ = Se1,a′b′ ◦φa′,1 for any a′ , 0, and φ1,b′◦Se0,b′ = Se0,1◦φ1,b′ for any b′ , 0,

the proof that ({·, ·}
[a′ ,b′ ,c′]
n )n∈Z≥0 is modular-isomorphic to one of given formal deforma-

tions is complete. The separation of the different cases up to modular isomorphism
follows from a direct application of Lemma 15. �

4. formal deformations for a localization of the algebra of Jacobi forms

Recall that we have introduced the algebra Kev,∗ = C[E4,E6,A
±1,B] ⊃ J̃ ev,∗ and set

F2 = BA−1 .

4.1. Relation with quasimodular forms. From the deformations we have built on the
algebra of Jacobi forms, we want to produce deformations on the algebra of quasimod-

ular forms. In order to do so, we extend the deformation from J̃ ev,∗ to Kev,∗ and then
restrict this extension to Q∗ = C[E4,E6,F2].

4.1.1. Extension of the Serre derivation, associated Poisson brackets. For any a,b ∈ C, the
derivation Sea,b extends canonically to Kev,∗ by

Sea,b(A
−1) = −A−2 Sea,b(A) = −aA

−2B .

This implies

Sea,b(F2) = bE4−aF
2
2 .

It follows that the algebra Q∗ is stable by Sea,b and hence for {·, ·}
[a,b,c]
n for all n ∈ Z≥0.

Therefore, the Poisson bracket {·, ·}
[a,b,c]
1 provides Q∗ the structure of a Poisson algebra.
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This bracket does not depend on c since the functions of Q∗ have index 0. It is charac-
terized by

{E4,E6}
[a,b]
1 = −2E34+2E

2
6,

{E4,F2}
[a,b]
1 = 4bE24+

2

3
E6F2−4aE4F

2
2, {E6,F2}

[a,b]
1 = 6bE4E6+E

2
4F2−6aE6F

2
2 .

We consider three cases:

(1) If a = 0 and b , 0, the algebra isomorphismω is a Poisson isomorphism between(
Q∗, {·, ·}

[0,b]
1

)
and

(
M≤∞∗ , {·, ·}−12b

)
(see [DR14, Proposition A]);

(2) If a = b = 0, the algebra isomorphism ω is a Poisson isomorphism between(
Q∗, {·, ·}

[0,0]
1

)
and

(
M≤∞∗ , (·, ·)−2/3

)
(see [DR14, Proposition C]);

(3) If a , 0, the Poisson bracket ofM≤∞∗ obtained through the isomorphism ω in-
creases the depth too much (for example, the depth of the evaluation of this
bracket at (E4,E2) is 2 whereas it should be less than or equal to 1) and hence

{·, ·}
[0,b]
1 does not correspond to any bracket defined in [DR14].

4.1.2. Admissible derivations of localized Jacobi forms. Let d be an admissible derivation

of J̃ ev,∗. We have seen that the restriction of such a derivation to M∗ is of the form

d(E4) = xE6 and d(E6) = yE2
4, see (3.8). We have proven in Proposition 10 that the

admissible derivations of J̃ ev,∗ that give our Poisson brackets the shape of a first Rankin-
Cohen bracket are the derivations Sea,b. Their restriction toM∗ are the Serre derivation
Se.

The situation is a bit different for Kev,∗. An admissible derivation d of Kev,∗ (that is a
derivation preserving the index and increasing the weight by 2) acts on the generators
by

d(E4) = xE6+x
′ E4F2, d(E6) = yE2

4+y
′ E4F2, d(A) = zF2A, d(F2) = tE4+t

′ F22,
(4.1)

for some complex numbers x,x′ ,y,y′ , z, t, t′ . Therefore we introduce naturally the linear
map π : Kev,∗→Kev,∗ defined by:

∀f ∈ Kk,m π(f ) = kf F2 . (4.2)

It is clear that π is a derivation of Kev,∗ of degree (2,1).
We shall extend Theorem 13 to Kev,∗ replacing Sea,b by a linear combination of Sea,b

and π. The restriction of this construction to the subalgebra Q∗ of Kev,∗ leads to the
Rankin-Cohen brackets[·, ·]vα ,n, [·, ·]

α
wα,b ,n

studied in [DR14] (see § 2.2.5). We provide

explicit details on this point in the following two Propositions.

Let us denote by Se
♯
K the derivation of Kev,∗ defined by

Se
♯
K(E4) = −

1

3
E6, Se

♯
K(E6) = −

1

2
E2
4, Se

♯
K(F2) = −

1

12
E4, Se

♯
K(A) = Se

♯
K(A

−1) = 0.

We note that, by (3.9), the restriction of Se
♯
K to J̃ ev,∗ is Se0,−1/12.
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For any complex number α, we introduce the derivation dα = Se
♯
K+απ ofKev,∗, where

π is the derivation of Kev,∗ defined in (4.2). Then dα(A) = −2αAF2 and

dα(F2) = −
1

12
E4+2αF22, dα(E4) = −

1

3
E6+4αE4F2, dα(E6) = −

1

2
E2
4+6αE6F2 . (4.3)

This derivation is used in the following Proposition to prove that the deformation of

J̃ ev,∗ defined in Theorem 13 in the case a = 0, b , 0 extends into a deformation of Kev,∗.

Proposition 17– For any complex parameters α,c, we consider the sequence ([·, ·]α,cn )n∈Z≥0
of maps Kev,∗ ×Kev,∗→Kev,∗ defined by bilinear extension of the formula:

[f ,g]α,cn =

n∑

i=0

(−1)i
(
k + cp +n− 1

n− i

)(
ℓ + cq +n− 1

i

)
diα(f )d

n−i
α (g),

for all homogeneous f ∈ Kk,p and g ∈ Kℓ,q.
Then

(i) The sequence ([·, ·]α,cn )n∈Z≥0 is a formal deformation of Kev,∗,

(ii) [Kk,p ,Kℓ,q]
α,c
n ⊂ Kk+ℓ+2n,p+q,

(iii) The subalgebraQ∗ is stable by ([·, ·]
α,c
n )n∈Z≥0 , and the formal deformation

(
Q∗, ([·, ·]

α,c
n )n

)

is isomorphic to the formal deformation
(
M≤∞∗ ,

(
[·, ·]vα ,n

)
n

)
,

(iv) The subalgebra J̃ ev,∗ is stable by ([·, ·]α,cn )n∈Z≥0 if and only if α = 0. The restriction

of
(
[·, ·]0,cn

)
n∈Z≥0

to J̃ ev,∗ is the deformation
(
{·, ·}

[0,b,c]
n

)

n∈Z≥0
of J̃ ev,∗ determined in

Theorem 13 for b = − 1
12 (and then up to equivalence for any b ∈C×).

Proof. That the sequence ([·, ·]α,cn )n∈Z≥0 is a formal deformation of Kev,∗ follows from the

general settings described § 2.2.3. Then, [Kk,p ,Kℓ,q]
α,c
n ⊂ Kk+ℓ+2n,p+q is a consequence of

the admissibility of dα .
The restriction of dα to Q∗ is a derivation of Q∗. This implies that

(
Q∗, ([·, ·]

α,c
n )n

)
is a

formal deformation. It is described by

[f ,g]α,cn =
n∑

r=0

(−1)r
(
k +n− 1

n− r

)(
ℓ +n− 1

r

)
diα(f )d

n−i
α (g)

for all homogeneous f and g in Q∗ of respective weights k and ℓ. A comparison with
§ 2.2.5, and in particular the comparison between (4.3) and (2.12), implies it is isomor-

phic to
(
M≤∞∗ ,

(
[·, ·]vα ,n

)
n

)
.

If α , 0, it is clear by (4.3) that dα does not restrict into a derivation of J̃ ev,∗. We
compute

[B,E4]
α,c
1 = −

c

3
BE6+

1

3
AE2

4+4αcBE4F2

and hence [B,E4]
α,c
1 < J̃ ev,∗ if α , 0 and c , 0. If α , 0 and c = 0, we compute

[E4,E6]
α,0
2 = (1− 12α)E24E6+144α

2E4E6F
2
2

and conclude that [E4,E6]
α,0
2 < J̃ ev,∗.
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Suppose that α = 0. Then

dα(E4) = −
1

3
E6, dα(E6) = −

1

2
E2
4, dα(A) = 0, dα(B) = −

1

12
E4A .

Then the proof is complete by (3.9), Theorem 13 and Theorem 16. �

Definition 18– Two formal deformations (µn)n∈Z≥0 and (νn)n∈Z≥0 of Kev,∗ are modular-

isomorphic if there exists a C-linear bijective map φ : Kev,∗→Kev,∗ such that

(i) φ preserves the index and the weight of homogeneous elements of Kev,∗,
(ii) φ (µn(f ,g)) = νn (φ(f ),φ(g)) for all n ∈Z≥0 and f ,g ∈ Kev,∗.

Note that a modular-isomophism between formal deformations is a Poisson isomor-
phism between the induced Poisson algebras.

Proposition 19– The formal deformations ([·, ·]α,cn )n∈Z≥0 and
(
[·, ·]α

′,c′
n

)
n∈Z≥0

of Kev,∗ are

modular-isomorphic if and only if (α,c) = (α′ , c′).

Proof. We assume thatφ is amodular isomorphismbetween ([·, ·]α,cn )n∈Z≥0 and
(
[·, ·]α

′,c′
n

)
n∈Z≥0

.

By preservation of index andweight, let λ,µ,γ,ν,η,ζ ∈C such thatφ(F2) = γ F2, φ(E4) =

λE4+ν F
2
2 and φ(E6) = µE6+ηE4F2+ζ F

3
2. We have γ , 0, (λ,ν) , (0,0) and (µ,η,ζ) ,

(0,0,0). We compute φ
(
[E4,F2]

α,c
1

)
and compare it with [φ(E4),φ(F2)]

α′,c′

1 . Replacing E4

with E6, we get

• if λ = 0 and ν = 4γ2, µ = η = 0. This leads to φ
(
4F22−E4

)
= 0which is impossible

• hence λ , 0, µ = γ = λ = 1 and η = ζ = 0 and hence the restriction of φ to Q∗ is
the identity.

Then, we write φ(A) = θA and compare φ
(
[E4,A]

α,c
1

)
with [φ(E4),φ(A)]

α′,c′

1 . This leads

to c = c′ and α = α′. �

Remark 20- The proof of Proposition 19 shows that the formal deformations ([·, ·]α,cn )n∈Z≥0
and

(
[·, ·]α

′ ,c′
n

)
n∈Z≥0

of Kev,∗ are modular-isomorphic if and only if the Poisson algebra
(
Kev,∗, [·, ·]

α,c
1

)
and

(
Kev,∗, [·, ·]

α′,c′

1

)
are Poisson modular-isomorphic.

Let us denote by Se♭K the derivation of Kev,∗ defined by

Se♭K(E4) = −
1

3
E6, Se♭K(E6) = −

1

2
E2
4, Se♭K(F2) = 0, Se♭K(A) = Se♭K(A

−1) = 0.

For any complex number β, we introduce the derivation δβ = Se♭K+βπ of Kev,∗, where π
is the derivation of Kev,∗ defined in (4.2). Then δβ(A) = −2βAF2 and

δβ(E4) = −
1

3
E6+4βE4F2, δβ(E6) = −

1

2
E2
4+6βE6F2, δβ(F2) = 2β F22 .

This derivation is used in the following Proposition to prove that the deformation of

J̃ ev,∗ defined in Theorem 13 in the case a = b = 0 extends into a deformation of Kev,∗.
The proof is similar to the one of Proposition 17.
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Proposition 21– For any complex parameters β,c, we consider the sequence (〈·, ·〉α,cn )n∈Z≥0
of maps Kev,∗ ×Kev,∗→Kev,∗ defined by bilinear extension of the formula:

〈f ,g〉
β,c
n =

n∑

i=0

(−1)i
(
k + cp +n− 1

n− i

)(
ℓ + cq +n− 1

i

)
δiβ(f )δ

n−i
β (g),

for all homogeneous f ∈ Kk,p and g ∈ Kℓ,q.
Then,

(i) The sequence
(
〈·, ·〉

β,c
n

)
n∈Z≥0

is a formal deformation of Kev,∗,

(ii) 〈Kk,p,Kℓ,q〉
β,c
n ⊂ Kk+ℓ+2n,p+q,

(iii) The subalgebraQ∗ is stable by
(
〈·, ·〉

β,c
n

)
n∈Z≥0

, and the formal deformation
(
Q∗,

(
〈·, ·〉

β,c
n

)
n

)

is isomorphic to the formal deformation
(
M≤∞∗ ,

(
[·, ·]−2/3w−2/3,0,n

)
n

)
,

(iv) The subalgebra J̃ ev,∗ is stable by
(
〈·, ·〉

β,c
n

)
n∈Z≥0

if and only if β = 0. The restriction

of
(
〈·, ·〉0,cn

)
n∈Z≥0

to J̃ ev,∗ is the deformation
(
{·, ·}

[0,0,c]
n

)

n∈Z≥0
of J̃ ev,∗ determined in

Theorem 13.

The same way we proved Proposition 19 we can prove the following classification
Proposition.

Proposition 22– The formal deformations
(
〈·, ·〉

β,c
n

)
n∈Z≥0

and
(
〈·, ·〉

β′ ,c′

n

)

n∈Z≥0
of Kev,∗ are

modular-isomorphic if and only if c = c′, and (β,β ′) = (0,0) or (β,β ′) ∈C∗ ×C∗.

4.2. Relation with modular forms. In this section, we build a formal deformation of
Kev,∗ that restricts to the formal deformation on Rankin-Cohen brackets onM∗.

Recall thatω : Q∗→M
≤∞
∗ is the algebra isomorphism that sends (E4,E6,F2) to (E4,E6,E2).

The usual complex derivative Dz defines a derivation on the algebraM≤∞∗ of quasimod-
ular forms. We define a derivation onQ∗ by � = ω−1Dzω. Ramanujan equations become

�(E4) = −
1

3
(E6−E4F2), �(E6) =

1

2
(E2

4−E6F2), �(F2) = −
1

12
(E4−F

2
2). (4.4)

By (4.1) the unique way to extend � into an admissible derivation �u of Kev,∗ is to set

∀f ∈ Q∗ �u(f ) = �(f ) and �u(A) = uAF2 (4.5)

for some u ∈C. We compute

�u(B) = �u(AF2) = (u +
1

12
)BF2−

1

12
E4A . (4.6)

It is clear that

1. the derivation �u does not restrict into a derivation ofM∗,
2. the derivation �u restricts into the derivation � of Q∗,
3. the derivation �u does not restrict into a derivation of J̃ ev,∗

for any u ∈C.
The following Theorem can be proved the same way as Proposition 17.
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Theorem 23– For any complex parameters u and v, let
(
J·, ·Ku,vn

)
n∈Z≥0

be the sequence of

maps Kev,∗ ×Kev,∗→Kev,∗ defined by bilinear extension of

Jf ,gKu,vn =
n∑

r=0

(−1)r
(
k + vp +n− 1

n− r

)(
ℓ + vq+n− 1

r

)
�ru(f )�

n−r
u (g),

for all homogeneous f ∈ Kk,p and g ∈ Kℓ,q. Then, for all (u,v) ∈ C
2,

(i) the sequence
(
J·, ·Ku,vn

)
n∈Z≥0

is a formal deformation of Kev,∗,

(ii) JKk+,p,Kℓ,qK
u,v
n ⊂ Kk+ℓ+2n,p+q ,

(iii) the sequence
(
J·, ·Ku,vn

)
n∈Z≥0

restricts to the formal deformation of the algebraM∗ of

modular forms given by the usual Rankin-Cohen brackets.

The same way we proved Proposition 19 we can prove the following classification
Proposition.

Proposition 24– The formal deformations
(
J·, ·Ku,vn

)
n∈Z≥0

and
(
J·, ·Ku

′ ,v′
n

)
n∈Z≥0

of Kev,∗ are

modular-isomorphic if and only if (u,v) = (u ′ ,v ′).

Remark 25- It is clear that the subagebra Q∗ is stable by
(
J·, ·Ku,vn

)
n∈Z≥0

. However, their

restrictions to Q∗ do not preserve the degree in F2 in the sense that they do not satisfy

∀(f ,g) ∈M∗ ∀(s, t) ∈Z
2
≥0 degF2

(
Jf Fs2, g F

t
2K

u,v
n

)
≤ s + t.

Up to the isomorphism ω, they do not preserve the depth of quasimodular forms. For
this reason, the restrictions of

(
J·, ·Ku,vn

)
n∈Z≥0

to the subalgebra Q∗ can not coincide with

the brackets previously studied in [DR14].

Remark 26- Similar computations prove that the deformations ([·, ·]α,cn )n∈Z≥0 , (〈·, ·〉
α,c
n )n∈Z≥0

and
(
J·, ·Ku,vn

)
n∈Z≥0

are never pairwise modular-isomorphic.

Although the subalgebra J̃ ev,∗ is not stable by the derivation �u , the question arises

whether J̃ ev,∗ can be stable by
(
J·, ·Ku,vn

)
n∈Z≥0

for some values of the parameters u and v.

The following lemma gives a (very) partial answer for n = 1.

Lemma 27– The algebra J̃ ev,∗ is stable by the Poisson bracket J·, ·Ku,v1 if and only if v −1 =

12u. The Poisson bracket J·, ·Ku,v1 coincides with the Poisson bracket {·, ·}
[1/12,−1/12,−(12u+1)/3]
1

of Theorem 13.

Proof. By Theorem 23, we have

∀(f ,g) ∈ Kk,p ×Kℓ,q Jf ,gKu,v1 = (k + vp)f �u (g)− (ℓ + vq)�u(f )g.
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With (4.4), (4.5) and (4.6), we compute

JA,E4K
u,v
1 =

1

3
(−12u + v − 2)E4B−

1

3
(v − 2)AE6

JA,E6K
u,v
1 =

1

2
(−12u + v − 2)E6B−

1

2
(v − 2)AE2

4

JB,E4K
u,v
1 =

1

3
(−12u + v − 1)BE4F2−

1

3
vE6B+

1

3
E2
4A

JB,E6K
u,v
1 =

1

2
(−12u + v − 1)BE6F2−

1

2
vE24B+

1

2
E4E6A

JA,BKu,v1 =
1

12
(−24u + v − 2)B2−

1

12
(v − 2)E4A

2 .

If J̃ ev,∗ is stable by the Poisson brackets J·, ·Ku,v1 , it follows from the third and fourth
relations that 12u = v − 1. Then we have

JA,E4K
u,v
1 =

1

3
(2− v)E6A−

1

3
E4B

JA,E6K
u,v
1 =

1

2
(2− v)E24A−

1

2
E6B

JB,E4K
u,v
1 =

1

3
E2
4A−

1

3
vE6B

JB,E6K
u,v
1 =

1

2
E4E6A−

1

2
vE24B

JA,BKu,v1 =
1

12
(2− v)E4A

2−
1

12
vB2 .

Hence the Poisson bracket J·, ·Ku,12u+11 corresponds to the case B in Proposition 7 for

γ = −1
3 , λ = 1

3 and ε = −1
3v. Comparing with (3.11), we conclude that J·, ·Ku,12u+11 is no

more than the Poisson bracket {·, ·}
[a,b,c]
1 for a = 1

12 , b = −
1
12 and c = − v

3 . �

Convinced by extensive computations with pari-gp [The17], we make the following
conjecture.

Conjecture– For any complex number u, the sequence
(
J·, ·Ku,12u+1n

)
n∈Z≥0

defines by restric-

tion a formal deformation of the algebra J̃ ev,∗ of weak Jacobi forms.
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