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Abstract. This paper is devoted to the analysis of bifurcations of limit cy-
cles in planar polynomial near-Hamiltonian systems. It is motivated by the
second part of the sixteenth Hilbert’s problem. We introduce a class of Hamil-
tonian systems which admit a high number of non-degenerate centers that can
be arbitrarily located in the plane. We study several perturbations of those
Hamiltonian systems, and analyze their effect by using the Melnikov method.
One of those perturbations is defined along the gradient of the initial Hamilto-
nian.
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§1 Introduction

The sixteenth Hilbert’s problem was stated in 1900 at the International Congress of Mathematicians
in Paris [1]. Its second part is concerned with the location and the maximal number H(n) of limit
cycles in planar vector fields of the form

ẋ = Pn(x, y), ẏ = Qn(x, y),

where Pn and Qn are polynomials of degree n. Before the problem was stated, Poincaré had
introduced the concept of limit cycle, and proved that a planar polynomial vector field without
saddle connections cannot admit an infinite number of limit cycles [2]. The finiteness theorem in
the general case was proved separately by Ilyashenko [3, 4] and Écalle [5], but it is still unknown
whether H(n) is finite or not, even for quadratic systems. The sixteenth Hilbert’s problem has
produced a huge literature, thus it is impossible to give a complete list of the existing works in this
field. However, detailed surveys are presented in [4], [6] or [7]. For example, the particular study
of Liénard equations has been a rich source of innovative reasonings [8], [9], [10]. Among others,
several methods have been developed to give lower bounds for estimating the growth rate of H(n).
One of those methods is to apply a perturbation to a Hamiltonian system, which leads to the study
of differential systems that can be written

ẋ = ∂H

∂y
+ εf(x, y), ẏ = −∂H

∂x
+ εg(x, y),

where H, f and g are polynomials, and ε is a real coefficient. A common approach is to make a
bifurcation analysis in order to prove that the perturbation can give birth to nests of limit cycles,
in a neighborhood of a weak focus or a center. In [11], [12], it was proved that the growth rate of
H(n) is at least of order n2. Afterwards, a new lower bound was obtained by Christopher and Lloyd
in 1995 [13], and is of order n2 logn. Some mistakes in their paper were corrected in [7] and [14].
Anyway, Lloyd [15] conjectured in 1988 that H(n) should be of order n3. We quote his reasoning
below.

I conjecture that H(n) = O(n3). My reasoning is simply that O(n2)
critical points can be encircled by limit cycles, and that there are likely
to be at most O(n) limit cycles around each critical point.
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In this paper, we shall introduce a class of polynomial planar Hamiltonian systems, admitting
a high number of non-degenerate centers that can be arbitrarily located. These systems have been
constructed with a coupled network approach which is quite different from the previous works in this
field. Indeed, it is known that the effect of coupling oscillators can produce a richness of dynamics,
with the emergence of new periodic solutions [16]. In particular, we succeed in constructing a
planar polynomial Hamiltonian system of degree O(n) admitting O(n2) non-degenerate centers.
We remark that a similar form of Hamiltonian systems is considered in [17] in order to prove that
any configuration of limit cycles can be achieved by a polynomial vector field, which comforts our
conviction that this class of Hamiltonian systems can be an interesting source of understanding
the bifurcations of limit cycles in planar polynomial vectors fields. Those Hamiltonian systems are
presented in the first section. In the second section, we study several polynomial perturbations under
which a nest of limit cycles appears in the neighborhood of each non-degenerate center. To that
aim, we begin by analyzing basic geometric configurations for the location of the centers, involving
lines and rings. Then we propose a perturbation of any Hamiltonian system along its own gradient,
and prove how it is efficient to make centers bifurcate into nests of limit cycles. Our theoretical
results are systematically illustrated by computer made figures, in order to show the geometrical
ingredients that are omnipresent in our reasoning.

§2 Construction of a class of Hamiltonian systems

2.1. Hamiltonian systems admitting arbitrarily located centers

We begin our paper with the construction of Hamiltonian systems admitting centers that can be
arbitrarily located. Let us consider a finite family of distinct points P = {(xi, yi), 1 ≤ i ≤ n} in
R2, where n is a positive integer. For each point p = (xi, yi) in P, 1 ≤ i ≤ n, we consider the
differential system (σi) defined by

(σi)
{
ẋ = y − yi
ẏ = −(x− xi),

(1)

which admits a center at p = (xi, yi), and is a Hamiltonian system:

(σi)


ẋ = ∂Gi

∂y

ẏ = −∂Gi
∂x

,

with
Gi = 1

2

[
(x− xi)2 + (y − yi)2

]
. (2)

Next, our goal is to build a differential system which admits a center at every point p = (xi, yi) in
P, and which behaves like the system (1) in a neighborhood of p = (xi, yi) for 1 ≤ i ≤ n. To that
aim, we introduce the system

(R)



ẋ =
n∑
i=1

(y − yi)
n∏
j=1
j 6=i

[
(x− xj)2 + (y − yj)2

]

ẏ =
n∑
i=1
−(x− xi)

n∏
j=1
j 6=i

[
(x− xj)2 + (y − yj)2

]
,

which is obtained by coupling the systems (σi), 1 ≤ i ≤ n, in the same phase space, that is R2.
Indeed, for each i, the coupling term

n∏
j 6=ij=1

[
(x− xj)2 + (y − yj)2

]
,
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defined as a product of squared euclidean distances, controls the effect of the vector field induced
by (σi) in the neighborhood of the other points (xj , yj) for j 6= i. Furthermore, we remark that the
latter system is indeed a Hamiltonian system:

(R)
{
ẋ = Gy

ẏ = −Gx,
(3)

where G = G(P) is given by

G = 1
2

n∏
i=1

2Gi = 1
2

n∏
i=1

[
(x− xi)2 + (y − yi)2

]
, (4)

for all (x, y) ∈ R2. For short, we have used the notations Gx = ∂G
∂x , Gy = ∂G

∂y . Before we state our
first proposition, we recall a sufficient condition for a critical point to be a non-degenerate center
(see [8], Theorem 2 in section 2.14, or [18]).

Theorem 1. Let H be a smooth function defined in R2. A point (x0, y0) is a non-degenerate center
of the Hamiltonian system

ẋ = Hy, ẏ = −Hx

if the two following properties are satisfied:

i. Hx(x0, y0) = Hy(x0, y0) = 0,

ii. Hxx(x0, y0)Hyy(x0, y0)−Hxy(x0, y0)2 > 0.

In that case, there exists a continuous band of closed orbits γh ⊂ H−1({h}) for h ∈]0, h0[, with
h0 > 0, encircling (x0, y0).

Proposition 1. The Hamiltonian system (3) is a polynomial planar system of degree 2n − 1. It
admits n non-degenerate centers at each point of the family P.

Proof. Since G is a polynomial of degree 2n, it is clear that (3) is a planar polynomial system of
degree 2n− 1. Next, we compute Gx, Gy and GxxGyy −G2

xy at each point (xk, yk), 1 ≤ k ≤ n. For
each k ∈ {1, . . . , n}, we have

∂G

∂x
(xk, yk) =

n∑
i=1

(xk − xi)
n∏
j=1
j 6=i

[
(xk − xj)2 + (yk − yj)2]

= (xk − xk)
n∏
j=1
j 6=k

[
(xk − xj)2 + (yk − yj)2]

+
n∑
i=1
i6=k

(xk − xi)
n∏
j=1
j 6=i

[
(xk − xj)2 + (yk − yj)2]

= 0.

A similar computation leads to
∂G

∂y
(xk, yk) = 0.

Next, we compute the derivatives of G of order 2. We have

∂2G

∂x2 =
n∑
i=1

{
1×

n∏
j=1
j 6=i

[
(x− xj)2 + (y − yj)2]+ (x− xi)

n∑
j=1
j 6=i

(x− xj)
n∏
k=1

k 6=i,k 6=j

[
(x− xk)2 + (y − yk)2]},
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from which we deduce
∂2G

∂x2 (xk, yk) =
n∏
j=1
j 6=k

[
(xk − xj)2 + (yk − yj)2].

Analogously, we have
∂2G

∂y2 (xk, yk) =
n∏
j=1
j 6=k

[
(xk − xj)2 + (yk − yj)2].

Finally, we compute

∂2G

∂x∂y
=

n∑
i=1

(x− xi)


n∑
j=1
j 6=i

(y − yj)
n∏
l=1

l6=i,l 6=j

[
(x− xl)2 + (y − yl)2]

 ,

thus
∂2G

∂x∂y
(xk, yk) = 0.

We obtain

∂2G

∂x2 (xk, yk)∂
2G

∂y2 (xk, yk)−
(
∂2G

∂x∂y
(xk, yk)

)2

=
n∏
j=1
j 6=k

[
(xk − xj)2 + (yk − yj)2]2 > 0,

since the points of P are distinct. This achieves the proof.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0
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Figure 1: Phase portrait of system (3) with P = {(−1, 0), (0, −1), (1, −1), (1, 1)}, showing continuous
bands of closed orbits in the neighborhood of each point p ∈P. The position of the centers can be arbitrarily
chosen.

This first proposition means that the Hamiltonian system (3) answers favorably for what it was
expected to, that is, admitting centers at arbitrarily chosen locations. The phase portrait of the
system (3) with P = {(−1, 0), (0, −1), (1, −1), (1, 1)} is depicted in Figure 1. It is worth noting
that system (3) can admit other critical points that are saddles, and is likely to exhibit saddles
heteroclinic or homoclinic orbits. Anyway, we focus in this paper on the possibility to make each
center bifurcate into a nest of limit cycles.
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2.2. Hamiltonian system for a rectangular grid of centers

Next, our aim is to construct a Hamiltonian system whose degree is of order n, and which admits n2

non-degenerate centers. Let us consider two positive integers n, m. We introduce the Hamiltonian
system (Sn,m) given by

(Sn,m)
{
ẋ = Fy

ẏ = −Fx,
(5)

where F is defined by

F =
m−1∑
k=0

Fkβk, (6)

with

Fk = 1
2

n−1∏
i=0

[
(x− i)2 + (y − k)2

]
, βk =

m−1∏
l=0
l 6=k

(y − l)2.

The Hamiltonian functions Fk are related to the Hamiltonian function G given by (4) through the
relation

Fk = G(Pk), Pk = {(0, k), (1, k), . . . , (n− 1, k)},

thus the Hamiltonian function F is obtained by coupling Hamiltonian functions Fk admitting centers
that are located on parallel lines.

−0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

Figure 2: Phase portrait of system (5) with n = 3 and m = 2, showing closed orbits in the neighborhood
of the points (i, k) for 0 ≤ i ≤ 2 and 0 ≤ k ≤ 1, distributed on a rectangular grid.

The next proposition states that the resulting system (5) admits a grid of centers. It can easily
be modified so that the distance between each line in the grid is different. The phase portrait of
system (5) with n = 3 and m = 2 shown in Figure 2 illustrates the geometric disposal of those
centers.

Proposition 2. The Hamiltonian system (5) is a planar polynomial system whose degree is equal
to 2n + 2m − 3. Furthermore, it admits n ×m non-degenerate centers located at the points (i, k),
0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1.

Proof. First, F is a polynomial of degree 2n + 2(m − 1), thus it is clear that the system (5) is a
planar polynomial system of degree 2n + 2m − 3. Next, we note that for each k ∈ {1, . . . , m}, we
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have, by virtue of the Proposition 1:

∂Fk
∂x

(i, k) = ∂Fk
∂y

(i, k) = 0,

∂2Fk
∂x2 (i, k)∂

2Fk
∂x2 (i, k)−

(
∂2Fk
∂x∂y

(i, k)
)2

> 0,

for all i ∈ {1, . . . , n}, since Fk = G(Pk) with Pk = {(0, k), (1, k), . . . , (n − 1, k)}. We compute
the derivatives of orders 1 and 2 of F . We begin with

Fx =
m−1∑
k=0

∂

∂x

[
Fk(x, y)βk(y)

]
=
m−1∑
k=0

βk(y) ∂
∂x

[
Fk(x, y)

]
.

Now, let (i0, k0) such that 0 ≤ i0 ≤ n− 1 and 0 ≤ k0 ≤ m− 1. We have

∂Fk0

∂x
(i0, k0) = 0,

βk(k0) =
m−1∏
l=0
l6=k

(k0 − l)2 = 0, if k 6= k0.

It follows that

∂Fk0

∂x
(i0, k0) = βk0(k0)∂Fk0

∂x
(i0, k0) +

m−1∑
k=0
k 6=k0

βk(k0)∂Fk
∂x

(i0, k0) = 0.

We continue with the derivative with respect to y:

Fy =
m−1∑
k=0

∂

∂y

[
Fk(x, y)βk(y)

]
=
m−1∑
k=0

{
βk(y) ∂

∂x

[
Fk(x, y)

]
+ dβk

dy (y)Fk(x, y)
}
.

As previously, we have

Fk0(i0, k0) = ∂Fk0

∂y
(i0, k0) = 0, βk(k0) = 0 if k 6= k0.

Furthermore, we compute

dβk
dy (y) = d

dy


m−1∏
l=0
l 6=k

(y − l)2

 =
m−1∑
l=0
l 6=k

2(y − l)


m−1∏
q=0

q 6=k,q 6=l

(y − q)2

 ,

thus dβk
dy (k0) = 0 if k 6= k0, and we obtain ∂F

∂y
(i0, k0) = 0. After elementary but tedious computa-

tions, we prove that

(FxxFyy − F 2
xy)(i0, k0) ≥

[
βk0(k0)

]2 × [∂2Fk0

∂x2
∂2Fk0

∂y2 −
(
∂2Fk0

∂x∂y

)2]
(i0, k0) > 0,

and this achieves the proof.

For m = n, the system (5) is a planar polynomial system whose degree is of order n, admitting
n2 centers. The first step in the conjecture stated by Lloyd in 1988, that we have quoted in our
introduction, is reached. Of course, it is possible to compute an instance of the Hamiltonian function
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G given by (4) which also admits n2 centers, but in that case, the resulting system would be of
degree 2n2 − 1 (see Proposition 1). Now, the difficult step is to find a suitable perturbation of
degree O(n) of the system (5), so that each center bifurcates into a nest of O(n) limit cycles. The
investigation of such perturbations will be presented in the next section. Before that, we present a
geometrical variant of the Hamiltonian system (5) for which the centers are located on concentric
rings [19].

2.3. Hamiltonian system for coupled rings of centers

Let us introduce the Hamiltonian system defined by

(Tn,m)
{
ẋ = Ey

ẏ = −Ex,
(7)

with positive integers n, m, where the Hamiltonian function E is given by

E =
m∑
k=1

Ekδk, (8)

and the functions Ek and δk are defined by for each k ∈ {1, . . . , m} by

Ek = 1
2

n∏
i=1

[
(x− xi,k)2 + (y − yi,k)2], δk =

m∏
l=1
l6=k

(
x2 + y2 − ρ2

l

)2
, (9)

with xi,k = ρk cos 2iπ
n , yi,k = ρk sin 2iπ

n and positive radii ρ1 < ρ2 < · · · < ρm. For each
k ∈ {1, . . . , m}, the polynomial Ek is again a particular instance of the Hamiltonian function
G given by (4), that is

Ek = G(Pk), Pk =
{(

ρk cos 2iπ
n
, ρk sin 2iπ

n

)
, 1 ≤ i ≤ n

}
.

Proposition 3. For any positive integers n, m, the system (7) is a planar polynomial system,
invariant under the rotation of angle 2π

n . Furthermore, its degree is equal to 2n + 4m − 5, and it
admits n×m non-degenerate centers at (xi,k, yi,k), 1 ≤ i ≤ n, 1 ≤ k ≤ m.

Proof. Since E is a polynomial of degree 2n + 4(m − 1), it is clear that the system (7) is a planar
polynomial system of degree 2n + 4m − 5. By construction, it is invariant under the rotation of
angle 2π

n . As previously, we check after basic computations that

Ex(xi,k, yi,k) = Ey(xi,k, yi,k) = 0,(
ExxEyy − E2

xy

)
(xi,k, yi,k) > 0,

for 1 ≤ i ≤ n and 1 ≤ k ≤ m.

As expected, the Hamiltonian system (7) presents a geometric structure with m coupled rings
of n centers. The phase portrait of (7) for m = 3, n = 6 and ρk = k, 1 ≤ k ≤ 3, is depicted
in Figure 3. Applying the same method, it is possible to build a Hamiltonian system admitting
centers located on various curves, like cubical curves or hyperbolic curves for instance. This shows
that the Hamiltonian system (3) offers a rich palette of geometric patterns. We shall see in the
coming section how the location of the centers in both systems (5) and (7), with regular geometric
distributions, can facilitate the construction of a perturbation.
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Figure 3: Phase portrait of the system (7) for m = 3, n = 6 and ρk = k, 1 ≤ k ≤ 3, showing 3 rings of 6
centers, with continuous bands of closed orbits of small amplitude encircling those centers. The system is
invariant under the rotation of angle π

3 .

§3 Construction of polynomial perturbations

In this section, we study various perturbations of the Hamiltonian systems previously introduced.
We begin with the presentation of the classical material that we will use in order to construct
polynomial perturbations of Hamiltonian systems, and to analyze their effect on the unperturbed
system.

3.1. Poincaré map, displacement function and Melnikov integral

Let us consider any perturbed Hamiltonian system of the form

ẋ = Hy + εf(x, y), ẏ = −Hx + εg(x, y), (10)

where H, f and g are polynomials and ε is a real coefficient. Suppose that the unperturbed system,
obtained for ε = 0, admits a non-degenerate center p̄ = (x̄, ȳ) with a family of closed orbits
γh included in the so-called energy levels H−1({h}) of the Hamiltonian function H, continuously
depending on h ∈]0, h0[, encircling p̄. The Melnikov integral [20] at p̄, (also called Abelian integral
[21], [22]), is defined by

M(p̄, h) =
∮
γh

f(x, y)dy − g(x, y)dx. (11)

Equivalently, we have ∮
γh

f(x, y)dy − g(x, y)dx =
∫∫

Γh

(fx + gy)dxdy, (12)

where Γh denotes the interior of the closed curve γh.
Now let us consider a cross section S of the family of closed orbits γh, h ∈]0, h0[, stemming from

p̄, parametrized by h, and ε sufficiently small. It is well known that one can define a Poincaré map
(see [8] or [23] for instance), independent of the choice of the cross section S, that associates to each
value of h ∈]0, h0[, the value P (p̄, h, ε) that corresponds to the first return of the perturbed orbit
γ(h, ε) across S (see Figure 4). We then define the displacement function

d(p̄, h, ε) = P (p̄, h, ε)− h, (13)
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p̄ h P (p̄, h, ε)

d(p̄, h, ε)

S

γh

γ(h, ε)

Figure 4: Poincaré first return map and displacement function. Under a small perturbation, the closed
orbit γh changes continuously. Its first return across the section S is captioned by the Poincaré map. The
displacement function is a measure of the variation between this first return and the starting point.

for h ∈]0, h0[ and ε sufficiently small. It is known [8] that the Poincaré map, and consequently the
displacement function, are analytic functions in their domains of definition, when H, f and g are
analytic, and a fortiori polynomials. The next theorem gives a fundamental relationship between
the displacement function and the Melnikov integral. A detailled proof is given in [21] for instance.
Theorem 2 (Poincaré-Pontryagine). The displacement function satisfies

d(p̄, h, ε) = ε
[
M(p̄, h) + εϕ(h, ε)

]
,

as ε tends to 0, where ϕ(h, ε) is analytic and uniformly bounded for (h, ε) in a compact region near
(h, 0), with h ∈]0, h0[.

The following lemma establishes the link between the zeros of the Melnikov integral and the
existence of limit cycles in the perturbed system (10).
Lemma 1. We suppose that M(p̄, h) is not identically zero for h ∈]0, h0[. Then the following
statements hold.

1. If there exists h1 ∈]0, h0[ such that M(p̄, h1) = 0 and M ′(p̄, h1) 6= 0, then the perturbed system
(10) admits a unique limit cycle bifurcating from γh1 . Moreover, this limit cycle is hyperbolic.

2. If there exist h1, h2 ∈]0, h0[ such that M(p̄, h1) > 0 and M(p̄, h2) < 0, then the perturbed
system (10) admits at least one limit cycle between γh1 and γh2 .

The first statement is proved in detail in [21]. The second statement is presented in [13] without
proof. For the sake of completeness, we intend to give a detailed proof in the present paper.

Proof of the second statement. By assumption, there exist h1, h2 ∈]0, h0[ such that the Melnikov
integral at p̄ satisfies M(p̄, h1) > 0 and M(p̄, h2) < 0. For ε 6= 0 and h ∈]0, h0[, we consider the
function δ defined by δ(p̄, h, ε) = ε−1d(p̄, h, ε). By virtue of the Poincaré-Pontryagine Theorem,
we have

δ(p̄, h, ε) = M(p̄, h) + εϕ(h, ε).
It follows that

δ(p̄, h1, ε) = M(p̄, h1) + εϕ(h1, ε) ≥
1
2M(p̄, h1) > 0, 0 < |ε| ≤ ε1,

δ(p̄, h2, ε) = M(p̄, h2) + εϕ(h2, ε) ≤
1
2M(p̄, h2) < 0, 0 < |ε| ≤ ε2.

9



Now let us consider ε0 such that 0 < |ε0| < min(ε1, ε2). Since δ is analytic and satisfies

δ(p̄, h1, ε0) > 0, δ(p̄, h2, ε0) < 0,

the Rolle theorem guarantees that there exists a (not necessarily unique) h(ε0) ∈]h1, h2[ such that
δ
(
p̄, h(ε0), ε0

)
= 0. Thus the perturbed system admits at least one limit cycle between γh1 and γh2

for any sufficiently small ε, and this achieves the proof.

It is remarked that the second statement does not guaranty the uniqueness nor the hyperbol-
icity of the limit cycle appearing in the perturbed system for ε sufficiently small. In particular,
bifurcations involving multiple limit cycles can occur when ε varies in a neighborhood of 0.

3.2. Perturbation of a line and a ring of centers

In this section, our aim is to construct a perturbation in the case of basic geometric configurations
of the Hamiltonian system (3) introduced in the previous section. In [13], the authors construct a
system admitting centers which are located on the orthogonal axes of the plane, that is x = 0 and
y = 0. This disposal of the centers in the unperturbed system is a key ingredient in their paper.
We begin with the situation when the points of the family P are located on a vertical axis.

Theorem 3. Let P = {(x0, y1), . . . , (x0, yn)} be a family of n points located on the vertical axis
x = x0, with y1 < y2 < · · · < yn, r be a positive integer, and H be a polynomial Hamiltonian
function such that each point p ∈P is a non-degenerate center for the Hamiltonian system

ẋ = Hy, ẏ = −Hx.

Then there exists a polynomial fx0(x) of degree 2r + 1, such that the perturbed system

ẋ = Hy + εfx0(x), ẏ = −Hx

admits at least n × r limit cycles for ε sufficiently small, that are located by nests of r limit cycles
in a neighborhood of each point p ∈P. Furthermore, fx0(x) is given by

fx0(x) =
r∑
s=0

(−1)r−sαs(x− x0)2s+1, (14)

with real coefficients αs, 0 ≤ s ≤ r, which enjoy the property

α0 < α1 < · · · < αr = 1. (15)

Proof. Let us suppose that x0 = 0. By assumption, each point p ∈ P is a non-degenerate center
for the unperturbed system

ẋ = Hy, ẏ = −Hx.

By virtue of Theorem 1, for each p = (0, yi) ∈ P, there exists a continuous band of closed orbits
γih encircling p = (0, yi), 1 ≤ i ≤ n. Our aim is to build a polynomial perturbation fx0(x)
such that the Melnikov integrals at each point of the family P, change of sign r times along the
orbits of the latter continuous bands. Let us choose n orbits γ1

0 , γ
2
0 , . . . , γ

n
0 encircling the points

(0, y1), (0, y2), . . . , (0, yn) respectively. We begin by considering the function N0 defined for any
close orbit ` by

N0(`) =
∮
`

x2r+1dy.

In particular, we have

N0(γi0) =
∮
γi

0

x2r+1dy =
∫∫

Γi
0

(2r + 1)x2rdxdy > 0, 1 ≤ i ≤ n,

10



where Γi0 denotes the interior of the closed orbit γi0, 1 ≤ i ≤ n. Next, we introduce, for each
i ∈ {1, . . . , n}, the function N i

1 defined for any close orbit ` by

N i
1(`) =

∮
`

(
x2r+1 − αir−1x

2r−1)dy,
where we have chosen n sufficiently small coefficients α1

r−1, α
2
r−1, . . . , α

n
r−1 with αir−1 < 1, for

1 ≤ i ≤ n, such that

N i
1(γi0) =

∮
γi

0

(
x2r+1 − αir−1x

2r−1)dy =
∫∫

Γi
0

[
(2r + 1)x2r − (2r − 1)αir−1x

2r]dxdy > 0,

for 1 ≤ i ≤ n. By introducing αr−1 = min(αir−1, 1 ≤ i ≤ n), it follows that the i-dependence of N i
1

vanishes. More precisely, we consider the function N1 defined for any close orbit ` by

N1(`) =
∮
`

(
x2r+1 − αr−1x

2r−1)dy,
and we obtain:

N1(γi0) =
∮
γi

0

(
x2r+1 − αr−1x

2r−1)dy > 0,

for all i ∈ {1, . . . , n}. Next we choose n sufficiently small closed orbits γ1
1 , γ

2
1 , . . . , γ

n
1 contained in

the interior of γ1
0 , γ

2
0 , . . . , γ

n
0 and encircling (0, y1), (0, y2), . . . , (0, yn) respectively, such that

N1(γi1) =
∮
γi

1

(
x2r+1 − αr−1x

2r−1)dy < 0,

for all i ∈ {1, . . . , n}. At this stage, we have proved, by virtue of Lemma 1, that the perturbed
system

ẋ = Hy + ε
(
x2r+1 − αr−1x

2r−1), ẏ = −Hx,

admits, for ε sufficiently small, n limit cycles which are located in a neighborhood of each point
p ∈ P. Next, we apply the same method and construct a finite sequence αs, 0 ≤ s ≤ r, with
α0 < α1 < · · · < αr = 1, and n finite families of closed orbits(

γ1
s

)
0≤s≤r,

(
γ2
s

)
0≤s≤r, . . . ,

(
γns
)

0≤s≤r,

encircling (0, y1), (0, y2), . . . , (0, yn) respectively, satisfying the property

γis+1 ⊂ γis, 0 ≤ s ≤ r − 1, 1 ≤ i ≤ n,

such that the function Nr defined for any close orbit ` by

Nr(`) =
∮
`

[
x2r+1 − αr−1x

2r−1 + · · ·+ (−1)rα0x
]
dy

admits r changes of signs along the orbits γis:

Nr(γi0) > 0, Nr(γi1) < 0, . . . , 1 ≤ i ≤ n.

Finally, we set fx0(x) = x2r+1 − αr−1x
2r−1 + · · · + (−1)rα0x. For each closed orbit γis, 0 ≤ s ≤ r,

1 ≤ i ≤ n, we have
Nr(γis) = M

(
(0, yi), his

)
,

with γis ⊂ H−1({his}). Thus, the Melnikov integrals at each point p ∈P change their signs r times
along the orbits contained in the continuous bands encircling (0, yi), 1 ≤ i ≤ n. By virtue of the
second statement in the Lemma 1, we conclude that the perturbed system admits, for ε sufficiently
small, at least n× r limit cycles that are located by nests of r limit cycles around each point p ∈P.
This achieves the proof in the case x0 = 0.

The case x0 6= 0 is easily treated by a change of variable x→ x+ x0.

11



Obviously, this theorem applies to the Hamiltonian function G given by (4), when P is composed
of points that are located on a vertical axis. It also applies to the Hamiltonian function F given
by (6). We remark that a similar result is stated in [13] without proof. In [14], it is proved that
co linear centers can be simultaneously perturbed in order to bifurcate into nests of limit cycles,
by using another technique involving the focus values [24], [23]. With that method, the limit cycles
tend to 0 when ε approaches 0. This bifurcation is sometimes called the multiple Hopf bifurcation
[23]. At the opposite, in our reasoning, the limit cycles tend to the non isolated closed orbits γis,
0 ≤ s ≤ r, 1 ≤ i ≤ n, when ε decreases to 0. Another important fact has to be emphasized, about
the coefficients αs, 0 ≤ s ≤ r, of the perturbation fx0 . Indeed, those coefficients depend on the
choice of the closed orbits γis, 0 ≤ s ≤ r, 1 ≤ i ≤ n. However, we can estimate uniformly the values
of the perturbation given by (14).

Proposition 4. Let fx0 be the polynomial perturbation constructed by the Theorem 3, given by the
expression (14), with coefficients αs, 1 ≤ s ≤ r, satisfying the property (15). Let η ∈]0, 1], x1 ∈ R
and p1 be any point of the axis x = x1. Then, there exist positive constants kj, 1 ≤ j ≤ 2r + 1,
which depend only on x0, x1 and r, so that for all (a, b) in the closed ball B(p1, η), we have∣∣∣∣djfx0

dxj (a)
∣∣∣∣ ≤ kj , 1 ≤ j ≤ 2r + 1. (16)

Proof. By virtue of equation (15), we have for any b ∈ R:

|fx0(a)| ≤
r∑
s=0
|αs(a− x0)|2s+1 ≤

r∑
s=0
|a− x0|2s+1

.

Now, if (a, b) ∈ B(p1, η), we have

|fx0(a)| ≤
r∑
s=0

(
|a− x1|+ |x1 − x0|

)2s+1

≤
r∑
s=0

2s+1∑
j=0

(
2s+ 1
j

)
|a− x1|j |x1 − x0|2s+1−j

≤
r∑
s=0

2s+1∑
j=0

(
2s+ 1
j

)
ηj |x1 − x0|2s+1−j

≤
r∑
s=0

2s+1∑
j=0

(
2s+ 1
j

)
|x1 − x0|2s+1−j

,

since η ≤ 1. We obtain the expected estimation by setting

k1 =
r∑
s=0

2s+1∑
j=0

(
2s+ 1
j

)
|x1 − x0|2s+1−j

.

The estimation for
∣∣∣∣djfx0

dxj (a)
∣∣∣∣ is proved by similar arguments.

Those uniform bounds will be used in the last section, in order to build a perturbation of a grid
of centers.

Example 1. Let us consider the perturbed Hamiltonian system obtained with a family a 3 centers
located on the axis x = 0, P = {(0, 0), (0, 1), (0, 2)}, defined by

ẋ = Gy + εf(x), ẏ = −Gx. (17)

12



We have computed the orbits of the perturbed system in two cases. The first case is obtained with
f(x) = x3 − 0.01x, and provokes the birth of one stable limit cycle around each point p ∈P. The
second case is obtained with f(x) = x7 − 0.0233x5 + 0.00014416x3 − 2.304.10−7x, and leads to the
emergence of two stable limit cycles encircling one unstable limit cycle around each point p ∈ P.
Since the unstable limit cycles are repulsive, the orbits starting in a neighborhood of those limit
cycles are pushed towards the stable limit cycles. The corresponding phase portraits are depicted
in Figure 5. We remark that the perturbation is oriented along a single direction, thus the limit
cycles present a flattening. A numerical approximation of the displacement function for the point
(0, 0) is shown in Figure 6, in order to visualize the link between its zeros and the limit cycles in
the perturbed system. /
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Figure 5: Perturbation of a line of 3 centers. (a) The unperturbed system (17) obtained for ε = 0 admits
3 non-degenerate centers located on the axis x = 0. (b) Under a suitable perturbation of degree 3, the
perturbed system (17) admits 3 stable limit cycles. (c) Under a suitable perturbation of degree 7, the
perturbed system (17) admits 6 stable limit cycles and 3 unstable limit cycles.

We continue with the construction of a perturbation that makes centers located on a circle
bifurcate into nests of limit cycles. The perturbation is oriented along the radial direction stemming
from the origin. Similar perturbations have been studied in [25].

Theorem 4. Let P = {(xi, yi), 1 ≤ i ≤ n)} be a family of n points located on a circle of positive
radius ρ, centered at the origin. Let r be a positive integer, and H be a polynomial Hamiltonian
function such that each point p ∈P is a non-degenerate center for the Hamiltonian system

ẋ = Hy, ẏ = −Hx.

Then there exists a polynomial f of degree 2r + 1, such that the perturbed system

ẋ = Hy + εxf(x2 + y2), ẏ = −Hx + εyf(x2 + y2)

admits at least n × r limit cycles for ε sufficiently small, that are located by nests of r limit cycles
in a neighborhood of each point p ∈P.

Proof. By assumption, each point p ∈P is a non-degenerate center for the unperturbed system

ẋ = Hy, ẏ = −Hx.
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Figure 6: Displacement functions for a cross section by the axis y = 0, in the neighborhood of (0, 0), for
the example 1. In the first case, the perturbation is of degree 3, thus the displacement function admits a
unique zero. In the second case, the perturbation is of degree 7, and the displacement function admits 3
zeros. When the derivative of the displacement function at one of those zeros is negative, the corresponding
limit cycle is stable. When it is positive, the corresponding limit cycle is unstable.

By virtue of Theorem 1, for each p = (xi, yi) ∈P, there exists a continuous band of closed orbits
γih encircling p = (xi, yi), 1 ≤ i ≤ n. The Melnikov integral at p is given by

M(p, hi) =
∮
γi

h

xf(x2 + y2)dy − yf(x2 + y2)dx

=
∫∫

Γi
h

[
∂

∂x

(
xf(x2 + y2)

)
+ ∂

∂y

(
yf(x2 + y2)

)]
dxdy

= 2
∫∫

Γi
h

[
f(x2 + y2) + (x2 + y2)f ′(x2 + y2)

]
dxdy,

where Γih denote the interior of the closed orbit γih. We introduce q(u) = f(u) + uf ′(u), choose real
coefficients βs, 0 ≤ s ≤ r, by the same method as in the proof of the Theorem 3, and we set

q(u) =
r∑
s=0

(−1)r−sβsu2s+1,

so that the integrals
∫∫

Γi
h
q(x2 + y2)dxdy change their signs r times along the orbits encircling each

point p ∈ P. Finally, we determine f by solving the equation f(u) + uf ′(u) = q(u). It suffices to

set αs = (−1)n−sβs
1 + s

for each s ∈ {0, . . . , r}, and

f(u) =
r∑
s=0

αsu
2s+1.

The polynomial f(u) satisfies the expected properties. This achieves the proof.

Example 2. We have computed the orbits of the perturbed system for

P = {(2, 0), (
√

2,
√

2), (0, 2), (
√

2, −
√

2)},
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with f(r) = r3 − 0.01r, r = x2 + y2 − 4, and{
ẋ = Hy + εxf(r)
ẏ = −Hx + εyf(r).

(18)

According to the Theorem 4, each non-degenerate center bifurcates into a limit cycle. The corre-
sponding phase portraits are shown in the Figure 7, as well as a numerical approximation of the
displacement function in a neighborhood of the point (2, 0), with a cross section by the horizon-
tal axis. We remark once again the typical flattening of the limit cycles, due to the fact that the
perturbation is oriented along a single direction. /
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Figure 7: (a) Phase portrait of the system (3) for P = {(2, 0), (
√

2,
√

2), (0, 2), (
√

2, −
√

2)}, showing
4 non-degenerate centers, encircled by continuous bands of closed orbits, located on a ring. (b) Under a
suitable perturbation oriented along the normal of the unit circle, each non-degenerate center bifurcates
into a single limit cycle of small amplitude.
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Figure 8: Displacement function in the neighborhood of the point (2, 0) in the system (18), obtained for a
cross section by the horizontal axis. The zero of the displacement function corresponds to the birth of the
limit cycle in the perturbed system (18). The derivative of the displacement function is negative, thus the
corresponding limit cycle is stable.
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3.3. Perturbation of a Hamiltonian system along its gradient

In this section, we prove that any planar polynomial Hamiltonian system admitting centers can be
perturbed along its gradient, so that each center bifurcates into a nest of limit cycles.

Theorem 5. Let consider any planar differential system of the form

ẋ = Hy + εHxf(H), ẏ = −Hx + εHyf(H), (19)

where H, f are polynomials and ε is a real coefficient, admitting a finite number of non-degenerate
centers p1, . . . , pn. Then f can be chosen so that each non-degenerate center pi, 1 ≤ i ≤ n, of the
unperturbed system (19) obtained for ε = 0, bifurcates into a given number r > 0 of limit cycles for
ε sufficiently small.

Proof. Assume that p̄ = (x̄, ȳ) is a non-degenerate center for the unperturbed system (19) ob-
tained for ε = 0. By virtue of the Theorem 1, there exists a continuous band of closed orbits
γh,p̄ ⊂ H−1({h}) encircling p̄, with h ∈]0, h0], and we have(

HxxHyy −H2
xy

)
(x̄, ȳ) > 0.

It follows that Hxx(x̄, ȳ) ×Hyy(x̄, ȳ) > 0, thus Hxx(x̄, ȳ) and Hyy(x̄, ȳ) have the same sign. Let
us suppose for instance that Hxx(x̄, ȳ) > 0 and Hyy(x̄, ȳ) > 0. Then we have

Hxx(x̄, ȳ) +Hyy(x̄, ȳ) > 0.

Now, let us choose a closed neighborhood Wp̄ of p̄ = (x̄, ȳ) and a positive coefficient α, for which
we have

Hxx(x, y) +Hyy(x, y) ≥ α > 0, ∀(x, y) ∈Wp̄.

We compute the Melnikov integral at p̄ = (x̄, ȳ):

M(p̄, h) =
∮
γh,p̄

Hxf(H)dy −Hyf(H)dx

= f(h)
∮
γh,p̄

Hxdy −Hydx,

since H = h along the orbit γh,p̄. It follows that

M(p̄, h) = f(h)
∫∫

Γh,p̄

(Hxx +Hyy)dxdy,

where Γh,p̄ denotes the interior of γh,p̄. Next, we choose f so that it admits r zeros h1, h2, . . . , hr
in the interior of ]0, h0]. Those zeros can be chosen in such a way that f ′(hi) 6= 0, and γh,p̄ ⊂ Wp̄,
1 ≤ i ≤ r, for all non-degenerate center p̄. Since f(hi) = 0, we can deduce that M(p̄, hi) = 0, for
1 ≤ i ≤ r. Afterwards, we introduce

ψ(h) =
∫∫

Γh,p̄

(Hxx +Hyy)dxdy,

and we compute the derivative of the Melnikov integral at p̄ with respect to h:

M ′(p̄, h) = f ′(h)ψ(h) + f(h)ψ′(h).

Since f(hi) = 0, we have M ′(p̄, hi) = f ′(hi)ψ(hi), for each i ∈ {1, . . . , r}. Furthermore, it holds
that

ψ(hi) =
∫∫

Γhi,p̄

(Hxx +Hyy)dxdy ≥ α |Γhi,p̄| > 0,
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where |Γhi,p̄| denotes the area of Γhi,p̄. It follows that M ′(p̄, hi) 6= 0. By the same method, we
can treat the case when Hxx(x̄, ȳ) < 0 and Hyy(x̄, ȳ) < 0. The first statement of the Lemma
1 applies, and guarantees the existence and uniqueness of a limit cycle bifurcating from γhi,p̄, for
each i ∈ {1, . . . , r}, thus a nest of r limit cycles encircling p̄. Since the reasoning holds for each
non-degenerate center p̄, we have proved the existence of n nests of r limit cycles encircling each
non-degenerate center of the system (19). The proof is complete.

This Theorem applies to the Hamiltonian systems (3), (5) and (7) introduced previously. In
particular, by choosing n = r, it guarantees the existence of polynomial perturbations under which
n2 centers can bifurcate into n3 limit cycles, distributed by nests of n limit cycles. However, it is
obvious that the constructed polynomial perturbation

(
Hxf(H), Hyf(H)

)T has a degree which is
not of order n, but of order n2. Thus the necessity to improve the construction of the perturbation.

It is remarkable that the system (19) can be viewed as a Hamiltonian system perturbed by a
gradient system. Indeed, it can be rewritten

ẋ = Hy + εKx, ẏ = −Hx + εKy, (20)

where K = F (H), F being a primitive of f . Many properties of that system can be analyzed addi-
tionally, for instance the possibility it offers to make continuous bands of periodic orbits encircling
multiple critical points, bifurcate into limit cycles of great amplitude, or polycycles (see example 4
below). For those reasons, we consider that the system (20) is canonical.

Example 3. Let us consider again the Hamiltonian system presented in the first section, defined
by

ẋ = Gy, ẏ = −Gx,

where G = G(P), with P = {(−1, 0), (0, −1), (1, −1), (1, 1)}. We introduce the polynomial
f(u) = 0.01u− u3, and perturb the latter system along its gradient by considering the system

ẋ = Gy + εGxf(G), ẏ = −Gx + εGyf(G).

According to the Theorem 5, each point in P bifurcates into a single limit cycle (see Figure 9). We
remark that the 4 limit cycles have different radii. Since they have been obtained by a perturbation
along the gradient of the energy levels of the Hamiltonian function G, they present an homogeneous
shape, at the opposite of the limit cycles obtained by a perturbation along a single direction, which
present a flattening. /
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Figure 9: (a) Phase portrait of the system (3) with P = {(−1, 0), (0, −1), (1, −1), (1, 1)}, showing
continuous bands of closed orbits in the neighborhood of each point p ∈ P. The green lines correspond
to the orbits of its gradient. (b) Under the effect of a suitable perturbation, each non-degenerate center
bifurcates into a unique limit cycle. (c) The limit cycles present an homogeneous shape, without flattening.

Example 4. Next, let us consider the system defined by

ẋ = Gy + εGxf(G), ẏ = −Gx + εGyf(G), (21)
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where G = G(P) with P = {(−1, 0), (1, 0), (0, −1), (0, 1)}, and f(u) = u− 1
2 . The unperturbed

system admits 4 non-degenerate centers located at each point of P, and a saddle at the origin, with
four homoclinic orbits starting and ending at this saddle, corresponding to the energy level G = 1

2 .
The perturbation function f is chosen according to this energy level, thus the perturbed system
exhibits 5 limit cycles, with 4 limit cycles corresponding to the homoclinic orbits of the unperturbed
system, and 1 limit polycycle passing through the saddle, and attracting the orbits which start in
the exterior of the homoclinic orbits. (see Figure 10). /
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Figure 10: Phase portrait of the system (21), showing 4 limit cycles corresponding to the homoclinic orbits
of the unperturbed system, and 1 limit polycycle passing through the saddle, and attracting the orbits which
start in the exterior of the homoclinic orbits.

Conclusion and perspectives

By introducing a new class of Hamiltonian systems, we have proposed various situations in which
a planar polynomial system admits a given set of non-degenerate centers that can be arbitrarily
located. We have constructed polynomial perturbations which provoke the bifurcation of those
centers into nests of limit cycles. Many geometric distributions have not been studied in this article,
thus we believe that our method is likely to produce improved results.
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