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The response of a thin layer of granular material to an external pure shear imposed at its base is
investigated. The experiments show that, even for non-cohesive materials, the resulting deformation
of the material is inhomogeneous. Indeed, a novel smooth pattern, consisting in a periodic modu-
lation of the shear deformation of the free surface, is revealed by an image-correlation technique.
These observations are in contrast with the observation of the fracture pattern previously observed
in cohesive granular materials subjected to stretching. For cohesive materials, the instability is
due to the weakening of the material which results from the rupture of capillary bridges that bond
the grains to one another. For non-cohesive materials, the rupture of the capillary bridges cannot
be invoked anymore. We show that the instability results from the decrease of friction upon shearing.

PACS: 89.75.Kd: Pattern formation in complex systems; 83.60.Uv: Rheology: fracture;
45.70.Qj: Pattern formation in granular matter

I. INTRODUCTION

Cohesive granular materials are characterized by a net-
work of liquid bridges responsible of attractive capillary
forces between particles [1–3]. Various regimes of cohe-
sion are identified depending on the liquid content, lead-
ing to different scalings for the cohesion force [2, 4, 5].
Regardless of fluid content, a common feature of cohesive
material is a weakening due to a decrease of both the as-
sociated adhesion force when a single bridge elongates [6]
and the overall number of bonds which collapse when ex-
cessively stretched [7]. This effect, which we referred to
as strain softening [8], is observed above a critical stress
associated with the cohesion due to the capillary bridges
at grain contacts [9] and is responsible for the relatively
low range of plasticity in cohesive granular materials.

In a recent work [8] we explored the tensile response of
a horizontal layer of cohesive material subjected to ho-
mogeneous deformation in its bottom plane. We showed
that “strain softening” is responsible for the nearly pe-
riodic modulation of the strain field along the pulling
axis that develops as soon as the external deformation
is imposed. The associated wavelength depends linearly
on the layer thickness, is almost independent of particle
size and depends linearly on the relative humidity. The
flexural deformation of a cohesive granular layer reveals
similar features [10]. To establish a more fundamental
connection between the pattern features and the intrin-
sic properties of the granular material, we developed ex-
perimental methods for the assessment of the cohesion
and shear modulus as function of the particles size and
relative humidity [11].

Here, we explore the response of a granular layer to
pure shear at its base. For important cohesion, we ob-
serve that cracks appear and form a periodic network.
However, when cohesion is reduced, the layer deforms

without fracturing and a pattern, consisting in rather a
smooth, periodic, modulation of the layer thickness is
observed, instead. For vanishing cohesion, the pattern
does not disappear but the amplitude of modulation is
so small that it is only revealed by the use of image cor-
relation techniques. A simple model including, besides
cohesion, the decrease of friction due to the induced di-
lation of the material accounts for the typical size of the
structure.

II. EXPERIMENTAL SETUP AND PROTOCOLS

The experiment consists in imposing an in-plane defor-
mation at the base of a thin layer of granular material.
The mechanical system is composed of four linear actua-
tors (Thorlabs Z825BV), placed in the x−y axes (Fig. 1)
(see Ref. [11] for details). Actuators are attached to four
plexiglass blocks respectively, each of them holding one
arm of a latex membrane cut in cross-shape (thickness
0.5 mm, width 40 cm). The membrane leans on a hor-
izontal table that prevents bending due to weight and
ensures planar deformation. Pure shear deformation at
center is obtained by stretching two opposite arms and by
shortening the arms in the perpendicular direction at the
same velocity. We checked the amplitude and homogene-
ity of the deformation through digital image correlation.

The sample is prepared by pouring granular material
into a circular mold of given height h (from 1 to 10 mm,
to within 0.1 mm) and internal diameter 7 cm, leaning
on the membrane, at center. The excess of grains is gen-
tly removed through the horizontal displacement a rod.
After removal of the mold, we obtain a disk of granu-
lar material of well-defined thickness h. We used either
glass or brass spherical-beads, the large density of brass
making possible to explore the vanishing small cohesion
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regime, the weight of the grains overcoming more easily
the capillary forces. Two ranges of particle diameter d are
considered for both materials: (0−45) or (150−200) µm
for glass, and (75− 106) or (212− 300) µm for brass.

The whole experimental device is placed in a cham-
ber whose atmosphere is maintained at constant rela-
tive humidity, RH [equilibrated with saturated salt so-
lutions and monitored using a humidity meter (Lutron
HT-3015)]. Prior to any experimental run, particles are
sonicated in acetone, rinsed in pure water and dried, to
prevent undesired cohesion due to contamination. Cohe-
sion is measured, in addition, as described in Ref. [11].

The free surface of the sample is imaged from above
by using a digital camera (Nikon DMX1200). An annular
light-source (ring of LEDs, Fig. 1) placed 1 cm above the
sample, at center, provides the grazing lighting adequate
to observation of tiny displacements at the layer surface.
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FIG. 1. (Color online)–Sketch of the experimental setup –
The 4 arms of a latex membrane are driven by computer-
controlled actuators. At center, arrows show the displace-
ments of the membrane. Pure shear strain is achieved to
better than 1% over a surface area of 50 cm2. Inset: typical
modulation of shear strain at the free surface [Brass beads,
d = (75 − 106) µm, h = 3 mm, θ = 0.14 and RH = 39 %].

The typical experimental run consists in applying the
pure-shear deformation at the membrane in quasi-static
manner and in determining precisely the displacement
fields at the free surface of the granular layer. In practice,
the imposed shear strain, θ is increased by constant steps
∆θ, of the order of 10−3. After each step, the free surface
at rest is imaged with a resolution of (3840× 3072) px2.
In order to extract the resulting displacement field, the
following correlation procedure is then applied to the
successive images: We define a sliding window (typical
surface area 1.5 mm2, containing enough particles to be

considered as a coarse grain), and scan the whole image
(typical displacement 0.2 mm). The procedure achieves
a spatial resolution of the order of 1 mm and a resolution
of the order of a few µm in the local grain displacement.
Shear and vertical vorticity fields are obtained through
differentiation of displacement field [11].

III. EXPERIMENTAL RESULTS

When the thickness, h, and the cohesion, σs, are suffi-
ciently large, we observe fracturing of the granular layer
(Fig. 2). The fractures organize in rather periodic pat-
tern. The typical distance between neighbour fractures,
λ, increases with both the layer thickness and cohesion.

FIG. 2. (Color online) a) Pattern structure for various h
and humidity. RH (σs): 39 % (17 Pa), 74 % (37 Pa), 89 %
(144 Pa), scale bar = 1 cm. b) Pattern wavelength, λ, for
increasing h at various cohesion (relative humidity, RH). The
lines are from Eq. (4) with parameters reported in Table I
[Glass beads, d = (0 − 45) µm, ∆θ = 1.5 × 10−3].

It is of particular interest that a pattern is still present
even when fracturing is not observed in Fig. 2 (h = 3 mm
and RH = 39 %, for instance). This first observation
is confirmed by the results obtained with larger grains
(Fig. 3): even if not visible on simple images of the free
surface, the squared patterns is revealed by the shear
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or vorticity fields, whatever the thickness and relative
humidity in the experimental range (Fig. 4). In addi-
tion, note that, as expected, the typical distance between
neighboring fractures is no longer a function of RH in the
limit of vanishing cohesion (Fig. 3b).

FIG. 3. (Color online) a) Pattern structure for various h and
humidity RH (σs): 39 % (0.5Pa), 74 % (0.8Pa), 89 %(1.9Pa),
scale bar = 1 cm. b) Wavelength λ for increasing h at various
cohesion. The lines are from Eq. (4) with parameters reported
in Table I [Glass beads, diameter (150-200) µm, ∆θ = 1.5 ×
10−3].

The previous results reveal that, upon shear, the gran-
ular layer is subjected to an instability leading to a mod-
ulation of the in-plane strain field. A sensitive method to
determine the onset of instability consists in considering
the amplitude of the modulation of the grain displace-
ment at the free surface as function of the shear-strain
imposed in the bottom plane. In order to measure a rep-
resentative averaged amplitude of the modulation, we se-
lect a line profile along a perpendicular to the fractures.
The displacement along the fracture, ∆d, is then mea-
sured revealing a well-defined modulation at the pattern
wavelength, λ. In Fig. 5, we report the averaged am-
plitude of such modulation, < ∆d >, as a function of
θ. We observe that, < ∆d > is nearly zero for small
θ, but significantly increases for θ above a critical value.
In addition, we note that the maximum of the averaged
amplitude < ∆d > increases with the layer thickness, h.
Even if the behavior of the onset as function of h is diffi-
cult to assess from our experimental data sets, the onset
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FIG. 4. (Color online) Surface shear, εxy, and vorticity, ωz,
fields for two distinct values of thickness, for θ = 0.083 [Glass
beads, diameter (150-200) µm, ∆θ = 1.5×10−3, RH = 39 %].

of instability is clearly smaller for larger cohesion, at a
given h.

In order to explore the regime of vanishing cohesion in
the same range of grain size, we now use brass particles
and reduce the relative humidity as much as possible. In
a dry system, the cohesion originates from the Van der
Waals attraction force between the particles. We esti-
mate from the Hamaker’s constant, AH ≈ 4 × 10−19 J,
and from the typical size of the asperities at the par-
ticles surface, D ≈ 200 nm (obtained with an atomic
force microscope [11]), the tensile stress associated with
an individual asperity, separated from a flat surface by
a distance z of atomic scale (z = za ≈ 1nm) is about
AHD/(3d

2z2a) ≈ 0.02 Pa. Considering that cohesion
is due to the contribution of all asperities, of surface
density ρs, in the region of contact, assuming the sep-
aration z = za + 2r2/d at a distance r from the cen-
ter of the contact region, we get σs ≈ πAHDρs/(3dza).
From [11], we estimate that the distance between asper-
ities is of about 5D, such that ρs ≈ 1/(5D)2 and, thus,
σs ≈ 1 Pa. This value is much smaller that the typical
pressure P = ρgh ≈ 400 Pa (with ρb = 8 × 103 kg/m3

and h ≈ 0.5 cm) at the base of the granular layer. When
shear is imposed to a such non-cohesive granular mate-
rial, the cellular pattern is revealed by image correlation
analysis, only. The vorticity fields are the most suitable
to reveal the structure (Fig. 6). We again observe that
the wavelength, λ, increases with the layer thickness, h.
We also note that λ increases with the grain size.

IV. ANALYSIS

Our analysis of the system behavior is based on the
simplest heuristic model accounting for friction and,
eventually, cohesion.

When a dry granular material is deformed, the main
energetic cost is from the solid friction between the grains
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FIG. 5. (Color online)–Amplitude < ∆d > of the modulation
vs. shear-strain θ – a) RH = 39% and b) RH = 74% [Glass
beads, diameter (0-45) µm, ∆θ = 1.5 × 10−3].

[8, 10, 11]. The simplest way to account for friction is
to write that, when two surfaces in regard are displaced
with respect to one another, the energetic cost is propor-
tional to the friction coefficient µ and local pressure P .
However, the friction is known to decrease upon shear
due to the dilation of the material, an assumption that
is well supported by early works [12]. Starting from the
initial value µs previous to shear, the friction coefficient
is decreased by ∆µ for a typical displacement δ (of the
order of the grain radius) of the two surfaces in regard.
Then, the friction coefficient remains constant and equal
to µd ≡ µs−∆µ. Here, seeking for simplicity, we will as-
sume that the frictional coefficient is constant and equal
to µ = µd once the material is sufficiently deformed, but
that an additional energetic cost, Γ = ∆µPδ, is to be
paid to initially deform the material.

In a dry granular material, the local pressure P is due
to the weight of the grains, only. We have, at a distance
z from the free surface, P = ρgz. In order to account
for the results obtained for small, but not negligible co-
hesion, we generalize slightly the model by introducing
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FIG. 6. (Color online)–Vorticity fields ωz for brass particles –
a) d = (75 − 106) µm [h = 5 mm, θ = 0.14 and RH = 39 %].
b) Wavelength λ vs. thickness h, (�) : d = (75 − 106) µm
and (◦) : d = (212 − 300) µm. The lines are from Eq. (4)
with parameters reported in Table II [Brass beads, ∆θ =
3.6 × 10−3, θ = 0.14 and RH = 39 %].

the energetic cost associated with the liquid bridges. To
do so, we take into account that the liquid bridges are
responsible for a tensile pressure σs, independent of the
depth z, which must be added to the pressure P . How-
ever, when the material is deformed, σs works only on a
distance db that is of the order of the bridge size. For
the humidity content considered here, the typical size of
the capillary bridge is of the order of the size of the as-
perities at the grain surface. Thus, db � δ. When the
relative displacement of two grains exceeds δ, the bridges
are broken. Considering that the force associated with
the tensile pressure only works over the distance db, we
obtain that the contribution of the cohesion to Γ is of the
order of (µ+∆µ)σsdb. In the following, we thus consider
that Γ = ∆µPδ + µσsdb, where we considered ∆µ� µ.

Let us assume that, upon uniform shear in the bottom
plane, the granular layer forms a series stripes of width λ
that are not deformed, but separated from the membrane
and from one another by shear bands. The energetic cost
associated with the deformation is thus the sum of the
cost of the shear band in the bottom plane, plus the
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Glass (0-45) µm (150-200) µm

σs (Pa) 17 37 144 0.5 0.8 1.9
σs/ρgh0 0.17 0.37 1.44 0.005 0.008 0.019
αδ∆µ
µ2 (mm) 2.85 5.0 – 8.3 14.1 13.6

TABLE I. Parameter αδ∆µ/µ2 vs. σs for glass particles.

cost of the vertical shear bands. At bottom, we have:

Eh = Γh λ + µρgh
∫ +λ/2

−λ/2 θx dx. The first contribution

Γh λ is the cost of the fracture at the bottom which is
the sum of the excess energy until the liquid bridges are
broken, µσsdb, and of the excess energy to initiate the
shear deformation, ∆µρgh δ. The second contribution
is that of friction, the local pressure being P = ρgh.
Considering the dimensionless cost per unit length Eh ≡
Eh/(µρghλ), we write:

Eh = ε db +
∆µ

µ
δ +

θ

4
λ. (1)

where we introduced ε ≡ σs/(ρgh). In the same way,
at the vertical walls between the bands, we have: Ev =

Γv h+µρg [
∫ h
0

(h−z) dz] θλ where the cost of the vertical
wall is Γv = µσsdbh + ∆µρg(h/2) δh (the pressure P is
averaged over the thickness). The dimensionless cost per
unit length is:

Ev =
1

2

(
2ε
db
λ

+
∆µ

µ

δ

λ
+ θ

)
h. (2)

The sum Eh + Ev is the total cost (i.e. the energy lost by
friction) per unit length in the volume upon deformation
of the granular layer.

In order to determine if the layer is unstable (with the
respect of the modulation with the wavelength λ) and
to obtain the most unstable wavelength, we first esti-
mate the energy Es that would be elastically loaded in
the system, supposed to deform homogeneously, for the
same imposed shear at the bottom. The energy of this
homogeneous state is obtained, provided the knowledge
of the shear modulus G of the granular layer, by writing

Es = λ
∫ h
0

1
2 Gθ

2dz. In the absence of cohesion, G = αP
where α = Ed/(6JlR) [11]. The prefactor α thus depends
on physical properties of the grains, such as the Young
modulus E, the yield stress J and the typical size of the
surface asperities lR. We have:

Es =
1

4

α

µ
(1 + 2ε)h θ2, (3)

where the coefficient µ appears only because our choice
of the energy scale (i.e. µρghλ).

In order to determine the onset of the instability and
the most unstable wavelength, we compare the total loss
by friction, Eh + Ev, and Es. We assume that the energy

that would be loaded elastically in absence of modulation,
Es, is entirely dissipated by friction, which is somehow
equivalent to the application of a principle of maximum
energy release rate commonly used in fracture theory [13].
We thus write Eh + Ev = Es, which is reasonable for a
stiff system (G � µP ). We thus have a first relation
between θ and λ. Then, we obtain the onset from the
value of λ that minimizes θ. We get that, at the onset,
θλ2 = 2h [2εdb + δ∆µ/µ] together with:(

λ

h

)4

+

(
λ

h

)3

+

(
λ

h

)2

=
α

µ

∆µ

µ

δ

h

(
1 + 2

σs
ρgh

)
. (4)

where we took into account that ε db/δ � 1.
In order to contrast predictions from our theoretical

arguments with the experimental results, we adjust the
wavelength measured with glass beads for several cohe-
sions using αδ∆µ/µ2 as single fitting parameter (Figs. 2
and 3) and report the results in Table I. The importance
of cohesion expressed trough the ratio σs/ρgh0 is shown
in Table I, where the typical thickness of the layer is
h0 = 5 mm. The above analysis, along with the obtained
values of σs/ρgh0 ≈ 1, indicates that the characteris-
tics of the structures observed with small particles are
strongly influenced by the cohesion (Fig. 2). On the
contrary, for larger particles, σs/(ρgh0) � 1, and null
influence of the cohesion is expected in this limit. Ac-
cording to Eq. (4), all data presented in Fig. 3 collapse
together within the errors bars. Finally, we report in Ta-
ble II a summary of all the experimental parameters. The
typical size lR of the surface asperities for glass and brass
particles are obtained by atomic force measurements as
discussed in [11]. The values of the E/J for glass and
brass are from the literature. We assume a value of fric-
tional coefficient µ = 0.5 and ∆µ = 0.1 in all cases and
estimate the characteristic length δ. We observe that δ
is of the order of a few micrometers, thus a fraction of
the grain size. Even if no clear dependence of δ on the
experimental parameters can be deduced from our mea-
surements, the order of magnitude is in agreement with
the physical meaning of this parameter, i.e. the relative
displacement of two granular surfaces with respect to one
another for the system to dilate, and thus to reach the
constant value µ of the friction coefficient. Moreover, we
note that such distance δ is compatible with a typical
shear deformation θ at the onset of the order of δ/d, thus
of a few percents as observed experimentally.

Glass Brass
d (µm) 0 − 45 150−200 75 − 106 212−300
lR (µm) 0.1 0.07 1 1
E/J 25 − 40 25 − 40 250−300 250−300
α 1700 7500 3000 8500

δ (µm) ∼ 5 ∼ 4.4 ∼ 8 ∼ 11

TABLE II. Summary of the experimental parameters.



6

V. CONCLUSIONS

In conclusion, we have evidenced that shear-
deformation of a granular material strongly depends on
the cohesion. For σs/P & 1, the material breaks in a
series of parallel cracks. In contrast, for σs/P � 1, the
granular layer deforms without fracturing, but a square
pattern consisting in a smooth, periodic, modulation
of the layer thickness is observed. At low cohesion
the weakening of the liquid bridges, which is at play
at large cohesion, cannot be invoked anymore. We

show that the decrease of the friction, associated with
the shear-induced dilation of the material, can explain
the instability observed in dry materials. Our model
recovers the correct dependence of the characteristic
length of the pattern on the layer thickness.
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[11] H. Alarcón, J.-C. Géminard and F. Melo Phys. Rev. E.

86 (6), 061303 (2012).
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