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Abstract

Internet of Things (IoT) is bringing an increasing number of connected devices that have a di-
rect impact on the growth of data and energy-hungry services. These services are relying on
Cloud infrastructures for storage and computing capabilities, transforming their architecture into
more a distributed one based on edge facilities provided by Internet Service Providers (ISP). Yet,
between the IoT device, communication network and Cloud infrastructure, it is unclear which
part is the largest in terms of energy consumption. In this paper, we provide end-to-end energy
models for Edge Cloud-based IoT platforms. These models are applied to a concrete scenario:
data stream analysis produced by cameras embedded on vehicles. The validation combines mea-
surements on real test-beds running the targeted application and simulations on well-known sim-
ulators for studying the scaling-up with an increasing number of IoT devices. Our results show
that, for our scenario, the edge Cloud part embedding the computing resources consumes 3 times
more than the IoT part comprising the IoT devices and the wireless access point.

Keywords: Edge Cloud computing, energy-efficiency, IoT, end-to-end energy model, data
stream analysis

1. Introduction

In 2011, Ericsson and Cisco started to announce that we will reach 50 billion devices con-
nected to the Internet by 2020 [1, 2]. Indeed, connected devices progressively invade our every-
day lives with ever-widening application fields: personal health equipment, intelligent buildings,
smart grids, connected vehicles, etc. The count in 2016 was under 20 billion of devices, includ-
ing Internet-of-Things (IoT) devices, smartphones, tablets and computers [3]. Current forecasts
estimate approximately 30 billion devices by 2020 [3].

All these objects, linked to telecommunication networks (most commonly the Internet), can
interact with other connected devices or with distributed computing infrastructures, such as
Clouds, for instance, to store information or perform computations. The growth in the number of
connected objects and supporting infrastructures poses scientific challenges, notably in terms of
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managing the scaling, the heterogeneity of the communications networks used (Ethernet, WiFi,
3G, etc.), the migration of computations between objects and supporting infrastructures, and their
energy consumption.

The development of IoT (Internet of Things) equipment, the popularization of mobile de-
vices, and emerging wearable devices bring new opportunities for context-aware applications in
Cloud computing environments [4]. Since 2008, the U.S. National Intelligence Council lists the
IoT among the six technologies that are most likely to impact U.S. national power by 2025 [5].
The disruptive potential impact of IoT relies on its pervasiveness: it should constitute an in-
tegrated heterogeneous system connecting an unprecedented number of physical objects to the
Internet [4]. A basic example of such objects includes vehicles and their numerous sensors.

Among the many challenges raised by IoT, one is currently getting particular attention: mak-
ing computing resources easily accessible from the connected objects to process the huge amount
of data streaming out of them. Cloud computing has been historically used to enable a wide num-
ber of applications. It can naturally offer distributed sensory data collection, global resource and
data sharing, remote and real-time data access, elastic resource provisioning and scaling, and
pay-as-you-go pricing models [6]. However, it requires the extension of the classical centralized
Cloud computing architecture towards a more distributed architecture that includes computing
and storage nodes installed close to users and physical systems [7]. Such an edge Cloud ar-
chitecture needs to deal with flexibility, scalability and data privacy issues to allow for efficient
computational offloading services [8].

While computation offloading to the edge can be beneficial from a Quality of Service (QoS)
point of view, from an energy perspective, it is relying on less energy-efficient resources than
centralized Cloud data centers [9]. On the other hand, with the increasing number of applications
moving on to the Cloud, it may become untenable to meet the increasing energy demand which
is already reaching worrying levels [10]. Edge nodes could help to alleviate slightly this energy
consumption as they could offload data centers from their overwhelming power load [9] and
reduce data movement and network traffic. In particular, as edge Cloud infrastructures are smaller
in size than centralized data center, they can make a better use of renewable energy [11].

On the other side, as IoT involves billions of connected devices mainly communicating
through wireless networks, their power consumption is a major concern and limitation for the
widespread of IoT [12]. An IoT device does not consume a lot of power by itself, typically from
few milliWatts to few Watts [13, 14]. Yet, the increasing number of devices produces a scale ef-
fect and causes also a non negligible impact on Cloud infrastructures that provide the computing
power required by IoT devices to offer services [15]. To cope with the traffic increase caused
by IoT devices, Cloud computing infrastructures start to explore the newly proposed distributed
architectures, and in particular edge Cloud architectures where small data centers are located at
the edge of the Cloud, typically in Internet Service Providers’ (ISP) edge infrastructures [16, 17].

While the current state of the art offers numerous studies on energy models for IoT de-
vices [18, 19] and Cloud infrastructures [20, 21], to the best of our knowledge, none of them
provides the overall picture. It is thus hard to estimate the energy consumption induced by the
increase of IoT devices on Cloud infrastructures for instance. The issue resides in having an
end-to-end energy estimation of all the involved devices and infrastructures, including network
devices from ISP and Cloud servers. Such results could also serve to identify which part con-
sumes the most, and should then focus the energy-efficient efforts.

In this paper, we propose to investigate the end-to-end energy consumption of IoT platforms.
Our aim is to evaluate, on a concrete use-case, the benefits of edge computing platforms for
IoT regarding energy consumption. We propose end-to-end energy models for estimating the
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consumption when offloading computation from the objects to the edge or to the core Cloud,
depending on the number of devices and the desired application QoS, in particular trading-off

between performance (response time) and reliability (service accuracy).
Our validation use-case targets the Internet of Vehicles (IoV) which can be seen as a con-

vergence of the mobile internet and the IoT [22]. In particular, we focus on video streams from
cameras that need to be analyzed usually for object detection and tracking. In this particular case,
as it is often the case with IoT applications, a high QoS level is required. Indeed, data lose their
value when they cannot be analyzed fast enough. Through real measurements and simulations
of this precise scenario, we evaluate the energy consumed by each part of the IoT platform: the
connected devices, wired communication networks and Cloud computing infrastructures.

The paper is organized as follows. Section 2 presents the related work. Our validation sce-
nario is described in Section 3. The end-to-end energy model is specified in Section 4 and
Section 5 presents the validation results. The validity and limits of our model are discussed in
Section 6. Section 7 concludes this work.

2. Related Work

2.1. Offloading data to the edge

Processing data streams analysis consumes enormous computational resources and the re-
sponse time is usually crucial for many applications. Moving the data to the Cloud for analysis
can be a solution [23] in a variety of application scenarios that require enormous computational
resources as well as QoS guarantees. However, it might pose a risk of network bottleneck if
thousands data streams are produced from IoT devices at the same time and then transmitted
to a central Cloud (core) for quick analysis. Although lowering the analysis time profits large
computational resources from Cloud, it cannot avoid the time for data transferring through the
network from user to the physical location of Cloud, which might be thousands miles away [24].
Furthermore, the increasing number of data streams over the network consume a large amount
of energy [24, 25, 26, 27].

To meet the demand of low latency response times, computation offloading to edge can be
an answer [28]. The edge represents small-scale data centers that are close to the data source.
The concept of processing data at the edge is based on the advantage of lower latency than core,
therefore been able to quickly return result to the device. Nevertheless, considering the large
amount of data streams that needs to process, the core which has more computational resources
may be a more energy-efficient choice.

Besides, a new model emerges: decentralized Cloud infrastructures [29]. Cloud providers
expect to improve the performance of their Cloud and to leverage their available infrastructure.
Indeed, telecommunication operators, like Orange, try to deploy micro data centers (20 to 50
servers by micro-DC) at the network border, closer to customers. In this new model, by deploying
data centers closer to the user, the response time would greatly improve. This work focuses on a
small-/medium-sized data centers as they continue to keep increasing their share of the market.
Placing computing and storage nodes at the Internet’s edge has grown more and more popular in
the recent years. These nodes are often placed in a small data center which is near mobile devices.
In particular, edge computing [30] enables to provide response time-critical Cloud services for
users.

Existing literature has addressed video analysis algorithms and tools. Haar feature-based
cascade classifiers [31] is a typical method for object detection which is effective and capable
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of achieving high detection rates. It is based on machine learning approach AdaBoost [32] and
trains a cascade function from a large set of positive and negative images. The classifiers used in
this paper are included in the OpenCV distribution1 2.4.13. We trained our own Haar classifier
which is used to analyze video streams for objects detection.

2.2. Energy consumption of network and Cloud devices
Since the appearance of Cloud computing, the demand for computing and storage resources

in data centers has rapidly grown, leading to a consequent increase of their energy consumption.
As an example, for 2010, Google used 900,000 servers and consumed 260 million watts of
electricity [33]. Electricity becomes a key issue for deploying data center equipment.

Since the servers are among the primary energy consumers of data centers [34], many green
proposals have addressed the problem of the server’s energy-efficiency. Dynamic voltage and
frequency scaling that exploits server performance knobs is an example of such proposals. Mean-
while, virtualization technology brings new opportunity for saving energy. It enables processing
multiple requests on the same server, thus making it possible to run the workload on fewer servers
by consolidation.

A study from 2014 presents the estimated energy consumption of data center market based
on the number of installed servers and infrastructure electricity consumption [35]. Small- and
medium-sized data centers account for nearly half the energy consumption of the market; they are
typically composed of less than 100 servers with a light cooling system. The energy consumption
of hyper-scale Cloud providers such as Google, Amazon and Facebook, only occupies 4 percent
of the global data center energy consumption [35] due to their aggressive deployment of energy
efficiency mechanisms that lower their power bill. With the adoption of edge Cloud computing,
the part in the global Cloud’s energy bill for small- and medium-sized data centers is expected to
increase since edge Cloud infrastructures rely on highly distributed small data centers.

Nowadays, most of Cloud providers implement their commercial Clouds in large-scale data
centers and operate them in a centralized fashion. Although they enable to achieve high perfor-
mance computing ability and manageability, a powerful cooling system is needed to lower the
temperature of this large infrastructure equipment. Yet, the cooling system is expensive and con-
sumes huge amounts of energy. Instead, previous work [36] point out that small-size data centers
have numerous advantages compared to large-scale data centers. First, small size data centers
limit the amount of heat-dissipation and it can thus be more easier to manage. Then, smaller
power consumption usually uses smaller power supplies and lower heat-dissipation overhead,
which also reduces the cost and area of infrastructure equipment. Further, a small-scale data
center is more suitable to build highly geographically distributed infrastructures.

Globally, the growth rate of data center energy consumption has slowed down in recent
years [37]. Server shipments experienced a five-year rapid growth period with 15% annual
growth rate from 2000 to 2005. From 2005-2010, the annual growth rate fell to 5% probably
due to economic recession and also because the energy efficiency mechanisms started to be im-
plemented in server, storage, network and infrastructure along with virtualization techniques.
After 2010, the growth rate drops to 3% and is expected to stay stable by 2020. Currently, the
most widely used and industry-acknowledged metric for assessing the energy efficiency of data
centers is the PUE [38, 39]: Power Usage Effectiveness. Usually, an ideal PUE value is equal to
1.0: this indicates that the energy consumed by IT equipment is same as the total facility energy.

1OpenCV is designed for computational efficiency and with a strong focus on real-time applications http://

opencv.org
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Computer networks are the crucial elements that interconnect the data centers providing the
computing and storage capacities of these distributed Clouds. As the size of Clouds increases
and their traffic demands diversify, computer network resources, inside and in-between the data
centers, are often stretched to their limits and, in many cases, become a performance bottle-
neck [40]. Besides, they represent a non negligible part of the energy consumption of these
highly distributed systems [41, 42].

3. Driving Use Case

Quite a few IoT applications are being developed and deployed in various industries includ-
ing environmental monitoring, health-care service, inventory and production management, food
supply chain, transportation, workplace and home support, security, and surveillance [12]. In
this paper, we study one particular use-case. We first describe the application scenario and then
explore the possible Cloud architecture for supporting these applications.

3.1. Application characteristics
The scenario that is explored in this paper presents heavy traffic needed to be processed.

Multiple devices are sending continuous flows of data to a collection point that sends them to
the Cloud. For instance, it represents a camera-based monitoring service like a road traffic ana-
lyzer [17]. Continuous data flows are sent from the camera to the Cloud hosting the IoT service.
The generated data can represent huge volumes that have to be processed in real time [43]. Aug-
mented reality applications exhibits similar traffic characteristics [44].

The motivation of this work is to provide a framework that can balance performance and
energy cost tradeoffs for real-time data analysis of high-rate data from many devices. A typical
use-case scenario consists in cameras that can be embedded in small devices such as Google
Glass, GigaSight [45] or any other devices. The camera captures frames continuously that can
be seen as a high-rate data stream. Since such a video analysis, that detects interesting objects
(i.e., areas of interest) from it, consumes computing power, it thus requires energy. To increase
the computation performance and to reduce energy consumption on the end-device, data is often
offloaded to the Cloud to be analyzed. Although data offloading to high performance servers at
the Cloud can accelerate the analysis processing, the efficiency of the whole procedure is highly
dependent to the network condition and to the costs associated to the network service.

We considered that the videos can be encoded through H.264 codec in 3 resolutions (360p,
480p and 720p). More details are shown in Table 1 and we use the FFmpeg tool [46] for decoding.

Table 1: 360p, 480p and 720p represent 3 different resolutions of the same video.

resolution bit rate
360p 640 x 360 514 kb/s
480p 720 x 480 706 kb/s
720p 1280 x 720 1176 kb/s

3.2. Cloud infrastructure for data stream analysis
The edge typically has less computing capacity (e.g., compute servers) than the resources

available in the Cloud core. However, these edge servers are closer to the edge-users and there-
fore, for users, the latency to edge servers is lower than the latency to the core. The core Cloud
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represents the federation of large data centers where each data center is composed of thousands of
servers. Such a model of data centers [47] with federation of resources and autonomic manage-
ment mechanisms offers a large pool of computing resources. While the core has more powerful
servers the energy costs associated to data movement present different tradeoffs that need to be
investigated.

In this paper, we make the assumption that all the considered vehicles are equipped with an
on-board camera and are capable of uploading the video captured by their cameras continuously
to edge and core Clouds. The edge/core analyzes each data stream in real time and returns the
road condition to the user. The application goal is preventing traffic jam and possible traffic
accidents by sharing the produced information to users in an online manner. Integrating this into
next generation of vehicles with autopilot technology can help improving the road safety for the
drivers (i.e., the users).

Edge

Core

Edge1

data 
aggregation 

v-4 720p

v-5 480p

v-6 360p

Core

Edge

Core

Edge0

v-3 360p

v-2 360p
v-1 360p

r0: p=(a,b),
 ac = n%
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B

C

Figure 1: Use case for IoV with edge and core Clouds

Figure 1 depicts our use-case: an object is detected by analyzing the data stream from car
cameras, the resulting analysis identifies an object in the middle of the road which may be danger-
ous for the other vehicles behind on this road. The edge-1 immediately informs all the vehicles
that are in section BC of the road. At the same time, a message is sent from edge-1 to the edge-0
in order to inform the vehicles in section AB of the road.
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4. System model and assumptions

In this section, we describe our end-to-end models for the IoT scenarios and Cloud architec-
tures described above. The architecture of an IoT service is composed of several elements: the
IoT devices themselves, the collecting point gathering the data from the IoT devices, the Cloud
infrastructure used to process and to store the data and the network that link the collecting point
and the Cloud. For the sake of clarity, we divide these components into three parts as depicted
on Figure 2:

• the IoT part comprising the IoT devices and the collecting point;

• the networking part comprising several switches and routers, their number depends on the
Cloud architecture (centralized or edge);

• the Cloud part including the data center resources employed by the IoT service.

Figure 2: Three main infrastructure parts of an IoT service de-
ployment.

Table 2: IoT device values from [48].

Parameter Value

Voltage 3.3 V
Idle current 0.273 A
CCA Busy State current 0.273 A
Tx current 0.38 A
Rx current 0.313 A
Channel Switching current 0.273 A
Sleep current 0.033 A

When the considered Cloud model is an edge Cloud, the networking part is minimal. This
model can be adapted to support fog computing infrastructures where IoT devices can be part of
the Cloud resources [7, 20]. In the following, we characterize the energy model of each part.

4.1. IoT part
The IoT part comprises the IoT devices and the collecting point. We consider n IoT devices

using WiFi (802.11) to communicate. Following previous work, we use a state model for the
energy consumption of their WiFi NIC [49]. The NIC is either in idle state (IDLE), performing
carrier sense (CCA BUSY), receiving (RX), transmitting (TX) and or switching between states
(SWITCHING) [14]. The corresponding energy-related values are exposed in Table 2. These
values were measured for a 802.11n NIC [48]. The model can be adapted for other wireless
communication types.

For the devices themselves, we consider WiFi cameras with a power consumption of 5
Watts [50] and monitoring sensors with a power consumption of 0.06 Watts [51]. In the case
of an access point, we use the energy values from an LTE base station: 333 Watts when idle and
528 Watts at max [52, 20]. A WiFi base station presents similar power consumption values [53].

4.2. Networking part
Network devices, such as routers and switches, typically presents a linear relation between

power consumption and load and a high static consumption (power when the device is on but
idle) [41, 20]. Table 3 presents typical values for edge and core routers. Here, we assume that
the networking part – between the access point and the Cloud – comprises only these two types of
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devices. We assume that the edge Cloud is linked to the access point through edge routers while
the core Cloud is reached through core routers. As explained in [20], we will use an energy-per-
bit model, thus assuming a proportional sharing of the router static energy consumption among
the network flows.

The energy consumption of the network flows depends also on the number of routers they
have to cross. We consider a core Cloud located 10 hops away from the access point for a 100
ms Round-Trip-Time according to values measured in [54] between clients and Amazon Cloud.
Finally, we consider a PUE of 1.7 in the access point and the network points-of-presence, which
is a typical value for small data centers [55].

Table 3: Network device values from [20]

Parameter Edge router Core router
Idle consumption 4,095 Watts 11,070 Watts
Max consumption 4,550 Watts 12,300 Watts
Traffic 560 Gbps 4,480 Gbps
Energy 37 nJ/bit 12.6 nJ/bit

4.3. Cloud part: Edge and Core model

Inspired by the previous works on video stream analysis [45, 56] and edge-computing [57],
our model involves two types of computing resources.

Because a user is physically close to the edge, the servers placed at the edge enables low
latency for users. The data transfers from users to edge can have a lower latency than direct
transferring to the core Cloud. Conversely, the computation capacities at the edge Cloud is
limited and can be seen as a small-scale data center, the considered edge comprises between 20
to 50 servers. Each server has limited physical resources in terms of CPU, RAM and ingress
bandwidth. We assume that there is no centralized storage system at the edge Cloud: each server
has its own hard disk [58]. Once the edge cannot satisfy the computational task QoS requirement,
it transfers the task to core where sufficient computing resources are available.

The core represents a federation of inter-connected data centers which are usually far from
users. Although the servers placed at the core Cloud have higher latency than edge servers,
either their number or their performance (of core servers) are higher than at the edge. From
the energy cost perspective, the data processing at the core is faster than data processing at the
edge. However, a large volume of data needs to be transferred to core to process such that the
communication cost between user-core through the Internet cannot be ignored.

A job is a request from a vehicle that requires computing resources for processing. It can be
submitted to the edge and the core at anytime. Once the request is accepted, a Virtual Machine
(VM) is created on a server at the edge or core to process the analysis. A VM is considered
as the basic unit of resource allocation. Each VM is created with its specific CPU and RAM
requirements. When the vehicle leaves this section of road, the VM is destroyed and it releases
its reserved resources back to the server.

In addition to the computing power, we will use the PUE in order to account for the full
energy cost of using computing resources in Cloud environments. The PUE for the Edge Cloud
is assumed to be around 1.7 and for the centralized Cloud around 1.2, according to a recent U.S.
study [55].
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5. Evaluation

This section provides the validation results on the considered use-case. First, we instantiate
our energy model of the IoT devices using the ns3 simulator [59] and we presente simulation
results about the energy consumption of the IoT devices (Section 5.1). Then, we describe the
setup of our experimental testbed (Section 5.2) used to provide real measurements on Cloud
servers for the execution of the stream analysis application (object detection). The experiments
explore the various possible Cloud configurations in order to execute the given application (Sec-
tion 5.3). These small-scale measurements are integrated within our simulator [60] in order to
extrapolate these values for the large-scale scenario and to include telecommunication networks
(Section 5.4). We also explore the trade-off between application’s accuracy (i.e. object detection
accuracy depending on the number of sources providing streams and the image resolution of
each stream) and energy consumption (Section 5.5). Finally, we gather all the results to draw the
complete picture of the energy consumption induced by the studied application on the considered
infrastructure, and consequently compare the consumption of the different parts (Section 5.6).

5.1. IoT devices consumption
In order to evaluate the energy consumption of the IoT devices, we have used the ns3 simula-

tor [59] and its implementation of the energy consumption model described in Section 4.1 for the
IoT devices [49]. The simulations mimic the behavior of 802.11n (5 GHz band) devices. The IoT
device is moving at a constant speed (using the constant velocity mobility model of ns3) within
the range of the access point. Simulations are following the application’s bit rates according to
the values provided in Table 1. As there are no random variables in this simulation, only one run
is conducted.

Figure 3 shows the dynamic power consumption for an increasing number of IoT devices:
this consumption only takes into account the dynamic energy needed to send data streams. As
expected, 720P streams are consuming more power. Table 4 presents the overall power consump-
tion (including the static power consumption of the cameras) for an increasing number of IoT
devices. One can see that communications are almost negligible in comparison with the static
power consumption of the devices. Consequently the video format has an almost negligible in-
fluence on the overall power consumption (on the order of a mW for one device). However, the
traffic varies from one format to another.

If we consider an ideal access point providing 54 Mbps of bandwidth (classical value for
802.11n [61]), it means that ideally it can serve up to 105 streams at 360p, 76 streams at 480p
and 45 streams at 720p. Figure 4 presents an extrapolation of the total power consumption
(IoT devices and access points) for up to 300 vehicles with 54Mbps of bandwidth per access
point. This ideal extrapolation is based on values obtained through the simulations illustrated
by Figure 3 and Table 4. The steps correspond to the successive addition of new access points
to support the traffic and to compute this extrapolation, we assume ideal conditions without
interference.

5.2. Setup for the Cloud and networking parts
The first half of our experiments consists in measuring the power consumption and perfor-

mance degradation with different application resolutions on our experimental test-bed Grid’5000,
a French platform for experimenting distributed system [62]. We use the same servers as men-
tioned in [60]: the servers are Dell PowerEdge R720 from the Taurus cluster at Grid’5000 Lyon
site. Each server is composed of two Intel Xeon E5-2630 processors (2.3GHz) each with 6 cores,
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Figure 3: Dynamic power consumption of the wireless commu-
nications for the IoT devices (simulated with ns3).

Table 4: Overall power consumption in Watts of the
IoT devices (simulated with ns3).

# devices 360p 480p 720p
1 6.907 6.908 6.909
2 12.869 12.87 12.873
3 18.831 18.832 18.837
4 24.792 24.795 24.801
5 30.754 30.757 30.765
6 36.716 36.719 36.728
7 42.677 42.682 42.692
8 48.639 48.644 48.656
9 54.601 54.606 54.62
10 60.562 60.568 60.583

32 GB of RAM and 600 GB of disk space. The processors support hyper-threading technology
thus the total of 12 physical cores servers can provide 24 virtual CPUs. We employed KVM as
the virtualization solution along with Linux on x86-based servers. The experiment results are
used for building power and performance models. The network energy consumption model is
defined in a similar way as it is in [20] and based on per-bit cost. These models were integrated
into our simulator described in [60]. In order to extrapolate to large-scale, the second half of our
experiments are held using this simulator.

The servers are placed at both edge and core. Most of previous studies [41] agree on the
fact that the dynamic server power consumption mainly depends on the working CPU frequency.
The server power consumption is taken for different CPU load profiles as described in [60].
Furthermore, our experimental results show in particular that a server on idle state consumes
roughly half of its maximal power consumption. From the latency point-of-view, we assume a
100 ms Round-Trip-Time (RTT) between the vehicles and the core Cloud. This value is similar
to what can be observed for accessing an Amazon Cloud for instance [54].

5.3. VM size and time analysis

Due to the server limited computational capacity, allocating resources to VMs needs to be
carefully done. The goal of our first experiment is to evaluate the video analysis performance and
energy consumption on different VM sizes. In this experiment, we create two individual VMs on
two servers from the Taurus cluster. The VM-1 is given 2 virtual CPU and 2 GB RAM, and the
VM-2 is given 4 virtual CPU and 4GB RAM.
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The analysis time per frame of VM-1 and VM-2 are shown in Figure 5. VM-2 is 26%, 33%
and 35% faster than VM-1 for resolutions of 360p, 480p and 720p respectively. Clearly, the VM-
2 benefits from more computational resources (i.e. the application makes advantage of parallel
computations) and it results in a reduced analysis time.

We then move on to another experiment where we vary the number of VMs. We first create
VM-1∼4 on server Taurus-12, four identical VMs, and each VM has the same hardware config-
uration: 2 vCPU and 2 GB RAM. These VMs process only 1 data stream at a time. VM-5 is
created on server Taurus-13 with 8 vCPU and 8 GB RAM. Unlike VM-1∼4, it processes 4 data
streams in parallel. We conducted the experiments on analyzing the same video. Each experi-
ment, corresponding to one video format in one scenario, has been run 10 times in order to get
statistically sounding results.

The results are shown in Figure 6. For each point presented in Figure 6, 10 iterations of
the same experiment have been run to get significant results. Error bars illustrate the standard
deviation of the obtained measurements. Figure 6a is when 4 individual small VMs are used
on Taurus-12 and each VM only processes 1 data stream. Analysis time is similar for the four
VMs for each resolution format. In Figure 6b, it shows the processing of 4 data streams in
parallel within a large size VM on Taurus-13. We observe that processing 4 streams in 1 large
VM is faster than processing in 4 small size VMs. We attribute this to the fact that the KVM
virtualization layer adds a penalty. In case of 4 VMs, the computational resources given to each
VM from KVM is not always from the same physical cores. In other words, there is a scheduling
cost if a VM is not always using at least one physical core. Moreover, as we are executing the
same application four times in parallel, there might be a positive memory mutualization effect
for the large VM case that does not appear in the case of separate VMs.

Figure 6c shows the power consumption of Taurus-12 with 4 small VMs processing 1 data
stream each, and Taurus-13 with 1 large VM hosting the same 4 data streams. As shown in
Figure 6c, the average power consumption (in Watts) for processing 4 data streams in 1 larger
VM is lower compared with 4 small VMs. For analyzing a 5 minute video, as shown in Figure 6d,
the large VM (VM-5 on Taurus-13) with faster speed of frame analysis and lower instantaneous
power consumption, consumes less energy in total.

We also observe that the processing time increases significantly when the resolution format
increases. For instance, if we expect to analyze 8 frames per second (e.g., Simoens et al. [45]
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Figure 6: Energy consumption and frame analysis resolution time in 360p, 480p and 720p (measured on our servers).
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select 1 out of 24 frames for analyzing) for a relevant application precision: in order to ensure the
accuracy of analysis process, this throughput should be as maximum as possible. It means that
we have to analyze 1 frame in every 3 frames with a video at 25 fps (frame per second). It means
that the average analysis time per frame must be smaller than 125 ms. To compute the maximum
number of videos that can be analyzed in parallel, we assume that 1 VM is used for analyzing 1
format of video. We measure the analysis time on VM-5 for a video in the 3 resolution formats.

As shown in Figure 6e, the large VM (VM-5 on Taurus-13) supports in parallel up to 11
videos streams in resolution 360p, 4 video streams for 480p video and only 1 for 720p video.
Figure 6f shows the respective energy consumption in the 3 resolution formats for the large VM.

5.4. Edge and core Clouds’ energy consumption
In this subsection, we evaluate the effects of offloading computation tasks at the edge for

system performance of our framework and energy consumption at edge and core. We study the
scalability of our framework by increasing the number of vehicles (video sources). We assume
that there is no bottlenecks in the network between user-edge and edge-core. The experiments
in this subsection are performed using simulations based on the real measurements done in the
previous subsection. These simulations consider the average values displayed on Figure 6.

Edge usually has less computational resources in comparison with core. In initial configu-
ration, edge has 5 servers and core has 100 servers. Each edge server has 24 virtual CPU and
24 GB of RAM and the core servers are twice as powerful as edge servers. To avoid the energy
consumption associated with VM placement, we assume all the VMs are same size that consists
of 8 virtual CPU and 8 GB of RAM at edge. The VMs have 24 virtual CPU and 24 GB of RAM
at core implying the time analysis is reduced. We only consider 360p and 720p video formats
in this scenario in order to illustrate that different resolutions impact energy consumption and
performance. As mentioned before (Section 5.3), a VM processes one format of video in the
experiment thus a VM at maximum processes 1 video stream for 720p, and 10 video streams for
360p in parallel as shown in Figure 6e. All the requests of data analysis are processed at the edge
by default. If edge does not have sufficient resources for processing, the request is transferred to
core.

The goal of this experiment is to measure the total energy consumption at both the edge and
core. We first assume that all the data streams are 360p. At beginning, there are few vehicles in
the system. These vehicles first offload their data to edge to be processed. When increasing the
number of data streams, the edge energy consumption increases by processing these data streams.
As shown in Figure 7a, we observe that the core does not consume any energy before the edge
computing resources are exhausted. Core starts to process data when the number of data streams
exceeds 112 in the system. In Figure 7b, all the 360p videos are replaced by 720p, the edge
quickly drained its resources when processing 720p videos as it consumes more computation
resources than 360p videos. The core receives the first request of data analysis from the 16th
vehicle. From that moment, all the new data arrivals are directed to core to be processed.

In Figure 7c, we can observe that the average delay of 360p videos is significantly lower
than for 720p videos. Indeed most analysis tasks are performed at edge instead of at core. Once
the edge has exhausted all its resources, the new arrivals are migrated at the core. On the scale
of 300 vehicles, edge is capable of processing 37.3% of 360p videos streams in the system.
In contrast to 360p, processing 720p video streams consumes much more computing resources
than processing 360p videos. The edge can only process 5% of data streams and all the other
data streams have to move to core for processing. Despite the fact that the core possesses more
powerful computational resources which might even reduce the time analysis, the latency from
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the network between edge and core cannot be ignored. Figure 7c also demonstrates that the
average delay of all videos are mainly depending on the number of data streams offloading to
the core. When increasing the number of data streams moving to core, the network energy
consumption for the edge Cloud is also increased as shown in Figure 7d. Yet, it should be
noticed that this energy consumption is almost negligible in comparison to the Cloud energy
consumption.

5.5. Application’s accuracy

Processing analysis in higher resolution video format often outputs a result with higher de-
tection accuracy. However, it consumes consequently larger computational resources including
CPU/RAM and bandwidth for transmission. Reducing the resolution is a clear way to save com-
puting resources and network utilization, and thus energy. Edge servers can process more videos
streams in parallel without significant performance degradation. It potentially decreases network
usage, thus more video streams can be processed at edge. However, scaling down the video af-
fects the detection accuracy. As mentioned in [45], lowering the resolution of video significantly
reduces the detection accuracy. We show the initial accuracy settings used in this subsection for
object detection in Table 5.

Table 5: The detection accuracy of different objects from [45].

Classes 720p 480p 360p
car 96.7% 91% 88.5%

body 97.7% 94.9% 90.7%
dog 96.1% 94.9% 90.7%
total 96.7% 92.3% 87.9%

Assuming that there is only one car in the section AB of road, the detection accuracy for car
is equal to 96.7%, 91% , 88.5% with 720p, 480p and 360p video format respectively. Now, we
assume that there are two cars in the same section, their cameras both capture with resolution
360p. When one of the two cameras detects an object on the road and another did not, one
can wonder in this case, which camera should be used for the definitive result? Furthermore,
we replace one camera by using 720p resolution. Suppose the two results are still different,
should we always believe the result with higher resolution (720p) because of its higher detection
accuracy by default?

Unfortunately, we cannot directly conclude which result of the two is more believable. Even
though the 720p videos often offers a higher detection accuracy than 360p videos, this only
shows that 720p is more likely to be correct, but it is not conclusive. However, when increasing
the number of cameras, we show that the correct probability of result is not only depending on
the initial detection accuracy, but also related to the number of cameras in the system. Suppose
there are 2n + 1 cars in the same section of road. All the cars upload video streams with the same
resolution and then they output 2n + 1 results. Intuitively, if there is a result appearing at least for
half of the total number of cars, we prefer to select this result as the final result. We define the
reliability as the probability of a result that appears to exceed n + 1 times among 2n + 1 results.
We have proven in a previous work [17] that this final result becomes more believable when the
number of cameras increase.

We introduce the nines conception which is typically expressed as a percentage with a num-
ber of nines (e.g., 99% → two nines, 99.9% → three nines, etc.). This conception is similar
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with the high availability conception in system design which aims to ensure an agreed level of
operational performance. It could thus be used as a negotiated metric between the client and the
Cloud provider within an SLA (Service Level Agreement). From the Cloud provider’s perspec-
tive, the video resolution format can be seen as a green lever allowing for a controlled application
performance degradation in return for lower resource allocation and thus, energy savings.

Figure 8: Application’s accuracy (from the statistical formula detailed
in [17]).

Table 6: The number of cameras needed for
achieving the indicated number of nines.

# nines 720p 480p 360p
99.9% 3 4 6
99.99% 4 6 8

99.999% 5 7 11

As shown in Figure 8 and Table 6, the resolution 360p requires 6 cameras working simulta-
neously in order to achieve three nines, the 480p requires 4 cameras and the 720p requires only
3 cameras to achieve the same level of accuracy. The higher the resolution is, the lower is the
number of cameras required for reaching a given level of reliability.

When correlating these results with the figures presented in Section 5.3, one can observe that
to reach the highest level of accuracy (99.999%), 5 720p streams are required, thus needing 5
large VMs; and 11 360p streams, equating to only 1 large VM. Moreover, both options require
approximately the same amount of network traffic. Hence, the energy-performance trade-off

clearly lies in favor of lower-quality videos.

5.6. End-to-end energy consumption

In order to compare the energy consumption of each part, we have computed the cost per
stream for a 360p video. For the Cloud part, from Figure 6f, we can estimate the cost of a single
stream processed in a VM on a given server assuming a proportional sharing of the server static
energy consumption [21]. Then we multiply this cost by the PUE of the considered Cloud (edge
or core). For the IoT part, we use Figure 4 and the staircase curve is approximated by a linear
function in order to obtain a single cost per stream. This method is less precise than using the
computed values directly, but it allows for simpler comparisons with the other parts. Finally,
for the networking part, as in Figure 7d, the cost per bit is employed with different numbers of
devices depending on the case (edge Cloud or core Cloud).

Table 7 reports the computed power cost per stream for a 360p video for each part as defined
in Section 4 depending on the use-case: edge Cloud or core Cloud. As we use linear models
in order to obtain a cost per frame, these values assume that all the employed devices are either
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Table 7: Estimation of the power cost per 360p stream for each part (using simulations presented in Figures 4 and 7d,
and real measurements shown in Figure 6f).

Scenario IoT Network Cloud
Edge Cloud 10.96 Watts 0.07 Watts 32.3 Watts
Core Cloud 10.96 0.11 Watts 22.8 Watts

power proportional or fully loaded (i.e. the infrastructure is well sized in relation to the number of
users). While this can be a reasonable assumption for the computing resources (routers typically
use over-commit techniques in data centers in order to increase their utilization ratio), it is less
exact for networking devices that are usually highly redundant equipment in order not to be too
much loaded. But, such a rough model is sufficient to have an idea about the main consuming
part and the overall trend as we can see on Table 7.

From this estimation, we can see that predominant consumption is the Cloud consumption
(computing resources) in both cases: edge and core Clouds. But, in the case of the edge Cloud,
it represents three quarters of the overall cost, while it represents two thirds for the core Cloud
case. In both cases, the networking part is negligible, although routers are the most consuming
devices per unit. Yet, if they are suitably loaded, their energy efficiency is high due to their large
capacities. Finally, the IoT part, that includes the IoT device and the access point, accounts for
one quarter of the overall cost for the edge Cloud case and one third for the core Cloud. These
estimations advocate for a better energy efficiency of Cloud infrastructures.

6. Discussion

As mentioned in Section 5.4, the edge could be capable of generating its own energy and
storing the surplus energy into batteries [17]. Due to its limited computing resources, the edge
Cloud cannot support huge amounts of processing that needs to occur at the same time. Thus,
new incoming data streams have to move to core Cloud for quick analysis. As we conclude
previously, in order to reduce the energy consumption, it is then better to decrease the resolution
format for all videos with a penalty on detection accuracy. From an environmental point of view,
if the user expects high accuracy of detection and to consume clean energy instead of brown one,
he first needs to ensure that the data is processed at the edge. As the number of users grows, we
then have to increase not only the number of edge servers, but also the solar photovoltaic panels
that are able to provide as much energy as the servers need or to switch to the core Cloud with
lower performances in terms of latency.

To reduce the total energy consumption, another alternative solution, displayed in Figure 9,
consists in changing the division of labor between edge and core. The finite computing resources
at edge are no longer used for data analysis but for video decoding, sampling and encoding. As
such 720p videos in particular consumes a lot of computing resources. Even when taking all the
edge servers, it is still far from enough for processing all the 720p videos in the system. Thus,
carefully using edge resources is important for the overall framework optimization. As described
in Section 5, it needs to analyze 8 frames every second for a video at 25 frames per second. It
means that we select 1 frame out every 3 frames for processing.

In particular, we expect that the sampling work can be done at the edge. When a new video
stream arrives, the edge performs decoding, sampling and encoding successively on this video
and then transfers it to core. Although the data has to move to core for processing, their size is

17



Figure 9: Computing partially at edge

reduced and the energy consumption over the network is also reduced. Unfortunately, the result
of this scenario is unsatisfactory. Decoding a video at 720p is extremely fast but encoding will
take 15 times more than decoding in our experiment. It leads to an additional delay (roughly 100
ms in our experiments) while the latency is crucial in this scenario. This opportunity for data
movement could be explored through the development of a framework that couples the tasks and
computes partially on the transferring path, thus reducing the network cost [63]. This option
could also save energy because, as shown in Section 5.6, the networking part is almost negligible
in terms of energy cost.

Finally, as the Cloud, whether edge or core, is the most consuming part for IoT platforms,
the increasing number of devices will raise major challenges for the Cloud infrastructures in
terms of energy consumption. From Table 7, one can indeed roughly estimates that for a 6 Watts
device like a camera, sending data with a 514 kbps data rate, the data processing requires a VM
consuming 5 times more power in an edge Cloud.

7. Conclusion

Data loses its value when it cannot be analyzed quick enough. Offloading the data to pro-
cess video streams at edge effectively reduces the response time and avoids unnecessary data
transmission between edge and core, thus reducing the network energy overhead. Moreover, it
can extend for instance the battery lifetime of end-user equipment (e.g., wearable equipment).
Meanwhile, the traditional energy consumption and carbon footprint can be reduced by building
self-producing electricity edge.

We proposed an analytic model to estimate the energy consumption of Edge Cloud-based
IoT Platforms for IoT. This model can be used to decide whether to offload computation from
the objects to the edge or to the core Cloud, depending on the number of devices and the desired
application QoS. This model was validated on our application use-case that deals with video
stream analysis from vehicle cameras. Our results show the relationship between the number
of cameras, the application accuracy and the processing energy cost, opening new research di-
rections on finding relevant trade-offs between application performance degradation and energy
consumption of underlying Cloud systems.

The scenario in this paper can be seen as a concrete example to demonstrate the advantages
of offloading the data to process at the edge or core in an energy saving context. In addition,
although this work is camera-based, it can be applied to any other scenario where the data streams
need to be processed in real-time as it provides the analytical framework for such applications.
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Our results also show the predominance of the Cloud consumption on the overall energy cost
of IoT platforms. This predominance is even greater in the case of an edge Cloud where the
energy cost is three times bigger for the Cloud infrastructure than for IoT and networking parts
together. Consequently, with the connected devices explosion, it becomes urgent to improve the
energy efficiency of Cloud infrastructures, and especially for small-sized data centers, in order to
limit the impact of IoT on global energy consumption.
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