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TOPOLOGICAL PHASE TRANSITION V: INTERIOR
SEPARATIONS AND CYCLONE FORMATION

THEORY

RUIKUAN LIU, TIAN MA, SHOUHONG WANG, AND JIAYAN YANG

Abstract. We establish in this paper a systematic theory for
interior separations of fluid flows, and apply it to the formation
of tornados and hurricanes. First, we derive the interior separa-
tion equations, which fully characterize when, where and how an
interior separation occurs. A U-flow separation theory is then es-
tablished, and is applied to the formation mechanism of tornados
and hurricanes in geophysical fluid dynamics.
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1. Introduction

The atmospheric and oceanic flows exhibit recurrent large-scale pat-
terns. These patterns, while evolving irregularly in time, manifest char-
acteristic frequencies across a large range of temporal scales, from in-
traseasonal through interdecadal; see among many others [16, 3, 4, 17,
5]. The appropriate modeling and theoretical understanding of such ir-
regular geophysical fluid mechanical patterns remain a great challenge.

It is clear that for a two-dimensional incompressible flow, the only
two processes, that lead to more complex or turbulent fluid behavior,
are through boundary-layer separations or through interior separations;
see among others [2, 6]. Hence the fundamental level understanding
of this challenge problem boils down to topological phase transition
associated with boundary-layer and interior separations of fluid flows.
In the previous paper [15], two of the authors obtained a systematic
theory for boundary-layer separations.

The main objectives of this paper are to provide a systematic theory
for interior separations, and to apply it to the formation of tornados
and hurricanes. This is part of the research program initiated recently
by the authors on the theory and applications of topological phase
transitions (TPTs), including

(1) quantum phase transitions [12],
(2) galactic spiral structure [14],
(3) sunspots and solar eruptions [13], and
(4) boundary-layer separations of fluid flows [15].

The main ingredients of this paper are as follows.

First, as a TPT study the change in its topological structure in the
physical space of the system, the geometric theory of incompressible
flows developed by the authors plays a crucial role for the study of TPTs
of fluids, including in particular the boundary-layer separation studied
in the previous paper [15] and the interior separation in this paper.
The complete account of this geometric theory is given in the authors’
research monograph [11]. This theory has been directly used to study
the transitions of topological structure associated with the quantum
phase transitions of Bose-Einstein condensates (BEC), superfluidity
and superconductivity [12].

Second, at the kinematic level, a structural bifurcation theorem was
proved in [11]; see also Theorem 2.2.

Third, hurricanes, typhoons, and tornados are typical interior sepa-
ration phenomena in geophysical fluid dynamics, which are caused by
external wind-driven forces and by the non-homogenous temperature
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distributions. Therefore, the crucial factors for the formation of interior
separations in the atmospheric and oceanic flows are the three ingre-
dients: (1) the initial velocity field, (2) the external force, and (3) the
temperature. Hence the dynamical fluid model for interior separations
has to incorporate properly the heat effect.

The Boussinesq equations are mainly for convective flows, and are
not suitable for studying interior separations, associated in particular
with such geophysical processes as hurricanes, typhoons, and tornados.
For this purpose, two of the authors Yang and Liu [18] introduced
the horizontal heat-driven fluid dynamical equations; see (2.13)-(2.16).
This system couples the Navier-Stokes equations and the heat diffusion
equation with a new equation of state; see Section 2.2 for details.

Fourth, we derive the interior separation equations with velocity
given in the form:

(1.1) u(x, t) = ϕ+ vt,

The separation equations include all physical information about the
interior separations of the solution u for the system, in terms of the
initial state (ϕ, T0) and the external force f .

Fifth, theoretical analysis and observations show that interior sepa-
ration can only occur when

• one of ϕ or v in (1.1) is U-shaped, which we call the U-flow, and
the other is either a U-flow or a flat flow, as shown in Figure 3.3;
and
• ϕ and v have reversed orientations.

In view of this fact, a precise U-flow theory is then established, in-
cluding in particular precise interior separation equations, and explicit
formulas for the interior separation point (x0, t0).

Sixth, tornados and hurricanes (or typhoons) are among the most im-
portant phenomena in the atmospheric sciences, which are topological
phase transitions described by interior separations of the atmospheric
flows. We refer interested readers to [9, 1, 7, 8, 10] and the references
therein for the phenomena. A typical development of a hurricane con-
sists of several stages including an early tropical disturbance, a tropical
depression, a tropical storm, and finally a hurricane stage.

Using the U-flow theory, we derive the formation mechanism of tor-
nados and hurricanes, providing precise conditions for their formation
and explicit formulas on the time and location where tornados and hur-
ricanes form. Basically, we demonstrate that the early stage of a hurri-
cane is through the horizontal interior flow separations, and we identify
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the physical conditions for the formation of the U-flow, corresponding
to the tropical disturbance, and the temperature-driven counteracting
force needed as the source for tropical depression.

The paper is organized as follows. In Section 2, we introduce the
kinematic conditions for interior separation, recall the basic fluid model
suitable for interior separation, and derive the interior separation equa-
tions. The U-flow theory is established in Section 3, and is applied to
the formation of tornados and hurricanes in Section 4.

2. Interior Separation Fluid Dynamics

2.1. Interior separations of fluid flows. Interior separation of fluid
flows is a common phenomenon in fluid dynamics, especially in geo-
physical fluid dynamics, such as the formation of hurricanes, typhoons
and tornados, and gyres of oceanic flows. In general, the interior sep-
aration refers to sudden appearance of a vortex from the interior of a
fluid flow. In [11], Ma and Wang have established an exact mathemat-
ical theory to determine interior separations for two-dimensional (2D)
incompressible vector fields. Based on the Ma-Wang’s theory, Yang and
Liu [18] introduced a system of horizontal heat-driven fluid dynamical
equations, and discussed the predictability of interior separation for
the solutions of these equations.

For convenience, we briefly recall the interior separation theory of 2D
incompressible vector fields. Let Ω ⊂ R2 be an open set, and u(x, λ)
be a one-parameter family of divergence-free vector fields defined on Ω.

Definition 2.1. We say that a family of 2D incompressible vector fields
u(x, λ) has an interior separation from (x0, λ0) with x0 ∈ Ω, if u(x, λ)
is locally topologically equivalent to the structure of Figure 2.1(a) near
x0 for any λ < λ0, and to the structure of Figure 2.1(b) for λ0 < λ.

Figure 2.1. A schematic diagram of interior separa-
tion, (a) a parallel flow near x0, and (b) a vortex flow.
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Usually, the parameter λ is taken as the time t. Let u(x, t) be the
first-order Taylor expansion with respect to t at t0 > 0:

(2.1)

u(x, t) = u0(x) + (t− t0)u1(x) + o(|t− t0|),
u0(x) = u(x, t0),

u1(x) =
∂u

∂t

∣∣∣∣
t=t0

.

Let x0 ∈ Ω be a degenerate singular point of u0, and the Jacobian
Du0(x0) 6= 0. Then, there are two unit vectors e1 and e2 orthogonal to
each other, satisfying that

(2.2)
Du0(x0)e1 = 0,

Du0(x0)e2 = αe1 with α 6= 0.

Theorem 2.2 (Interior Separation [11]). Let u(x, t) be a one-parameter
family of 2D divergence-free vector fields, and have the Taylor expan-
sion (2.1) at t = t0. If x0 ∈ Ω is an isolated singular point if u0(x)
with Du0(x0) 6= 0, and satisfies that

(2.3)
ind(u0, x0) = 0,

u1(x0) · e2 6= 0,

where e2 is the vector as in (2.2), then u(x, t) has an interior separation
from (x0, t0).

Theorem 2.2 holds also true for u(x, λ), where λ is another parameter
instead of the time t.

2.2. Horizontal heat-driven fluid dynamical equations. Hurri-
cane, typhoon, and tornado are typical interior separation phenomena
in geophysical fluid dynamics, which are caused by external wind-driven
forces and by the non-homogenous temperature distributions. There-
fore, the crucial factors for the appearance of interior separations in the
atmospheric and oceanic flows are the three ingredients: (1) the initial
velocity field, (2) the external force, and (3) the temperature. Hence
the dynamical fluid model for interior separations has to incorporate
properly the heat effect.

The Boussinesq equations are the classical fluid dynamical model
coupling the heat conduction equation. However, this model can not
be used as the dynamical equations to describe interior separation of
fluid flows. To show this point, we recall the Boussinesq equations,
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given by

(2.4)

∂u

∂t
+ (u · ∇)u = ν∆u− 1

ρ
∇p− (1− αT )g~k + f,

∂T

∂t
+ (u · ∇)T = κ∆T +Q,

divu = 0.

We note that the driving force acting on the fluid by heat is the term
in the first equation of (2.4) as follows

(2.5) fT = −αTg~k,
where g is the acceleration due to gravity, α is the thermal expansion

coefficient, T represents the temperature, and ~k = (0, 0, 1) is the unit
vector orthogonal to the horizontal plane. By (2.5), it is easy to see
that equations (2.4) mainly govern the thermal convective fluid motion
in the vertical direction, rather than the horizontal motion such as the
interior separation fluid flows.

In [18], a fluid dynamical model coupling heat was established, which
can describe the plane fluid flows as the interior separation behaviors.
We introduce this model in the following. Consider the Navier-Stokes
equations

(2.6)

∂u

∂t
+ (u · ∇)u = ν∆u− 1

ρ
∇p+ f, x ∈ Ω,

div(ρu) = 0,

and the coupling heat equation

(2.7)
∂T

∂t
+ (u · ∇)T = κ∆T, x ∈ Ω,

where Ω ⊂ R2 is an open set, and u = (u1, u2) is the velocity governing
a horizontal fluid motion.

To make the temperature T into the Navier-Stokes equations (2.6),
we introduce the state equations in thermodynamics. For gaseous sys-
tems, we have

(2.8) pV = nRT,

where n is the molar number, and R is the gaseous constant. In addi-
tion, the gas density is given by

(2.9) ρ = nm/V, m is the molecular mass.

Thus, (2.8) can be written as

(2.10) p = β0ρT, β0 = R/m is the special gas constant.
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For liquid systems, the equation of state is expressed as

(2.11) V = α1T − α2p+ V0,

where α1, α2 > 0 are constants. By (2.9), (2.11) is rewritten as

(2.12) p = β1T −
β2
ρ

+ β3,

where β1, β2, β3 are parameters.
The equations (2.6), (2.7), (2.10), and (2.12) are together to consti-

tute the horizontal heat-driven fluid dynamical equations:

∂u

∂t
+ (u · ∇)u = ν∆u− 1

ρ
∇p+ f,(2.13)

∂T

∂t
+ (u · ∇)T = κ∆T,(2.14)

div(ρu) = 0,(2.15)

p =

{
β0ρT for gaseous systems,

β1T − β2ρ−1 + β3 for liquid systems.
(2.16)

Remark 2.3. As ρ 6= 0, the orbit of u with div u = 0 are the same as
those of v with div(ρv) = 0. Since the proof of Theorem 2.2 relies only
on the topological structure of orbits of divergence-free vector fields,
Theorem 2.2 is also valid for the vector fields u satisfying (2.15).

2.3. Interior separation equations. Fluid separation equations are
crucial mathematical tools to study vortex generation problem. For
boundary-layer separations, separation equations for both the free and
the rigid boundary conditions were established in [11, 15]; they play a
very important role in both the boundary-layer separation theory and
its applications. For interior separation, such separations are clearly
needed as well.

To this end, we introduce two physically sound conditions:

1) The gradient of ρ is small:

(2.17) ∇ρ ' 0.

By (2.15), it implies that

(2.18) div u = −1

ρ
∇ρ · u ' 0.

Physically, for large scale motion, the relaxation time for the fluid mo-
bility is much smaller than the relaxation time of compression. Hence
for the large scale fluid, the change of density ρ is small, leading to the
validity of assumption (2.17).
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2) The relaxation time t0 of an interior separation is very small:

(2.19) 0 < t0 � 1,

where the relaxation time refers to the time elapsed from the initial
time when the separation condition is formed to the time when the
separation takes place. It is also called the separation relaxation time.

Based on the model (2.13)–(2.16) and the two physical conditions
(2.17) and (2.19), we now derive the separation equation.

Let the initial values of u and T are given by

(2.20) u(x, 0) = ϕ(x), T (x, 0) = T0(x).

Inserting (2.16) into (2.13), integrating both sides of the resulting equa-
tion with respect to t, and ignoring the terms of ∇ρ (by (2.17)), we
deduce that

(2.21) u(x, t) = ϕ(x) +

∫ t

0

[ν∆u− (u · ∇)u− α∇T + f ]dt,

for 0 < t < t0, where ϕ is as in (2.20), α is given by

(2.22) α =

{
β0 for a gaseous system,

β1/ρ for a liquid system,

β0 = R/m is as in (2.10), and β1 is as in (2.12). Take the first-order
Taylor expansion on time t for the solution (u(x, t), T (x, t)) of (2.13)–
(2.16):

(u(x, t), T (x, t)) = (ϕ(x) + tũ(x, t), T0(x) + tT̃ (x, t)),

and insert it into the right side of (2.21). Then we obtain that

u(x, t) =ϕ(x) + [ν∆ϕ− (ϕ · ∇)ϕ− α∇T0 + f ]t(2.23)

+

∫ t

0

[ν∆ũ− α∇T̃ − (ϕ · ∇)ũ− (ũ · ∇)ϕ]tdt

+

∫ t

0

(ũ∇ũ) t2dt.

By (2.18), we have

divϕ ' 0, div[ν∆ϕ− (ϕ · ∇)ϕ− α∇T0 + f ] ' 0.

Hence we deduce that

(2.24)
∂ϕ1

∂x2

∂ϕ2

∂x1
+

(
∂ϕ1

∂x1

)2

+
α

2
∆T0 −

1

2
divf ' ν∆divϕ ' 0,
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where ϕ = (ϕ1, ϕ2). It is clear that∫ t

0

[ν∆ũ− α∇T̃ − (ϕ · ∇)ũ− (ũ · ∇)ϕ]tdt = o(t).

Hence, by (2.19), the first-order approximation of (2.23) on t (0 < t <
t0) and (2.24) lead to the following interior separation equations:

u(x, t) = ϕ+ [ν∆ϕ− (ϕ · ∇)ϕ− α∇T0 + f ]t,(2.25)

∂ϕ1

∂x2

∂ϕ2

∂x1
+

(
∂ϕ1

∂x1

)2

+
α

2
∆T0 −

1

2
divf ' 0,(2.26)

where ϕ = (ϕ1, ϕ2) and T0 are the initial functions as in (2.20).

Remark 2.4. The interior separation equations (2.25) and (2.26) in-
clude all physical information about the interior separations of the so-
lution u for system (2.13)–(2.16) given by the initial state (ϕ, T0) and
the external force f .

3. U-Flow Theory

3.1. Interior separation of fluid dynamical equations. Theorem
2.2 provides a sufficient condition for general 2D incompressible vector
fields to undergo an interior separation. Now, we apply the separation
equation (2.25) to derive the interior separation theorem for solutions
of the horizontal heat-driven fluid dynamical equations (2.13)–(2.16).
Let

(3.1) v(x) = ν∆ϕ− (ϕ · ∇)ϕ− α∇T0 + f.

Then u(x, t) in (2.25) is written as

(3.2) u(x, t) = ϕ(x) + tv(x).

For such u(x, t), condition (2.3) becomes the following:

(1) there is a point x0 ∈ V , with V ⊂ Ω being a neighborhood of
x0, such that

(3.3)
ϕ(x) + tv(x) 6= 0, ∀ 0 ≤ t < t0,

ϕ(x0) + t0v(x0) = 0,

(2) the Jacobian of u0 = ϕ+ t0v at x0 is nonzero:

(3.4) Du0(x0) = D(ϕ+ t0v)|x0 6=
(

0 0

0 0

)
,

(3) for the unit vector e2 as in (2.2), we have

(3.5) v(x0) · e2 6= 0.
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Namely, Conditions (3.3)–(3.5) for u(x, t) in (3.2) are equivalent to
(2.3). Therefore, by Theorem 2.2, we obtain immediately the following
interior separation theorem for the solution of equations (2.13)–(2.16).

Theorem 3.1. Let (ϕ, T0) be the initial functions as in (2.20), f be the
external force, and v be defined by (3.1). If (ϕ, T0, f) satisfies (3.3)–
(3.5), then under the conditions (2.17) and (2.19), the solution u(x, t)
of (2.13)–(2.16) has an interior separation from (x0, t0).

3.2. U-flow pattern for interior separation. Theorem 3.1 shows
that under conditions (3.3)–(3.5) an interior separation occurs. How-
ever, we need to know which expressions of (ϕ, T0, f) satisfy (3.3)–(3.5).
To solve this problem, we should investigate the topological structure
of the two vector fields ϕ and v in (3.2).

For convenience, we rewrite (3.1) and (3.2) in the form

(3.6)

u(x, t) = u0(x) + (t− t0)v(x),

u0(x) = ϕ(x) + t0v(x),

v(x) = ν∆ϕ− (ϕ · ∇)ϕ− α∇T0 + f.

In [11], Ma and Wang proved that if u(x, t) in the form of (3.6) sat-
isfies (3.3) and (3.4), then ind(u0, x0) = 0 and u0(x) is topologically
equivalent to the structure near x0 ∈ Ω, as shown in Figure 3.1; see
[11, Section 5.6.1].

Figure 3.1. The flow pattern of the vector field u0 sat-
isfying u0(x0) = 0, ind(u0, x0) = 0, and Du0(x0) 6= 0.
Here the two orbits l− and l+ of u0 connected to x0 are
tangent to the e1-axis at x0, e1, e2 are as in (2.2).

Thus, it is clear that u0 = ϕ + t0v is a superposition of ϕ and t0v.
It implies that if u0 has the structure as in Figure 3.1 and ϕ 6= 0 in a
neighborhood of x0, then by the evolution procedure:

u(x, 0) = ϕ
t→t0−−−→ u(x, t0) = ϕ+ t0v,
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we can see that ϕ and v have the reversed orientations, and their flow
structures are either the U-flow pattern as shown in Figure 3.2 or one
of the two patterns as shown in Figure 3.3 (a) and (b). In particular,
if ϕ (or v) is in the pattern of Figure 3.2 then v (or ϕ) must be in one
of the patterns (a) and (b) in Figure 3.3.

Figure 3.2. U-flow pattern of a vector field u with u ·
e2 > 0 at x̃.

Figure 3.3. (a) A flat flow pattern of u with u · e2 < 0
at x̃, and (b) U-flow pattern of u with u · e2 < 0 at x̃.

3.3. Physical conclusions of U-flow theory. Mathematically, the
three situations that lead to the formation of interior separations are
as follows:

(i) ϕ is a U-flow and v is a flat flow;
(ii) ϕ is a flat flow and v is a U-flow; and
(iii) ϕ and v are U-flows.
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However, in reality, case (i) appears more often. Hence, here we only
consider the case:

(3.7)

ϕ is a U-flow,

v is a flat flow, and

ϕ and v have reversed orientations,

where ϕ and v are as in (3.6).
Based on (3.7) we now establish the U-flow theory of the interior

separation for the solutions of equations (2.13)–(2.16). The main com-
ponents of this theory are as follows:

1). The physical data (ϕ, T0, f) are approximated by their first-order
polynomials. In fact, we take the Taylor expansions near x̃ :

(3.8)

ϕ = ϕ(x̃) +Dϕ(x̃)(x− x̃) + h.o.t.,

T0 = T (x̃) +∇T (x̃)(x− x̃) + h.o.t.,

f = f(x̃) +Df(x̃)(x− x̃) + h.o.t.,

where h.o.t. represents the higher-order terms. Because ϕ, T0, f are
nearly independent, by the second separation equation (2.26), we see
that the coefficients of the n-th order terms for n ≥ 2 are almost zero,
and

(3.9)
∂ϕ1

∂x2

∂ϕ2

∂x1

∣∣∣∣
x̃

,
∂ϕ1

∂x1

∣∣∣∣
x̃

,
∂ϕ2

∂x2

∣∣∣∣
x̃

,
∂f1
∂x1

∣∣∣∣
x̃

,
∂f2
∂x2

∣∣∣∣
x̃

' 0.

Then we derive the first physical conclusion for the U-flow theory.

Physical Conclusion 3.2. The physical data ϕ, T0 and f are, in
essence, the first-order polynomials as

(3.10)

ϕ = ϕ(x̃) +

(
0 ∂ϕ1(x̃)

∂x2
∂ϕ2(x̃)
∂x1

0

)(
x1 − x̃1
x2 − x̃2

)
+ h.o.s.t.,

T0 = T (x̃) +
∂T (x̃)

∂x1
(x1 − x̃1) +

∂T (x̃)

∂x2
(x2 − x̃2) + h.o.s.t.,

f = f(x̃) +

(
0 ∂f1(x̃)

∂x2
∂f2(x̃)
∂x1

0

)(
x1 − x̃1
x2 − x̃2

)
+ h.o.s.t.,

and by (3.9), ∂ϕ1

∂x2

∂ϕ2

∂x1

∣∣∣∣
x̃

' 0, where x̃ = (x̃1, x̃2) is a point near the

separation point x0, and the abbreviation h.o.s.t. refers to higher-order
terms with small coefficients.

2). For the U-flow in Figure 3.2, we take the coordinate (x1, x2)
with x̃ as its origin, the x1-axis in e2 direction, and the x2-axis in e1
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direction. By (3.1), let ϕ be the U-flow as in Figure 3.2. By (3.3) and
(3.10), ϕ = (ϕ1, ϕ2) should be in the form:

(3.11)
ϕ1 = a0 + a1x2 + a2x

2
2 + h.o.s.t.,

ϕ2 = b0x1 + h.o.s.t.,

where

(3.12) a0, a2, b0 > 0, a1 ' 0, a0 is relatively small.

The second-order term a2x
2
2 in ϕ1 is specifically retained to ensure the

zero of the superposition is an isolated zero, and to ensure the formation
of interior separation. We need the condition that

(3.13) b0 is of the same order as or larger than a0,

to ensure the flow ϕ in (3.11) is a U-flow.
Also by (3.10)–(3.12), T0 and f = (f1, f2) are as

(3.14)

T0 = τ0 + τ1x1 + τ2x2 + h.o.s.t.,

f1 = −f 0
1 + f 2

1x2 + h.o.s.t.,

f2 = −f 0
2 + f 1

2x1 + h.o.s.t.,

and the vector field v = (v1, v2) in (3.6) can be written as

(3.15)
v1 = −ατ1 − f 0

1 + f 2
1x2 + h.o.s.t.,

v2 = −a0b0 − ατ2 − f 0
2 + f 1

2x1 + h.o.s.t..

Because v is a flat flow as in Figure 3.3(a), and v and ϕ have reversed
orientations, (3.15) is rewritten as

(3.16) v = −(ατ1 + f 0
1 , ατ2 + a0b0 + f 0

2 ) + h.o.s.t.,

where

(3.17) ατ1 + f 0
1 > 0.

Based on (3.11)–(3.17), we get the second physical conclusion for the
U-flow theory.

Physical Conclusion 3.3. The first separation equation (2.25) for
the U-flow ϕ and flat flow v in (3.7) is expressed as

(3.18)
u1 = (a0 + a1x2 + a2x

2
2)− t(ατ1 + f 0

1 ) + h.o.s.t.,

u2 = b0x1 − t(ατ2 + a0b0 + f 0
2 ) + h.o.s.t.,

and the parameters in (3.18) satisfy (3.12), (3.17), and

(3.19) 0 < 4a0a2 − a21 � 4a2(ατ1 + f 0
1 ).
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In particular, the separation equation (3.18) satisfying (3.12), (3.17)
and (3.19) obeys conditions (3.3)–(3.5); consequently an interior sepa-
ration takes place from (x0, t0) with

(3.20)

x0 =

(
t0(ατ2 + a0b0 + f 0

2 )

b0
, − a1

2a2

)
,

t0 =
4a0a2 − a21

4a2(ατ1 + f 0
1 )
,

where α is the thermal parameter as in (2.22).

Remark 3.4. The expression (3.18) is the unique form for the U-flow
(3.7) to generate a vortex from an interior point x0 ∈ Ω. Namely, the
initial physical data ϕ and v in (3.7) must take the form as in (3.18)
for the formation of an interior separation at x0. In particular, the
parameters a0 and b0 represent the strength of the U-flow ϕ, (τ1, τ2)
is the initial temperature gradient ∇T0 at x̃, and (f 0

1 , f
0
2 ) is the main

part of the external force f . The six parameters {a0, b0, τ1, τ2, f 0
1 , f

0
2}

determine the energy level and scale of the generated vortex.
In addition, for the cases (ii) and (iii) listed in the beginning of

Section 3.3, the associated unique forms of the U-flow for the formation
of interior separations are just slight variations of (3.18).

4. Tornado and Hurricane Formations

4.1. Atmospheric cyclone dynamical model. In nature, tornados
and hurricanes (or typhoons) are the most important phenomena in the
atmospheric sciences, which are topological phase transitions described
by interior separations of the atmospheric flows.

In this section, we shall address the tornado and hurricane formation
mechanism by using the U-flow theory established in the last section.

The main factors for the formation of tornados and hurricanes are

• the initial velocity field ϕ,
• the initial temperature field T0, and
• the Coriolis force f , measuring the earth’s rotational effect.

To derive the atmospheric cyclone dynamic model, we adopt the con-
ventional β-plane assumption.

Let the earth’s hemisphere be approximatively given as a rectangle:

(4.1) Ω = (0, 2πr0)× (0, πr0/2),

where r0 is the earth’s radius. The Coriolis force is taken as

(4.2) f = −βx2~k × u = (βx2u2,−βx2u1),
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where β = 2ω/r0, and ω is the the angular velocity of the earth’s
rotation. For the domain Ω, the coordinate system is (x1, x2) with x1-
axis being the longitude coordinate and x2-axis for the latitude. (4.1)
and (4.2) are called the β-plane assumption.

With the above Coriolis force f , the system (2.4) serves as the ba-
sic atmospheric cyclone dynamical model for the initial stages of the
formation of hurricanes.

With the Coriolis force (4.2), the interior separation equations (2.25)
and (2.26) become{

u(x, t) = ϕ+ tv(x),

v(x) = ν∆ϕ− (ϕ · ∇)ϕ− α∇T0 − βx2~k × ϕ,
(4.3)

∂ϕ1

∂x2

∂ϕ2

∂x1
+

(
∂ϕ1

∂x1

)2

+
α

2
∆T0 +

βx2
2

(
∂ϕ1

∂x2
− ∂ϕ2

∂x1

)
+
β

2
ϕ1 ' 0.(4.4)

4.2. Atmospheric cyclone generations. We now discuss tornado
and hurricane in the northern hemisphere based on the U-flow theory.
We proceed in a few steps as follows.

1). Initial physical data ϕ, T0 and the Coriolis force f . In the
northern hemisphere, the atmospheric flows near the earth surface often
appear in the form of the U-flows as shown in Figure 4.1, in which
x2 = 0 represents the equator.

Figure 4.1. A U-flow in the northern hemisphere, x2 =
0 represents the equator, and x̃ = (0, d) with d > 0 is the
point as in (3.10).

Corresponding to (3.11) and (3.14), as the initial velocity field ϕ =
(ϕ1, ϕ2), the U-flow in Figure 4.1 should be rewritten in the following
form

• the initial flow:

(4.5)
ϕ1 = −b0(x2 − d) + h.o.s.t.,

ϕ2 = −(a0 + a1x1 + a2x
2
1) + h.o.s.t.,
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• the initial temperature T0:

(4.6) T0 = τ1(θ − x2) + h.o.s.t. (θ > 0 is a constant),

• the Coriolis force f = (f1, f2):

(4.7)
f1 = βx2ϕ2 = −a0βx2 + h.o.s.t.,

f2 = −βx2ϕ1 = b0βx2(x2 − d) + h.o.s.t.,

where β is as in (4.2), and ai (0 ≤ i ≤ 2), b0 and τ1 satisfy
(3.12) and (3.17) with f 0

1 = 0.

2). Interior separation equation. By (4.3), it follows from (4.5)–(4.7)
that the interior separation equation for the atmospheric cyclone is

(4.8)
u1 = −b0(x2 − d)− t[a0b0 + a0βx2] + h.o.s.t.,

u2 = −(a0 + a1x1 + a2x
2
1) + t[ατ1 + b0βx2(x2 − d)] + h.o.s.t.,

3). Conditions for the formation of tornados. Tornadoes form in
higher latitudes; hence d > 0 is relatively large. Let x = x1, y = x2− d
in (4.8). Then the separation point (x0, y0, t0) satisfy the equation

(4.9)
− b0y0 − t0a0(b0 + βd+ βy0) = 0,

a0 + a1x0 + a2x
2
0 − t0(ατ1 + b0βdy0 + b0βy

2
0) = 0.

The solution of (4.9) satisfying (2.19), (3.12) and (3.17) is

(4.10)

(x0, y0) =

(
− a1

2a2
,−a0(b0 + βd)

b0 + βa0t0
t0

)
,

t0 =
4a0a2 − a21

4a2(ατ1 + b0βdy0 + b0βy20)
' 4a0a2 − a21

4αa2τ1
.

By 0 < t0 � 1 and y0 ' 0, (4.10) implies that

(4.11) 0 <
1

ατ1

(
a0 −

a21
4a2

)
� 1,

a0(b0 + βd)

b0
∼ o(1).

These are exactly the conditions required for the formation of tornados.

4). Conditions for the formation of hurricanes. A hurricane can
form near the equator, i.e. d ' 0. Let x = x1, y = x2, and d = 0 in
(4.8). Then the location and time (x0, y0, t0), where a hurricane forms,
satisfies

(4.12)
− b0y0 − t0a0(b0 + βy0) = 0,

a0 + a1x0 + a2x
2
0 − ατ1t0 = 0,

whose solution is

(4.13) (x0, y0) '
(
− a1

2a2
,−a0t0

)
, t0 =

4a0a2 − a21
4ατ1a2

.
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In summary, from the above discussions, we see that the initial ve-
locity field (4.5) of a U-flow, the initial temperature distribution (4.6)
and the Coriolis force (4.7) determine the necessary conditions for the
formation of tornadoes and hurricanes.
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