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We establish in this paper a systematic theory for interior separations of fluid flows, and apply it to the formation of tornados and hurricanes. First, we derive the interior separation equations, which fully characterize when, where and how an interior separation occurs. A U-flow separation theory is then established, and is applied to the formation mechanism of tornados and hurricanes in geophysical fluid dynamics.

The atmospheric and oceanic flows exhibit recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of temporal scales, from intraseasonal through interdecadal; see among many others [START_REF] Richardson | Weather Prediction by Numerical Process[END_REF][START_REF] Charney | On the scale of atmospheric motion[END_REF][START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF][START_REF] Salby | Fundamentals of Atmospheric Physics[END_REF][START_REF] Dijkstra | Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño[END_REF]. The appropriate modeling and theoretical understanding of such irregular geophysical fluid mechanical patterns remain a great challenge.

It is clear that for a two-dimensional incompressible flow, the only two processes, that lead to more complex or turbulent fluid behavior, are through boundary-layer separations or through interior separations; see among others [START_REF] Chandrasekhar | Hydrodynamic and Hydromagnetic Stability[END_REF][START_REF] Drazin | Hydrodynamic Stability[END_REF]. Hence the fundamental level understanding of this challenge problem boils down to topological phase transition associated with boundary-layer and interior separations of fluid flows. In the previous paper [START_REF]Topological Phase Transitions IV: Dynamic Theory of Boundary-Layer Separations[END_REF], two of the authors obtained a systematic theory for boundary-layer separations.

The main objectives of this paper are to provide a systematic theory for interior separations, and to apply it to the formation of tornados and hurricanes. This is part of the research program initiated recently by the authors on the theory and applications of topological phase transitions (TPTs), including

(1) quantum phase transitions [START_REF]Topological Phase Transitions I: Quantum Phase Transitions[END_REF],

(2) galactic spiral structure [START_REF]Topological Phase Transitions II: Spiral Structure of Galaxies[END_REF],

(3) sunspots and solar eruptions [START_REF]Topological Phase Transitions II: Solar Surface Eruptions and Sunspots[END_REF], and (4) boundary-layer separations of fluid flows [START_REF]Topological Phase Transitions IV: Dynamic Theory of Boundary-Layer Separations[END_REF].

The main ingredients of this paper are as follows.

First, as a TPT study the change in its topological structure in the physical space of the system, the geometric theory of incompressible flows developed by the authors plays a crucial role for the study of TPTs of fluids, including in particular the boundary-layer separation studied in the previous paper [START_REF]Topological Phase Transitions IV: Dynamic Theory of Boundary-Layer Separations[END_REF] and the interior separation in this paper. The complete account of this geometric theory is given in the authors' research monograph [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF]. This theory has been directly used to study the transitions of topological structure associated with the quantum phase transitions of Bose-Einstein condensates (BEC), superfluidity and superconductivity [START_REF]Topological Phase Transitions I: Quantum Phase Transitions[END_REF].

Second, at the kinematic level, a structural bifurcation theorem was proved in [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF]; see also Theorem 2.2.

Third, hurricanes, typhoons, and tornados are typical interior separation phenomena in geophysical fluid dynamics, which are caused by external wind-driven forces and by the non-homogenous temperature distributions. Therefore, the crucial factors for the formation of interior separations in the atmospheric and oceanic flows are the three ingredients: (1) the initial velocity field, (2) the external force, and (3) the temperature. Hence the dynamical fluid model for interior separations has to incorporate properly the heat effect.

The Boussinesq equations are mainly for convective flows, and are not suitable for studying interior separations, associated in particular with such geophysical processes as hurricanes, typhoons, and tornados. For this purpose, two of the authors Yang and Liu [START_REF] Yang | A fluid dynamical model coupling heat with application to interior separations[END_REF] introduced the horizontal heat-driven fluid dynamical equations; see (2.13)- (2.16). This system couples the Navier-Stokes equations and the heat diffusion equation with a new equation of state; see Section 2.2 for details.

Fourth, we derive the interior separation equations with velocity given in the form:

(1.1) u(x, t) = ϕ + vt,
The separation equations include all physical information about the interior separations of the solution u for the system, in terms of the initial state (ϕ, T 0 ) and the external force f .

Fifth, theoretical analysis and observations show that interior separation can only occur when

• one of ϕ or v in (1.1) is U-shaped, which we call the U-flow, and the other is either a U-flow or a flat flow, as shown in Figure 3.3; and • ϕ and v have reversed orientations. In view of this fact, a precise U-flow theory is then established, including in particular precise interior separation equations, and explicit formulas for the interior separation point (x 0 , t 0 ).

Sixth, tornados and hurricanes (or typhoons) are among the most important phenomena in the atmospheric sciences, which are topological phase transitions described by interior separations of the atmospheric flows. We refer interested readers to [START_REF] Haltiner | Numerical prediction and dynamic meteorology[END_REF][START_REF] Carrier | A model of the mature hurricane[END_REF][START_REF] Emanuel | An air-sea interaction theory for hurricanes. part i: Steady state maintenance[END_REF][START_REF]Increasing destructiveness of tropical cyclones over the past 30 years[END_REF][START_REF] Kieu | On the existence of a steady state of hurricane-like vortices[END_REF] and the references therein for the phenomena. A typical development of a hurricane consists of several stages including an early tropical disturbance, a tropical depression, a tropical storm, and finally a hurricane stage.

Using the U-flow theory, we derive the formation mechanism of tornados and hurricanes, providing precise conditions for their formation and explicit formulas on the time and location where tornados and hurricanes form. Basically, we demonstrate that the early stage of a hurricane is through the horizontal interior flow separations, and we identify the physical conditions for the formation of the U-flow, corresponding to the tropical disturbance, and the temperature-driven counteracting force needed as the source for tropical depression.

The paper is organized as follows. In Section 2, we introduce the kinematic conditions for interior separation, recall the basic fluid model suitable for interior separation, and derive the interior separation equations. The U-flow theory is established in Section 3, and is applied to the formation of tornados and hurricanes in Section 4.

Interior Separation Fluid Dynamics

2.1. Interior separations of fluid flows. Interior separation of fluid flows is a common phenomenon in fluid dynamics, especially in geophysical fluid dynamics, such as the formation of hurricanes, typhoons and tornados, and gyres of oceanic flows. In general, the interior separation refers to sudden appearance of a vortex from the interior of a fluid flow. In [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF], Ma and Wang have established an exact mathematical theory to determine interior separations for two-dimensional (2D) incompressible vector fields. Based on the Ma-Wang's theory, Yang and Liu [START_REF] Yang | A fluid dynamical model coupling heat with application to interior separations[END_REF] introduced a system of horizontal heat-driven fluid dynamical equations, and discussed the predictability of interior separation for the solutions of these equations.

For convenience, we briefly recall the interior separation theory of 2D incompressible vector fields. Let Ω ⊂ R 2 be an open set, and u(x, λ) be a one-parameter family of divergence-free vector fields defined on Ω. Definition 2.1. We say that a family of 2D incompressible vector fields u(x, λ) has an interior separation from (x 0 , λ 0 ) with x 0 ∈ Ω, if u(x, λ) is locally topologically equivalent to the structure of Usually, the parameter λ is taken as the time t. Let u(x, t) be the first-order Taylor expansion with respect to t at t 0 > 0:

(2.1)

u(x, t) = u 0 (x) + (t -t 0 )u 1 (x) + o(|t -t 0 |), u 0 (x) = u(x, t 0 ), u 1 (x) = ∂u ∂t t=t 0 .
Let x 0 ∈ Ω be a degenerate singular point of u 0 , and the Jacobian Du 0 (x 0 ) = 0. Then, there are two unit vectors e 1 and e 2 orthogonal to each other, satisfying that

(2.2) Du 0 (x 0 )e 1 = 0, Du 0 (x 0 )e 2 = αe 1 with α = 0.
Theorem 2.2 (Interior Separation [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF]). Let u(x, t) be a one-parameter family of 2D divergence-free vector fields, and have the Taylor expansion (2.1)

at t = t 0 . If x 0 ∈ Ω is an isolated singular point if u 0 (x)
with Du 0 (x 0 ) = 0, and satisfies that

(2.3) ind(u 0 , x 0 ) = 0, u 1 (x 0 ) • e 2 = 0,
where e 2 is the vector as in (2.2), then u(x, t) has an interior separation from (x 0 , t 0 ).

Theorem 2.2 holds also true for u(x, λ), where λ is another parameter instead of the time t.

2.2.

Horizontal heat-driven fluid dynamical equations. Hurricane, typhoon, and tornado are typical interior separation phenomena in geophysical fluid dynamics, which are caused by external wind-driven forces and by the non-homogenous temperature distributions. Therefore, the crucial factors for the appearance of interior separations in the atmospheric and oceanic flows are the three ingredients: (1) the initial velocity field, (2) the external force, and (3) the temperature. Hence the dynamical fluid model for interior separations has to incorporate properly the heat effect.

The Boussinesq equations are the classical fluid dynamical model coupling the heat conduction equation. However, this model can not be used as the dynamical equations to describe interior separation of fluid flows. To show this point, we recall the Boussinesq equations, given by (2.4)

∂u ∂t + (u • ∇)u = ν∆u - 1 ρ ∇p -(1 -αT )g k + f, ∂T ∂t + (u • ∇)T = κ∆T + Q, divu = 0.
We note that the driving force acting on the fluid by heat is the term in the first equation of (2.4) as follows

(2.5) f T = -αT g k,
where g is the acceleration due to gravity, α is the thermal expansion coefficient, T represents the temperature, and k = (0, 0, 1) is the unit vector orthogonal to the horizontal plane. By (2.5), it is easy to see that equations (2.4) mainly govern the thermal convective fluid motion in the vertical direction, rather than the horizontal motion such as the interior separation fluid flows.

In [START_REF] Yang | A fluid dynamical model coupling heat with application to interior separations[END_REF], a fluid dynamical model coupling heat was established, which can describe the plane fluid flows as the interior separation behaviors. We introduce this model in the following. Consider the Navier-Stokes equations (2.6)

∂u ∂t + (u • ∇)u = ν∆u - 1 ρ ∇p + f, x ∈ Ω, div(ρu) = 0,
and the coupling heat equation

(2.7) ∂T ∂t + (u • ∇)T = κ∆T, x ∈ Ω,
where Ω ⊂ R 2 is an open set, and u = (u 1 , u 2 ) is the velocity governing a horizontal fluid motion.

To make the temperature T into the Navier-Stokes equations (2.6), we introduce the state equations in thermodynamics. For gaseous systems, we have

(2.8) pV = nRT,
where n is the molar number, and R is the gaseous constant. In addition, the gas density is given by (2.9) ρ = nm/V, m is the molecular mass.

Thus, (2.8) can be written as (2.10) p = β 0 ρT, β 0 = R/m is the special gas constant.

For liquid systems, the equation of state is expressed as

(2.11) V = α 1 T -α 2 p + V 0 ,
where α 1 , α 2 > 0 are constants. By (2.9), (2.11) is rewritten as

(2.12) p = β 1 T - β 2 ρ + β 3 ,
where β 1 , β 2 , β 3 are parameters. The equations (2.6), (2.7), (2.10), and (2.12) are together to constitute the horizontal heat-driven fluid dynamical equations:

∂u ∂t + (u • ∇)u = ν∆u - 1 ρ ∇p + f, (2.13) ∂T ∂t + (u • ∇)T = κ∆T, (2.14) div(ρu) = 0, (2.15) p =
β 0 ρT for gaseous systems,

β 1 T -β 2 ρ -1 + β 3 for liquid systems. (2.16)
Remark 2.3. As ρ = 0, the orbit of u with div u = 0 are the same as those of v with div(ρv) = 0. Since the proof of Theorem 2.2 relies only on the topological structure of orbits of divergence-free vector fields, Theorem 2.2 is also valid for the vector fields u satisfying (2.15).

2.3.

Interior separation equations. Fluid separation equations are crucial mathematical tools to study vortex generation problem. For boundary-layer separations, separation equations for both the free and the rigid boundary conditions were established in [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF][START_REF]Topological Phase Transitions IV: Dynamic Theory of Boundary-Layer Separations[END_REF]; they play a very important role in both the boundary-layer separation theory and its applications. For interior separation, such separations are clearly needed as well.

To this end, we introduce two physically sound conditions:

1) The gradient of ρ is small:

(2.17) ∇ρ 0.

By (2.15), it implies that

(2.18) div u = - 1 ρ ∇ρ • u 0.
Physically, for large scale motion, the relaxation time for the fluid mobility is much smaller than the relaxation time of compression. Hence for the large scale fluid, the change of density ρ is small, leading to the validity of assumption (2.17).

2) The relaxation time t 0 of an interior separation is very small:

(2.19) 0 < t 0 1,
where the relaxation time refers to the time elapsed from the initial time when the separation condition is formed to the time when the separation takes place. It is also called the separation relaxation time.

Based on the model (2.13)-(2.16) and the two physical conditions (2.17) and (2.19), we now derive the separation equation.

Let the initial values of u and T are given by

(2.20) u(x, 0) = ϕ(x), T (x, 0) = T 0 (x).
Inserting (2.16) into (2.13), integrating both sides of the resulting equation with respect to t, and ignoring the terms of ∇ρ (by (2.17)), we deduce that

(2.21) u(x, t) = ϕ(x) + t 0 [ν∆u -(u • ∇)u -α∇T + f ]dt,
for 0 < t < t 0 , where ϕ is as in (2.20), α is given by (2.22) α = β 0 for a gaseous system, β 1 /ρ for a liquid system, β 0 = R/m is as in (2.10), and β 1 is as in (2.12). Take the first-order Taylor expansion on time t for the solution (u(x, t), T (x, t)) of (2.13)-(2.16):

(u(x, t), T (x, t)) = (ϕ(x) + t u(x, t), T 0 (x) + t T (x, t)), and insert it into the right side of (2.21). Then we obtain that

u(x, t) =ϕ(x) + [ν∆ϕ -(ϕ • ∇)ϕ -α∇T 0 + f ]t (2.23) + t 0 [ν∆ u -α∇ T -(ϕ • ∇) u -( u • ∇)ϕ]tdt + t 0 ( u∇ u) t 2 dt. By (2.18), we have divϕ 0, div[ν∆ϕ -(ϕ • ∇)ϕ -α∇T 0 + f ] 0.
Hence we deduce that

(2.24) ∂ϕ 1 ∂x 2 ∂ϕ 2 ∂x 1 + ∂ϕ 1 ∂x 1 2 + α 2 ∆T 0 - 1 2 divf ν∆divϕ 0, where ϕ = (ϕ 1 , ϕ 2 ). It is clear that t 0 [ν∆ u -α∇ T -(ϕ • ∇) u -( u • ∇)ϕ]tdt = o(t).
Hence, by (2.19), the first-order approximation of (2.23) on t (0 < t < t 0 ) and (2.24) lead to the following interior separation equations:

u(x, t) = ϕ + [ν∆ϕ -(ϕ • ∇)ϕ -α∇T 0 + f ]t, (2.25) ∂ϕ 1 ∂x 2 ∂ϕ 2 ∂x 1 + ∂ϕ 1 ∂x 1 2 + α 2 ∆T 0 - 1 2 divf 0, (2.26)
where ϕ = (ϕ 1 , ϕ 2 ) and T 0 are the initial functions as in (2.20).

Remark 2.4. The interior separation equations (2.25) and (2.26) include all physical information about the interior separations of the solution u for system (2.13)-(2.16) given by the initial state (ϕ, T 0 ) and the external force f . Then u(x, t) in (2.25) is written as

U-Flow Theory

(3.2) u(x, t) = ϕ(x) + tv(x).
For such u(x, t), condition (2.3) becomes the following:

(1) there is a point x 0 ∈ V , with V ⊂ Ω being a neighborhood of x 0 , such that

(3.3) ϕ(x) + tv(x) = 0, ∀ 0 ≤ t < t 0 , ϕ(x 0 ) + t 0 v(x 0 ) = 0,
(2) the Jacobian of u 0 = ϕ + t 0 v at x 0 is nonzero: 

(3.4) Du 0 (x 0 ) = D(ϕ + t 0 v)| x 0 = 0 0 0 0 , (3) 
u(x, t) = u 0 (x) + (t -t 0 )v(x), u 0 (x) = ϕ(x) + t 0 v(x), v(x) = ν∆ϕ -(ϕ • ∇)ϕ -α∇T 0 + f.
In [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF], Ma and Wang proved that if u(x, t) in the form of ( 3 Here the two orbits l -and l + of u 0 connected to x 0 are tangent to the e 1 -axis at x 0 , e 1 , e 2 are as in (2.2).

Thus, it is clear that u 0 = ϕ + t 0 v is a superposition of ϕ and t 0 v. It implies that if u 0 has the structure as in Figure 3.1 and ϕ = 0 in a neighborhood of x 0 , then by the evolution procedure: However, in reality, case (i) appears more often. Hence, here we only consider the case:

u(x, 0) = ϕ t→t 0 ---→ u(x, t 0 ) = ϕ + t 0 v,
(3.7)
ϕ is a U-flow, v is a flat flow, and ϕ and v have reversed orientations, where ϕ and v are as in (3.6).

Based on (3.7) we now establish the U-flow theory of the interior separation for the solutions of equations (2.13)-(2.16). The main components of this theory are as follows:

1). The physical data (ϕ, T 0 , f ) are approximated by their first-order polynomials. In fact, we take the Taylor expansions near x :

(3.8) ϕ = ϕ( x) + Dϕ( x)(x -x) + h.o.t., T 0 = T ( x) + ∇T ( x)(x -x) + h.o.t., f = f ( x) + Df ( x)(x -x) + h.o.t.,
where h.o.t. represents the higher-order terms. Because ϕ, T 0 , f are nearly independent, by the second separation equation (2.26), we see that the coefficients of the n-th order terms for n ≥ 2 are almost zero, and

(3.9) ∂ϕ 1 ∂x 2 ∂ϕ 2 ∂x 1 x , ∂ϕ 1 ∂x 1 x , ∂ϕ 2 ∂x 2 x , ∂f 1 ∂x 1 x , ∂f 2 ∂x 2 x 0.
Then we derive the first physical conclusion for the U-flow theory.

Physical Conclusion 3.2.

The physical data ϕ, T 0 and f are, in essence, the first-order polynomials as

(3.10) ϕ = ϕ( x) + 0 ∂ϕ 1 ( x) ∂x 2 ∂ϕ 2 ( x) ∂x 1 0 x 1 -x 1 x 2 -x 2 + h.o.s.t., T 0 = T ( x) + ∂T ( x) ∂x 1 (x 1 -x 1 ) + ∂T ( x) ∂x 2 (x 2 -x 2 ) + h.o.s.t., f = f ( x) + 0 ∂f 1 ( x) ∂x 2 ∂f 2 ( x) ∂x 1 0 x 1 -x 1 x 2 -x 2 + h.o.s.t.,
and by (3.9), ∂ϕ 1 ∂x 2 ∂ϕ 2 ∂x 1 x 0, where x = ( x 1 , x 2 ) is a point near the separation point x 0 , and the abbreviation h.o.s.t. refers to higher-order terms with small coefficients.

2). For the U-flow in Figure 3.2, we take the coordinate (x 1 , x 2 ) with x as its origin, the x 1 -axis in e 2 direction, and the x 2 -axis in e 1 direction. By (3.1), let ϕ be the U-flow as in Figure 3.2. By (3.3) and (3.10), ϕ = (ϕ 1 , ϕ 2 ) should be in the form:

(3.11) ϕ 1 = a 0 + a 1 x 2 + a 2 x 2 2 + h.o.s.t., ϕ 2 = b 0 x 1 + h.o.s.t., where (3.12)
a 0 , a 2 , b 0 > 0, a 1 0, a 0 is relatively small.

The second-order term a 2 x 2 2 in ϕ 1 is specifically retained to ensure the zero of the superposition is an isolated zero, and to ensure the formation of interior separation. We need the condition that 

T 0 = τ 0 + τ 1 x 1 + τ 2 x 2 + h.o.s.t., f 1 = -f 0 1 + f 2 1 x 2 + h.o.s.t., f 2 = -f 0 2 + f 1 2 x 1 + h.o.s.t.
, and the vector field v = (v 1 , v 2 ) in (3.6) can be written as (3.15) 

v 1 = -ατ 1 -f 0 1 + f 2 1 x 2 + h.o.s.t., v 2 = -a 0 b 0 -ατ 2 -f 0 2 + f 1 2 x 1 + h.
(3.18) u 1 = (a 0 + a 1 x 2 + a 2 x 2 2 ) -t(ατ 1 + f 0 1 ) + h.o.s.t., u 2 = b 0 x 1 -t(ατ 2 + a 0 b 0 + f 0 2 ) + h.o.s.t.
, and the parameters in (3.18) satisfy (3.12), (3.17), and

(3.19) 0 < 4a 0 a 2 -a 2 1 4a 2 (ατ 1 + f 0 1 ).
In particular, the separation equation (3.18) satisfying (3.12), (3.17) and (3.19) obeys conditions (3.3)-(3.5); consequently an interior separation takes place from (x 0 , t 0 ) with (3.20)

x 0 = t 0 (ατ 2 + a 0 b 0 + f 0 2 ) b 0 , - a 1 2a 2 , t 0 = 4a 0 a 2 -a 2 1 4a 2 (ατ 1 + f 0 1 )
, where α is the thermal parameter as in (2.22).

Remark 3.4. The expression (3.18) is the unique form for the U-flow (3.7) to generate a vortex from an interior point x 0 ∈ Ω. Namely, the initial physical data ϕ and v in (3.7) must take the form as in (3.18) for the formation of an interior separation at x 0 . In particular, the parameters a 0 and b 0 represent the strength of the U-flow ϕ, (τ 1 , τ 2 ) is the initial temperature gradient ∇T 0 at x, and (f 0 1 , f 0 2 ) is the main part of the external force f . The six parameters {a 0 , b 0 , τ 1 , τ 2 , f 0 1 , f 0 2 } determine the energy level and scale of the generated vortex.

In addition, for the cases (ii) and (iii) listed in the beginning of Section 3.3, the associated unique forms of the U-flow for the formation of interior separations are just slight variations of (3.18).

Tornado and Hurricane Formations

4.1. Atmospheric cyclone dynamical model. In nature, tornados and hurricanes (or typhoons) are the most important phenomena in the atmospheric sciences, which are topological phase transitions described by interior separations of the atmospheric flows.

In this section, we shall address the tornado and hurricane formation mechanism by using the U-flow theory established in the last section.

The main factors for the formation of tornados and hurricanes are • the initial velocity field ϕ,

• the initial temperature field T 0 , and • the Coriolis force f , measuring the earth's rotational effect. To derive the atmospheric cyclone dynamic model, we adopt the conventional β-plane assumption.

Let the earth's hemisphere be approximatively given as a rectangle:

(4.1) Ω = (0, 2πr 0 ) × (0, πr 0 /2), where r 0 is the earth's radius. The Coriolis force is taken as

(4.2) f = -βx 2 k × u = (βx 2 u 2 , -βx 2 u 1 ),
where β = 2ω/r 0 , and ω is the the angular velocity of the earth's rotation. For the domain Ω, the coordinate system is (x 1 , x 2 ) with x 1axis being the longitude coordinate and x 2 -axis for the latitude. (4.1) and (4.2) are called the β-plane assumption.

With the above Coriolis force f , the system (2.4) serves as the basic atmospheric cyclone dynamical model for the initial stages of the formation of hurricanes.

With the Coriolis force (4.2), the interior separation equations (2.25) and (2.26) become

u(x, t) = ϕ + tv(x), v(x) = ν∆ϕ -(ϕ • ∇)ϕ -α∇T 0 -βx 2 k × ϕ, (4.3) ∂ϕ 1 ∂x 2 ∂ϕ 2 ∂x 1 + ∂ϕ 1 ∂x 1 2 + α 2 ∆T 0 + βx 2 2 ∂ϕ 1 ∂x 2 - ∂ϕ 2 ∂x 1 + β 2 ϕ 1 0. (4.4)
4.2. Atmospheric cyclone generations. We now discuss tornado and hurricane in the northern hemisphere based on the U-flow theory. We proceed in a few steps as follows.

1). Initial physical data ϕ, T 0 and the Coriolis force f . In the northern hemisphere, the atmospheric flows near the earth surface often appear in the form of the U-flows as shown in 3). Conditions for the formation of tornados. Tornadoes form in higher latitudes; hence d > 0 is relatively large. Let x = x 1 , y = x 2 -d in (4.8). Then the separation point (x 0 , y 0 , t 0 ) satisfy the equation (4.9)

-b 0 y 0 -t 0 a 0 (b 0 + βd + βy 0 ) = 0, a 0 + a 1 x 0 + a 2 x 2 0 -t 0 (ατ 1 + b 0 βdy 0 + b 0 βy 2 0 ) = 0. The solution of (4.9) satisfying (2.19), (3.12) and (3.17 These are exactly the conditions required for the formation of tornados.

4). Conditions for the formation of hurricanes. A hurricane can form near the equator, i.e. d 0. Let x = x 1 , y = x 2 , and d = 0 in (4.8). Then the location and time (x 0 , y 0 , t 0 ), where a hurricane forms, satisfies (4.12)

-b 0 y 0 -t 0 a 0 (b 0 + βy 0 ) = 0, a 0 + a 1 x 0 + a 2 x 2 0 -ατ 1 t 0 = 0, whose solution is (4.13) (x 0 , y 0 ) -a 1 2a 2 , -a 0 t 0 , t 0 = 4a 0 a 2 -a 2 1 4ατ 1 a 2 .

In summary, from the above discussions, we see that the initial velocity field (4.5) of a U-flow, the initial temperature distribution (4.6) and the Coriolis force (4.7) determine the necessary conditions for the formation of tornadoes and hurricanes.
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 21 Figure 2.1. A schematic diagram of interior separation, (a) a parallel flow near x 0 , and (b) a vortex flow.

3. 1 .

 1 Interior separation of fluid dynamical equations. Theorem 2.2 provides a sufficient condition for general 2D incompressible vector fields to undergo an interior separation. Now, we apply the separation equation (2.25) to derive the interior separation theorem for solutions of the horizontal heat-driven fluid dynamical equations (2.13)-(2.16). Let (3.1) v(x) = ν∆ϕ -(ϕ • ∇)ϕ -α∇T 0 + f.

  .6) satisfies (3.3) and (3.4), then ind(u 0 , x 0 ) = 0 and u 0 (x) is topologically equivalent to the structure near x 0 ∈ Ω, as shown in Figure 3.1; see [11, Section 5.6.1].
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 31 Figure 3.1.The flow pattern of the vector field u 0 satisfying u 0 (x 0 ) = 0, ind(u 0 , x 0 ) = 0, and Du 0 (x 0 ) = 0. Here the two orbits l -and l + of u 0 connected to x 0 are tangent to the e 1 -axis at x 0 , e 1 , e 2 are as in (2.2).

  we can see that ϕ and v have the reversed orientations, and their flow structures are either the U-flow pattern as shown in Figure3.2 or one of the two patterns as shown in Figure 3.3 (a) and (b). In particular, if ϕ (or v) is in the pattern of Figure 3.2 then v (or ϕ) must be in one of the patterns (a) and (b) in Figure 3.3.
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 32 Figure 3.2. U-flow pattern of a vector field u with u • e 2 > 0 at x.
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 33 Figure 3.3. (a) A flat flow pattern of u with u • e 2 < 0 at x, and (b) U-flow pattern of u with u • e 2 < 0 at x.

3. 3 .

 3 Physical conclusions of U-flow theory. Mathematically, the three situations that lead to the formation of interior separations are as follows:(i) ϕ is a U-flow and v is a flat flow; (ii) ϕ is a flat flow and v is a U-flow; and (iii) ϕ and v are U-flows.

  (3.13) b 0 is of the same order as or larger than a 0 , to ensure the flow ϕ in (3.11) is a U-flow. Also by (3.10)-(3.12), T 0 and f = (f 1 , f 2 ) are as(3.14) 

  o.s.t.. Because v is a flat flow as in Figure3.3(a), and v and ϕ have reversed orientations, (3.15) is rewritten as(3.16) v = -(ατ 1 + f 0 1 , ατ 2 + a 0 b 0 + f 0 2 ) + h.o.s.t., where (3.17) ατ 1 + f 0 1 > 0. Based on (3.11)-(3.17), we get the second physical conclusion for the U-flow theory. Physical Conclusion 3.3. The first separation equation (2.25) for the U-flow ϕ and flat flow v in (3.7) is expressed as

  Figure 4.1, in which x 2 = 0 represents the equator.

Figure 4 . 1 .

 41 Figure 4.1. A U-flow in the northern hemisphere, x 2 = 0 represents the equator, and x = (0, d) with d > 0 is the point as in (3.10). Corresponding to (3.11) and (3.14), as the initial velocity field ϕ = (ϕ 1 , ϕ 2 ), the U-flow in Figure 4.1 should be rewritten in the following form • the initial flow: (4.5) ϕ 1 = -b 0 (x 2 -d) + h.o.s.t., ϕ 2 = -(a 0 + a 1 x 1 + a 2 x 2 1 ) + h.o.s.t.,

4a 0 a 2 -a 2 1 4a 2 () 4a 0 a 2 -a 2 1 4αa 2 τ 1 . 4

 12114 ατ 1 + b 0 βdy 0 + b 0 βy 2 0 By 0 < t 0 1 and y 0 0, (4.10) implies that (
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