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About Circulant Involutory MDS Matrices

Victor Cauchois ∗

Pierre Loidreau †

DGA MI and Université de Rennes 1

Abstract

We give a new algebraic proof of the non-existence of circulant involutory MDS
matrices with coefficients in fields of even characteristic. For odd characteristics we
give parameters for the potential existence. If we relax circulancy to θ-circulancy,
then there is no restriction to the existence of θ-circulant involutory MDS matrices
even for fields of even characteristic. Finally, we relax further the involutory defi-
nition and propose a new direct construction of almost involutory θ-circulant MDS
matrices. We show that they can be interesting in hardware implementations.

1 Introduction

MDS matrices offer the maximal diffusion of symbols for cryptographic applications.
To reduce implementation costs, research focuses on circulant and recursive matri-
ces, which need only a linear number of multipliers to compute the matrix-vector
product. Additionally when considering a block-cipher based on the AES principle,
decryption needs the computation of the inverse matrix. Therefore, for hardware
implementations, it is interesting to consider involutory matrices or almost involu-
tory matrices. All these problems were investigated in a large number of research
papers:

• Concerning circulant matrices: Apart from the design of AES [DR02], circulant-
like MDS matrix constructions were proposed by taking subsquare matrices of
Hankel form, see [Aid86],[RS85]. In [RL89], the authors showed that gen-
eralised Cauchy matrices are redundant part of MDS codes. More recently,
[SKOP15] considered lightweight Hadamard-Cauchy matrices. In [GR14], the
authors proved that involutory circulant matrices do not exist. In [LW16], the
authors showed that relaxing the definition of circulancy allows to build in-
volutory matrices for some parameters. [LS16] found very low cost involutive
matrices by replacing multiplication by field elements with invertible linear
applications.

• Concerning recursive matrices: In [Ber13], the author used Gabidulin theory
to propose a direct construction of recursive MDS matrices. Recursive MDS
matrix constructions were also considered by [AF14] where they constructed

∗victouf@hotmail.com
†Pierre.Loidreau@m4x.org

1



recursive matrices from shortened cyclic MDS codes. Such structures form the
linear diffusion layer core of PHOTON family of hash function [GPP11] or LED
block cipher [GPPR11]. The construction of involutory matrices with recursive
structures was investigated in [CLM16] where the authors published a direct
construction of MDS matrices, quasi-involutory and which can be recursively
implemented with a derived version of a LFSR denoted SLFSR. An SLFSR
is a logical structure built from a classical LFSR skewed via the action of a
Frobenius automorphism.

Now from a complexity point of view, verifying if a matrix is MDS or not becomes
quickly prohibitive, since one has to compute all the minors of the matrix. There-
fore, it is worth knowing the parameters for which they may or may not exist.
Additionally, if it were possible to obtain direct constructions by slightly relaxing
the constraints, it would be a benefit for designers.

In the paper, we first introduce a general algebraic framework to study involutory
properties of circulant and θ-circulant matrices which are the counterpart of circulant
matrices if we relax the condition on the polynomial ring by considering the q-
polynomial ring. In a second part we prove some results on the existence and
non-existence of involutory circulant MDS matrices. In a third part we extend
the results to the θ-circulant matrices and show that this increases the number of
degrees of freedom for the choice of MDS matrices. In a final part by relaxing
the involutory property we directly construct MDS θ-circulant matrices which are
involutory modulo a permutation.

Our contribution

We provide a new simple proof that circulant involutory matrices do not exist in
fields of even characteristic. For odd characteristics, we extend the result by us-
ing our algebraic framework. This gives some restrictions on the existence of the
matrices. By generalising circulancy and considering θ-circulant matrices, the afore-
mentioned restriction can be raised and involutory θ-circulant matrices may exist
even for impossible parameters in the previous case. This approach does not provide
a direct construction. To obtain a direct construction, we relax the condition on the
matrix to be involutory, by authorising the action of the Frobenius automorphism
and a permutation of the coordinates. These restriction do not impact much the
hardware implementation costs.

2 An algebraic framework

2.1 Notations and definitions

Let q be some power of some prime p. We denote by Fq the field with q elements
and Fq[X] the polynomial ring with coefficients in Fq. We denote byMm,n(Fq) the
set of matrices with m rows and n columns with coefficients in Fq.

Definition 1. Let C be a [n, k, d] linear code over Fq. Then C is MDS if its mini-
mum distance d satisfies the Singleton Bound:

d = n− k + 1.
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In cryptography, we are more interested in the so-called MDS matrices defined by:

Definition 2. M ∈ Mk,n−k(Fq) is MDS if and only if it satisfies one of the two
following properties:

• All its minors are non zero.

• It is the redundant part of the generator matrix of an MDS code C under
systematic form, i.e. this is the matrix M where

C = 〈(I | M)〉.

In the design of symmetric encryption schemes we usually need invertible matrices.
This implies that we only consider square MDS matrices of order m. These matrices
are redundant part of generator matrices under systematic form of MDS codes of
length 2m and dimension m.

Definition 3. A matrix M ∈ Mm,m(Fq) is involutory if it satisfies the following
equation:

M2 = Im

2.2 Circulant matrices and polynomial rings

For g ∈ Fq[X], we denote by wt(g) the weight of the polynomial g, corresponding to
the number of non-zero coefficients of the polynomial g. We denote by Fq,m[X] the
set of polynomials of degree less than or equal to m.
We introduce the following mapping between monic polynomials and circulant ma-
trices:

Definition 4. Let h(X) = (Xm − 1) +
∑m−1
i=0 hiX

i ∈ Fq[X] be a monic polynomial
of degree m. The circulant matrix associated with h is the matrix defined by:

Ch =


h0 h1 . . . hm−1

hm−1 h0 . . . hm−2
...

. . .
. . .

...
h1 h2 . . . h0



Remark 1. This mapping is non-standard in the sense that h0 is not the constant
term of the polynomial h but the constant term translated by 1.

The following proposition sets the algebraic framework.

Proposition 1. Let h(X) = (Xm−1)+
∑m−1
i=0 hiX

i ∈ Fq[X] be a monic polynomial
of degree m and Ch be the circulant matrix associated with h. Then, Ch is the matrix
in the basis {1, X, . . . ,Xm−1} of the mapping:

φ : Fq[X]/(Xm − 1) → Fq[X]/(Xm − 1)
Q(X) 7→ Q(X)h(X)
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2.3 θ-circulant matrices and q-polynomials rings

We extend the previous framework to q-polynomial ring. Let θ be a Fq-automorphism
of Fqm . Consider the set {

∑
i giX

i, gi ∈ Fqm} with the two following operations:

• Addition: usual addition of polynomials

• Multiplication: X ∗ a = a[1] ∗X where a[i] = θi(a),∀i ∈ Z
extended by associativity and distributivity. It forms a ring called q-polynomial
ring we denote by Fqm [X; θ]. This ring is left and right Euclidean. To distinguish
q-polynomials from classical polynomials, we use the notation A〈X〉 to refer to an
element A ∈ Fqm [X; θ].

For h ∈ Fqm [X; θ], we denote by wt(h) the Hamming weight of the q-polynomial h,
which is its number of non-zero coefficients. We denote by Fqm,m[X; θ] the set of
q-polynomials whose degree is less or equal to m.

Definition 5. Let h〈X〉 = (Xm − 1) +
∑m−1
i=0 hiX

i ∈ Fqm [X; θ] be a monic q-
polynomial of degree m. The θ-circulant matrix associated with h is the matrix
defined by:

Ch,θ =


h0 h1 . . . hm−1

h
[1]
m−1 h

[1]
0 . . . h

[1]
m−2

...
. . .

. . .
...

h
[m−1]
1 h

[m−1]
2 . . . h

[m−1]
0


Proposition 2. Let h〈X〉 = (Xm − 1) +

∑m−1
i=0 hiX

i ∈ Fqm [X; θ] be a monic q-
polynomial of degree m and Ch,θ be the θ-circulant matrix associated with h. Then,
the matrix Ch,θ is the matrix in the basis {1, X, . . . ,Xm−1} of the application:

ψ : Fqm [X; θ]/(Xm − 1) → Fqm [X; θ]/(Xm − 1)
Q〈X〉 7→ Q〈X〉h〈X〉

3 Involutory circulant MDS matrices and polyno-
mial rings

Gupta and Ray proved that circulant involutory MDS matrices do not exist in
characteristic 2, [GR14]. Based on the framework introduced in section 2.2 we give
a new simple proof of this result and we extend it to finite fields of any characteristic.

Based on definition 4, we are able to give an algebraic necessary and sufficient
condition for such a matrix to be MDS.

Proposition 3. Let h(X) = (Xm− 1) +
∑m−1
i=0 hiX

i ∈ Fq[X]. Let Ch be the circu-
lant matrix associated with h. Then, Ch is MDS if and only if: ∀Q1 ∈ Fq,m−1[X],
let Q2 ∈ Fq,m−1[X] such that Q2(X) = Q1(X)h(x) mod Xm − 1, we have:

wt(Q1) + wt(Q2) ≥ m+ 1.

Proof.

Ch is MDS ⇔ (Im|Ch) is the generator matrix of an MDS code
⇔ ∀(q0, . . . , qm−1) ∈ Fmq , wt ((q0, . . . , qm−1) · (Im|Ch)) ≥ m+ 1
⇔ ∀(q0, . . . , qm−1) ∈ Fmq , wt(q0, . . . , qm−1) + wt((q0, . . . , qm−1) ·Ch) ≥ m+ 1
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If one considers Q1(X) =
∑m−1
i=0 qiX

i, then wt(q0, . . . , qm−1) = wt(Q1). Since from
proposition 1, Ch corresponds to the multiplication by h(X) in Fq[X]/(Xm−1), we
have:

wt((q0, . . . , qm−1) ·Ch) = wt(Q1(X)h(X) mod Xm − 1) = wt(Q2(X)),

which proves the proposition.

Example 1. Let F24 be defined by X4 +X+ 1 and α a root of this polynomial. The
matrix Ch associated with h(X) = (X4 + 1) + α3X3 + αX2 + X + 1 ∈ F24 [X] is a
circulant MDS matrix.

Ch =


1 1 α α3

α3 1 1 α
α α3 1 1
1 α α3 1


The involutory property for circulant matrices can be written under algebraic form:

Proposition 4. Let h(X) = (Xm − 1) +
∑m−1
i=0 hiX

i ∈ Fq[X]. Let Ch be the
circulant matrix associated with h. Then, Ch is involutory if and only if h(X)2 =
1 mod (Xm − 1).

Proof. This proposition comes directly from proposition 1 and from the definition
of involutory matrices.

A natural question is to determine whether circulant matrices both MDS and invo-
lutory exist. A partial answer in characteristic 2 fields for even size matrices was
given in [GR14]. The following theorem simplifies and extends the proofs to even
size MDS matrices in finite fields of any characteristic.

Theorem 1. Let d ≥ 2. There exists no involutory circulant MDS matrix of size
2d over fields of characteristic p ≥ 2.

Proof. Suppose that Ch is an involutory circulant MDS matrix of size 2d with entries
in Fq. Let h ∈ Fq[X] be the polynomial associated with the circulant matrix Ch.
The proof is seperated into two parts depending on the characteristic of the field.

In even characteristics: We consider the settings of Proposition 1. Let Q1(X) =
Xd − 1. By hypothesis h2(X) − 1 = (h(X) − 1)2 = 0 mod X2d − 1. Therefore
h(X) − 1 = 0 mod Xd − 1 therefore Q2(X) = Q1(X)h(X) mod X2d − 1 = Xd − 1.
Hence wt(Q1) + wt(Q2) = 4 ≤ 2d+ 1 and Ch is not MDS.

In odd characteristics, notice thatX2d−1 = (X2−1)B(X) whereB(X) = (X2(d−1)+
X2(d−2) + . . .+ 1) has weight d. Hence X2d − 1 is divisible by X2 − 1 and we have:

Ch involutory ⇒ h2 = 1 mod (X2d − 1)
⇒ h2 = 1 mod (X2 − 1)
⇒ h2 = X2 mod (X2 − 1)

Thus, (h− 1)(h+ 1) = A1(X)(X2− 1) and (h−X)(h+X) = A2(X)(X2− 1) where
A1, A2 ∈ Fq[X].
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We show that (X2 − 1) divides necessarily one of the four polynomials:

{h− 1, h+ 1, h−X,h+X}

Suppose X2 − 1 does not divides neither h(X) − 1 nor h(X) + 1. Since 1 and −1
are the roots of X2 − 1, then we have two cases:

• h(1) = 1 and h(−1) = −1. This implies that h(X) −X contains the roots of
X2 − 1 therefore is divisible by X2 − 1;

• h(1) = −1 and h(−1) = 1. This implies that h(X) + X contains the roots of
X2 − 1 therefore is divisible by X2 − 1.

The polynomial (X2d − 1) divides one of the four polynomials:

{B(X)(h− 1), B(X)(h+ 1), B(X)(h+X), B(X)(h−X)}

∃A(X) ∈ Fq[X] such that:

• either B(X)h(X) = ±B(X) +A(X)(X2d − 1).

• or B(X)h(X) = ±XB(X) +A(X)(X2d − 1)

Since the degree of B(X) is less than 2d − 2, the B(X) or XB(X) corresponds to
the remainder of B(X)h(X) modulo X2d− 1. Moreover since B(X) has weight d so
has XB(X) therefore

wt(B(X)) + wt(B(X)) = wt(B(X)) + wt(XB(X)) = 2d < 2d+ 1.

From proposition 1 this implies that Ch is not MDS, since by taking Q1(X) = B(X)
we have Q2(X) = B(X) or Q2(X) = XB(X) and we have found a polynomial that
does not satisfy the Hamming weight inequality.

In the particular case of odd characteristics, circulant involutory MDS matrices of
odd sizes exist:

Example 2. Consider F23 be the field with 23 elements. Then, Ch, the circulant
matrix associated with h(X) = (X3−1)+7X2 +7X+8 is both involutory and MDS:

Cg =

8 7 7
7 8 7
7 7 8


But there is no hope to find such matrices of odd sizes in even characteristics. This
result was also shown in [GR14]. Here we give an alternative proof, which is an
immediate consequence of previous results.

Theorem 2. Let Fq be a finite field of characteristic 2. Let m ≥ 3 be an odd integer.
There are no involutory circulant MDS matrices of size m with entries in Fq.

Proof. Suppose that there exists an involutory circulant MDS matrix of size m, say
Ch associated to the polynomial h. Let g′(X) be the derivative of g(X) = (Xm−1)
that is:

g′(X) = mXm−1.
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The polynomial g′(X) is prime with g(X). Therefore g(X) has exactly m distinct
roots. By hypothesis we have that h(X)2 = 1 mod Xm − 1 with h of degree m.
Therefore there exist some polynomial A(X) such that:

(h(X) + 1)2 = A(X)(Xm − 1).

Therefore, the m roots of Xm−1 are also roots of (h(X)+1)2 and since they are all
simple roots, they are also roots of h(X) + 1. Therefore, h(X) + 1 = 0 mod Xm − 1.
Since h is monic and of degree m necessarily h(X) = Xm − 1. Therefore Ch is not
MDS since some of its entries are equal to 0.

In even characteristics, the only involutory circulant MDS matrices are of size 1 or
2. The following example shows that some matrices of this type exist

Example 3. Let F24 be defined by X4 +X+ 1 and α a root of this polynomial. The
matrix Ch associated with h(X) = (X2 + 1) +α4X+α is both involutory and MDS.

Ch =

(
α α4

α4 α

)
Namely, h(X)2 = X4 + α8X2 + α8 = X4 mod (X2 + 1) = X2 mod (X2 + 1) = 1
mod (X2 + 1)

Concerning odd characteristics, the following new theorem shows that there are
strong constraints on the size of potential involutory circulant MDS matrices.

Theorem 3. Let m = 2d+1 ≥ 3. Let Fq be some field of odd characteristics. If there
are circulant involutory MDS matrices of size m then there exists A(X), B(X) ∈
Fq[X] such that A(X) has degree d, gcd(A(X), B(X)) = 1 and Xm−1 = A(X)B(X)

Proof. Suppose there exists an involutory circulant MDS matrix of size m, say Ch

associated to the polynomial h. Suppose Xm − 1 does not admit a decomposition
Xm − 1 = A(X)B(X) with A(X) ∈ Fq[X] of degree d. By hypothesis, we have
h2(X) = 1 mod Xm − 1. Therefore there exists some polynomial P (X) such that

(h(X)− 1)(h(X) + 1) = P (X)(Xm − 1)

In fields of odd characteristics, (h(X) + 1) and (h(X) − 1) are coprime. Thus,
either gcd(Xm − 1, h(X)− 1) or gcd(Xm − 1, h(X) + 1) is of degree at least d+ 2.
There exist then either B1 ∈ Fq[X] or B2 ∈ Fq[X] of degree at most d − 1 such
that B1(X)(h(X) + 1) or B2(X)(h(X) − 1) is divided by Xm − 1. In such a case
wt(Bi(X)) ≤ d. Since wt(Bi(X))+wt(Bi(X)) ≤ 2d < 2d+1, for i ∈ {1, 2} and since
B1(X)h(X) = −B1(X) mod (Xm − 1) or B2(X)h(X) = B2(X) mod (Xm − 1), Ch

is not MDS.

Circulant involutory MDS matrices were found by exhaustive search whenever the
previous factorisation exists. We conjecture then that for parameters not ruled out
by the three last theorems, circulant involutory MDS matrices do exist.

Conjecture 1. Let m = 2d + 1 ≥ 3. Let Fq be some field of odd characteristic.
If Xm − 1 can be decomposed as A(X)B(X) with A(X) ∈ Fq[X] of degree d and
GCD(A(X), B(X)) = 1, there exist circulant involutory MDS matrices.
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4 θ-circulant matrices and q-polynomial rings

As for classical polynomials, we establish algebraic conditions on q-polynomials to
characterise those whose associated θ-circulant matrix is MDS since Fqm [X; θ] is
right Euclidean. The proofs being similar to the classical polynomials case, we omit
them.

We denote by mod∗g the operation of computing the remainder of the Euclidean
division on the right by g:

c〈X〉 mod∗g = r〈X〉 ⇔ c〈X〉 = b〈X〉 ∗ g〈X〉+ r〈X〉

Proposition 5. Let h〈X〉 = (Xm − 1) +
∑m−1
i=0 hiX

i ∈ Fqm [X; θ]. Let Ch,θ be the
θ-circulant matrix associated with h. Then, Ch,θ is MDS if and only if:
∀Q1 ∈ Fqm,m−1[X, θ], denoting by Q2 the q-polynomial such that Q2 ∈ Fqm,m−1[X; θ]

and Q2〈X〉 = Q1〈X〉h〈x〉 mod ∗(X
m − 1), we have:

wt(Q1) + wt(Q2) ≥ m+ 1

Example 4. Let F24 be defined by X4 + X + 1 and α a root of this polynomial.
Let θ be the automorphism defined by a 7→ a2. The matrix Ch,θ associated with
h〈X〉 = (X4 + 1) + α10X3 + αX2 +X + 1 ∈ F24 [X; θ] is a θ-circulant MDS matrix.

Ch,θ =


1 1 α α10

α5 1 1 α2

α4 α10 1 1
1 α8 α5 1


There is a simple algebraic condition on q-polynomials to characterise those whose
associated θ-circulant matrix is involutory:

Proposition 6. Let h〈X〉 = (Xm − 1) +
∑m−1
i=0 hiX

i ∈ Fqm [X; θ]. Let Ch,θ be the
θ-circulant matrix associated with h. Then,

Ch,θ is an involutory matrix if and only if g〈X〉 ∗ g〈X〉 = 1 mod ∗(X
m − 1).

Therefore, if one relaxes the condition on the MDS matrix from being circulant to
being θ-circulant, this is possible to find involutory matrices with implementation
friendly (in a normal basis) properties.

Example 5. Let F24 be defined by X4 + X + 1 and α a root of this polynomial.
Let θ be the automorphism defined by a 7→ a2. The matrix Ch,θ associated with
h〈X〉 = (X4 + 1) + α7X3 + α14X2 + X + α ∈ F24 [X; θ] is a θ-circulant involutory
MDS matrix.

Ch,θ =


α 1 α14 α7

α14 α2 1 α13

α11 α13 α4 1
1 α7 α11 α8


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5 Direct Construction of θ-circulant almost invo-
lutory MDS matrices

From previous sections, we saw that involutory MDS θ-circulant matrices exist. To
find them, we test the square of q-polynomials of degree m and check if it can
be divided by Xm − 1 and then verify if they are MDS matrices. This can be
algorithmically prohibitive for large m.

If we relax slightly the involutory condition, we can directly construct almost-
involutory MDS matrices from Gabidulin codes for fields of even characteristic and
matrices of even length. The first step of this relaxations is to consider instead of
classical matrix product, the skewed matrix product MM[1], where if M = (mi,j) we

have M[1] = (m
[1]
i,j) Since computing M[1] is done by applying Galois automorphism

individually on matrix coefficients, this can be done in hardware in normal basis
with simple routing. The second step consists in allowing this product to equal a
permutation matrix and not only the identity matrix. We say then this is almost-
involutory since only one matrix and some additional routing is needed to compute
both matrix product with M and with its inverse.

Let m ≥ 2 be an integer. We consider F22m and the Frobenius automorphism,
θ(a) = a[1] = a2.

Let α be a normal element in F22m . Let

G =


α[0] α[2] · · · α[2m−1]

α[1] α[3] · · · α[0]

...
...

. . .
...

α[m−1] α[m] · · · α[m−2]

 (1)

The matrix G is a generator matrix of a [2m,m,m + 1] Gabidulin code. Let G1

be the m ×m-left part of the matrix: G1 =
(
α[2j+i]

)m−1,m−1
i=0,j=0

, and let G2 be the

m×m-right part of the matrix: G2 =
(
α[2j+i+1]

)m−1,m−1
i=0,j=0

. We construct the matrix

M as the redundant part of the generator matrix under systematic form without
column permutations (I | M) of the Gabidulin code generated by G. We have:

Theorem 4. Let M = G−11 G2, then

• M is a θ2-circulant MDS matrix

• MM[1] is a binary circulant permutation matrix, i.e.

MM[1] =


0 · · · 0 1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 ,

where M[1] consists of the matrix formed by the entries of M which are raised
to the power [1].

We need the following lemma. We denote here by δi,j a number which is equal to 1
if i = j and 0 otherwise.
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Lemma 1. Let β0, . . . , βm−1, be the first row of G−11 , then

1. G−11 =
(
β
[2i]
j

)m−1,m−1
i=0,j=0

2.
∑m−1
u=0 βuα

[u+2j] = δ0,j, for all j = 0, . . . ,m− 1

3.
∑m−1
u=0 α

[2u+i]β
[2u]
j = δi,j, for all i, j = 0, . . . ,m− 1

Proof. Let β0, . . . , βm−1, be the first row of G−11 , it satisfies trivially the second
item of the lemma. Raising this equation to the power [2], we obtain:∑m−1

u=0 β
[2]
u α[u+2(j+1)] = δ

[2]
0,j = δ0,j , ∀j = 0, . . . ,m− 1∑m−1

u=0 β
[2]
u α[u+2j] = δ

[2]
0,j−1 = δ1,j , ∀j = 0, . . . ,m− 1

where for j = m − 1, since α[2m] = α, the equality comes from α[u+2(j+1)] = α[u].

Therefore β
[2]
0 , . . . , β

[2]
m−1 is the second line of G−11 . By induction we prove the first

item of the lemma. The last item stems from the obvious relation G−11 G1 = I =
G1G

−1
1 .

Now we prove the theorem

Proof. Let M = G−11 G2. By construction, M is the redundant part of some genera-
tor matrix under systematic form of a Gabidulin code of length 2m and of dimension
m and is then MDS. From previous lemma, the generic term mi,j of M satisfies:

mi,j =
∑m−1
u=0 β

[2i]
u α[u+1+2j], for all i, j = 0, . . . ,m− 1

m
[2]
i,j =

∑m−1
u=0 β

[2(i+1)]
u α[u+1+2(j+1)], for all i, j = 0, . . . ,m− 1

This implies that mi+1,j+1 = m
[2]
i,j , therefore M is a θ2-circulant MDS matrix. It

remains to prove the last item of the theorem. The generic (i, j)th term of MM[1]

is:
m−1∑
k=0

m−1∑
u,u′=0

β[2i]
u α[u+2k]β

[2(k+1)]
u′ α[u′+2(j+1)] (2)

Note that the only term in the equation depending on k is α[u+1+2k]β
[2(k+1)]
u′ . There-

fore by summing on k and from the third item of lemma, we obtain:

m−1∑
k=0

α[u+2k]β
[2(k+1)]
u′ = δu′,u+1

Therefore, equation (2) becomes

m−1∑
u=0

β[2i]
u α[u+2(j+1)] =

(
m−1∑
u=0

βuα
[u+2(j−i+1)]

)[2i]

= δ0,(j−i+1).
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The previous theorem establishes that the inverse of M is M[1]P, where P is a
permutation matrix. From a hardware implementation point of view, permuting
bits consists in routing them, so implies no additional cost. If the chosen basis is
normal, then the product with M[1] can be implemented easily with the multipliers
implemented for M.

The direct construction of the MDS matrix in Mm(F22m) is summed up here:

1. Choose α a normal element in F22m .

2. Build the two matrices G1 =
(
α[2j+i]

)m−1,m−1
i=0,j=0

and G2 =
(
α[2j+i+1]

)m−1,m−1
i=0,j=0

.

3. M = G−11 G2

Example 6. Let F28 be defined by X8 + X4 + X3 + X2 + 1, and α a root of this
polynomial. The element α5 is normal and we consider the Gabidulin code over F28

with generator matrix
α5 α10 α20 α40 α80 α160 α65 α130

α10 α20 α40 α80 α160 α65 α130 α5

α20 α40 α80 α160 α65 α130 α5 α10

α40 α80 α160 α65 α130 α5 α10 α20


The extraction of the even columns for G1 and the odd columns for G2 gives

M = G−11 G2 =


α98 α116 α132 α232

α163 α137 α209 α18

α72 α142 α38 α71

α29 α33 α58 α152


and finally

MM[1] =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


6 Conclusion

Together with a general framework of circulant matrices, we give a new algebraic
proof of the non-existence of involutory circulant MDS matrices in fields of even
characteristics.
Relaxing circulancy by considering q-polynomials, we draw general necessary and
sufficient conditions for a q-polynomial to yield a MDS matrix or to yield an involu-
tory matrix. We have seen that it may allow designers to build circulant layers that
are MDS and involutory as in example 5.
Finally, relaxing also the involutory condition, we give a new direct construction of
quasi-circulant quasi-involutory MDS matrices from Gabidulin codes.
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