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Introduction

In this article, we analyze the following type of vortex vector field:

u : R N → R N , u (x) = x |x| for every x ∈ R N \ {0}
in dimension N ≥ 2 where | • | is the Euclidian norm in R N . This structure arises in many physical models such as micromagnetics, liquid crystals, superconductivity, elasticity. Clearly, u is smooth away from the origin: in fact, 0 is a topological singularity of degree one since the jacobian is det ∇u = V N δ 0 where δ 0 is the Dirac measure at the origin and V N is the volume of the unit ball in R N . Also, u is a curl-free unit-length vector field, i.e., |u | = 1 and ∇ × u = 0 in R N \ {0}.

(

Moreover, there is a stream function ψ : R N → R associated to u by the equation u = ∇ψ ; indeed, one may consider ψ as the distance function at the origin, i.e., ψ (x) = |x| for x ∈ R N and ψ represents the viscosity solution of the eikonal equation

|∇ψ | = 1
under an appropriate boundary condition at infinity (e.g., lim |x|→∞ (ψ (x) -|x|) = 0). Note that conversely, these properties characterize the vortex vector field: if u : R N → R N is a nonconstant vector field that is smooth away from the origin and satisfies (1) then u = ±u in R N . Indeed, this classically follows by the method of characteristics: the flow associated to u by ∂ t X(t, x) = u(X(t, x)) [START_REF] Aviles | On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields[END_REF] with the initial condition X(0, x) = x for x = 0 yields straight lines {X(t, x)} t given by X(t, x) = x + tu(x) along which u is constant, i.e., u(X(t, x)) = u(x). Since u is nonconstant and two characteristics can intersect only at the origin (which is the prescribed point-singularity of u), then every characteristic passes through the origin 1 and therefore, u coincides with u or -u . In a recent paper, Caffarelli-Crandall [3] proved this result under a weaker regularity hypothesis for the vector field u = ∇ψ: if ψ is assumed only pointwise differentiable away from a set S of vanishing Hausdorff H 1 -measure (i.e., H 1 (S) = 0) and |∇ψ| = 1 in R N \S, then ψ = ±ψ (up to a translation and an additive constant). We also refer to DiPerna-Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for weaker regularity assumptions on u in the framework of Sobolev spaces.

Our aim is to prove a kinetic characterization of the vortex vector field that does not assume any initial regularity on u. This kinetic formulation will characterize stream functions whose level sets are totally umbilical hypersurfaces in dimension N ≥ 3, i.e., either pieces of spheres or hyperplanes. In order to introduce the kinetic formulation of the vortex vector field, we start by presenting the case of dimension N = 2 and then we extend it to dimensions N ≥ 3.

Kinetic formulation in dimension N = 2

Let Ω ⊂ R 2 be an open set and u : Ω → R 2 be a Lebesgue measurable vector field that satisfies |u| = 1 a.e. in Ω and ∇ × u = 0 distributionally in Ω.

(

) 3 
The main feature of the kinetic formulation relies on the concept of weak characteristic for a nonsmooth vector field u. We start by noting that (2) has a proper meaning only if some notion of trace of u can be defined on curves {X(t, x)} t which in general is a consequence of the regularity assumption on u (see DiPerna-Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]). To overcome this difficulty, the following notion of "weak characteristic" is introduced for measurable vector fields u (see e.g. Lions-Perthame-Tadmor [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF],

Jabin-Perthame [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF]): for every direction ξ ∈ S 1 , one defines the function χ(•, ξ) : Ω → {0, 1} by

χ(x, ξ) = 1 for u(x) • ξ > 0, 0 for u(x) • ξ ≤ 0. (4) 
In the case of a smooth vector field u in a neighborhood of a point x 0 ∈ Ω, then χ(•, ξ) mimics the characteristic of u of normal direction ξ = (ξ 1 , ξ 2 ) (see Figure 1); formally, if ξ ⊥ = (-ξ 2 , ξ 1 ) = ±u(x 0 ), then either ∇χ(•, ξ) locally vanishes (if u is constant in a neighborhood of x 0 ), or ∇χ(•, ξ) is a measure concentrated on the characteristic {X(t, x 0 )} t given by [START_REF] Aviles | On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields[END_REF] with constant measure density ±ξ. In other words, we have the following "kinetic formulation" of the problem (see e.g., DeSimone-Kohn-Müller-Otto [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] or Jabin-Perthame [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF]):

Proposition 1 (Kinetic formulation in 2D) Let Ω ⊂ R2 be an open set and u : Ω → R 2 be a smooth vector field. If u satisfies (3) then

ξ ⊥ • ∇ x χ(•, ξ) = 0 distributionally in Ω for every ξ ∈ S 1 . ( 5 
)
We mention that the kinetic formulation [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] holds under the weaker Sobolev regularity W 1/p,p for p ∈ [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF]3] (see Ignat [START_REF] Ignat | Gradient vector fields with values into S 1[END_REF][START_REF] Ignat | Two-dimensional unit-length vector fields of vanishing divergence[END_REF][START_REF] Ignat | Singularities of divergence-free vector fields with values into S 1 or S 2 . Applications to micromagnetics[END_REF], DeLellis-Ignat [START_REF] De | A regularizing property of the 2D-eikonal equation[END_REF]). Note that the knowledge of χ(•, ξ) in every direction ξ ∈ S 1 determines completely a vector field u with |u| = 1 due to the averaging formula u(x) = 1 2 S 1 ξχ(x, ξ) dH 1 (ξ) for a.e. x ∈ Ω.

Thanks to [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], we deduce that the kinetic formulation [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] incorporates the fact that ∇ × u = 0 (see Proposition 5 below). Therefore, the curl free condition will be no longer mentioned in the following statements whenever ( 5) is assumed to hold true for unit length vector fields u.

The main question is whether the kinetic formulation (5) characterizes the vortex vector field in R 2 . First of all, the equation ( 5) induces a regularizing effect for Lebesgue measurable unit-length vector fields u. Indeed, classical "kinetic averaging lemma" (see e.g. Golse-Lions-Perthame-Sentis [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF]) shows that a measurable vector-field u : Ω → S 1 satisfying (5) belongs to H 1/2 loc (Ω) due to the averaging formula (6). 2 Moreover, Jabin-Otto-Perthame [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] improved the regularizing effect by showing that u is locally Lipschitz away from vortex point-singularities3 and u coincides with the vortex vector field around these singularities: Theorem 2 (Jabin-Otto-Perthame [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF]) Let Ω ⊂ R 2 be an open set and u : Ω → R 2 be a Lebesgue measurable vector field satisfying |u| = 1 a.e. in Ω together with the kinetic formulation [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]. Then u is locally Lipschitz continuous inside Ω except at a locally finite number of singular points. Moreover, every singular point P of u corresponds to a vortex singularity of topological degree one of u, i.e., there exists a sign γ = ±1 such that u(x) = γu (x -P ) for every x = P in any convex neighborhood of P in Ω.

In particular, if Ω = R 2 and u is nonconstant, then u coincides with u or -u (up to a translation).

This result leads to the following interpretation of the kinetic formulation in dimension N = 2: the equation ( 5) is a selection principle for the viscosity solutions of the eikonal equation |∇ψ| = 1 in the sense that the solutions ψ are smooth (more precisely, they belong to the Sobolev space W 2,∞ loc ) away from point-singularities. Clearly, these solutions are induced by the viscosity solutions of the eikonal equation under some appropriate boundary condition. Conversely, in the spirit of Caffarelli-Crandall [3], it is shown by Ignat [START_REF] Ignat | Two-dimensional unit-length vector fields of vanishing divergence[END_REF] and De Lellis-Ignat [START_REF] De | A regularizing property of the 2D-eikonal equation[END_REF] that for any vector field u satisfying (3) together with an initial Sobolev regularity W 1/p,p , p ∈ [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF]3] (i.e., excluding jump line singularities) then the kinetic formulation (5) holds true and therefore, one obtains the regularizing effect in Theorem 2.

Remark 3

The result of Jabin-Otto-Perthame [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] was motivated by the study of zero-energy states in a line-energy Ginzburg-Landau model in dimension 2. More precisely, one considers the energy functional

E ε : H 1 (Ω, R 2 ) → R + defined for ε > 0 as E ε (u ε ) = ε Ω |∇u ε | 2 dx + 1 ε Ω (1 -|u ε | 2 ) 2 dx + 1 ε ∇ × u ε 2 H -1 (Ω) , u ε ∈ H 1 (Ω, R 2 ), ( 7 
)
where Ω is a domain in R 2 and H -1 (Ω) is the dual of the Sobolev space H 1 0 (Ω). (We refer to [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Aviles | On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields[END_REF][START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF][START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF][START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF][START_REF] Jin | Singular perturbation and the energy of folds[END_REF][START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF] for the analysis of this model.) A vector field u : Ω → R 2 is called zero-energy state if there exists a family

{u ε ∈ H 1 (Ω, R 2 )} ε→0 satisfying u ε → u in L 1 (Ω) and E ε (u ε ) → 0 as ε → 0.
Obviously, a zero-energy state u satisfies (3). The result of Jabin-Otto-Perthame [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] shows that every zero-energy state u satisfies (5) and therefore, u shares the structure stated in Theorem 2.

Kinetic formulation in dimension N ≥ 3

Our main interest consists in defining a kinetic formulation for the vortex vector field in dimension N ≥ 3. Let Ω ⊂ R N be an open set and u : Ω → R N be a Lebesgue measurable vector field. For every direction ξ ∈ S N -1 , we consider the characteristic function χ(•, ξ) defined at (4) and we denote the orthogonal hyperplane to ξ by

ξ ⊥ := {v ∈ R N : v • ξ = 0}.

Definition 4 (Kinetic formulation)

We say that a measurable vector field u satisfies the kinetic formulation if the following equation holds true:

v • ∇ x χ(•, ξ) = 0 distributionally in Ω for every ξ ∈ S N -1 and v ∈ ξ ⊥ . ( 8 
)
Roughly speaking, [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] means that ∇ x χ(•, ξ) is a distribution pointing in direction ±ξ. Note that the kinetic formulation (8) only carries out the information of the direction of the vector field u (i.e., it gives no information of the Euclidean norm of u). Imposing the unit-length constraint, u will satisfy a similar averaging formula (6) which justifies that the curl-free constraint ∇ × u = 0 is incorporated in the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF].

Proposition 5 Let N ≥ 2, Ω ⊂ R N be an open set and u : Ω → R N be Lebesgue measurable with |u| = 1 a.e. in Ω. Then u(x) = 1 V N -1 S N -1 ξχ(x, ξ) dH N -1 (ξ) for a.e. x ∈ Ω, ( 9 
)
where V N -1 is the volume of the unit ball in R N -1 . Moreover, if u satisfies the kinetic formulation (8) then ∇ × u = 0 distributionally in Ω.

Remark 6

We highlight that Proposition 1 is false in dimension N ≥ 3, i.e., there are smooth curlfree vector fields with values into the unit sphere S N -1 that do not satisfy the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. For example, in dimension N = 3, considering the vortex-line vector field

u 0 (x) = (x 1 , x 2 , 0) x 2 1 + x 2 2 in Ω = {x = (x 1 , x 2 , x 3 ) ∈ R 3 : x 2 > 1},
then u 0 is smooth in Ω and satisfies (3). However, (8) fails. Indeed, let ξ = 1 √ 2 (1, 0, 1). Then u 0 (x) • ξ = 0 for x ∈ Ω is equivalent with x 1 = 0 and therefore,

∇ x χ(., ξ) = e 1 H 2 {x ∈ Ω : x 1 = 0}, where e 1 = (1, 0, 0). Now, taking v = 1 √ 2 (-1, 0, 1), we have v•ξ = 0 (i.e., v ∈ ξ ⊥ ) and v•∇ x χ(., ξ) = 0 in D (Ω).
As Remark 6 has already revealed, the kinetic equation ( 8) in dimension N ≥ 3 plays a different role than in dimension N = 2 because the gradient ∇χ(•, ξ) is expected to concentrate on hypersurfaces (not on the line characteristics of u). In fact, the geometric interpretation of (8) can be regarded in terms of the stream function ψ of a nonconstant vector field u = ∇ψ: the level sets of ψ are expected to be pieces of spheres of codimension one where the characteristics of u represent the normal directions to these spheres.

Theorem 7 Let N ≥ 3, Ω ⊂ R N be an open set and ψ : Ω → R be a smooth stream function such that u = ∇ψ satisfies the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Assume that |u| never vanishes on a level set {x ∈ Ω : ψ(x) = α} for some α ∈ R and let S be a connected component of {ψ = α}. Then S is locally a totally umbilical hypersurface, that is either a piece of a N -1 sphere or a piece of a hyperplane.

Note that Theorem 7 fails in dimension N = 2: a level set of a smooth stream function ψ of u = ∇ψ satisfying (3) (and therefore, u satisfies the kinetic formulation (5) by Proposition 1) does not have in general constant curvature. 4

Main results

Our main result shows that the kinetic formulation (8) is a characterization of the vortex vector field u in dimension N ≥ 3.

Theorem 8 Let N ≥ 3, Ω ⊂ R N be a connected open set and u : Ω → R N be a nonconstant Lebesgue measurable vector field satisfying |u| = 1 a.e. in Ω together with the kinetic equation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Then u coincides with the vortex vector field u or -u up to a translation.

Note that in dimension N = 2, this result is true for the domain Ω = R 2 , but it is in general false for other domains Ω where there exist nonconstant smooth vector fields u in Ω different than vortex vector fields that satisfy (3) and thus, (5) (by Proposition 1). The main difference in dimension N ≥ 3 is the following: if u is a smooth vector field with (3) that is neither constant nor a vortex vector field, then the kinetic formulation (8) doesn't hold for u (see Remark 6). Hence, in dimension N ≥ 3, the zero-energy states of E ε defined at [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF] does not satisfy in general the kinetic equation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Therefore, the kinetic formulation ( 8) is more rigid in dimension N ≥ 3 since it selects only the vortex vector fields as they correspond to smooth solutions of the eikonal equation with level sets of constant sectional curvature (by Theorem 7).

Let us explain the strategy of the proof of Theorem 8. The key point lies on a relation of order of the level sets of the stream function associated to u: for every two Lebesgue points x, y ∈ Ω of u such that the segment [x, y] ⊂ Ω and for every direction ξ ∈ S N -1 orthogonal to xy, one has

u(x) • ξ > 0 ⇒ u(y) • ξ ≥ 0.
The next step consists in defining the trace of u on each segment Σ ⊂ Ω; more precisely, similar to the procedure of Jabin-Otto-Perthame [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF], there exists a trace ũ ∈ L ∞ (Σ, S N -1 ) of u such that u(P ) = ũ(P ) for each Lebesgue point P ∈ Σ of u. Moreover, if the trace ũ of u is collinear with the segment Σ at some Lebesgue point, then ũ is H 1 -almost everywhere collinear with Σ (which coincides with the classical principle of characteristics for smooth vector fields u). The final step consists in proving that every two characteristics are coplanar. Then the conclusion follows by the following geometrical fact specific to dimension N ≥ 3: Proposition 9 Let N ≥ 3 and D be a set of lines in R N such that every two lines of D are coplanar, but D is not planar (i.e., there is no two-dimesional plane containing D). Then either all lines of D are collinear, or all lines of D pass through a same point (that is a vortex point).

In view of Theorem 8, it is natural to ask if one can characterize other type of unit-length curl-free vector fields u by weakening the kinetic formulation (8), in particular, vector fields having a vortex-line singularity. In dimension N ≥ 3, the prototype of a vortex-line vector field is given by u 0 (x , x N ) = ∇|x | where x = (x , x N ), x = (x 1 , . . . , x N -1 ); clearly, u 0 is smooth away from the vortex-line {x ∈ R N : x = 0} where (3) holds true. Denoting

E := {ξ ∈ S N -1 : ξ N = 0} = S N -2 × {0},
within the notation (4), we have that u 0 satisfies the following kinetic formulation in Ω = R N :

∀ξ ∈ E, ∀v ∈ ξ ⊥ , v • ∇ x χ(., ξ) = 0 in D (Ω). ( 10 
)
Note that (10) is a weakened form of (8): the quantity v • ∇ x χ(., ξ) vanishes for directions ξ ∈ E (and v ∈ ξ ⊥ ) and fails to vanish for H N -1 -a.e. direction ξ ∈ S N -1 . As opposed to (8) (in view of ( 9)), the kinetic formulation [START_REF] Ignat | Gradient vector fields with values into S 1[END_REF] does not force a unit-length vector field u to be curl-free; it only implies that

∇ × u |u | = 0 in {|u | = 0} = {u = ±e N }
where e N = (0, . . . , 0, 1), u = (u 1 , . . . , u N -1 ) and ∇ = (∂ 1 , . . . , ∂ N -1 ). Since we look for a characterization of vortex-line vector fields (that are in particular curl-free), we will impose that

∂ k u N = ∂ N u k in Ω, for k = 1, . . . , N -1. ( 11 
)
We will prove the following result:

Theorem 10 Let N ≥ 4, Ω ⊂ R N be
an open set and u : Ω → R N be a Lebesgue measurable vector field satisfying |u| = 1 a.e. on Ω together with [START_REF] Ignat | Gradient vector fields with values into S 1[END_REF] and [START_REF] Ignat | Singularities of divergence-free vector fields with values into S 1 or S 2 . Applications to micromagnetics[END_REF]. Then in every ball included in {x ∈ Ω :

u(x) = ±e N }, there exists a stream function ψ = ψ(α, β) solving the eikonal equation in dimension 2 such that u(x) = ∇ x [ψ(α, β)]
where

1) either α = |x -P | and β = x N for some point P ∈ R N -1 ; 2) or α = w • x and β = x N for some vector w ∈ S N -2 .
Therefore, the weakened kinetic formulation (10) (together with [START_REF] Ignat | Singularities of divergence-free vector fields with values into S 1 or S 2 . Applications to micromagnetics[END_REF]) is not enough to select vortex-line vector fields which correspond to the stream function ψ(α, β) = ±α in the case 1) of Theorem 10. Similar results to Theorem 10 hold for similar kinetic formulations corresponding to vector fields having vortex-sheets singularities of dimension

k in R N with N ≥ k + 3.
The outline of this paper is as follows: in Section 3, we characterize the level sets of smooth stream functions associated to vector fields that satisfy the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. In particular, we prove Proposition 1 and Theorem 7. Section 4 is devoted to prove fine properties of Lebesgue points of u needed in Section 5 where the notion of trace on lines for a vector field u satisfying (8) is defined. Section 6 is the core of this paper: using this notion of trace and the geometric arguments of Proposition 9, we prove our main result in Theorem 8. The last section deals with the study of the weakened kinetic formulation [START_REF] Ignat | Gradient vector fields with values into S 1[END_REF].

Level sets of the stream function

This section is devoted to the study of the level sets of smooth stream functions ψ associated to vector fields u = ∇ψ satisfying [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. We start by proving that |∇ψ| is locally constant on each level set of ψ.

Lemma 11 Let N ≥ 2, Ω ⊂ R N be
an open set and ψ : Ω → R be a smooth stream function such that u = ∇ψ satisfies the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Assume that |u| never vanishes on a level set {x ∈ Ω : ψ(x) = α} for some α ∈ R and let S be a connected component of {ψ = α}. Then |u| is constant on S. Moreover, there exists a neighborhood ω of S, a smooth solution ψ : ω → R of the eikonal equation and a diffeomorphism t → F (t) such that ψ = F ( ψ) in ω (in particular, ∇ ψ satisfies (8)).

Proof. Since |u| = 0 on S and u is smooth in Ω, we can define

v = u |u| in a neighborhood of S.
For simplicity of the writing, we suppose that Ω is this neighborhood, i.e., |u| = 0 in Ω. Then v satisfies ( 8) because u satisfies it, too; v being smooth in Ω, then 5 Proposition 5 implies ∇ × v = 0 in Ω. As a consequence, in any simply connected domain ω ⊂ Ω, the Poincaré lemma yields the existence of a smooth function

ψ such that v = u |u| = ∇ ψ in ω, i.e., ∇ψ = u = |u|v = |u|∇ ψ in ω.
Therefore, ψ and ψ have the same level sets in ω. W.l.o.g, we may assume that ψ = 0 on ω ∩ S. Now, for every P ∈ ω ∩ S, we consider the flow associated to v:

Ẋ(P , t) = ∇ ψ(X(P , t)) X(P , 0) = P . ( 12 
)
Call I P the maximal interval where the solution X(P , .) exists. Obviously, the flow is unique and smooth satisfying the following:

Ẍ(P , t) = ∇ 2 ψ(X) • Ẋ = ∇ 2 ψ(X) • ∇ ψ(X) = 0 in I P because ∇ 2 ψ is a symmetric matrix and |∇ ψ| = 1 in ω. Consequently, Ẋ(P , •) is constant in I P so that ∇ ψ(X(P , t)) = ∇ ψ(P ), d dt [ ψ(X(P , t
))] = 1 and X(P , t) = P + t∇ ψ(P ). Therefore, since ψ = 0 on ω ∩ S, we have: ψ(X(P , t)) = t for all P ∈ ω ∩ S and t ∈ I P .

Identifying the level sets of ψ (and of ψ, too) using the flow, i.e., { ψ = t} = {X(P , t) : P ∈ ω ∩S}, we can define F (t) := ψ(X(P , t)), for P ∈ ω ∩ S, t ∈ I P .

The function F is a diffeomorphism: F is smooth (because ψ and X are smooth, too) and we have

d dt F (t) = ∇ψ(X(P , t)) • Ẋ(P , t) (12) = ∇ψ(X(P , t)) • ∇ψ |∇ψ| (X(P , t)) = |u|(X(P , t)) = 0.
In particular, |u| is constant on

{ ψ = 0} = {ψ = F (0)} = ω ∩ S.
Since ω was arbitrarily chosen, we deduce that |u| is locally constant on S; because S is connected, it follows that |u| is constant on S. Since the flow {X(P , t) : P ∈ S, t ∈ I P } covers a neighborhood of S, the last statement of the lemma follows, too.

The case of dimension N = 2

In the special case of dimension N = 2, we start by proving that every smooth curl-free vector field of unit length satisfies the kinetic formulation [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]. This result can be found already in the works of DeSimone-Kohn-Müller-Otto [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] or Jabin-Perthame [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF]. For completeness of the paper, we will present two easy and self-contained proofs. The first one is based on the geometry of the flow (2) (as heuristically exposed at Section 1), while the second proof is based on the concept of entropy introduced in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF].

Proof of Proposition 1: First method. We can assume that ξ = e 1 and ξ ⊥ = e 2 (otherwise, one considers a rotation R ∈ SO [START_REF] Aviles | On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields[END_REF] such that e 1 = Rξ and ũ(x) := Ru(R -1 x) in a neighborhood of a point x ∈ Ω). Naturally, Ω can be written as a countable reunion of squares whose edges are parallel with e 1 and e 2 . Therefore, using a partition of unity, it is enough to prove the statement for Ω = (-1, 1) 2 :

∀ϕ ∈ C ∞ c (Ω), 0 = Ω ϕ ξ ⊥ • ∇ x χ(x, ξ) dx ξ=e1 = Ω ϕ∂ 2 χ(x, e 1 ) dx = - Ω∩{u1>0} ∂ 2 ϕ dx.
For that, we consider the flow (2) and by the proof of Lemma 11, we have that for every x ∈ Ω, {X(t, x)} t is a straight line given by X(t, x) = x + tu(x) and u(X(t, x)) = u(x) for all t. Since u is smooth, there is no crossing between two characteristics in Ω. We claim that:

Ω ∩ {u 1 > 0} = k∈K A k ,
where

{A k } k∈K is a (at most) countable disjoint set of rectangles of type (a k , b k ) × (-1, 1) ⊂ Ω = (-1, 1) 2 . Indeed, if x ∈ Ω∩∂{u 1 > 0} then u 1 (x) = 0 and u(x) e 2 : therefore, for all t, X(t, x) e 2 . So the set Ω ∩ ∂{u 1 > 0} is a (at most) countable set of vertical segments {x 1 } × (-1, 1) inside Ω with x 1 ∈ {a k , b k } k∈K ⊂ [-1, 1], and the claim is proved. Now, for ϕ ∈ C ∞ c (Ω), Ω∩{u1>0} ∂ 2 ϕ = k A k ∂ 2 ϕ = k b k a k 1 -1 ∂ 2 ϕ = 0,
because ∂ 2 ϕ can be seen as a signed Radon measure for ϕ ∈ C ∞ c (Ω) and the proposition is proved.

Proof of Proposition 1: Second method. The following proof links the kinetic formulation [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] with the theory of entropy solutions for scalar conservation laws (see e.g., [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]). Indeed, if u is a smooth vector field satisfying (3), then formally, u 1 = -h(u 2 ) := ± 1u 2 2 so that ∇ × u = 0 can be rewritten as:

∂ 1 u 2 + ∂ 2 [h(u 2 )] = 0; (13) 
thus, u 2 can be formally interpreted as a solution of the above scalar conservation law in the variables (time, space) = (x 1 , x 2 ). Based on the concept of entropy solution of ( 13) introduced via the pairs (entropy, entropy-flux), the following applications (called "elementary entropies") were used in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]. More precisely, for every ξ ∈ S 1 , Φ ξ : S 1 → R 2 is defined as

for z ∈ S 1 , Φ ξ (z) = ξ ⊥ for z • ξ > 0, 0 f or z • ξ ≤ 0.
Then the kinetic formulation (5) writes as

∇ • Φ ξ (u) = 0 distributionally in Ω. ( 14 
)
In order to prove ( 14), we will approximate Φ ξ by a sequence of smooth maps

{Φ k : S 1 → R 2 } such that {Φ k } is uniformly bounded, lim k Φ k (z) = Φ ξ (z)
for every z ∈ S 1 and Φ k satisfies ( 14) for every k. Following the ideas in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] (see also [START_REF] Ignat | Entropy method for line-energies[END_REF]), this smoothing result comes from the following observation: there exists a (unique) 2π-periodic piecewise

C 1 function ϕ : R → R associated to Φ ξ via the equation Φ ξ (z) = -ϕ (θ)z + ϕ(θ)z ⊥ for every z = e iθ ∈ S 1 . ( 15 
)
In fact, ϕ is given by:

ϕ(θ) = Φ ξ (z)•z ⊥ = ξ•z1 {z•ξ>0} = cos(θ-θ 0 )1 {θ-θ0∈(-π/2,π/2)} for z = e iθ , θ ∈ (-π+θ 0 , π+θ 0 ),
where ξ = e iθ0 ∈ S 1 with θ 0 ∈ (-π, π]. In [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF], the distributional derivative ϕ is given by

ϕ (θ) = -sin(θ -θ 0 )1 {θ-θ0∈(-π/2,π/2)} for θ ∈ (-π + θ 0 , π + θ 0 ). Now, one regularizes ϕ by 2π-periodic functions ϕ k ∈ C ∞ (R) that are uniformly bounded in W 1,∞ (R) and lim k ϕ k (θ) = ϕ(θ) as well as lim k ϕ k (θ) = ϕ (θ) for every θ ∈ R.
Then we define Φ k as in [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF] for the functions ϕ k :

Φ k (z) = -ϕ k (θ)z + ϕ k (θ)z ⊥ for z = e iθ ∈ S 1 .
Let us now check that {Φ k } k are indeed the desired (smooth) approximating maps of Φ ξ . For that, first, note that differentiating the above equation defining Φ k , one obtains that

∂Φ k ∂θ (z) • z ⊥ = 0 for every z = e iθ ∈ S 1 . ( 16 
)
Next, we prove that Φ k satisfies [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF]. Indeed, we can locally write u = e iΘ in every ball B ⊂ Ω for some smooth lifting Θ : B → R that satisfies

∇Θ • u = ∇ × u = 0 in B.
This means that ∇Θ = λu ⊥ in B for some smooth function λ : B → R. Therefore, it follows

∇ • Φ k (u) = ∂Φ k ∂θ (e iΘ ) • ∇Θ = λ ∂Φ k ∂θ (u) • u ⊥ (16) = 0 in B.
Passing at the limit k → ∞, the dominated convergence theorem yields:

B Φ ξ (u) • ∇ζ dx = 0 for every ζ ∈ C ∞ c (B).
The conclusion is now straightforward.

Note that another interest of this second method is that it can be adapted to vector field u ∈ W 1 p ,p for p ∈ [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF]3]. For such vector fields, there is a priori no trace of u on a segment so that the flow (2) does not have a proper meaning anymore; see [START_REF] Ignat | Two-dimensional unit-length vector fields of vanishing divergence[END_REF] and [START_REF] De | A regularizing property of the 2D-eikonal equation[END_REF] for more details.

The case of dimension N ≥ 3

The aim of this subsection is to prove Theorem 7. We divide the proof in several steps, each step being stated as a lemma.

Lemma 12

Let Ω ⊂ R N be an open set and u : Ω → R N be a smooth vector field satisfying [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. We denote by

Ω := {x ∈ Ω : u(x) = 0, ∇ u |u| (x) = 0}
and for every x ∈ Ω,

S x := u(x) ⊥ ∩ S N -1 = {ξ ∈ S N -1 : u(x) • ξ = 0} ≈ S N -2 .
Then we have for all x ∈ Ω and for H N -2 -a.e. ξ ∈ S x that the set

{y ∈ Ω : u(y) • ξ = 0} = Ω ∩ ∂{u • ξ > 0}
is a hyperplane around x that is oriented by the normal vector ξ. Moreover,

∇ x χ(., ξ) = ±ξH N -1 ∂{u • ξ > 0} locally around x. ( 17 
)
Proof. As in the proof of Lemma 11, we set v = u |u| on Ω. Then v is a smooth unit-length vector field in Ω that satisfies [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] (because u satisfies it, too) and by Proposition 5, we have that v is curl-free in Ω. Let x ∈ Ω, in particular, ∇v(x) = 0. First, we show that {y ∈ Ω :

u(y) • ξ = 0} is a smooth N -1 manifold around x. Since v is curl-free, we know that ∇v(x) = (∂ j v i (x)) i,j is symmetric. By differentiating the relation |v(x)| = 1, it follows: ∇v(x) T v(x) = ∇v(x)v(x) = 0.
That means v(x) ∈ Ker ∇v(x). We will prove that

H N -2 (S x ∩ Ker ∇v(x)) = 0.
Assume by contradiction that S x ∩ Ker ∇v(x) has positive H N -2 -measure. Since Ker ∇v(x) is a linear space, then one would have that S x ⊂ Ker ∇v(x), i.e., ∇v(x)ξ = 0 for all ξ ∈ S x . Moreover, since v(x) ∈ Ker ∇v(x) and S x ⊂ v(x) ⊥ , it follows that ∇v(x) = 0 which is a contradiction with the assumption ∇v(x) = 0. Therefore, ∇v(x)ξ = 0 for H N -2 -a.e. ξ ∈ S x and {y ∈ Ω : v(y)

• ξ = 0} = {y ∈ Ω : u(y) • ξ = 0} is a smooth N -1 manifold around x.
It remains to prove that this manifold is a piece of hyperplane oriented by ξ where (17) holds true. For that, set ϕ ∈ C ∞ c ( Ω, R N ) be supported in a ball B ⊂ Ω centered at x. By the Gauss theorem, we have

-∇ x χ(., ξ), ϕ = B ∇ • ϕ(y)χ(y, ξ) dy = {y∈B : u(y)•ξ>0} ∇ • ϕ dy = B∩∂{u•ξ>0} ϕ • ν dH N -1 (y)
where ν is the unit outer normal vector at the N -1 manifold ∂{u(y) • ξ > 0}. This proves that locally around x, we have

∇ x χ(x, ξ) = -νH N -1 B ∩ ∂{u • ξ > 0} .
Because of (8), we know that ∇ x χ(x, ξ) and ξ are collinear. Since ν is smooth on

B ∩ ∂{u • ξ > 0}, this implies ν = ξ or ν = -ξ on B ∩ ∂{u • ξ > 0}.
The conclusion is now straightforward.

We now state the following result which is the key point in proving Theorem 7.

Lemma 13

Under the hypothesis of Theorem 7, every point x ∈ S is an umbilical point, i.e., there exists λ(x) ∈ R such that:

Du(x) = λ(x)Id: T x S -→ R N -1
where u is proportional with the Gauss map on S, T x S is the tangent plane at the hypersurface S at x and Id is the identity matrix.

Proof. Recall that |u| is constant on S by Lemma 11 so that u/|u| is the normal vector (i.e., the Gauss map) at the hypersurface S. Therefore,

D u |u| S = 1 |u| D u S in S,
where D(u S ) is the differential of u restricted to S as a map with values into the sphere S N -1 (up to the multiplicative constant |u|). As in the proof of Lemmas 11 and 12, we may assume that u never vanishes in Ω and set v = u |u| in Ω. Then v is a smooth unit-length vector field in Ω that satisfies [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] and by Proposition 5, v is curl-free so that locally v = ∇ ψ for a smooth stream function ψ. Since ∇ψ = u = |u|∇ ψ, we know that ψ and ψ have the same level sets, in particular, S is a level set of ψ. Therefore, replacing u by v, we may assume in the following that |u| = 1 in Ω.

Let x ∈ S. We want to show that x is an umbilical point of S. This is clear if ∇u(x) = 0. Therefore, we assume in the following that x ∈ Ω ∩ S defined at Lemma 12, i.e., ∇u(x) = 0. Since (9) holds for the unit-length vector field u, we obtain by differentiating [START_REF] Noel | Notes on differential geometry[END_REF]:

∇u(x) = 1 V N -1 S N -1 ξ ⊗ ∇ x χ(x, ξ),
where V N -1 is the volume of the unit ball in R N -1 . The above integrant is to be understood as an absolutely continuous measure with respect to the Hausdorff H N -2 measure concentrated on the set S x (defined at Lemma 12). For that, we check first that the support of the integrand lies on S x . Indeed, if ξ ∈ S N -1 with u(x)

• ξ = 0, then ∇ x χ(•, ξ) = 0 in the open set {u • ξ = 0} around x.
Therefore, the integrand has support on the set ξ ∈ S x where (17) holds true for H N -2 -a.e. ξ ∈ S x , the density of the measure being equal with ±ξ ⊗ ξH N -2 S x . Since S x ⊂ u(x) ⊥ = T x S, the density ξ ⊗ ξ with ξ ∈ S x already identifies ∇u(x) ≡ Du(x). Next we compute this quantity by exploring the sign of the density ±ξ ⊗ ξ:

Case N = 3. We show that there are at most two nonzero vectors ±ξ 0 ∈ S x ≈ S 1 such that ∇u(x)ξ 0 = 0. Assume by contradiction that there are more than two vectors as above, i.e., there exists another nonzero vector ξ0 = ±ξ 0 in S x such that ∇u(x)ξ 0 = ∇u(x) ξ0 = 0. Because of |u| = 1, we know that ∇u(x)u(x) = 0. Since the set {u(x), ξ 0 , ξ0 } spans R 3 , it implies ∇u(x) = 0 which contradicts the hypothesis x ∈ Ω. Therefore, ∇u(x)ξ = 0 for every ξ ∈ S x \ {±ξ 0 } (or for every ξ ∈ S x if ξ 0 does not exist) and by Lemma 12, ∂{u(y) • ξ > 0} is a smooth surface around x oriented by ξ. Let C 1 and C 2 be the two connected components of S x \ {±ξ 0 } (convention:

C 1 = C 2 = S
x in the case ∇u(x)ξ = 0 for every ξ ∈ S x ). For j = 1, 2, we associate to a point ξ ∈ C j the unit outer normal vector field ν(ξ) ∈ {±ξ} at the plane ∂{u • ξ > 0} around x. Since the map ξ ∈ C j → ν(ξ) is smooth (by the implicit function theorem) and C j is connected, we deduce that ν is constant on C j . Thus it follows that

π∇u(x) = γ 1 C1 ξ ⊗ ξ dξ + γ 2 C2 ξ ⊗ ξ dξ, with V 2 = π and γ 1,2 ∈ {±1} (with the convention that γ 1 = γ 2 = ± 1 2 if C 1 = C 2 = S x ).
It remains to show that Cj ξ ⊗ ξ dξ is proportional with the identity matrix Id, j = 1, 2. Up to a rotation, we can suppose that u(x) = e 3 and

C 1 = {ξ ∈ S 1 × {0} : ξ 2 > 0} ≈ {(cos θ, sin θ) : θ ∈ (0, π)}. We have C1 ξ ⊗ ξ dξ ≈ π 0 cos 2 θ cos θ sin θ cos θ sin θ sin 2 θ dθ = π 2 Id (the conclusion follows similarly if C 1 = C 2 = S x ).
Case N > 3. Let C = Ker ∇u(x) ∩ S x . We know that u(x) ∈ Ker ∇u(x) and u(x) is orthogonal at S x which is isomorphic to S N -2 . Since ∇u(x) = 0 (i.e., the dimension Ker ∇u(x) is at most N -1), we have two situations (as in the case N = 3):

• either dim Ker ∇u(x) = N -1 leading to C isomorphic to S N -3 . In this situation, S x \ C is the partition of two connected sets C 1 and C 2 that are isomorphic to the half sphere

S N -2 + = {ξ = (ξ 1 , . . . , ξ N -1 ) ∈ S N -2 : ξ 1 > 0}.
The same argument as in the case N = 3 shows that the sign of the unit outer normal field ν(ξ) ∈ {±ξ} at the hyperplane ∂{u • ξ > 0} is constant when ξ covers C j , j = 1, 2, so that

V N -1 ∇u(x) = γ 1 C1 ξ ⊗ ξ dξ + γ 2 C2 ξ ⊗ ξ dξ, with γ 1 , γ 2 ∈ {±1}.
• or dim Ker ∇u(x) ≤ N -2 leading to the manifold C of dimension ≤ N -4. In other words, S x \ C is connected and covers a.e. point of S x . The above formula holds for C 1 = C 2 = S x and γ 1 = γ 2 = ± 1 2 . We now compute ∇u(x). For that, we may assume (up to a rotation) that u(x) = e N and C 1 = S N -2

+ . Since S N -2 + is invariant under the change of coordinate ξ d → -ξ d for some 2 ≤ d ≤ N -1, we have for every 1 ≤ j ≤ N -1 with j = d: S N -2 + ξ j ξ d dξ = - S N -2 + ξ j ξ d dξ = 0, leading to S N -2 + ξ ⊗ ξ dξ = S N -2 +     ξ 2 1 0 0 . . . 0 0 ξ 2 N -1     dξ = H N -2 (S N -2 ) 2(N -1) Id.
This concludes the proof.

Proof of Theorem 7. It is a consequence of Lemma 13 and a classical result in differential geometry for totally umbilical hypersurfaces (see e.g. [START_REF] Noel | Notes on differential geometry[END_REF] Ch. 2, page 36).

We have the following consequence of Lemma 11 and Theorem 8 (whose proof is independent of this Section): Corollary 14 Under the hypothesis of Theorem 7, there exists a neighborhood ω of S and a diffeomorphism t → F (t) such that either ψ = F (|x -P |) for every x ∈ ω for a point P ∈ R N , or ψ = F (x • ξ) for every x ∈ ω for a vector ξ ∈ S N -1 .

Several properties on the set of Lebesgue points

Let Ω ⊂ R N be an open set and u ∈ L 1 loc (Ω, R N ). Recall that x 0 ∈ Ω is a Lebesgue point of u if there exists a vector u 0 ∈ R N such that:

lim r→0 Br (x0) - |u(x) -u 0 | dx = 0. ( 18 
)
In this case, we write u(x 0 ) = u 0 which is the limit of the averageof u on the ball B r (x 0 ) as r → 0. We denote by Leb ⊂ Ω the set of Lebesgue points of u. It is well known that H N (Ω \ Leb) = 0 and one can replace the ball B r (x 0 ) by the cube x 0 + (-r, r) N in the definition [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF] to recover the same set of Lebesgue points.

Proof of Proposition 5. We start by proving (9) for a fixed vector u(x) ∈ S N -1 . By carrying out a rotation if necessary, we may assume that u(x) = e N . Then we compute

S N -1 ξχ(x, ξ) dH N -1 (ξ) = S N -1 ∩{ξN >0} ξ dH N -1 (ξ) = S N -1 ∩{ξN >0} ξ N dH N -1 (ξ) e N
because the integrand is odd in the variables ξ j for j = 1, . . . , N -1. Denoting by ξ := (ξ 1 , . . . , ξ N -1 ), the half sphere S N -1 ∩ {ξ N > 0} is the graph of the map ξ ∈ B N -1 → ξ N = 1 -|ξ | 2 so that we have:

S N -1 ∩{ξN >0} ξ N dH N -1 (ξ) = B N -1 1 -|ξ | 2 dξ 1 -|ξ | 2 = H N -1 (B N -1 ) = V N -1 .
The second statement naturally reduces (by a slicing argument) to the case of dimension N = 2.

In that case, for any

ϕ ∈ C ∞ c (Ω), we have ∇ × u = ∂ 1 u 2 -∂ 2 u 1 and Ω ϕ∇ × u dx = - Ω ∇ ⊥ ϕ • u dx (6) = 1 2 Ω S 1 ∇ϕ • ξ ⊥ χ(x, ξ) dH 1 (ξ) dx = 1 2 S 1 dH 1 (ξ) Ω ∇ϕ • ξ ⊥ χ(x, ξ) dx (5) = 0.
The following lemma yields the relation between the Lebesgue points of u and Lebesgue points of the functions {χ(., ξ)} ξ∈S N -1 defined at (4).

Lemma 15

Let Ω ⊂ R N be an open set and u ∈ L 1 loc (Ω, R N ).

(i) If |u| = 1 a.e. in Ω and x 0 is a Lebesgue point of χ(., ξ) for almost every ξ ∈ S N -1 , then x 0 is a Lebesgue point of u and (9) holds at x 0 .

(ii) Let x 0 be a Lebesgue point of u and ξ ∈ S N -1 . If u(x 0 ) • ξ = 0, then x 0 is a Lebesgue point of χ(., ξ). Conversely, if x 0 is a Lebesgue point of χ(., ξ) with χ(x 0 , ξ) = 1 (resp. = 0), then u(x 0 ) • ξ ≥ 0 (resp. ≤ 0).

Proof.

For proving (i), we apply Proposition 5. Indeed, if x 0 is a Lebesgue point of χ(., ξ) for a.e. ξ ∈ S N -1 , then Fubini's theorem implies:

Br(x0) - u(x) - 1 V N -1 S N -1 ξχ(x 0 , ξ) dH N -1 (ξ) dx (9) ≤ 1 V N -1 Br (x0) - S N -1 ξ χ(x, ξ) -χ(x 0 , ξ) dH N -1 (ξ) dx ≤ 1 V N -1 S N -1 Br (x0) - |χ(x, ξ) -χ(x 0 , ξ)| dx dH N -1 (ξ) r→0 -→ 0,
where we used the dominated convergence theorem.

Next we prove (ii). We treat the case u(x 0 ) • ξ > 0. For that, we have:

Br(x0) χ(x, ξ) -1 dx = 1 u(x 0 ) • ξ Br(x0)∩{u•ξ≤0} u(x 0 ) • ξ dx ≤ 1 u(x 0 ) • ξ Br(x0)∩{u•ξ≤0} (u(x 0 ) • ξ -u(x) • ξ) ≥u(x0)•ξ>0 dx ≤ 1 u(x 0 ) • ξ Br(x0) |u(x) -u(x 0 )| dx.
Since x 0 is a Lebesgue point of u, it follows that x 0 is a Lebesgue point for χ(•, ξ) with χ(x 0 , ξ) = 1. The case u(x 0 ) • ξ < 0 can be shown similarly and obtain χ(x 0 , ξ) = 0. The last statement is a direct consequence of the above lines (using a contradiction argument).

Remark 16 a) Note that the condition u(x 0 ) • ξ = 0 is essential in Lemma 15 (ii). Indeed, if one considers the vortex vector field u(x) = x |x| for x ∈ R N \ {0}, then for every ξ ∈ S N -1 , any point

x 0 ∈ ξ ⊥ \ {0} is a Lebesgue point of u (because u is smooth around x 0 ) and satisfies u(x 0 ) • ξ = 0, but x 0 is not a Lebesgue point of χ(•, ξ) because Br(x0) - χ(x, ξ) - Br (x0) - χ(•, ξ) dx = Br (x0) - 1 2 dx 0 as r → 0,
where we used that

Br (x0) - χ(x, ξ) dx = H N ({x ∈ B r (x 0 ) : x • ξ > 0}) H N (B r (x 0 )) x=y+x0 = H N ({y ∈ B r (0) : y • ξ > 0}) H N (B r (0)) = 1 2 . 
b) Note that in Lemma 15 (ii), one cannot conclude in general that u(x 0 ) • ξ > 0 provided that χ(x 0 , ξ) = 1. Indeed, consider for example ξ = e N , u(x)

• ξ = u N (x) := |x| for x ∈ R N and set x 0 = 0; then χ(•, ξ) = 1 in R N \ {x 0 }, x 0 is a Lebesgue point of u N and χ(•, ξ) with χ(x 0 , ξ) = 1, but u N (x 0 ) = 0.
We now prove one of the key tools in the proof of Theorem 8 that mimics the relation of ordering of level sets of a stream function when (8) holds true. It is a generalization of Proposition 3.1 in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] to the case of dimension N :

Proposition 17 (Ordering) Let N ≥ 2, Ω ⊂ R N be an open set and u ∈ L 1 loc (Ω, R N
) satisfying the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Assume that y, z ∈ Leb are two different Lebesgue points of u such that the closed segment [yz] is included in Ω. Then for every direction ξ ∈ S N -1 with ξ ∈ (zy) ⊥ , we have: 

u(y) • ξ > 0 (resp. < 0) ⇒ u(z) • ξ≥ 0 (resp. ≤ 0); (19 
χ(y, ξ) = χ(y + v, ξ). ( 20 
)
Proof. First, we consider the case u(y) • ξ > 0. By Lemma 15 (ii), y is a Lebesgue point of χ(., ξ) and χ(y, ξ) = 1. Let

{ρ ε (•) = 1 ε N ρ( • ε )} ε>0
be a standard family of mollifiers where ρ is a nonnegative radial smooth function having as support the unit ball supp ρ = B 1 ⊂ R N and B1 ρ dx = 1. Set the convoluted function

χ ε := ρ ε * χ(., ξ)
in a neighborhood ω ⊂ Ω of the segment [yz] for ε > 0 sufficiently small. Then χ ε is smooth in ω and for every Lebesgue point x ∈ ω of χ(., ξ) we have χ ε (x) → χ(x, ξ) as ε → 0 because

|χ ε (x) -χ(x, ξ)| = Bε(0) χ(x -x, ξ) -χ(x, ξ) ρ ε (x) dx ≤ sup ρ ε N Bε(0) |χ(x -x, ξ) -χ(x, ξ)| dx ≤ C Bε(x) - |χ(ỹ, ξ) -χ(x, ξ)| dỹ ε→0 → 0.
In particular, lim ε→0 χ ε (y

) = χ(y, ξ) = 1. Let v = z -y. We show that χ(y + v, ξ) = 1. For that, we have v ∈ ξ ⊥ and v • ∇ x χ ε = v • ∇ x χ(•, ξ) * ρ ε (8)
= 0 in ω.

Then

χ ε (y + v) -χ ε (y) = 1 0 v • ∇ x χ ε (y + tv) dt = 0 so that lim ε→0 χ ε (z) = lim ε→0 χ ε (y) = χ(y, ξ) = 1. This implies that u(z) • ξ ≥ 0.
Assume by contradiction that u(z) • ξ < 0. By Lemma 15 ii), z is a Lebesgue point of χ(., ξ) with χ(z, ξ) = 0 so that lim ε→0 χ ε (z) = χ(z, ξ) = 0 which contradicts the above statement. We prove now the following:

Claim: If χ ε (z) → 1 as ε → 0, then z is a Lebesgue point of χ(., ξ) with χ(z, ξ) = 1.
Proof of Claim. Let {ε k } be a sequence converging to 0 as k → ∞. For k large enough, we define

f k : B 1 → {0, 1} by f k (x) = χ(z -ε k x, ξ) for every x ∈ B 1 . Then the sequence {f k } is bounded in L 2 (B 1
) and up to a subsequence, f k f weakly in L 2 (B 1 ) where the limit f : B 1 → R has the range inside [0, 1]. Therefore, we have for our smooth mollifier ρ ∈ L 2 (B 1 ) that

B1 ρ f k dx → B1 ρ f dx as k → ∞.
Note now that by the change of variable x = zε k x we obtain by our assumption:

B1 ρ(x)f k (x) dx = Bε k (z) ρ ε k (z -x)χ(x, ξ) dx = χ ε k (z) → 1 as k → ∞,
therefore, B1 ρ f dx = 1. Since 1 is the maximal value of f and ρ is nonnegative with the integral on B 1 equal to 1, we deduce that f = 1 in supp ρ = B 1 . It follows by changing the variable x = zε k x:

Bε k (z) - |χ(x, ξ) -1| dx = 1 - B1(0) - f k (x) dx → 0 as k → ∞, because f k 1 weakly in L 2 (B 1 )
. Since the limit is unique for every subsequence ε k → 0, we conclude that z is a Lebesgue point of χ(., ξ) with χ(z, ξ) = 1 which proves the claim.

For the case u(y) • ξ < 0 (i.e., χ(y, ξ) = 0 by Lemma 15 (ii)), one applies the above argument by replacing ξ by -ξ and obtain that z is a Lebesgue point of χ(., -ξ) with χ(z, -ξ) = 1. It follows that z is a Lebesgue point of χ(., ξ) with χ(z, ξ) = 0 because

Br (z) - |χ(x, ξ)| dx ≤ H N ({x ∈ B r (z) : u(x) • ξ ≥ 0}) H N (B r (z)) = 1 - Br (z) - χ(x, -ξ) dx → 0
as r → 0. One also concludes that u(z) • ξ ≤ 0 by Lemma 15 (ii).

For the last statement, we have for a.e. y ∈ Ω, y is a Lebesque point of u with u(y) = 0. Then for H N -1 -a.e. direction ξ ∈ S N -1 , we have that u(y) • ξ = 0 and y + v is a Lebesgue point of u for H N -1 -a.e. v ∈ ξ ⊥ with the segment [y, y + v] ⊂ Ω. By the above argument, we conclude to (20).

Notion of trace on lines

The H 1/2 -regularity for N -dimensional unit length vector fields u satisfying the kinetic formulation (8) (see [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF]) is a priori not enough to define the notion of trace of u on one-dimensional lines. However, using the ideas in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] for dimension 2, we will define a notion of trace of u on segments (in the sense of Lebesgue points) in any dimension N ≥ 2.

Proposition 18 (Trace) Let N ≥ 2, Ω ⊂ R N be an open set and u : Ω → S N -1 be a Lebesgue measurable vector field satisfying the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Assume that the segment

L := {0} N -1 × [-1, 1] is included in Ω.
Then there exists a Lebesgue measurable function ũ :

(-1, 1) → R N such that lim r→0 (-r,r) N -1 - 1 -1 |u(x , x N ) -ũ(x N )| dx dx N = 0, ( 21 
)
where x = (x , x N ), x = (x 1 , . . . , x N -1 ). Moreover, for H 1 -a.e. x N ∈ (-1, 1), ũ(x N ) = lim r→0 (-r,r) N -1 - u(x , x N ) dx and |ũ(x N )| = 1. ( 22 
)
6 Finally, every Lebesgue point x ∈ Leb of u lying inside L is a Lebesgue point of ũ and u(x) = ũ(x N ). The vector field ũ is called the trace of u on the segment L.

Proof. To simplify the writing, we assume that Ω = R N . We divide the proof in several steps:

Step 1: Defining the one-dimensional function χ(•, ξ) for suitable directions ξ ∈ S N -1 . Let D be the set of directions ξ ∈ S N -1 such that ξ N = 0 and (20) holds true for the triple (y, y + v, ξ) for a.e. y ∈ Ω and H N -1 -a.e. v ∈ ξ ⊥ (with the segment [y, y + v] ⊂ Ω where y and y + v are Lebesgue points of u). By Proposition 17, we know that D covers S N -1 up to a set of zero H N -1 -measure.

For such a direction ξ ∈ D, we can choose a point

y ξ ∈ Ω (in a neighborhood of L) such that the map ξ ∈ D → y ξ ∈ Ω is Lebesgue measurable, the point y ξ + tξ ∈ Ω is a Lebesgue point of χ(•, ξ) for H 1 -a.e. t ∈ R, the function t → χ(y ξ + tξ, ξ) is H 1 -measurable (by Fubini's theorem)
and (20) holds true for the triple (y ξ + tξ,

y ξ + tξ + v, ξ) for H N -1 -a.e. v ∈ ξ ⊥ and H 1 -a.e. t. Set the one-dimensional function s → χ(s, ξ) := χ y ξ + (s -y ξ • ξ)ξ, ξ ∈ {0, 1}.
Then we have that for a.e. x ∈ Ω in a neighborhood of L:

χ(x • ξ, ξ) = χ(y ξ -y ξ • ξξ + x • ξξ, ξ) (20) = χ(x, ξ), ( 23 
) because v = y ξ -y ξ • ξξ + x • ξξ -x ∈ ξ ⊥ .
Step 2: For ξ ∈ D and for every Lebesgue point P = (0, . . . , 0, P N ) ∈ L of χ(•, ξ) with P N ∈ (-1, 1), the point P • ξ is a Lebesgue point of χ(•, ξ) and χ(P N ξ N , ξ) = χ(P, ξ). Indeed, since ξ N = 0, we have:

PN ξN +r|ξN | PN ξN -r|ξN | - χ(t, ξ) -χ(P, ξ) dt t=xN ξN = (-r,r) N -1 - dx PN +r PN -r - χ(x N ξ N , ξ) -χ(P, ξ) dx N x •ξ +xN ξN =xN ξN = (-r,r) N -1 - dx PN -x •ξ ξ N +r PN -x •ξ ξ N -r - χ(x • ξ + x N ξ N , ξ) (23) = χ(x,ξ) -χ(P, ξ) dx N ≤ (-r,r) N -1 - dx 1 2r PN +r PN -r χ(x, ξ) -χ(P, ξ) dx N ≤C P +(-r,r) N - χ(x, ξ) -χ(P, ξ) dx → 0 as r → 0 where we used that |x • ξ | ≤ r √ N -1 for x ∈ (-r, r) N -1 and r = √ N -1 |ξN | + 1 r. Thus, P N ξ N is a Lebesgue point of χ(•, ξ).
In particular, we have by Fubini's theorem for every α > 0:

αr -αr - d t PN ξN +r|ξN |+ t PN ξN -r|ξN |+ t - χ(t, ξ) -χ(P N ξ N , ξ) dt = 1 4α|ξ N |r 2 αr -αr PN ξN +r(|ξN |+α) PN ξN -r(|ξN |+α) χ(t, ξ) -χ(P N ξ N , ξ) 1 (PN ξN -r|ξN |+ t,PN ξN +r|ξN |+ t) (t) dt d t = 1 4α|ξ N |r 2 PN ξN +r(|ξN |+α) PN ξN -r(|ξN |+α) χ(t, ξ) -χ(P N ξ N , ξ) dt αr -αr 1 (-PN ξN -r|ξN |+t,-PN ξN +r|ξN |+t) ( t) d t ≤ 1 2|ξ N |r PN ξN +r(|ξN |+α) PN ξN -r(|ξN |+α) χ(t, ξ) -χ(P N ξ N , ξ) dt → 0 as r → 0. ( 24 
)
Step 3: Proof of (21). For ξ ∈ D, we have for small r > 0:

(-r,r) N -1 - 1 -1 |χ(x, ξ) -χ(x N ξ N , ξ)| dx dx N (23) = (-r,r) N -1 - 1 -1 | χ(x • ξ + x N ξ N , ξ) -χ(x N ξ N , ξ)| dx dx N t=xN ξN ≤ 1 |ξ N | sup | t|≤r √ N -1 |ξN | -|ξN | χ(t + t, ξ) -χ(t, ξ) dt because |x • ξ | ≤ r √ N -1.
Since the one-dimensional function t → χ(t, ξ) belongs to L ∞ , its L 1 -modulus of continuity present in the above RHS tends to 0 as r → 0 which leads to the following:

lim r→0 (-r,r) N -1 - 1 -1 |χ(x, ξ) -χ(x N ξ N , ξ)| dx dx N = 0.
This formula can be interpreted as the notion of trace of χ(•, ξ) on the segment L and yields (21). Indeed, due to (9), we set for a.e. x N ∈ (-1, 1):

ũ(x N ) = 1 V N -1 S N -1 ξ χ(x N ξ N , ξ) dH N -1 (ξ)
and we obtain by Fubini's theorem:

(-r,r) N -1 - 1 -1 |u(x , x N ) -ũ(x N )| dx dx N (9) ≤ 1 V N -1 S N -1 (-r,r) N -1 - 1 -1 |χ(x, ξ) -χ(x N ξ N , ξ)| dx dx N dH N -1 (ξ) → 0 as r → 0,
where we used the dominated convergence theorem.

Step 4: Proof of (22). By Step 3, we deduce that:

(-r,r) N -1 - u(x , •) dx ---→ r→0 ũ in L 1 ((-1, 1));
therefore, the first statement in (22) follows immediately. Moreover,

1 -1 |ũ(x N )| -1 dx N = (-r,r) N -1 - 1 -1 |ũ(x N )| -|u(x , x N )| dx dx N ≤ (-r,r) N -1 - 1 -1 |ũ(x N ) -u(x , x N )| dx dx N (21)
→ 0 as r → 0; thus, |ũ(x N )| = 1 for H 1 -a.e. x N ∈ (-1, 1).

Step 5: Conclusion. Let P = (0, . . . , 0, P N ) ∈ Leb be a Lebesgue point of u with P N ∈ (-1, 1). We want to show that P N is a Lebesgue point of ũ and ũ(P N ) = u(P ). For that, we know by Lemma 15 that P is a Lebesgue point of χ(•, ξ) for every direction ξ ∈ S N -1 with u(P ) • ξ = 0. If in addition ξ ∈ D, we know by Step 2 that P • ξ is also a Lebesgue point of χ(•, ξ). By the same argument as at Step 3, we have:

P +(-r,r) N - | u(x , x N ) -ũ(x N )| dx dx N ≤ 1 V N -1 S N -1 P +(-r,r) N - χ(x, ξ) (23) = χ(x •ξ +xN ξN ,ξ) -χ(x N ξ N , ξ) dx dx N dH N -1 (ξ) ≤ 1 V N -1 S N -1 dH N -1 (ξ) P +(-r,r) N - χ(x • ξ + x N ξ N , ξ) -χ(P N ξ N , ξ) dx + PN +r PN -r - χ(x N ξ N , ξ) -χ(P N ξ N , ξ) dx N ≤ 1 V N -1 S N -1 dH N -1 (ξ) (-r,r) N -1 - dx PN ξN +r|ξN |+x •ξ PN ξN -r|ξN |+x •ξ - χ(t, ξ) -χ(P N ξ N , ξ) dt + 1 V N -1 S N -1 dH N -1 (ξ) PN ξN +r|ξN | PN ξN -r|ξN | - χ(t, ξ) -χ(P N ξ N , ξ) dt.
Using twice the dominated convergence theorem, we conclude that the above RHS vanishes as r → 0. Indeed, the second integrand converges to 0 as r → 0 by Step 2 for a.e. ξ ∈ S N -1 . For the first integrand, we proceed as follows: for H N -1 -a.e. direction ξ, we may assume that |ξ | > 0 and ξ N = 0 so that there exists a rotation R ∈ SO(N -1) with R ξ = |ξ |e 1 and we have by the change of variable x = R x and r = r √ N -1:

(-r,r) N -1 - dx PN ξN +r|ξN |+x •ξ PN ξN -r|ξN |+x •ξ - χ(t, ξ) -χ(P N ξ N , ξ) dt ≤ C {|x |<r} - dx PN ξN +r|ξN |+x1|ξ | PN ξN -r|ξN |+x1|ξ | - χ(t, ξ) -χ(P N ξ N , ξ) dt ≤ C |ξ |r -|ξ |r - PN ξN +r|ξN |+ t PN ξN -r|ξN |+ t - χ(t, ξ) -χ(P N ξ N , ξ) dt d t (24)
→ 0 as r → 0.

Proof of Theorem 8

We start by showing some preliminary results that reveal the geometric consequences of the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. The following lemma is the first step for proving that u is constant along the characteristics and is reminiscent of the ideas presented in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF]:

Lemma 19 Let Ω ⊂ R N be an open set such that L = {0} N -1 × [-1, 1]
⊂ Ω and u : Ω → S N -1 be a Lebesgue measurable vector field satisfying the kinetic formulation [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Assume that the origin O ∈ Ω ∩ Leb is a Lebesgue point of u and u(O) = e N . Then we have for every Lebesgue point

x N ∈ (-1, 1) of ũ: ũ(x N ) = ±e N ,
where ũ is the trace of u on L defined at Proposition 18. 

Proof

lim r→0 (-r,r) N -1 - u(x , x N ) -ũ(x N ) dx = 0. ( 25 
)
Our goal is to prove that the component ũi (x N ) of ũ(x N ) in direction e i vanishes for every i = 1, . . . , N -1. For that, we follow the ideas in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF]. Let ε > 0 be small and denote the following subsets E - i and E + i (depending on ε) of the hyperplane x N e N + e ⊥ N for 1 ≤ i ≤ N -1:

E ± i = {z ∈ Ω ∩ Leb : z N = x N , ε|x N | ≥ ±z i > 0} .
By our assumption, these sets E ± i contain many points (e.g., for i = 1, E + 1 covers the N -1 parallelepiped (0, r) × (-r, r) N -2 × {x N } up to a set of zero H N -1 -measure, for r < ε). For z ∈ E + i , we set y = -z i e N + x N e i if x N > 0 (resp., y = z i e Nx N e i if x N < 0). Obviously, z • y = 0, i.e., y ∈ z ⊥ . By convexity of Ω, the segment [Oz] ⊂ Ω so that by Proposition 17 we have if

x N > 0 (resp. x N < 0), then u(O) • y = -z i < 0 (resp. u(O) • y = z i > 0) so that u(z) • y ≤ 0 (resp. ≥ 0). It follows that u i (z) ≤ z i x N u N (z) ≤ ε (resp. u i (z) ≥ -z i |x N | u N (z) ≥ -ε), because |u N (z)| ≤ 1. Similarly, for z ∈ E - i , one uses y = z i e N -x N e i if x N > 0 (resp. y = -z i e N + x N e i if x N < 0) and deduces that u i (z) ≥ -ε if x N > 0 (resp. u i (z) ≤ ε if x N < 0). We conclude that ũi (x N ) ∈ [-ε, ε]
. Indeed, let us set i = 1 for simplicity of writing; by (25), we have

ũ1 (x N ) = lim r→0 (0,r)×(-r,r) N -2 - u 1 (x , x N ) dx ≤ ε if x N > 0 (resp. ≥ -ε if x N < 0)
and also,

ũ1 (x N ) = lim r→0 (-r,0)×(-r,r) N -2 - u 1 (x , x N ) dx ≥ -ε if x N > 0 (resp. ≤ ε if x N < 0).
Passing to the limit ε → 0, we conclude that ũi (x N ) = 0 for i = 1 (similarly, for every 1 ≤ i ≤ N -1). Obviously, H 1 -a.e. x N ∈ (-1, 1) satisfies this property. As a consequence, if P N ∈ (-1, 1) is a Lebesgue point of ũ then for every 1 ≤ i ≤ N -1:

ũi (P N ) = lim r→0 PN +r PN -r - ũi (x N ) dx N = 0.
Since |ũ(P N )| = 1, we deduce that ũN (P N ) = ±1, i.e., ũ(P N ) = ±e N .

We now prove the main result:

Proof of Theorem 8. We first treat the case Ω is a ball and then the general case of a connected open set.

Case I: Ω is a ball. Since u is not a constant vector field, there exist two Lebesgue points P 0 , P 1 ∈ Ω ∩ Leb of u such that u(P 0 ) = u(P 1 ).

Let D 0 (resp. D 1 ) be the line directed by u(P 0 ) (resp. u(P 1 )) that passes through P 0 (resp. P 1 ).

Step where

α = -u(P 0 ) • u(P 1 ) 1 -u(P 0 ) • u(P 1 ) 2 and β = 1 1 -u(P 0 ) • u(P 1 ) 2 > 0. ( 26 
)
The choice of α and β is done in order to insure that w 1 • w 3 = 0 and |w 3 | 2 = 1 which finally yields the orthonormal basis w 1 , w 2 and w 3 . Note now that the vectors u(P 0 ) and u(P 1 ) have the following components in the basis (w 1 , w 2 , w 3 ):

u(P 0 ) = (1, 0, 0) and u(P 1 ) = (- α β , 0, 1 β ). 
We want to find the writing of ---→ P 0 P 1 in that basis, too. For that, we have ---→

P 0 P 1 = --→ P 0 A + --→ AB + --→ BP 1
which implies the existence of three real numbers λ, λ, λ ∈ R with λ = 0 such that ---→ P 0 P 1 =λw 1 + λw 2 + λu(P 1 )

=λw 1 + λw 2 + λ 1 β w 3 - α β w 1 .
Thus, ---→ P 0 P 1 has the following components in the basis (w 1 , w 2 , w 3 ):

---→

P 0 P 1 = (λ - α β λ, λ, λ β ).
Set now the following vector ξ := (1, s, -β) = 0 written in our basis where s := λ(α+β)

β λ -λ λ . Then [P 0 P 1 ] ⊂ Ω (since Ω is a ball) and ---→ P 0 P 1 • ξ = 0, i.e., ξ ∈ P 0 P ⊥ 1 u(P 0 ) • ξ = 1 > 0, u(P 1 ) • ξ = u(P 0 )u(P 1 ) -1 < 0,
which contradicts Proposition 17. Thus, D 0 and D 1 are coplanar.

Step 2: We show that D 0 and D 1 must intersect (D 0 might coincide with D 1 ). Assume by contradiction that D 0 and D 1 are parallel and D 0 = D 1 . It means that u(P 0 ) = -u(P 1 ) (because of our choice u(P 0 ) = u(P 1 )). Set (w 1 , w 2 ) be an orthonormal basis in the two-dimensional plane Π determined by D 0 and D 1 with w 1 = u(P 0 ). In the basis (w 1 , w 2 ), we write ---→ P 0 P 1 = (λ, λ) where λ = 0 (since D 0 = D 1 ) and set ξ = (-λ, λ) be an orthogonal vector to ---→ P 0 P 1 in Π (see Figure 3). Then one checks that u(P 0 ) • ξ = -λ and u(P 1 ) • ξ = λ have different signs which again contradicts Proposition 17. Step 3: There exists a point O ∈ D 0 with O = P 0 , P 1 and a sign γ ∈ {±1} such that

u(P i ) = γ --→ OP i | --→ OP i | , i = 0, 1.
If D 0 = D 1 , then u(P 0 ) = -u(P 1 ) so any point O ∈ D 0 located between P 0 and P 1 leads to the conclusion. Otherwise, D 0 = D 1 and we denote {O} = D 0 ∩ D 1 . First, we prove that O = P 0 , P 1 . Assume by contradiction that O = P 0 ∈ D 0 ∩ D 1 . Then by Proposition 18 we know that P 0 and P 1 are Lebesgue points of the trace ũ of u on the segment D 1 ∩ Ω (directed by u(P 1 )) with ũ(P 0 ) = u(P 0 ) and ũ(P 1 ) = u(P 1 ) so that by Lemma 19, we should have u(P 0 ) is parallel with u(P 1 ) which is a contradiction with D 0 = D 1 . So, O = P 0 , P 1 . Next, note that for any orthogonal vector ξ to ---→ P 0 P 1 in the plane determined by D 0 and D 1 , we have by Proposition 17 that u(P 0 ) • ξ and u(P 1 ) • ξ have the same sign, i.e.,

u(P 0 ) • ξ • u(P 1 ) • ξ ≥ 0. ( 27 
) Write now --→ OP 0 = λu(P 0 ) and --→ OP 1 = λu(P 1 )
with λ, λ nonzero real numbers. The conclusion of Step 3 is equivalent with proving that λ and λ have the same sign. For that, as at Step 1, we choose the orthonormal basis w 1 = u(P 0 ) and w 2 = αu(P 0 ) + βu(P 1 ) with α ∈ R and β > 0 given at (26) (recall that |u(P 0 ) • u(P 1 )| < 1 because the assumption D 0 = D 1 ). Since ---→ P 0 P 1 = --→ OP 1 ---→ OP 0 = λu(P 1 )λu(P 0 ), we write in the basis (w 1 , w 2 ):

u(P 0 ) = (1, 0), u(P 1 ) = (- α β , 1 β ), ---→ P 0 P 1 = (-λ - α β λ, λ β ).
Then for the orthogonal vector ξ = ( λ, λβ + α λ) = 0 to ---→ P 0 P 1 we have by ( 27): Let us now present the proof of the geometric result in Proposition 9 which is independent of the previous results: Proof of Proposition 9. Assume that there are two lines D 0 , D 1 ∈ D that are not colinear. Since D 0 and D 1 are coplanar, they intersect at a point P . Call Π the plane determined by D 0 and D 1 . We show that all the lines in D pass through P . Let D 2 ∈ D be any line not included in Π (such line exists because D is not planar). We know that D 2 is coplanar with D 0 and D 1 , respectively. Then D 2 cannot be parallel with D 0 (otherwise, D 2 D 0 and D 2 ∩ D 1 = ∅ imply that D 2 ⊂ Π which is a contradiction with our assumption). Similarly, D 2 cannot be parallel with D 1 . Therefore, D 2 intersects both D 0 and D 1 . Since D 2 is not included in Π, the intersection points coincide with P . Let now D 3 ∈ D be any line included in Π (different than D 0 and D 1 ). Then D 3 is not included in the plane determined by D 1 and D 2 . The previous argument leads again to P ∈ D 3 which concludes our proof.

0 ≤ u(P 0 ) • ξ • u(P 1 ) • ξ = λ • λ.

Vortex-line type vector fields

We will prove the characterization of the weaken kinetic formulation [START_REF] Ignat | Gradient vector fields with values into S 1[END_REF] in Theorem 10. This result is in the spirit of Corollary 14 and leads to vector fields that have vortex-line singularities.

Proof of Theorem 10. For x ∈ R N , recall the notation x = (x , x N ) with x = (x 1 , . . . , x N -1 ) ∈ R N -1 . As the result is local in the set {u N = ±1}, we will assume that ω = B × (-1, 1) is included in that set where B is the ball in R N -1 . Let ξ ∈ S N -2 and ξ = (ξ , 0) ∈ E. Since e N ∈ ξ ⊥ , we deduce by ( 10 In particular, χ(x , ξ ) = 1 {x ∈B : ũ(x )•ξ >0} in B for every ξ ∈ S N -2 . Therefore, we deduce by (10) that ũ : B → S N -2 satisfies:

∀ξ ∈ S N -2 , ∀v ∈ (ξ ) ⊥ , v • ∇ x χ(x , ξ ) = 0 in B .
where ∇ x = (∂ 1 , . . . , ∂ N -1 ). As N -1 ≥ 3, Theorem 8 yields either ũ(x ) = w for almost every x ∈ B where w ∈ S N -2 is a constant vector, or ũ(x ) = γ x -P |x -P | for almost every x ∈ B where γ ∈ {±1} and P ∈ R N -1 is some point. This means that for a.e. x ∈ ω, which yields for all k, j ∈ {1, . . . , N -1}:

w j ∂ k u N = w k ∂ j u N in ω.
Therefore, u N (x) = g(α, x N ) in ω for some two-dimensional function g with the new variable α := α(x) = x • w . Moreover, by (29), the function g satisfies the following: since w k = 0 for some k ∈ {1, . . . , N -1} (because w ∈ S N -1 ) then the equation |u | 2 + u 2 N = 1 a.e. in ω implies

w k ∂ α g = ∂ k u N (29) = w k ∂ N (|u |) = w k ∂ N ( 1 -g 2 ).
The Poincaré lemma yields the existence of a stream function ψ(α, x N ) such that g = ∂ N ψ and 1g 2 = ∂ α ψ so that u(x) = ∇ x [ψ(α, x N )] and therefore, ψ satisfies the two-dimensional eikonal equation:

(

∂ α ψ) 2 + (∂ N ψ) 2 = 1.
Case 2. Let u (x) = γ|u (x)| x -P |x -P | for a.e. x ∈ ω. As above we have for k ∈ {1, . . . , N -1}:

∂ k u N = ∂ N u k = γ x k -P k |x -P | ∂ N (|u |) in ω (30)
and we deduce that for all k, j ∈ {1, . . . , N -1}:

(x j -P j )∂ k u N = (x k -P k )∂ j u N in ω.
Therefore, u N (x) = g(α, x N ) in ω for some two-dimensional function g with the new variable α := α(x) = |x |. By (30), we conclude as above that there exists a stream function ψ solving the eikonal equation in the variables (α, x N ) such that

u(x) = ∇ x [ψ(α, x N )].
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 1 Figure 1: Characteristics of u.
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 4 Conclusion. For every Lebesgue point P ∈ Leb ∩ Ω of u, we consider the line D passing through P and directed by u(P ). Call D the set of these lines. Obviously, D covers H N -almost all the ball Ω (since H N (Ω \ Leb) = 0), in particular, D is not planar. By Step 1, we know that every two lines in D are coplanar. Then Proposition 9 (whose proof is presented below) implies that either all these lines are parallel, or they pass through the same point O. Since u is nonconstant, we deduce by Step 2 that only the last situation holds true. By Step 3, we conclude that u = γu (•-O) a.e. in Ω.Case II: Ω is a connected open set. By Case I, we know that in every open ball B ⊂ Ω around a Lebesgue point of u, the vector field u is either a vortex type vector field in B, or u is constant in B. Since u is nonconstant in Ω, there exists a Lebesgue point P 0 of u and a ball B 0 ⊂ Ω around P 0 such that u is a vortex type vector field in B 0 , say for simplicity u = u . Let P = P 0 be any other Lebesgue point of u. Since Ω is path-connected, there exists a path Γ ⊂ Ω from P 0 to P . Then we can cover the path Γ by a finite number of open balls {B j } 0≤j≤n such that P ∈ B n , B j ∩ B j+1 = ∅ for 0 ≤ j ≤ n -1 and u is either constant, or a vortex type vector field in any B j . Since u = u in B 0 and B 0 ∩ B 1 is a nonempty open set, the analysis in Case I yields u = u in B 1 and by induction, u = u in B n which is a neighborhood of P . This concludes our proof.

  ):e N • ∇ x χ(., ξ) = ∂ N χ(., ξ) = 0 in D (ω). (28)We know that the point (x , t) is a Lebesgue point of χ(., ξ) for H N -1 -a.e. x ∈ B and H 1 -a.e. t ∈ (-1, 1) and the convolution argument in the proof of Proposition 17 yieldsχ(x, ξ) = χ(x + te N , ξ) for H N -a.e. x ∈ ω and H 1 -a.e. t.Then one can define the measurable function χ(•, ξ ) :B → {0, 1} by χ(x , ξ ) := χ(x, ξ) = 1 {x∈ω : u (x)•ξ >0} for H N -a.e. x = (x , t) ∈ ω. Set ũ(x ) = 1 V N -2 S N -2 ξ χ(x , ξ ) dH N -2 (ξ ), x ∈ B .Thanks to (9), ũ(x ) = u (x) |u (x)| for H N -a.e. x = (x , t) ∈ ω ⊂ {|u | > 0}.

Case 1 .

 1 either u (x) = |u (x)|w or u (x) = γ|u (x)| x -P |x -P | . Let u (x) = |u (x)|w for a.e. x ∈ ω. By (11), we have for k ∈ {1, . . . , N -1},∂ k u N = ∂ N u k = w k ∂ N (|u |) in ω (29)

  . W.l.o.g. we assume that Ω is a convex open neighborhood of L. By Proposition 18, we know that O is also a Lebesgue point of ũ and ũ(0) = e N ; moreover, |ũ| = 1 a.e. in (-1, 1). Letx N ∈ (-1, 1) \ {0} be a Lebesgue point of ũ such that H N -1 -a.e. z ∈ Ω ∩ x N e N + e ⊥N is a Lebesgue point of u and that the following holds true (see Proposition 18):

This argument is clear in dimension N =

2; for dimensions N ≥ 3, one needs an additional argument showing that two characteristics are coplanar as we will see later in the proof of Theorem 8.

For the improved regularizing effect for scalar conservation laws, see Otto[START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF] and Golse-Perthame[START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF].

This regularity is optimal, see e.g. Proposition 1 in Ignat[START_REF] Ignat | Two-dimensional unit-length vector fields of vanishing divergence[END_REF].

If Γ ⊂ R 2 is a smooth curve of nonconstant curvature, then one takes ψ to be the distance function to Γ in a small neighborhood Ω of Γ (with the convention that Γ is withdrawn from that neighborhood, i.e., Γ ∩ Ω = ∅, so that ψ is smooth in Ω).

The proof of Proposition 5 is independent of Lemma 11; we will admit it here and prove it later in Section 4.

Leb is the set of Lebesgue points of u in Ω.
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