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Abstract Human perception involves many features

like contours, shapes, textures, and colors to name a

few. Whereas several geometric models for contours,

shapes and textures perception have been proposed,

the geometry of color perception has received very lit-

tle attention, possibly due to the fact that our per-

ception of colors is still not fully understood. Nonethe-

less, there exists a class of mathematical models, gath-

ered under the name Retinex, that aim at modeling the

color perception of an image, that are inspired by psy-

chophysical/physiological knowledge about color per-

ception, and that can geometrically be viewed as the

averaging of perceptual distances between image pixels.

Some of the Retinex models turn out to be associated

to an efficient image processing technique for the cor-

rection of camera output images.

The aim of this paper is to show that this image pro-

cessing technique can be improved by including more

properties of the human visual system in the corre-

sponding Retinex formulations. To that purpose, we

present a generalization of the perceptual distance be-

tween image pixels by considering the parallel transport

map associated to a covariant derivative on a vector
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bundle, and from which can be derived a new image

processing model for color images correction.

We show that the family of covariant derivatives

constructed in [T. Batard and N. Sochen, J. Math.

Imaging Vision, 48(3) (2014), pp. 517-543] can model

some color appearance phenomena related to brightness

perception, and that the image processing techniques

induced by these covariant derivatives outperform the

standard approach.

Keywords Differential geometry · Variational model ·
Contrast enhancement · Brightness perception · Human

visual system · Retinex

1 Introduction

1.1 Geometry of brightness perception and image

processing

Due to physical and technological limitations of the ac-

quisition process of a real-world scene by a digital cam-

era, the output image is a degraded version of the orig-

inal scene. Processing the camera output image so that

it reproduces the appearance of the original real-world

scene is a very challenging task that requires the under-

standing of both the camera image processing pipeline

and the way the Human Visual System (HVS) processes

the light it captures. This problem has been addressed

since digital imaging has come up in the early 1960s

and is still a open problem, which is partly due to the

complexity of the human visual system. We refer the

reader to [7] for more details.

The Retinex theory of Land and McCann [19] was a

seminal contribution in modeling the color appearance

of a scene. Based on the well-known “Mondrian” ex-

periments, the authors developed an algorithm to reach

that goal.
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Since then, many Retinex formulations have been

proposed in order to improve the results of the original

algorithm and extending it to more complex scenes (see

e.g. [6], [20], [33],[34] for more details about Retinex the-

ory, Retinex formulations, and their connections with

vision).

From a geometrical point of view, several Retinex

formulations can be described as follows: the perceived

color of an image at a pixel location is the averaging of

the perceived difference between the given pixel value

and other pixel values in the image domain, the per-

ceived difference between two pixel values being deter-

mined by the integration of a perceived gradient along a

path joining the two pixels. This interpretation suggests

that the key point in order to determine the color ap-

pearance of a scene is to define accurately its perceived

gradient. In several Retinex formulations, the perceived

gradient is related to Weber’s law in psychophysics,

which is a key observation for the generalization of the

Retinex formulations we propose in this paper.

One of the property of the HVS that plays a key

role in the perception of the colors of a scene is its abil-

ity of adaptation to the lighting conditions, called color

constancy, and which ensures that the perception of the

colors of a scene remain relatively constant under a re-

lighting (see e.g. [13] for a review on color constancy).

Georgiev [14] argues that this ability of the HVS could

be related to an invariance property of the perceived

gradient with respect to relighting. Then, equipping the

set of lighting transformations with a Lie group struc-

ture G, this invariance property makes the perceived

gradient behave as a covariant derivative, which makes

a color image u : Ω ⊂ R2 −→ R3 be modeled as a sec-

tion of a G-associated vector bundle of rank 3 over Ω.

Note that there is another view in perception which

states that color constancy does not derive from neigh-

borhood interactions as it occurs in Retinex formula-

tions, but from statistical correlations of the perceived

scene [15].

Bertalmı́o et al. [6] proposed a Kernel-Based Retinex

(KBR) formulation that has several advantages with re-

spect to basic Retinex implementations based on paths:

its computational complexity is much lower and it is

less affected by artifacts, noise, or haloes. Moreover,

they showed that KBR is closely related to a varia-

tional model for color image correction [5] that encodes

some properties of the HVS. Indeed, by performing lo-

cal contrast enhancement, which is a well-known prop-

erty of the HVS, the model improves the visual quality

of the image. Moreover, by coupling local contrast en-

hancement with visual adaptation, the model is able to

perform, under some assumptions on the image, color

constancy by removing the color cast of the image. In a

more recent work, Palma-Amestoy et al. [23] added an

extra property of the HVS to the variational model, i.e.

a gamma compression, which is an alternative to We-

ber’s law to modeling brightness perception, and which

is related to Steven’s law in psychophysics [29]. Adding

a gamma compression to the model makes the local

contrast enhancement be stronger in dark areas than

in the bright ones, which is a desirable property when

dealing with under-exposed images.

Brightness perception has also been incorporated in

a denoising model by Shen [27], who replaced the Eu-

clidean gradient in the Rudin-Osher-Fatemi model [26]

by the so-called Weber contrast, and that encodes We-

ber’s law. A consequence of Weber’s law is that color

variations, and noise in particular, are more visible in

dark areas than in the bright ones, which makes the

model denoise in a greater extent the dark areas of the

image.

Finally, we proposed in [1] a geometrical general-

ization of the Euclidean variational model introduced

in [5] to vector bundles, by making use of the parallel

transport map associated to a covariant derivative. We

obtained a new image processing model whose behavior

depends on the covariant derivative involved. Nonethe-

less, no connection between this new variational model

and color perception has been established and this is

actually one of the goals of this paper, whose contribu-

tion is detailed in the following section.

1.2 Contribution

The contribution of this paper is three-fold: First, we

show in section 3 that the variational model we con-

structed in [1] is connected to the Retinex theory of

color perception, which validates the model, at least

theoretically, to performing image processing inspired

by vision. Then, we show in sections 4-5 that the class

of optimal covariant derivatives constructed in Batard

and Sochen [2], and that are parametrized by Lie group

representations, can encode some color appearance phe-

nomena related to color brightness, which suggests that

the HVS perceives color brightness in an optimal man-

ner. Finally, we analyze in section 6 the properties of the

variational model constructed in [1] induced by these

covariant derivatives and we show on experiments in

section 7 that it provides image processing techniques

that outperform the perceptually inspired Euclidean

model developed in [5].

More generally, this paper can be viewed as an inves-

tigation upon the capacity of Lie group representations

and covariant derivatives to model color perception and

to match psychophysical/physiological data as well as

to generate image processing algorithms that improve
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the visual quality of camera output images.

In more details, the contribution of this paper is the

following.

1.2.1 Establishment of a connection between a

variational model for image processing based on

covariant derivatives and the Retinex theory.

In sect. 3.1., we propose a geometrical reinterpretation

of the original Retinex formulation of Land and Mc-

Cann [19] and the KBR formulation Bertalmı́o et al.

[6], which exhibits the concept of perceptual gradient

of an image.

In sect. 3.2, we follow the approach of Georgiev [14]

and consider covariant derivatives as a model for the

perceptual gradient of an image, from which we gener-

alize the original Retinex and KBR formulations. The

proposed generalization makes the parallel transport

map associated to a covariant derivative determine the

perceptual difference between two pixel values. Then,

we show that the mathematical properties of the par-

allel transport map match with some properties of the

HVS. Indeed, the parallel transport map makes the per-

ceptual difference between two pixel values depend on

the colors between the pixel locations, and it is well-

known that the perceptual difference between two areas

on an image depends on the image content. Moreover,

a non flat covariant derivative makes the corresponding

parallel transport map depend on the curve joining two

points, which suggests that the perceptual difference

between two pixel values depends on the selected path

followed by the eye joining the two pixel locations, as

illustrated in Fig. 2. To the best of our knowledge, the

connection between the curve dependency of the par-

allel transport map and human vision has never been

proposed.

In [6], the authors established a connection between

KBR and the contrast enhancement model introduced

in [5]. In this paper, we follow this approach and estab-

lish a connection between the proposed generalization

of KBR approach and the contrast enhancement model

we introduced in [1]. This point is developed in sect. 3.3.

1.2.2 Analysis of a class of covariant derivatives

encoding properties of the HVS.

Georgiev [14] encoded pixel transformations under re-

lighting with the Lie group D+∗
3 of 3×3 strictly positive

diagonal matrices, and constructed a covariant deriva-

tive that satisfies an invariance property with respect to

the action of this group, and that turns out to be related

to Weber’s law. In this paper, we extend this approach

in the sense that we consider more Lie group repre-

sentations acting on a three dimensional space and by

considering an optimal covariant derivative associated

to each group representation. Indeed, besides the group

D+∗
3 aforementioned, we consider group representations

of SO(2) and SO(3) on R3, and the corresponding op-

timal covariant derivatives are the ones constructed in

Batard and Sochen [2] and that are image dependent.

This point is developed in the sections 4 and 5.

The main geometric object we study throughout this

paper is the curvature of a covariant derivative, as the

former provides fundamental information about the lat-

ter. For instance, the connection 1-form of a flat co-

variant derivative, i.e. a covariant derivative whose cur-

vature is zero, vanishes with respect to some moving

frame, from which follows that the covariant derivative

corresponds to the standard differential operator when

expressed in this moving frame. By studying the cur-

vature of the optimal covariant derivatives constructed

in [2], the main results we obtain are the following.

The standard representation of the group D+∗
3 on R3.

The optimal covariant derivative induced by this repre-

sentation is parametrized by α = (α1, α2, α3) ∈ (R+∗)
3
,

and we show that it is flat for any value of α. Then, as-

suming that the space of the representation is a trichro-

matic color space (e.g. LMS or RGB), the group repre-

sentation encodes pixels transformation under relight-

ing as aforementioned.

At the limit value (α1, α2, α3) = (0, 0, 0), we show

that the optimal connection 1-form encodes Weber’s

law, as in the original Retinex and KBR formulations.

We show that there exists a value of the parameter

α for which the connection 1-form associated to the op-

timal covariant derivative encodes Weber-Fechner’s law

in vision, which is a refinement of Weber’s law. As a con-

sequence, the corresponding Retinex formulation shall

provide a more accurate expression for the color percep-

tion of an image than the Retinex formulations afore-

mentioned as these latter encode (the less accurate) We-

ber’s law. Moreover, assuming that the observed scene

has a limited dynamic range (which is the case when

observing an image on a standard display device), the

three types of cones in the retina have response that fol-

lows Weber-Fechner’s law (see e.g. [12] and references

therein for more details), and which makes this connec-

tion 1-form be physiologically plausible as well.

At the limit value (α1, α2, α3) = (+∞,+∞,+∞),

the optimal connection 1-form vanishes, meaning that

the optimal covariant derivative is nothing but the stan-

dard derivative.
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Representations of SO(2) on R3. The representations

of SO(2) on R3 are parametrized by the set of planes

in R3, and a representation contains all the rotations

that leave a given plane invariant. For a given represen-

tation, the optimal covariant derivative is parametrized

by α ∈ R+∗. We show that the optimal covariant deriva-

tive is flat for any image only at the limit values α ∈
{0,+∞}. Then, assuming that the space of the repre-

sentation is a trichromatic color space equipped with

the Euclidean scalar product, we show that there ex-

ists a representation of SO(2) that encodes hue changes,

which implies that the representation implicitly encodes

the color space change from a trichromatic space to an

opponent space of the form Intensity-Chrominance.

For the limit value α = 0, we show that the moving

frame in which the connection 1-form vanishes splits the

Intensity and Chrominance information, and exhibits

the hue field introduced by Ben-Shahar et al. [4], which

is physiologically implemented in the visual cortex.

Assuming that α ∈ R+∗, we show the existence of

conditions on the image for which the covariant deriva-

tive is flat. More precisely, we show that the covariant

derivative is flat if all the pixel values belong to a circle

centered at the origin in the plane left invariant under

the group representation. We deduce an explicit expres-

sion of the parallel transport map along a curve joining

two pixels if the pixel values belong to such a circle

along the curve. This result provides us more insight

about the behavior of the covariant derivative.

Finally, at the limit value α = +∞, the connection

1-form vanishes.

The standard representation of SO(3) on R3. The op-

timal covariant derivative is parametrized by α ∈ R+∗,

and we show that the covariant derivative is flat for any

image only for the limit values α ∈ {0,+∞}.
Assuming that α = 0 and the space of the rep-

resentation is the CIE L∗a∗b∗ color space, we show

that, for a well-chosen vector bundle metric, the co-

variant derivative encodes the differential of the “color

brightness”, defined by Fairchild and Pirrotta [11], this

latter being a refinement of the standard brightness

L∗, as it takes into account the visual effect called the

Helmholtz-Kohlrausch (H-K) effect, which states that

the brightness of a color object depends on both its

standard brightness L∗ and its chrominance informa-

tion a∗, b∗.

Assuming that α ∈ R+∗, we show the existence of

conditions on the image for which the covariant deriva-

tive is flat: it is flat if all the pixel values belong to a

circle centered in 0, i.e. to a geodesic of the sphere S2.

We deduce an explicit expression of the parallel trans-

port map along a curve joining two pixels if the pixel

values belong to some geodesic of S2 along the curve.

As in the SO(2) case, this result provides us more in-

sight about the behavior of the covariant derivative.

As for the previous groups studied, the connection

1-form vanishes at the limit value α = +∞.

The standard representation of SO(3) ×D+∗
3 on R3.

Based on the flatness properties of the covariant deriva-

tives induced by the groups D+∗
3 and SO(3) aforemen-

tioned, we construct a flat covariant derivative associ-

ated to the standard representation of SO(3) ×D+∗
3 on

R3. More precisely, denoting by G1 the moving frame

in which the optimal connection 1-form associated to

D+∗
3 for α ∈ R+∗ vanishes, and by G2 the moving

frame in which the optimal connection 1-form associ-

ated to SO(3) for α = 0 vanishes, we consider the co-

variant derivative whose connection 1-form vanishes in

the moving frame G2G1. This construction makes the co-

variant derivative be flat, but it does not guarantee that

it is optimal, i.e. is a solution of a variational problem

involving the standard representation of SO(3) ×D+∗
3

on R3.

1.2.3 Analysis and implementation of a class of

variational models performing color images correction.

In sections 6-7, we consider the variational model con-

structed in [1] endowed with the different covariant

derivatives analyzed in sections 4-5. The study of the

flatness property of the covariant derivatives and the

construction of the moving frames in which the connec-

tion 1-forms of the flat ones vanish enables to get an

insight about the behavior of the model. Indeed, the

variational model induced by a flat covariant derivative

can be written, up to a moving frame change, as the vec-

torial extension of the channel-wise model of Bertalmı́o

et al. [5] that we proposed in [3]. This allows a much

faster implementation of the algorithm as there is no

need to compute the parallel transport map.

More precisely, we obtain the following results.

The standard representation of the group D+∗
3 on R3.

We show that the model induced by the optimal co-

variant derivative yields a local contrast enhancement

model that enhances more the dark than the bright

areas of the image unless we consider the limit value

α = (+∞,+∞,+∞) that makes the model enhance

both areas in a similar extent. This result is coherent

with the results in sections 4-5, where we show that the

connection 1-form encodes Weber’s law for α = (0, 0, 0)

and Weber-Fechner’s law for some α ∈ (R+∗)3. This is

a desirable property when dealing with under-exposed
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images. Moreover, we show that the model provides bet-

ter results when it encodes Weber-Fechner’s law than

when it encodes Weber’s law.

Representations of SO(2) on R3. Assuming that α = 0,

we show that the variational model consists in enhanc-

ing the local contrast of the Intensity and Chroma com-

ponents of the image while preserving its hue.

The analysis of the behavior of the variational model

in the the case α ∈ R+∗ is less trivial as this value makes

the covariant derivative be not flat. However, we show

that the value α can serve as a parameter of regulariza-

tion of the hue variations, which can be useful in some

situations as the hue is very noisy at low intensity val-

ues for instance.

For α =∞, the model is nothing but the Euclidean

model in [3].

The standard representation of SO(3) on R3. Assum-

ing that α = 0 and the vector bundle is equipped with

a well-chosen metric, the variational model induced by

the optimal covariant derivative consists in enhancing

the local contrast of the color brightness (according to

the definition of Fairchild and Pirrotta [11]) of the orig-

inal image, and we show that the model satisfies two

properties. First, it preserves the hue of the original im-

age, which is a desirable property when enhancing the

contrast of some images (see e.g. [22],[24] for other hue

preserving contrast enhancement models). We show on

experiments that this model creates less color artifacts

than the model [5].

As in the case of the group SO(2) aforementioned,

the fact that the covariant derivative is not flat for

α ∈ R+∗ makes the behavior of the model much more

difficult to analyze. However, we show that the value

α can serve as a parameter of regularization of the hue

variations and in a more accurate way than in the SO(2)

case.

Finally, for α = +∞, we obtain the Euclidean model

in [3].

The standard representation of SO(3) ×D+∗
3 on R3.

The covariant derivative aforementioned associated to

the group representation of SO(3) ×D+∗
3 on R3 has

been constructed in order for the subsequent variational

model to combine the properties of the variational mod-

els induced by the optimal covariant derivatives asso-

ciated to the group D+∗
3 for a well-chosen α ∈ D+∗

3

and SO(3) for α = 0. Experiments show that the model

does combine theses properties: it enhances more the

local contrast of the image in the dark areas than in

the bright ones, and it preserves the hue of the original

image. Moreover, it preserves the saturation, defined as

the ratio chroma/intensity, of the original image. Com-

paring the three models on under-exposed images shows

that the best results are obtained with the model com-

bining the two optimal covariant derivatives.

2 Definitions and Notations

2.1 On the curvature tensor and the parallel transport

map

One of the main geometric objects we consider in this

paper is the curvature tensor. In this section, we recall

its definition and its relation with the parallel transport

map on a vector bundle. We refer the reader to [17] and

([2], Appendix A) for more details about the geometry

of fiber bundles.

Let G be a Lie group and g its Lie algebra, P be a

principal G-bundle over a manifold M and πP : P −→
M the projection map. We denote by Px ' G the fiber

over x ∈M , i.e. the set {π−1P (x)}, and by Γ (P ) the set

of smooth sections of P . In what follows, we denote by

(P, πP ,M,G) the principal G-bundle P .

Let ρ : G −→ GL(Rn) be a group representation of

G on Rn. We denote by Eρ the G-associated bundle

P ×ρRn, and by P (Eρ) = P ×ρEnd(Rn) the bundle of

moving frames of Eρ.

Given a manifold X, we denote by TX its tangent

bundle, T ∗X its cotangent bundle, and by
∧2

T ∗X the

bundle of differential 2-forms of X.

Definition 1 (Curvature of a connection on a prin-

cipal bundle) Let ω ∈ Γ (T ∗P ⊗ g) be a connection

1-form on a principal bundle (P, πP ,M,G). The cur-

vature 2-form F (ω) ∈ Γ (
∧2

T ∗P ⊗ g) of ω is defined

by

F (ω) : = dω +
1

2
[ω, ω] (1)

where d stands for the exterior derivative, and [·, ·] the

wedge product of Lie algebras-valued forms.

The connection 1-form ω on P induces a connection

1-form ωρ ∈ Γ (T ∗P ⊗ End(Rn)) on P (Eρ) given by

ωρ = ρ∗(−ω)

and the curvature 2-form F (w) on P induces a curva-

ture 2-form F (ωρ) ∈ Γ (
∧2

T ∗P ⊗ End(Rn)) on P (Eρ)

given by

F (ωρ) = ρ∗(−F (ω))

where ρ∗ : g −→ End(Rn) is the Lie algebra represen-

tation associated to ρ.
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Definition 2 (Flat connection) The connection 1-

form ω is called flat if F (ω) ≡ 0.

We say that a covariant derivative is flat if the corre-

sponding connection 1-form is flat.

Unlike the connection 1-forms, the curvature 2-forms

are transformed in a tensorial way with respect to the

action of G on the fibers of P . Indeed, given s ∈ Γ (P ),

g ∈ C∞(Ω,G) and denoting by · the action of G on the

fibers of P , we have

F|g·s = g−1F|sg.

Hence, in order to show that a connection is flat, it is

sufficient to show that it vanishes along a section of P .

Given s ∈ Γ (P ), the connection 1-form ω can be

pull down on the base manifold M as a 1-form s∗ω ∈
Γ (T ∗M ⊗ g), also called a connection 1-form, and it

transforms in the following manner under the action of

G

(g · s)∗ω = g−1dg + g−1(s∗ω)g

for g ∈ C∞(Ω,G). The connection one-form s∗ω de-

termines a connection one-form Aρ : = ρ∗(−s∗ω) ∈
Γ (T ∗M ⊗ End(Rn)) that transforms in the following

manner under the action of G on P

ρ∗(−(g · s)∗ω) = G−1dG + G−1ρ∗(−s∗ω)G (2)

where G ∈ Γ (P (Eρ)) is the moving frame of Eρ given

by G = ρ(g).

From the pulldown of ω on the base manifoldM through

the section s, we can define a curvature 2-form F (A) ∈
Γ (
∧2

T ∗M ⊗ g) on M , as

F (A) : = dA+
1

2
[A,A] (3)

and the corresponding curvature 2-form

F (Aρ) ∈ Γ (
∧2

T ∗M ⊗ End(Rn)) is given by

F (Aρ) = ρ∗(−F (A)). (4)

Given a covariant derivative ∇ = d + ωρ on the

vector bundle Eρ, the corresponding parallel transport

map is defined as follows.

Definition 3 (Parallel transport) Let γ : I ⊂ R −→
M be a smooth curve. The parallel transport associated

to ∇ along the curve γ is the map τt1,t2,γ : Eγ(t1) −→
Eγ(t2) such that τt1,t2,γ(u0) is the solution of the differ-

ential equation{
∇
γ′(t) u(γ(t)) = 0 ∀t ∈ [t1, t2]

u(γ(t1)) = u0
(5)

Finally, it follows from the results aforementioned that

the parallel transport map associated to a flat connec-

tion writes as the Identity map in the moving frame

G ∈ P (Eρ) in which it vanishes, and consequently does

not depend on the curve (in a homotopy class) joining

the points.

2.2 Non local total variation on a vector bundle and

its dual formulation

The construction of the solutions of the variational model

we consider in this paper and their numerical imple-

mentation requires the use of several notions that we

introduced in [1] and that we recall in this section.

Let E be a vector bundle of rank n over a manifold

M equipped with a positive definite metric h. We de-

note by πE : E −→M the projection map, by Ex ' Rn
the fiber over x ∈ M , i.e. the set {π−1E (x)}, and by

Γ (E) the set of smooth sections of E. We denote by

pr1(E) the vector bundle over M ×M induced by the

projection
M ×M −→M

pr1 : (x, y) 7−→ x

In others words

pr1(E) = {(x, y, p) ∈M ×M × E/x = πE(p)}. (6)

Definition 4 (nonlocal covariant derivative) The

nonlocal covariant derivative associated to a covariant

derivative ∇ = d+ ω on E is an operator

∇NLw : Γ (E) −→ Γ (pr1(E)) of the form

∇NLw u : (x, y) 7−→ w(x, y)
(
τ0,T,γy,x u(y)− u(x)

)
(7)

where γy,x is a curve joining y and x of length T , and

w : M ×M −→ R+∗ is a smooth symmetric function.

The positive definite metric h on E induces a L2 scalar

product 〈 , 〉 on Γ (pr1(E)) defined by

〈η1, η2〉 : =

∫
M×M

(η1(x, y), η2(x, y))h(x) dx dy

where ( , )h(x) denotes the scalar product in Ex with re-

spect to h, from which derive the Lp norm on Γ (pr1(E))

defined by

‖η‖Lp : =

(∫
M×M

‖η(x, y)‖ph(x) dx dy
)1/p

where ‖ ‖h(x) denotes the norm in Ex with respect

to h, and the space Lp(pr1(E)) as the completion of

Γ (pr1(E)) in this norm.

Finally, we define the space

WNL
w,1,p : = {u ∈ Lp(E),∇NLw u ∈ Lp(pr1(E))}.
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Definition 5 (Adjoint of nonlocal covariant deriva-

tive) The adjoint of a nonlocal covariant derivative

∇NLw induced by a covariant derivative ∇ compatible

with a positive definite metric h is the operator

∇NLw
∗

: Γ (pr1(E)) −→ Γ (E) satisfying

〈∇NLw u, η〉 = (u,∇NLw
∗
η)

∀u ∈ Γ (E), ∀η ∈ Γ (pr1(E)), where ( , ) is the L2

scalar product on Γ (E) induced by h.

Proposition 1 The operator ∇NLw
∗

is defined by

∇NLw
∗
η : x −→

∫
M

w(x, y)
(
τ0,T,γy,x η(y, x)− η(x, y)

)
dy.

(8)

Proof See [1]. ut

Definition 6 (Nonlocal Vector Bundle Total Vari-

ation of integrable sections) Let u ∈ L1(E) and

w : M ×M −→ R+∗ be a smooth symmetric function,

we define the nonlocal Vector Bundle Total Variation

V BTV NLw (u) of u as the quantity

V BTV NLw (u) = sup
ξ∈K1

(∫
M

(u, ξ)h dM

)
(9)

where Kw,a is the closure in L2(E) of the set Kw,a de-

fined by

Kw,a : =

{∇NLw
∗
η : η ∈ Γ (pr1(E)), ‖η(x, y)‖h(x) ≤ a ∀x, y ∈M}.

(10)

We denote by BV NLw (E) the set of sections u ∈ L1(E)

such that V BTV NLw (u) < +∞.

Proposition 2 Assuming that u ∈WNL
w,1,1(E), we have

V BTV NLw (u) = ‖∇NLw u‖L1 , (11)

the second term corresponding to the L1 norm of the

distance (32).

Proof See [1]. ut

3 A variational model encoding properties of

the HVS

3.1 Geometrical interpretation of existing Retinex

formulations

In this section, we begin with a brief review on Retinex

formulations, following the classification of Bertalmı́o et

al. [6] who distinguish two categories: one-dimensional

and two-dimensional Retinex formulations. We detail

the expressions of two contributions: the original Retinex

formulation of Land and McCann [19] that belongs to

the first category, and the KBR formulation of Bertalmı́o

et al. [6] that belongs to the second one. Then, we pro-

pose an expression that generalizes both formulations.

3.1.1 One-dimensional Retinex formulations

In the Retinex formulation of Land and McCann, the

perceived color L(x) = (L1(x), L2(x), L3(x)) of an im-

age u = (u1, u2, u3) expressed in the RGB color space

at the pixel location x can be written

Lk(x) =
1

N

N∑
i=1

diff(uk(x), uk(yi)), k = 1, 2, 3,

(12)

where

diff(uk(x), uk(yi)) =

T−1∑
t=0

Θε log
uk(γyi,x(t+ 1))

uk(γyi,x(t))

with Θε(.) =


. if |.| ≥ ε

0 otherwise

for N randomly distributed pixels yi satisfying uk(yi) ≥
uk(x) and γyi,x piecewise linear random paths joining

yi and x subdivided into T points γyi,x(0), · · · , γyi,x(T ),

with γyi,x(0) = yi and γyi,x(T ) = x, and such that

uk(γyi,x(0)) = max
t∈{0...T}

uk(γyi,x(t)). (13)

The condition (13) means that, along the path γyi,x,

the image uk reaches its highest value at the pixel lo-

cation yi.

The parameter ε serves as a threshold that guarantees

that small intensity changes are not taken into account

in the computation of the perceived color. Whereas the

use of the threshold enables to disregard changes due to

noise in the computation, it can also affect its accuracy

as small gradients can indicate objects boundaries as

well, especially when dealing with natural images.

The use of random paths provides a good trade-off

between an accurate and a fast scan of the image con-

tent. The choice of linear piecewise paths in order to

scan the image content is due to the particular geom-

etry of the piecewise constant pictures that have been

used in the seminal experiments conducted by Land

and McCann. However, it turns out that linear piece-

wise paths are not adapted to natural images in the
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sense that many paths would be required in order to

produce a noise-free output, and this affects the filter-

ing time. Since then, the choice of using linear piecewise

paths has been widely questioned and several more re-

cent Retinex formulations have incorporated more com-

putationally efficient paths, e.g. Marini and Rizzi [21]

use Brownian paths whereas Cooper and Baqai [9] use

double spirals. However, as pointed out by Bertalmı́o

et al. [6], none of these approaches has been able to

prevent the formation of noise and artifacts, suggesting

that this is an intrinsic limitation of one-dimensional

approaches.

3.1.2 Two-dimensional Retinex formulations

A two-dimensional Retinex formulation has been intro-

duced by Horn [16], who reformulated the Retinex as

a Poisson equation. This seminal approach has led to

many two-dimensional Retinex formulations (see e.g.

[6],[20],[34] for more details). Among them, the KBR

approach of Bertalmı́o et al. [6] is inspired by the math-

ematical formulation of Retinex proposed by Provenzi

et al. [25]. In its general form, KBR is given by

Lk(x) =
∑

y:uk(y)≥uk(x)

w(x, y) g

(
uk(x)

uk(y)

)
+

∑
y:uk(y)<uk(x)

w(x, y)

where g : ]0, 1] −→]0, 1] is a strictly increasing function,

and where w is a positive, symmetric and normalized

kernel. In the experiments they conducted, the authors

chose g(r) = A log(r) + 1 for some constant A, and w

related to the Gaussian kernel. By this choice of the

function g, we have

Lk(x) =
∑

y:uk(y)≥uk(x)

w(x, y)

[
A log

(
uk(x)

uk(y)

)
+ 1

]
+

∑
y:uk(y)<uk(x)

w(x, y)

= 1 +
∑

y:uk(y)≥uk(x)

w(x, y)A log

(
uk(x)

uk(y)

)

=
∑

y:uk(y)≥uk(x)

w(x, y)

[
A log

(
uk(x)

uk(y)

)

+
1∑

y:uk(y)≥uk(x) w(x, y)

]
(14)

Finally, let us point out that we can rewrite (14) as

Lk(x) =
∑

y:uk(y)≥uk(x)

w(x, y)

T−1∑
t=0

[
A [ log(uk(γy,x(t+ 1))

− log(uk(γy,x(t)) ] +
1

T
∑
y:uk(y)≥uk(x) w(x, y)

]
(15)

where the curve γy,x joining y and x is subdivided into

T points γy,x(0), · · · , γy,x(T ), with γy,x(0) = y and

γy,x(T ) = x.

As mentioned in the introduction, the KBR formula-

tion has several advantages with respect to the original

one: its computational complexity is much lower and it

is less affected by artifacts, noise, or haloes.

3.1.3 Reinterpreting Retinex formulations

The two Retinex formulations aforementioned involve

a discretization of ∇ log(uk), where ∇ is the Euclidean

gradient, as the difference

log(uk(γy,x(t+ 1)))− log(uk(γy,x(t)))

is the discrete counterpart of〈
∇ log(uk)(γy,x(t)),

.
γy,x(t)

〉
,

and we claim that ∇ log(uk) can be interpreted as an

estimation of the perceptual gradient of an image ac-

cording to Weber’s law in vision.

Indeed, given a uniform background I, Weber’s law

states that the following equality holds

δ I
I

= c, (16)

where δI is the minimum intensity increment of I to

which the human sensitivity distinguish I and I + δI,

and c is a constant.

Hence, Weber’s law shows that the human sensitivity to

an intensity increment depends on the intensity of the

background. In particular, it shows that human percep-

tion is more sensitive to intensity changes in dark back-

grounds than in the bright ones. Then, formula (16) can

be used to determine equal increments of the perceived

brightness B as

δ I
I

= c δB (17)

from which derives a formula for the perceived bright-

ness by integrating equality (17), i.e.

B =
1

c
log I + b0 (18)
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where b0 is a constant.

Finally, we obtain an estimation b of the perceived

brightness of a color image u from formula (18), given

by

bk =
1

ck
log uk + bk0 . (19)

From formula (19), we deduce that (1/ck)∇ log uk es-

timates the gradient of the perceived brightness of a

color image according to Weber’s law, as we have

∇bk =
1

ck
∇ log uk. (20)

As a consequence, the Retinex formulations afore-

mentioned can be interpreted as follows: the perceived

color L(x) at the pixel location x of a color image

u : Ω ⊂ R2 −→ R3 is the channel-wise averaging M of

the perceived difference diff(uk(x), uk(y)) between the

pixel intensity uk(x) and some other pixels intensities

uk(y) in the image domain Ω, the perceived difference

being given by the integration along a path γy,x joining

the two pixels of a quantity f(∇ log uk) approximat-

ing the estimation (20) of the gradient of the perceived

brightness. In the continuous setting, it gives

Lk(x) =M{diff(uk(x), uk(y)); y ∈ Ω′ ⊂ Ω} (21)

with

diff(uk(x), uk(y)) =

∫ T

0

f(〈∇ log uk(γy,x(t)),
.

γy,x(t)〉) dt .

(22)

For the original Retinex formulation (12), we have

- Ω′ = {N randomly distributed pixels y such that

uk(y) ≥ uk(x) and such that for each y there exists

a random piecewise linear path γy,x joining y and x

and such that the restriction of uk along γy,x reaches

its highest value at y.}
- f : r 7−→ Θε r

- M =
1

N

∑N
i=1.

For the KBR formulation (15), we have:

- Ω′= {pixels y such that uk(y) ≥ uk(x)}
- f : r 7−→ Ar + h with

h =
1

T
∑
y∈Ω′ w(x, y)

.

- M =
∑
y∈Ω′ w(x, y).

3.2 Extension of Retinex formulations with covariant

derivatives

3.2.1 Limits of the Retinex formulations

Formulae (21),(22) show that the gradient of the per-

ceived brightness is at the core of Retinex formulations.

However, we claim that the original Retinex formula-

tion (12) and the KBR one (15) suffer from, at least

theoretically, several drawbacks in order to reproduce

accurately the perceived color image.

First, we showed at the end of the previous sec-

tion that the estimation of the perceived gradient used

in these formulations does not match with the psy-

chophysical estimation (1/ck)∇ log uk in (20). More-

over, this latter assumes that Weber’s law holds, but

it is well-known that Weber’s law fails at low inten-

sity levels, and we claim that the formulae can then be

improved by replacing (1/ck)∇ log(uk) with a more ac-

curate representation of the perceptual gradient, e.g. by

taking into account more accurate psychophysical and

physiological data.

Secondly, one of the main properties of the HVS that

any algorithm devoted to reproduce the perceived color

image should take into account is color constancy, i.e.

the ability of the HVS to perceive colors almost inde-

pendently of the lighting of the scene. Whereas existing

Retinex formulations succeed in reproducing this abil-

ity under particular lighting conditions and properties

of the scene, it is not clear that they are able to repro-

duce it in all cases, especially when natural scenes are

involved.

3.2.2 Georgiev’s reinterpretation of the perceived

gradient of an image

Georgiev [14] argues that the ability of the HVS to

adapt its perception of scenes to lighting conditions

could be related to an invariance property of the per-

ceived gradient with respect to relighting.

Indeed, he suggests that this latter is transformed

as the pixel intensities are under a change of lighting

conditions, the relighting being mathematically repre-

sented by a 3x3 diagonal strictly positive matrix field

G acting on the pixel intensities expressed in a trichro-

matic color space (e.g. LMS or RGB). When the re-

lighting is constant over the image domain, i.e. when G
is constant, the standard gradient can serve as a defini-

tion of the perceived gradient as the standard differen-

tial operator d satisfies d(Gu) = Gdu (we have replaced

log u by u for simplification). However it fails to model

invariance under non constant relighting, as the stan-

dard derivative takes into account the variation of the
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relighting (d(Gu) = dGu+ Gdu). On the other hand, as

pointed out by Georgiev, a covariant derivative ∇u of a

section u satisfies an invariance property with respect to

a frame change. Indeed, under the frame change given

by G−1, the following transformations hold{
u −→ Gu
ω −→ G dG−1 + GωG−1.

Hence, the expression of the covariant derivative of u

in the frame G−1 is given by

∇(G u) = dG u+ G du+ (G dG−1 + G ωG−1)Gu
= G du+ Gωu
= G∇u,

meaning that the covariant derivative of a section fol-

lows the same transformation rule as the section under

a frame change. Based on this observation, Georgiev

proposes to model the perceived gradient of an image

as a covariant derivative, which makes perceived gradi-

ents satisfy the same invariance property as the pixel

values under a relighting.

3.2.3 The proposed extension of the Retinex

formulations

It follows from the analysis performed in sect. 3.2.2 that

a color image u : Ω ⊂ R2 −→ R3 can be considered as a

section of a G-associated vector bundle of rank 3 over

Ω. When the Lie group G is the set D+∗
3 of 3x3 diago-

nal strictly positive matrices, this construction makes a

light change be represented by a moving frame change

in the vector bundle.

Based on the limitations of the current Retinex for-

mulations mentioned in sect. 3.2.1, we propose to re-

place f(∇ log), where ∇ is the Euclidean gradient oper-

ator, by a covariant derivative ∇ in formula (22), which

gives

diff(u(x), u(y)) =

∫ T

0

∇ ·
γy,x(t)

u(γy,x(t)) dt (23)

where γy,x is a curve joining y and x of length T , from

which we obtain a new formula for the perceived color

image

L(x) =M

(∫ T

0

∇ ·
γy,x(t)

u(γy,x(t)) dt

)
(24)

whereM is an averaging operator (not necessarily channel-

wise anymore).

The quantity (23) corresponds to

τ0,T,γy,xu(y)− u(x)

Fig. 1 Color appearance phenomena show that the percep-
tual difference between two pixel values does not necessarily
correspond to their value difference.

where τ denotes the parallel transport map associated

to ∇ (see formula (5)).

The introduction of a covariant derivative in for-

mula (23) raises the question of the path dependency

of the perceptual difference between two pixel values.

To the best of our knowledge, this problem has not been

addressed so far.

The dependency of the parallel transport map with

respect to the curve joining two points is determined by

the curvature of the covariant derivative (see formula

(1)). Indeed, if the covariant derivative is flat, then the

parallel transport is independent (in a homotopy class)

of the curve joining the points, and the expression (23)

can be simplified as

diff(u(x), u(y)) = G(x)G−1(y)u(y)− u(x) (25)

where G is the moving frame in which the covariant

derivative vanishes.

With respect to the moving frame change from the

standard one to G, the quantity G(x)G−1(y)u(y)−u(x)

rewrites

G−1(y)u(y)− G−1(x)u(x). (26)

The fact that G in (26) varies with the pixel location

is actually coherent with a lot of color appearance phe-

nomena that make the perceived difference between the

colors at two different pixel locations do not correspond

to their difference u(x)−u(y), whatever the color space

in which the colors are represented is, i.e. whatever

the transformation f(u(x)) − f(u(y)) (e.g. f = log).

Fig. 1 shows an example of color appearance phenom-

ena where the perceived difference between u(x) and

u(y) is not zero even if u(x) = u(y).

Fig. 2(a) shows that this perceptual difference is in-

dependent of the path γ1y,x or γ2y,x joining y and x the
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(a) Path independency of the perceptual difference
between two pixel values.

(b) Path dependency of the perceptual difference
between two pixel values.

Fig. 2 The perceptual difference between two pixels intensi-
ties may depend on the path joining the two pixels the eye is
following.

eye follows, which suggests the use of a flat covariant

derivative to compute perceptual differences in Fig. 1.

The path dependency of the parallel transport map as-

sociated to a non flat covariant derivative suggests that

the perceived difference between two pixels values de-

pends on the colors lying on a selected path joining

them, which seems to be coherent with human percep-

tion as illustrated on Fig. 2(b), where the perceptual

difference between u(x) and u(y) depends on the path

joining x and y. Indeed, according to the path γ1y,x, the

perceptual difference is 0 and corresponds actually to

the difference of their pixel values. On the other hand,

when the eye follows the path γ2y,x, it perceives the same

difference as in Fig. 1.

Nonetheless, this analysis raises the problem of the

choice of the curves γy,x in formula (23), and that we

will discuss in more details in the next section.

3.3 From Retinex formulations to variational models

for image processing

3.3.1 Bertalmı́o et al.’s variational model

The original Retinex (12) and KBR (15) formulations

suffer from two main drawbacks when applied as algo-

rithms to correcting camera output images.

First, they are not idempotent, which implies that

the algorithms may have to be employed several times

in order to provide the desired results, but the number

of iterations can hardly be automatized, which made

Bertalmı́o et al. [6] propose to replace the KBR algo-

rithm by a PDE that involves both KBR and the image

u0 to be processed

∂uk

∂t
(x) = −uk(x) + Lk(x)− λ(uk(x)− uk0(x)). (27)

The PDE (27) provides an algorithm that performs

KBR iteratively but allows to control the output of the

algorithm through the parameter λ > 0.

Secondly, they both increase the pixel intensities,

meaning that they can not correct over-exposed images.

To solve that issue, Bertalmı́o et al. [6] suggested to

modify the KBR formulation (15) by anti-symmetrizing

it.

Finally, combining these two modifications of KBR

leads to a PDE of the form

∂uk

∂t
(x) =− λ(uk(x)− u0(x))− β(uk(x)− 1/2)

+ 2

∫
Ω

w(x, y)Sα(uk(x)− uk(y)) dy, (28)

where Sα is a differentiable function approximating

f : z 7−→


−1 if z < 0

0 if z = 0

1 if z > 0

and β > 0 is a parameter.

In [6], the approximation is based on Chebyshev

polynomials. In a more recent work [24], a more stable

approximation has been proposed based on Bernstein

polynomials.

The PDE (28) turns out to be the gradient de-

scent of a differentiable approximation of the varia-

tional problem

uk = arg min
uk

λ

2

∫
Ω

(
uk(x)− uk0(x)

)2
dx

+
β

2

∫
Ω

(
uk(x)− 1/2

)2
dx

−
∫
Ω×Ω

w(x, y) |uk(y)− uk(x)| dx dy.

(29)
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The second term of the energy (29) is related to the

gray-world hypothesis in visual adaptation (see [23] and

references therein for more details). The third term per-

forms (local) contrast enhancement. Both the second

and third terms enable to significantly reduce the color

cast of the initial image u0, i.e. they tend to make the

model (29) perform color constancy.

The aim of the model (29) is to construct an image,

given by a solution u of the model, that provides a bet-

ter representation of the scene captured by the camera

than the camera output image u0. Ideally, the image u

would be perceived on a screen as the original scene is

perceived with the naked eye.

Finally, note that the model is equivalent to

uk = arg min
uk

λ+ β

2

∫
Ω

(
uk(x)− 1

λ+ β
(λuk0(x) + β

1

2
)

)2

dx

−
∫
Ω×Ω

w(x, y) |uk(y)− uk(x)| dx dy.

(30)

3.3.2 The proposed variational model

Following the connection established in [6] between the

KBR formulation (15) and the variational model (29),

we derive the following variational model from the gen-

eralization of KBR (24)

u = arg min
u

λ+ β

2

∫
Ω

∥∥∥∥u(x)− 1

λ+ β
(λu0(x) + βv0)

∥∥∥∥2
h(x)

dx

−
∫
Ω×Ω

w(x, y) dτ (u(x), u(y)) dx dy (31)

where v0 is the section of coordinates (1/2, 1/2, 1/2) in

the standard frame, and the term dτ is defined by

dτ (u(x), u(y)) = ‖τ0,T,γy,xu(y)− u(x)‖h(x) (32)

for some metric h, and that we interpret as a perceptual

distance between the pixels u(x) and u(y). In particu-

lar, if the covariant derivative is compatible with the

metric h, the perceptual distance (32) is invariant with

respect to a moving frame change.

Finally, let us discuss the choice of the kernel w in

(31) and the curve γy,x in (32). In [23], the authors con-

sider w as a Gaussian kernel, and rely this choice with

perception, by taking into account the fact that the

strength of “chromatic induction” between two differ-

ent areas of a scene decreases with their Euclidean dis-

tance. This perceptual interpretation of the Euclidean

distance between two pixel locations makes us consider

in the experiments performed in this paper the straight

line as the curve γy,x joining y and x. Note that in

most of the experiments we present in sect. 7, we con-

sider flat covariant derivatives, meaning that the term

(32) is independent of the chosen curve γy,x. The more

complex case of path dependent perceptual difference,

as illustrated in Fig. 2(b), will be discussed in further

work.

As in the Euclidean case (29), the solution u of the

proposed model (31) provides a more accurate repre-

sentation of the scene captured by the camera than the

camera output image u0. Moreover, for a well-chosen

covariant derivative, the analysis performed in sect. 3.2

predicts that it should provide a better representation

of the scene than the solution of the Euclidean model

as well.

4 A class of covariant derivatives parametrized

by Lie group representations

In sect. 3, we constructed a variational model (31) for

color image correction that involves covariant deriva-

tives on a G-associated vector bundle of rank 3, but no

explicit covariant derivative was suggested. In sect. 4-5,

we construct and analyze a class of covariant deriva-

tives, and relate them with some properties of the HVS.

4.1 A variational problem for the construction of

optimal connection 1-forms

A covariant derivative on a G-associated vector bun-

dle is completely determined by a g-valued connection

1-form. In what follows, we remind the reader of the

construction of optimal connection 1-forms in [2], and

which is inspired by the Beltrami framework in [28].

The key observation that led to the proposed con-

struction of optimal connection 1-forms was the follow-

ing. Under the identification between a section S of a

G-associated vector bundle and a G-equivariant func-

tion fS on the corresponding principal G-bundle, we

have the following correspondence

d
Xh
fS ←→ ∇XS

where X is a tangent vector field on the base mani-

fold, Xh denotes its horizontal lift with respect to a

horizontal distribution on the principal G-bundle (see

illustration on Fig. 3), and ∇ the covariant derivative

induced by the horizontal distribution.

Hence, a geometry of color perception, which is given

by a covariant derivative on a G-associated vector bun-

dle according to the analysis performed in sect. 3, is

determined by a horizontal distribution of rank 2 on a

G-principal bundle, where G is a Lie group acting on a
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Fig. 3 Horizontal distribution HP on a G-principal bundle
P over M (up) and the induced horizontal lift of a tangent
vector field on M at three points x1, x2, x3 (down).

color space.

Let I = (I1, · · · , In) : Ω ⊂ R2 −→ Rn be an n-

channel image where Ω is open, that we express as a

vector-valued function in the standard basis (e1, · · · , en)

of Rn, i.e. we set I = I1e1 + · · · Inen. Let (ρ,G) be

a group representation on Rn where G is of dimen-

sion d and is equipped with a Riemannian metric B.

Let (P, πP , Ω,G) be the principal G-bundle where P =

Ω × G and πP : Ω × G −→ Ω is the standard projec-

tion. Let V P be the vertical bundle of P and HP be a

horizontal bundle of P .

We assume that P is equipped with a Riemannian

metric Q1 constructed as follows: Let (f1, f2) be an or-

thonormal frame of TΩ with respect to the Euclidean

metric onΩ. Let (fh1 , f
h
2 ) be the horizontal lift of (f1, f2)

on TP with respect to HP . Let (X1, · · · , Xd) be an or-

thonormal basis of TeG = g with respect to B. Let

(Xv
1 , · · · , Xv

d ) be the frame of V P , defined for i =

1, · · · , d by

Xv
i (p) =

(
d

dt
p · exp(tXi)

)
|t=0

Then, considering the metricQ1 on P given by the Iden-

tity matrix field Id+2 in the frame (fh1 , f
h
2 , X

v
1 , · · · , Xv

d )

of TP turns (P,Q1) into a Riemannian manifold.

We consider a second Riemannian metric on P of

the form I2⊕B in the frame (f1, f2, X
v
1 , · · · , Xv

d ) , from

which we derive a Riemannian metric Q2 on P ×Rn of

the form I2 ⊕ B ⊕ κ In, in the frame

(f1, f2, X
v
1 , · · · , Xv

d , e1, · · · , en), with κ > 0.

Let J be the (ρ,G)-equivariant function on P given

by

P −→ Rn
J : (x, g) 7−→ ρ(g)−1I(x)

(33)

and ϕ its graph, i.e.

P −→ P × Rn
ϕ : (x, g) 7−→ (x, g, J(x, g))

(34)

Then ϕ can be viewed as an embedding of the Rie-

mannian manifold (P,Q1) into the Riemannian mani-

fold (P ×Rn, Q2), and we consider its Dirichlet energy

X(ϕ) along the section s of P defined by s(x) = (x, e),

which is given by

X(ϕ) =

∫
s

Q1
µν ∂ϕ

i

∂xµ

∂ϕj

∂xν
Q2ij dΩ (35)

where (x1, x2) denotes the cartesian coordinates system

of Ω.

Finally, minimizing the energy (35) with respect to

the horizontal distribution HP along s, and denoting

by Hopt
s P the solution, we obtain the restriction along

s of an optimal connection 1-form ωopt

Hopt
s P =: ker ωopt|s ,

and the pulldown Aopt of wopt with respect to s on M

given by

Aopt : = s∗ωopt. (36)

Then the connection 1-form Aopt determines the con-

nection 1-form on the associated vector bundle P ×ρRn
given by ρ∗(−Aopt) in the moving frame of P ×ρRn in-

duced by s, i.e. the standard frame (e1, · · · , en) of Rn.

In what follows, we compute and give the explicit

expressions of the connection 1-forms Aopt (36) and

ρ∗(−Aopt) for different group representations (ρ,G), and

establish connections with vision.
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4.2 The standard representation of the group R+∗ on

Rn

4.2.1 Explicit expression of the optimal connection

1-form

Denoting by a the standard parametrization of the group

R+∗, and equipping it with the metric B given by the

constant δ in the standard frame ∂/∂a, we obtain

Aopt =

∑n
k=1 I

k dIk

δ/κ+
∑n
k=1 (Ik)

2 ⊗ ∂/∂a (37)

Then, the corresponding connection 1-form in the asso-

ciated bundle P ×ρ Rn is given by

ρ∗(−Aopt) = −
∑n
k=1 I

k dIk

δ/κ+
∑n
k=1 (Ik)

2 In (38)

in the frame (e1, · · · , en).

4.2.2 The optimal connection 1-form for n = 1 and its

relation with Weber-Fechner’s law in vision

Under the change of variables J : = I2, the connection

1-form (37) for n = 1 writes

Aopt =
1

2

dJ

δ/κ+ J
⊗ ∂/∂a, (39)

and the quantity
dJ

δ/κ+ J

in (39) encodes Weber-Fechner’s law in psychophysics.

Indeed, this law, named after the german physicians

E.H. Weber and G. Fechner, relates the actual change

in a light stimuli and the perceived change. It has been

formulated by Fechner, based on a psychophysical ex-

periment conducted earlier by Weber, and is actually a

refinement of Weber’s law (16) in the sense that it is

more accurate for intensity values J close to 0. More

precisely, given an uniform background of intensity J ,

Weber-Fechner’s law claims that the following equality

holds

δJ
m+ J

= c (40)

where δJ is the minimum intensity increment of J to

which the human sensitivity distinguish J and J +δJ ,

c is a constant, m > 0 is a quantity often interpreted

as internal noise in the visual mechanism (its value will

be discussed in sect. 7.2.3).

Weber-Fechner’s law holds for light intensities, while

I represents pixel values. However, when displaying I

on a screen, the light intensity reaching the eye is known

to be approximatively I2.2 assuming that I ∈ [0, 1].

Hence, for I being a grey-level image, we claim that

the quantity

I dI

δ/κ+ I2
, (41)

for δ/κ = m, is an approximation of the perceptual

gradient of I (under the identification between the dif-

ferential and the gradient of a function) that is more

accurate than the quantity

dI

I

that appears in Retinex formulations (see sect. 3.1.3),

as this latter is derived from (the less accurate) Weber’s

law and acts on pixel values and not on light intensities.

4.3 The standard representation of the group D+∗
3 on

R3

4.3.1 Explicit expression of the optimal connection

1-form

Denoting by (a1, a2, a3) the standard parametrization

of the group D+∗
3 , and equipping it with the metric B

given by the diagonal matrix of three strictly positive

constant diag(δ1, δ2, δ3) in the standard frame

(∂/∂a1, ∂/∂a2, ∂/∂a3), we obtain

Aopt =

3∑
k=1

Ik dIk

δk/κ+ (Ik)
2 ⊗ ∂/∂ak. (42)

Then, the corresponding connection 1-form in the asso-

ciated bundle P ×ρ R3 is given by

ρ∗(−Aopt) =



− I1 dI1

δ1/κ+ (I1)
2 0 0

0 − I2 dI2

δ2/κ+ (I2)
2 0

0 0 − I3 dI3

δ3/κ+ (I3)
2


(43)

in the frame (e1, e2, e3).
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4.3.2 The optimal connection 1-form and its relation

with Weber-Fechner’s law in color vision

Under the change of variables

(J1, J2, J3) : = ((I1)
2
, (I2)

2
, (I3)

2
),

the connection 1-form (42) writes

Aopt =

3∑
k=1

1

2

dJk

δk/κ+ Jk
⊗ ∂/∂ak, (44)

and the triplet(
dJ1

δ1/κ+ J1
,

dJ2

δ2/κ+ J2
,

dJ3

δ3/κ+ J3

)
(45)

in (44) encodes Weber-Fechner’s law in color.

Indeed, for color images, a natural question concerns

the choice of the color space in which the image I has

to be expressed. It is known that the three types of

cones in the retina (S (short) cones, M (medium) cones,

L (large) cones) have a response that follows Weber-

Fechner’s law with respect to the light intensity reach-

ing the eye (assuming that the scene has not a high

dynamic range [12]). It suggests that the right color

space to consider must be related to the trichromatic

theory of colors (also known as Young-Helmholtz the-

ory), which states that the LMS cones are responsible

for the color vision in the sense that each of them is sen-

sitive to a different wavelength and that each color can

be reproduced as a combination of these three wave-

lengths. Hence, the color space RGB is a good candi-

date, as the S resp. M resp. L cones have their peak

response in the blue resp. green resp. red wavelength

(see e.g. [7] for more details). However, each type of

cone has a different value for the constant c in (40),

which implies that the quantity m varies with k and

the identification (δ1/κ, δ2/κ, δ3/κ) : = (m1,m2,m3)

makes the connection 1-form (42) be a good candidate

to model the perceptual gradient of a color image (the

values (m1,m2,m3) will be discussed in sect. 7.2.3).

4.4 Explicit expression of the connection 1-form for

the standard representation of SO(2) on R2

Parametrizing SO(2) by an angle θ, and equipping it

with the metric B given by a strictly positive constant

δ in the frame ∂/∂θ, we obtain

Aopt =
(I1dI2 − I2 dI1)

δ/κ+ [(I1)
2

+ (I2)
2
]
⊗ ∂/∂θ. (46)

Then, the induced connection 1-form on P×ρR2 is given

by

ρ∗(−Aopt) =


0

(I1dI2 − I2 dI1)

δ/κ+ [(I1)
2

+ (I2)
2
]

− (I1dI2 − I2 dI1)

δ/κ+ [(I1)
2

+ (I2)
2
]

0

 (47)

in the frame (e1, e2).

In polar coordinates, i.e. writing I1 = r cosϕ, I2 =

r sinϕ , the connection 1-form (47) writes

ρ∗(−Aopt) =


0

r2

δ/κ+ r2
dϕ

− r2

δ/κ+ r2
dϕ 0

 . (48)

4.5 Representations of SO(2) on R3

4.5.1 Explicit expression of the connection 1-form for

a representation of SO(2) on R3

A group representation ρ of SO(2) on R3 is parametrized

by the plane P in R3 left invariant by the set of rota-

tions ρ(SO(2)), and we denote it by ρP .

Geometric algebra [10] is a powerful tool to repre-

sent geometric objects with algebraic expressions, and

a plane P in R3 equipped with the basis (e1, e2, e3) is

determined by a bivector γ12 e1e2 + γ13 e1e3 + γ23 e2e3,

where γ212 + γ213 + γ223 = 1.

Parametrizing SO(2) by an angle θ, and equipping

it with the metric B given by a strictly positive constant

δ in the frame ∂/∂θ, we obtain

Aopt =

(
(−γ12I2 − γ13I3) dI1

den
+

(γ12I
1 − γ23I3) dI2

den

+
(γ13I

1 + γ23I
2) dI3

den

)
⊗ ∂/∂θ (49)

where

den = δ/κ+
[
(γ12I

2 + γ13I
3)

2
+ (γ12I

1 − γ23I3)
2

+(γ13I
1 + γ23I

2)
2
]
. (50)
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Writing the 1-form Aopt as A1 ⊗ ∂/∂θ, the induced

connection 1-form on P ×ρP R3 is given by

ρP∗ (−Aopt) = −A1


0 −γ12 −γ13

γ12 0 −γ23

γ13 γ23 0

 (51)

in the frame (e1, e2, e3).

Let F = (f1, f2, f3) be the orthonormal frame of

R3 where f2, f3 ∈ P, given by the matrix

F =



−γ13
γ12 + γ23

f

1− γ13(γ13 − γ12 + γ23)

f

γ12
γ13 − γ23

f

1− γ12(γ12 − γ23 − γ13)

f

γ23
γ12 + γ13

f

−1 + γ23(γ23 + γ13 − γ12)

f


(52)

in the frame (e1, e2, e3), where

f =
√

2 + 2 (γ12γ13 + γ12γ23 − γ13γ23).

Then, the expression of the connection 1-form

ρP∗ (−Aopt) in the frame F is F−1ρP∗ (−Aopt)F , which

gives
0 0 0

0 0 A1

0 −A1 0

 . (53)

Moreover, we can show that A1 can be rewritten as

A1 =
F−1(I)2 dF−1(I)3 −F−1(I)3 dF−1(I)2

δ/κ+ ‖(F−1(I)2,F−1(I)3)‖2
. (54)

We then observe that the connection 1-form (53) is re-

lated to the connection 1-form (47) where (I1, I2) is

replaced by the projection of (I1, I2, I3) on the plane

P, i.e. by (F−1(I)2,F−1(I)3).

Finally, writing (I1, I2, I3) = (a, r cosϕ, r sinϕ) in the

frame F , the connection 1-form (53) can be reformu-

lated as

ρ∗(−Aopt) =



0 0 0

0 0
r2

δ/κ+ r2
dϕ

0 − r2

δ/κ+ r2
dϕ 0


. (55)

4.5.2 Relation with vision: From trichromacy to

opponency and hue change

As mentioned above, Weber’s and Weber-Fechner’s laws

are related to the trichromatic theory of color vision.

Color opponency is another theory of color vision, that

is actually complementary to the trichromatic theory

in the sense that it appears at a later stage in the vi-

sual pathway. More precisely, whereas the trichromatic

theory appears at the retina level, experiments show

that the three types of cones and their signals are then

transformed in the brain into color opponent mecha-

nisms, that have been detected in the lateral geniculate

nucleus and the visual cortex. The three opponencies

that are physiologically implemented are of the form:

white-black, red-green, blue-yellow, and the transfor-

mation from the LMS space to the opponency space

O1O2O3 is given by the 3x3 matrix
O1

O2

O3

 =


1/
√

3 1/
√

3 1/
√

3

1/
√

2 −1/
√

2 0

1/
√

6 1/
√

6 −2/
√

6



L

M

S

 (56)

The transformation matrix (56) corresponds to express-

ing the signal in the basis (52) parametrized by γ12 =

−γ13 = γ23 = 1/
√

3. Note that the matrix (56) is spe-

cial orthogonal and makes the white-black, red-green,

and yellow-blue axis be orthogonal to each others.

Given a color O1O2O3 obtained by the transforma-

tion (56) where the LMS space has been replaced by

the RGB space, its component O1 corresponds to the

intensity of the color, up to a multiplication by the con-

stant
√

3. The opponency color space also exhibits a key

notion in color vision, the hue H (see e.g. [4]), which is

defined as H = arctan(O3/O2). Finally, the chroma C

of the color is C =
√
O2

2 +O2
3.

We deduce that the group representation of SO(2)

on the RGB color space, seen as a subspace of R3,

parametrized by γ12 = −γ13 = γ23 = 1/
√

3 encodes

color transformations that preserve the intensity and

chroma, but modify the hue.

4.6 Explicit expression of the connection 1-form for

the standard representation of SO(3) on R3

Parametrizing SO(3) by the Euler angles (θ1, θ2, θ3),

and equipping it with the metric B given by δ 0 δ sin θ2
0 δ 0

δ sin θ2 0 δ


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in the frame (∂/∂θ1, ∂/∂θ2, ∂/∂θ3) where δ > 0, we ob-

tain

Aopt =

− (I1dI2 − I2dI1)

δ/κ+ ‖I‖2
⊗ ∂/∂θ3 +

(I1dI3 − I3dI1)

δ/κ+ ‖I‖2
⊗ ∂/∂θ2

− (I2dI3 − I3dI2)

δ/κ+ ‖I‖2
⊗ ∂/∂θ1. (57)

Then, the induced connection 1-form on P ×ρ R3 is

given in the frame (e1, e2, e3) by

ρ∗(−Aopt) =

0
(I1dI2 − I2dI1)

δ/κ+ ‖I‖2
(I1dI3 − I3dI1)

δ/κ+ ‖I‖2

− (I1dI2 − I2dI1)

δ/κ+ ‖I‖2
0

(I2dI3 − I3dI2)

δ/κ+ ‖I‖2

− (I1dI3 − I3dI1)

δ/κ+ ‖I‖2
− (I2dI3 − I3dI2)

δ/κ+ ‖I‖2
0


.

(58)

In spherical coordinates, i.e. writing I1 = r sin θ cosϕ,

I2 = r sin θ sinϕ, I3 = r cos θ, the connection 1-form

(58) writes

r2

δ/κ+ r2
×

sin2 θ dϕ


0 1 0

−1 0 0

0 0 0



+(cos θ sin θ sinϕdϕ− cosϕdθ)


0 0 1

0 0 0

−1 0 0



−(cos θ sin θ cosϕdϕ− sinϕdθ)


0 0 0

0 0 1

0 −1 0


.

(59)

5 Flatness property of the constructed

covariant derivatives and a new one

In this section, we give the expressions of the curva-

ture 2-forms F (Aopt) of the connection 1-forms Aopt

in (37),(42),(46),(49),(57). Then, we give some condi-

tions on the parameter δ/κ and the image I such that

the curvature 2-forms vanish, and from which we deter-

mine the moving frames G in which the corresponding

connection 1-forms in the associated bundles P ×ρ Rn
vanish.

5.1 The standard representation of R+∗ on Rn

This is a trivial case as we have the following result.

Proposition 3 The curvature of the connection 1-form

Aopt in formula (37) is 0.

Proof As R+∗ is commutative, the term [Aopt, Aopt] in

the expression of the curvature 2-form (see formula (3))

vanishes and the curvature 2-form F (Aopt) corresponds

to dAopt. Then a straightforward computation gives

dAopt = 0. ut

In the following Proposition we determine a set of mov-

ing frames in which the corresponding connection 1-

form in the associated bundle P ×ρ Rn vanishes.

Proposition 4 The connection 1-form (38) vanishes

in the frames whose matrix representations are

µ

√√√√δ/κ+

n∑
k=1

(Ik)
2 In (60)

in the frame (e1, · · · , en), for µ > 0.

Proof Let G be a moving frame defined in (60). From

the change frame formula of a connection 1-form (see

expression (2)), a straightforward computation shows

that the connection 1-form (38) is 0 in the moving frame

G. ut

5.2 The standard representation of D+∗
3 on R3

This is a trivial case as well as we have the following

result.

Proposition 5 The curvature of the connection 1-form

Aopt given by formula (42) is 0.

Proof The proof is the same as the one of Prop. 3. ut

In the following Proposition we determine a set of mov-

ing frames in which the corresponding connection 1-

form in the associated bundle P ×ρ R3 vanishes.
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Proposition 6 The connection 1-form (43) vanishes

in the frames whose matrix representations are

µ

√
δ1/κ+ (I1)

2
0 0

0 µ

√
δ2/κ+ (I2)

2
0

0 0 µ

√
δ3/κ+ (I3)

2


(61)

in the frame (e1, e2, e3), for µ > 0.

Proof The proof is the same as the one of Prop. 4. ut

5.3 The standard representation of SO(2) on R2

5.3.1 The general case

Unlike the covariant derivatives induced by the stan-

dard representations of R+∗ on Rn (37) and D+∗
3 on R3

(42), the covariant derivative induced by the standard

representation of SO(2) on R2 (46) is not necessarily

flat, as shown in the following Proposition.

Proposition 7 The connection 1-form Aopt in (46)

vanishes if and only if δ/κ ∈ {0,∞} or d I1 ∧ d I2 = 0.

Proof As the group SO(2) is commutative, the term

[Aopt, Aopt] vanishes and the curvature F (Aopt) of Aopt

corresponds to dAopt (see formula (3)) . Then, comput-

ing dAopt gives

dAopt =
2 δ/κ

[δ/κ+ ‖I‖2]
2 dI1 ∧ dI2 ⊗ ∂/∂θ. (62)

ut

In the polar form, the curvature writes

dAopt =
2 δ/κ

(δ/κ+ r2)
2 r dr ∧ dϕ⊗ ∂/∂θ. (63)

Remark. The quantity dI1 ∧ dI2 corresponds to the

Jacobian of the function (I1, I2). Assuming that δ/κ /∈
{0,∞}, it follows from the theorem of Sard that the

curvature F (Aopt) vanishes on Ω if and only if there

exists F such that F (I1(x), I2(x)) = 0 ∀x ∈ Ω.

The matrix representation of a smooth orthonormal

moving frame G of P ×ρ R2 is of the form cosα − sinα

sinα cosα

 (64)

in the standard frame (e1, e2), for some α ∈ C∞(Ω).

By the frame change formula (2), the connection 1-form

(48) is given by


0 −dα+

r2

δ/κ+ r2
dϕ

dα− r2

δ/κ+ r2
dϕ 0

 . (65)

in the moving frame G (64).

In what follows, we study some cases where the cur-

vature 2-form given by (62) and (63) vanishes.

5.3.2 The limit cases δ/κ ∈ {0,∞}

Assuming that δ/κ = 0, it follows from (65) that the

moving frame in which the connection 1-form in P×ρR2

vanishes is  cosϕ − sinϕ

sinϕ cosϕ

 .

Formula (62) also shows that the connection 1-form

(46) is flat for δ/κ =∞. In this case, the connection 1-

form in P ×ρR2 vanishes in the standard frame (e1, e2).

5.3.3 The case r or ϕ is constant

The case dϕ = 0 is trivial as the connection 1-form in

P ×ρR2 vanishes in the standard frame (e1, e2) (see ex-

pression (48)).

For dr = 0, we deduce from formula (65) that the

moving frame G in which the connection 1-form van-

ishes satisfies

α =
r2

δ/κ+ r2
ϕ,

i.e. the matrix representation of G is


cos

(
r2

δ/κ+ r2
ϕ

)
− sin

(
r2

δ/κ+ r2
ϕ

)

sin

(
r2

δ/κ+ r2
ϕ

)
cos

(
r2

δ/κ+ r2
ϕ

)
 (66)

in the standard frame (e1, e2).
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5.4 Representations of SO(2) on R3

5.4.1 The general case

The flatness property of the covariant derivative asso-

ciated to the connection 1-form (49), given by a rep-

resentation of SO(2) on R3, is induced by the flatness

property of the covariant derivative associated to con-

nection 1-form (46), given by the standard represen-

tation of SO(2) on R2. Indeed, we have the following

result.

Proposition 8 The curvature 2-form of the connec-

tion 1-form (49) vanishes if and only if δ/κ ∈ {0,∞}
or dF−1(I)2 ∧ dF−1(I)3 = 0.

Proof As mentioned in sect. 2.1, a curvature 2-form is

transformed in a tensorial way with respect to a frame

change. Hence, the curvature 2-form F (Aopt) (49), where

Aopt = s∗ωopt, vanishes if there exists g ∈ C∞(Ω;SO(3))

such that F ((g · s)∗ωopt) = 0 vanishes. Then, Prop. 8 is

a consequence of formulae (53),(54) and Prop. 7. ut

In what follows, we study some cases where the curva-

ture 2-form vanishes. To that purpose, we write I of the

form (a, r cosϕ, r sinϕ) in the frame F (52).

5.4.2 The limit cases δ/κ ∈ {0,∞}

We deduce from sect. 5.3.2 that the connection 1-form

given by (51) vanishes in the frame F for δ/κ =∞, and

it vanishes in the moving frame whose matrix represen-

tation is 
1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ


in the frame F for δ/κ = 0.

5.4.3 The case r or ϕ is constant

We deduce from sect. 5.3.3 that the connection 1-form

given by (51) vanishes in the frame F for dϕ = 0, and

it vanishes in the moving frame whose matrix represen-

tation is given by

1 0 0

0 cos

(
r2

δ/κ+ r2
ϕ

)
− sin

(
r2

δ/κ+ r2
ϕ

)

0 sin

(
r2

δ/κ+ r2
ϕ

)
cos

(
r2

δ/κ+ r2
ϕ

)


(67)

in the frame F for dr = 0.

5.4.4 Relation with hue maps in vision

We consider the representation parametrized by

γ12 = −γ13 = γ23 = 1/
√

3

in the RGB color space.

Then, for δ/κ = 0, the connection 1-form (51) van-

ishes in the moving frame G given by

G =



1 0 0

0 cosH − sinH

0 sinH cosH


(68)

in the frame (52), where H is the hue of the image

I. Then, connections with vision and neuroscience can

be established. Indeed, under the splitting intensity-

chrominance, the moving frame (68) exhibits the mov-

ing frame cosH − sinH

sinH cosH

 (69)

in the chrominance plane, which corresponds to the hue

field, also called hue maps, introduced by Ben-Shahar

and Zucker [4], motivated by the key role of the hue in

color vision from both physiological and psychophysi-

cal viewpoints. Indeed, on one hand, neurophysiological

findings “imply the existence of neural structures that

explicitly encode the hue” and “neurophysiological ev-

idence of hue maps is now emerging”. On the other

hand, the hue provides fundamental information about

edges of objects in a scene and can then be useful to de-

scribe properties of the HVS that are related with edge

detection like filling-in phenomena and color constancy.

5.5 The standard representation of SO(3) on R3

5.5.1 Explicit expression of the curvature

As in the cases of the representations of SO(2) on R2

and R3, the covariant derivative induced by the stan-

dard representation of SO(3) on R3 is not necessarily

flat. Indeed, we have the following result.

Proposition 9 The curvature of the connection 1-form

(57) vanishes if and only if δ/κ ∈ {0,∞} or

dI1 ∧ dI2 = dI1 ∧ dI3 = dI2 ∧ dI3 = 0.
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Proof Unlike R+∗ and SO(2), the group SO(3) is not

commutative. Hence, the curvature of the connection

1-form Aopt (57) is F (Aopt) : = dAopt + [Aopt, Aopt],

which gives

F (Aopt) =
2 δ/κ(

δ/κ+ ‖I‖2
)2 [dI1 ∧ dI2 ⊗ ∂/∂θ3

+dI1 ∧ dI3 ⊗ ∂/∂θ2
+dI2 ∧ dI3 ⊗ ∂/∂θ1

]
. (70)

ut

Assuming that δ/κ /∈ {0,∞}, we deduce from the SO(2)

case that the curvature vanishes on Ω if and only if

there exist three functions F12, F13, F23 such that

F12(I1, I2) = F13(I1, I3) = F23(I2, I3) ≡ 0.

In spherical coordinates, i.e. writing I1 = r cosϕ sin θ,

I2 = r sinϕ sin θ, I3 = r cos θ, the curvature 2-form

writes

F (Aopt) =
2 δ/κ

(δ/κ+ r2)
2×

[
(r sin2 θ dr ∧ dϕ+ r2 cos θ sin θ dθ ∧ dϕ) ⊗ ∂/∂θ3

+(−r cosϕdr ∧ dθ + r cos θ sin θ sinϕdr ∧ dϕ
− r2 sin2 θ sinϕdθ ∧ dϕ) ⊗ ∂/∂θ2
+(−r sinϕdr ∧ dθ − r cos θ sin θ cosϕdr ∧ dϕ
+r2 sin2 θ cosϕdθ ∧ dϕ) ⊗ ∂/∂θ1

]
. (71)

In what follows, we study some cases where the covari-

ant derivative is flat and determine the moving frames

in which the connection 1-form vanishes.

The limit cases δ/κ ∈ {0,∞}. The case δ/κ = ∞ is

trivial as formula (58) shows that the connection 1-form

vanishes in the standard frame (e1, e2, e3). For δ/κ = 0,

we have the following result.

Proposition 10 The connection 1-form (59) vanishes

in the moving frames of the form (106).

Proof Computing G−1dG+G−1ρ∗(−Aopt)G for G of the

form (106) and ρ∗(−Aopt) in (59) gives 0. ut

The cases dϕ = dθ = 0. These are trivial cases as the

connection 1-form (59) vanishes in the standard frame

(e1, e2, e3).

The case dr = 0. Unlike the SO(2) case in sect. 5.3, we

observe in (71) that the covariant derivative is not nec-

essarily flat when dr = 0. However, we show in Prop. 11

that the covariant derivative is flat if the pixel values of

the image I belongs to a geodesic of S2
r , the sphere of

radius r in R3, and we give an explicit expression of a

moving frame in which the connection 1-form vanishes.

Recall that the geodesics of S2
r are the circles of

radius r and center (0, 0, 0). A geodesic c of S2
r is then

of the form

c(t) = r cos(t)u+ r sin(t)n× u

where n = (cos θ sinβ, sin θ sinβ, cosβ)T is normal to

the circle and u = (sin θ,− cos θ, 0)T is normal to n.

It follows that I = (I1, I2, I3) is of the form
I1 = r cos ϕ sin θ + r sinϕ cos θ cosβ

I2 = −r cos ϕ cos θ + r sinϕ cosβ sin θ

I3 = −r sinϕ sinβ

(72)

on S2
r , for ϕ ∈ C1(Ω).

We have the following result.

Proposition 11 The covariant derivative induced by

the connection 1-form (59) with I of the form (72) is

flat. Moreover, the connection 1-form vanishes in the

moving frame whose matrix representation G is given

by formula (107) in the frame (e1, e2, e3), where

α =
r2

δ/κ+ r2
ϕ

Proof Under the assumption that the connection 1-form

(59) is induced by I of the form (72), straightforward

computations show that

dI1 ∧ dI2 = dI1 ∧ dI3 = dI2 ∧ dI3 = 0

which implies that F (Aopt) = 0 according to (70).

Then, the matrix representation ρ∗(−Aopt) of the

connection 1-form is of the form

r2

δ/κ+ r2


0 cosβ dϕ − sin θ sinβ dϕ

− cosβ dϕ 0 cos θ sinβ dϕ

sin θ sinβ dϕ − cos θ sinβ dϕ 0


in the standard frame (e1, e2, e3). Finally, applying the

frame change formula G−1dG + G−1ρ∗(−Aopt)G with G
of the form (107) gives 0. ut
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Fig. 4 Helmholtz-Kohlrausch effect: Chromatic colors appear
brighter than achromatic colors.

Fig. 5 Helmholtz-Kohlrausch effect: Brightness perception
varies the hue. Graphs taken from [11].

5.5.2 Relation with the Helmholtz-Kohlrausch effect in

vision.

The Helmholtz-Kohlrausch effect. A consequence of We-

ber’s and Weber-Fechner’s laws are formulae to approx-

imating the perceived brightness of an image. How-

ever, there exist some brightness perception phenomena

that these two laws can not explain, as the Helmholtz-

Kohlrausch (H-K) effect. The H-K effect shows that

the brightness of a color depends not only on its lumi-

nance component, but on the chrominance information
(chroma, hue) as well.

In the space CIE L∗a∗b∗, Fairchild and Pirrotta [11]

developed a formula for the perceived brightness, that

takes into account the H-K effect, and that matches

with psychophysical experiments. Denoting by L∗ the

lightness, C∗ the chroma, and H∗ the hue components

of a color, they define the perceived brightness L∗∗ as

L∗∗ = L∗ + ζC∗ (73)

where

ζ : = (2.5−0.0025L∗)

(
0.116

∣∣∣∣ sin(H∗ − 90

2

)∣∣∣∣+ 0.085

)
.

From formula (73), we observe two properties of the H-

K effect:

1. For given lightness and hue, the brightness of a color

is proportional to the chroma. Fig. 4 shows the extreme

case, i.e. where chromatic colors (i.e. chroma differs

from 0) of same lightness but different chrominance are

compared to the achromatic color (i.e. chroma equals

0) of same lightness.

2. For given lightness and chroma, the brightness of a

color varies with its hue. For instance, bluish colors ap-

pear brighter than the yellowish ones, as illustrated in

Fig. 5.

Expressing the H-K effect in the vector bundle context.

The perceived brightness (73) can be interpreted as the

l1 norm of the vector (L∗, ζ C∗)T . In order to interpret

it as a geometric quantity in the vector bundle context,

we replace the l1 norm of the vector (L∗, ζ C∗)T by its

l2 norm, and that can be written as the l2 norm of the

vector (L∗, C∗) with respect to the scalar product(
1 0

0 ζ2

)
We claim that this replacement does not affect the ac-

curacy of the description of the perceived brightness as

the l1 and l2 norms are equivalent.

Expressing I with its CIE L∗a∗b∗ coordinates, and

writing I = L∗e1 +a∗e2 + b∗e3, its perceived brightness

can then be interpreted as its norm with respect to the

vector bundle metric given by
1 0 0

0 ζ2 0

0 0 ζ2

 (74)

in the frame (e1, e2, e3), or equivalently its Euclidean

norm in the moving frame (e1, e2/ζ, e3/ζ).

Finally, we showed in sect. 5.5.1 that the connec-

tion 1-form is flat and vanishes in the frames G of the

form (106) for δ/κ = 0, where (r, ϕ, θ) corresponds to

the spherical coordinates of the image I, and a straight-

forward computation gives G−1I = (r, 0, 0)T . Then, as-

suming that I is expressed with its CIE L∗a∗b∗ coordi-

nates (L∗, a∗, b∗) in the frame (e1, e2, e3) equipped with

the metric (74), we have r =
√
L∗2 + ζ2C∗2, which cor-

responds to the (l2 counterpart of the) color brightness

L∗∗ (73).

6 Analysis of the variational problem induced

by the constructed covariant derivatives and a

new one

In this section, we analyse the variational model (31)

induced by the connection 1-forms (43),(51),(58), where

we suppose that the image I, from which the connec-

tion 1-forms are constructed, is the initial image u0.



22 Thomas Batard, Marcelo Bertalmı́o

Moreover, we assume that the parameter β in (31) is

0, as we aim at analyzing the effect of the variational

model on the original image u0. Finally, we construct a

new connection 1-form that derives from (43) and (58)

and analyze the subsequent variational model.

6.1 On the solutions of the variational model.

We study the existence and uniqueness of the solutions

of the variational problem (31) for β = 0, which is not

straightforward due to the non convexity of the varia-

tional problem. To that purpose, we follow the standard

approach in convex analysis, by considering a dual for-

mulation of the variational problem.

Indeed, we encode the L1 norm of the distance (32)

as a generalization of the Non Local Total Variation on

a vector bundle, as shown in (11). Then, we obtain the

following variational problem

arg min
u∈L2∩BV NLw (E)

λ

2
‖u− u0‖2L2 − V BTV NLw (u). (75)

We showed in [1] the existence of solution(s) in the

discrete case, whose expression is (are)

u = u0 − arg max
u∗∈Kw,1/λ

∥∥∥u0 − u∗∥∥∥2
L2

(76)

where the set Kw,1/λ is defined in formula (10). How-

ever, due to the non convexity of the problem (76), the

uniqueness of the solutions is not guaranteed.

We pointed out in sect. 3.3 that the perceptual dis-

tances (32) are invariant with respect to a moving frame

change, provided that the covariant derivative is com-

patible with the vector bundle metric. Hence, the varia-

tional model (31) induced by a flat covariant derivative

compatible with the vector bundle metric can be for-

mulated as

u = G
(

arg min
u

λ

2

∫
Ω

‖u(x)− G−1 u0(x)‖2 dx

−
∫
Ω×Ω

w(x, y)‖u(x)− u(y)‖ dx dy
)
(77)

where G is the orthonormal moving frame in which the

connection 1-form vanishes.

The variational model in (77) is the Euclidean re-

striction of the model (31), and that we studied in [3].

Then, the expression of the solutions of the model (77)

in the discrete case is

u = u0 − G arg max
u∗∈K0

w,1/λ

‖G−1u0 − u∗‖L2 (78)

where K0
w,1/λ is the Euclidean restriction of the convex

set Kw,1/λ defined in (10).

6.2 The standard representation of D+∗
3 on R3

We showed in the previous section that the connection

1-form (43) can be identified with minus the perceptual

gradient of a color image according to Weber-Fechner’s

law. Based on this observation, we consider from now

on the connection 1-form given by minus the connection

1-form (43). Assuming that it is constructed from u0,

it gives

ρ∗(A
opt) =



u10 du
1
0

δ1/κ+ (u10)
2 0 0

0
u20 du

2
0

δ2/κ+ (u20)
2 0

0 0
u30 du

3
0

δ3/κ+ (u30)
2


(79)

in the frame (e1, e2, e3).

A straightforward computation shows that the cor-

responding covariant derivative is flat as well, and that

it vanishes in moving frames of the form

G = diag

 1

µ

√
δk/κ+ (uk0)

2

 , k = 1, 2, 3

 (80)

in the standard frame (e1, e2, e3) for µ > 0. Moreover,

it is compatible with metrics of the form

h = diag
({
µ2
[
δk/κ+ (uk0)

2
]}

, k = 1, 2, 3
)

(81)

in the standard frame (e1, e2, e3), which means that the

generalized distance (32) on u0 can be written

dτ (u0(x), u0(y)) = µ

[
3∑
k=1

(√
δk/κ+ (uk0(y))

2
uk0(y)

−
√
δk/κ+ (uk0(x))

2
uk0(x)

)]1/2
(82)

Finally, the variational model (31) induced by the con-

nection 1-form (79) can be written in the form (77),

and the solutions u in the form (78).

6.3 The set of representations of SO(2) on R3

We consider the variational model (31) associated to the

connection 1-form (51) induced by the representation

parametrized by

γ12 = −γ13 = γ23 = 1/
√

3 (83)

in the RGB color space.
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The case δ/κ ∈ {0,∞}. For δ/κ = ∞, the connection

1-form (51) vanishes in the standard frame (e1, e2, e3),

meaning that the variational model (31) is nothing but

the Euclidean model we introduced in [3], and which is

the vectorial extension of the model (29).

For δ/κ = 0, G being the moving frame in which the

connection 1-form (51) vanishes, and assuming that the

space of the representation is the RGB color space, a

straightforward computation gives G−1u0 = (O10, C0, 0)

where O10 encodes the intensity component of u0 and

C0 stands for its chroma component (see sect. 4.5.2 for

details). Then, it gives

dτ (u0(x), u0(y)) =√
(O10(x)−O10(y))

2
+ (C0(x)− C0(y))

2

We deduce from (77) that the solutions of the model

(31) are of the form

u = (O1, C cosH0, C sinH0)

in the frame F (52), where

(O1, C) =arg min
(O1,C)

λ

2

∫
Ω

[(O1, C)(x)− (O10, C0)(x)]
2
dx

−
∫
Ω×Ω

w(x, y) ‖(O1, C)(x)− (O1, C)(y)‖ dx dy

(84)

Hence, the variational model (31) preserves the hue

H0 of the original image u0 and consists in modify-

ing the local contrasts of its intensity and chroma C0

components by processing the vector-valued function

(O10, C0).

The general case δ/κ 6= {0,∞} In the general case,

the connection 1-form is given by the formula (55) in

the frame (52) when assuming polar coordinates in the

plane left invariant by the rotations. By the represen-

tation of SO(2) we consider in this section (83), the

differential 1-form

r2

δ/κ+ r2
dϕ

in (55) can be viewed as a regularization of the vari-

ations of the hue component H0 of u0, the amount of

the regularization depending on the chroma C0 of u0
and the constant δ/κ. Indeed, the angle ϕ corresponds

to H0 and r to C0.

More precisely, for δ/κ well-chosen, the variations of

the hue are highly reduced for colors with small chroma

values (the quantity C2
0/(δ/κ + C2

0 ) is small), and al-

most unchanged for colors with high chroma value (the

quantity C2
0/(δ/κ + C2

0 ) is close to 1). Reducing the

variations of the hue at low chroma values can be very

useful for image processing tasks as the hue component

is noisy for low chroma values, and especially for low

intensity values.

We showed in sect. 5.4.3 that the covariant deriva-

tive is flat if r is constant. Then, assuming that r is

constant along the straight line joining the points y and

x, we have

dτ (u0(x), u0(y)) = ‖G−1(x)u0(x)− G−1(y)u0(y)‖

where G is of the form (67) for (r, ϕ) = (C0, H0). It

gives

dτ (u0(x), u0(y)) =
[
(O10(x)−O10(y))

2
+

C0
2

(
2− 2 cos

[
δ/κ

δ/κ+ C0
2 (H0(x)−H0(y))

])]1/2
(85)

Then, we observe that dτ (u0(x), u0(y)) = 0 if and only

if u0(x) = u0(y). Moreover, the weight of the compo-

nent hue H0 is determined by the chroma C0. In par-

ticular, we have

lim
C0→∞

dτ (u0(x), u0(y)) =
√

(O10(x)−O10(y))2 (86)

We deduce that the model (31) tends to preserve regions

of constant intensity and chroma assuming that this

latter is high enough.

6.4 The standard representation of SO(3) on R3

The limit cases δ/κ ∈ {0,∞} We showed in sect. 5.5

that the covariant derivative induced by the connection

1-form (58) is flat if δ/κ ∈ {0,∞}.

For δ/κ =∞, the connection 1-form vanishes in the

standard Euclidean frame (e1, e2, e3), from which fol-

lows that the generalized distance (32) is nothing but

the Euclidean distance ‖u(x)−u(y)‖ between u(x) and

u(y), and the interpretation of this quantity greatly de-

pends on the color space in which the original image

u0 is expressed. In particular, assuming that u0 is ex-

pressed in its CIE L∗a∗b∗ coordinates, the Euclidean

distance is an approximation of the perceptual distance

between u(x) and u(y) by definition of the CIE L∗a∗b∗

color space. As a consequence, the variational model

(31) can be interpreted as enhancing an approximation

of the local perceived contrast of the original image u0.
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For δ/κ = 0, and assuming that u0 is expressed with its

CIE L∗a∗b∗ coordinates in the frame (e1, e2, e3) equipped

with the metric (74), we showed in sect. 5.5.2 that

G−1u0 = (L∗∗0 , 0, 0), where G is the moving frame in

which the connection 1-form vanishes.

As a consequence, the generalized distance (32) on

u0 is nothing but the color brightness difference, i.e.

dτ (u0(x), u0(y)) = |L∗∗0 (x)− L∗∗0 (y)|.

We deduce from (77) that the solutions u of the varia-

tional model (31) are of the form

u = (L∗∗ cosϕ0 sin θ0, L
∗∗ sinϕ0 sin θ0, L

∗∗ cos θ0) (87)

where

L∗∗ = arg min
L∗∗

λ

2

∫
Ω

(L∗∗(x)− L∗∗0 (x))2

−
∫
Ω×Ω

w(x, y)|L∗∗(x)− L∗∗(y)| dx dy

(88)

i.e. L∗∗ is solution of the Euclidean model (29).

Hence, the variational model (31) consists in en-

hancing the local contrast of the color brightness (ac-

cording to the definition of Fairchild and Pirrotta [11])

of the original u0. Moreover, we deduce from expression

(87) that the variational model preserves the hue H∗0 of

the original image, as u corresponds a scaled version

of u0 and a straightforward computation shows that

the hue is invariant with respect to scalings, and the

frame change from (e1, e2, e3) to (e1, e2/ζ, e3/ζ) and its

inverse preserve the hue.

The general case δ/κ /∈ {0,∞} In spherical coordi-

nates, the expression of the connection 1-form is given

in (59), which can be viewed as a regularization of the

variations of the angular components θ0, ϕ0 of the orig-

inal image u0. As the angular components determine

the hue of a color, we deduce that, as in the SO(2) case,

the connection 1-form is a regularization of the varia-

tions of the hue H∗0 of u0. Nonetheless, unlike the SO(2)

case, the amount of the regularization is not determined

by the chroma of u0, but rather by its brightness L∗∗0
(i.e. the radius r0). More precisely, for δ/κ well-chosen,

the variations of the hue are highly reduced for colors

with small brightness values (the quantity r20/(δ/κ+ r20)

is small), and almost unchanged for colors with high

brightness values (the quantity r20/(δ/κ + r20) is close

to 1). Regularizing the hue variations at low brightness

values is very useful for image processing tasks as the

hue component is noisy in dark areas.

We showed in sect. 5.5 that the covariant deriva-

tive is flat if the values of u0 belong to a geodesic of

a sphere in R3, and the moving frame G in which it

vanishes is of the form (107). A straightforward com-

putation gives

G−1u0 =(
r0 cos

(
δ/κ

δ/κ+ r20
ϕ0

)
, r0 sin

(
δ/κ

δ/κ+ r20
ϕ0

)
, 0

)T
.

Then, assuming that the covariant derivative is flat

along the straight line joining y and x, we have

dτ (u0(x), u0(y)) =

r0

√
2− 2 cos

[
δ/κ

δ/κ+ r20
(ϕ0(x)− ϕ0(y))

]
and

lim
r0→∞

dτ (u0(x), u0(y)) = 0,

from which we deduce that the variational model (31)

tends to preserve the regions whose colors belong to

geodesics of large radii in R3.

6.5 A new connection 1-form associated to the

standard representation of SO(3) × D+∗
3 on R3

Based on the analysis of the connection 1-forms induced

by the standard representation of D+∗
3 on R3 (79) and

the standard representation of SO(3) on R3 (58), and

the properties of the subsequent variational models, we

construct a new connection 1-form associated to the

standard representation of the group SO(3) ×D+∗
3 on

R3 in order for the subsequent variational model to sat-

isfy the properties of both variational models.

More precisely, the proposed connection 1-form de-

rives from the following two observations:

(i) The connection 1-form (79) models Weber-Fechner’s

law on color images expressed in the RGB color space

(see sect. 4.3.2).

(ii) For δ/κ = 0, the variational model induced by con-

nection 1-form (58) preserves the hue of the original

image u0 (see sect. 6.4). Note that this analysis has

been performed assuming that the image is expressed

in the CIE L∗a∗b∗ color space equipped with the metric

(74), but the same conclusion holds in the RGB color

space equipped with the Euclidean metric where the

hue is the one of the HSI color space. Actually, in the

RGB color space equipped with the Euclidean metric,

the model would satisfy the extra property of preserving

the saturation, defined as the ration chroma/intensity,

of the original image.



A Geometric Model of Brightness Perception and its Application to Color Images Correction 25

In order to construct a connection 1-form that yields

a variational model that encodes both properties, we

take into account the fact that both covariant deriva-

tives are flat, meaning that their connection 1-forms

vanish in some moving frames. Then, the desired con-

nection 1-form is defined as the connection 1-form van-

ishing in the frame given by the matrix field of the form

G = G(SO3,u0) × G(D+∗
3 ,G−1

(SO3,u0)
u0)

(89)

in the frame (e1, e2, e3), where G(SO3,u0) is the mov-

ing frame in which the connection 1-form (58) con-

structed from u0 vanishes and which is given by (106),

and G(D+∗
3 ,G−1

(SO3,u0)
u0)

is the moving frame in which the

connection 1-form (79) constructed from G−1(SO3,u0)
u0

vanishes. It gives

G(D+∗
3 ,G−1

(SO3,u0)
u0)

=
µ
√
δ1/κ+ r20 0 0

0 µ
√
δ2/κ+ r20 0

0 0 µ
√
δ3/κ+ r20

 . (90)

Finally, we have

G−1(u0) = (µ r0

√
δ1/κ+ r20, 0, 0)T

and we deduce that the solutions of the model (31)

induced by this connection 1-form are of the form

u = (r cosϕ0 sin θ0, r sinϕ0 sin θ0, r cos θ0) (91)

where r is of the form (78) with

u0 = r0
√
δ/κ+ (r0)2

and

G = 1/(µ
√
δ/κ+ (r0)2).

As expected, we deduce from expression (91) that the

hue and the saturation of u0 are preserved as they are

invariant with respect to scalings, while a contrast en-

hancement that follows Weber-Fechner’s law has been

applied to r0.

7 Experiments

7.1 On the numerical implementation.

7.1.1 Numerical scheme to reach the solutions of the

variational model.

As in sect. 6, we assume that the parameter β in the

variational problem (31) is 0. In the discrete setting, it

is of the form

min
u∈X

G(u)− F (Au) (92)

where A : X −→ Y is a linear operator between two

finite dimensional vector spaces, and possessing an ad-

joint operator A∗.

Then, as demonstrated in [30], the problem (92) has the

following dual formulation

min
u∈X∗

(F ◦A)∗(u)−G∗(u) (93)

which is equivalent to

min
η∈Y ∗

F ∗(η)−G∗(A∗η) (94)

by definition of F .

Hence, the solutions u and η of the primal (92) and dual

(94) problems are linked by the following formulae

Au ∈ ∂F ∗(η∗) (95)

A∗η∗ ∈ ∂G(u) (96)

Our proposal is then to adapt the Arrow-Hurwicz ap-

proach with fixed step sizes presented in [8] to the equa-

tions (95) and (96). It gives the following iterative scheme.

∗ Initialization: Choose τ, σ > 0 s.t. τσ‖A‖2 < 4, and

(u0, η0) ∈ L2(E)× Γ (pr1(E)).

∗ Iterations (n ≥ 0): Update ut, ηt as follows:
ηt+1 =

ηt + σ∇NLw ut
max (1, ‖ηt + σ∇NLw ut‖h)

ut+1 =
1

1 + λτ
[λτ u0 + (ut + τ∇NLw

∗
ηt+1)]

(97)

The stopping criteria of the iterative scheme (97), for

u0 being a n-channel image, is

1

n |Ω|
‖ut+1 − ut‖L2 < 0.001.

Due to the non convexity of the model (31), the conver-

gence of the numerical scheme (97) is not theoretically

guaranteed. However, we would like to point out that,

with the fixed parameters τ = σ = 0.1, it converged in

all the experiments we conducted and that we imple-

mented in C++.

Finally, the computation time greatly depends on

the flatness of the covariant derivative ∇. Indeed, for a

flat covariant derivative, there is no need of computing

the parallel transport map in the operators ∇NLw and

∇NLw
∗

in (97) as the variational problem restricts to the

Euclidean model with respect to the moving frame in

which the connection 1-form vanishes. But still, even if

the covariant derivative is flat, the computational time
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is high due to the non locality of the model. The pro-

posed strategy to reduce the computational time con-

sists in replacing the Gaussian kernel in the operators

∇NLw and ∇NLw
∗

by a kernel of the form

w(x, y) =


1

|Ω′|
if y ∈ Ω′

0 otherwise

(98)

where Ω′ ⊂ Ω is a square domain containing x. Then,

the computational time of the iterative scheme (97) de-

pends on the size of the domain Ω′.

7.1.2 Numerical computation of the parallel transport

map

Assuming that the covariant derivative ∇ is not flat,

there exists no moving frame in which the connection 1-

form ω vanishes, i.e. in which the corresponding parallel

transport map is the Identity map. In such a case, the

computation of the operators ∇NLw and ∇NLw
∗

in (97)

requires the computation of the parallel transport map

by solving differential equations of the form

∇.γ(t) u(γ(t)) = 0 (99)

i.e.

du(γ(t)) = −ω(
.
γ(t))(u(γ(t))) (100)

Our proposal is then to make use of an explicit Euler

scheme

u(γ(tn+1)) = u(γ(tn))− dt ω(
.
γ(tn))(u(γ(tn))) (101)

to solve (100) numerically.

The numerical accuracy of the scheme (101) depends

on:

(i) the step dt, which is related to the discretization of

the straight lines γ.

(ii) the way we approximate ω at the points γ(tn) of the

discrete lines, as they do not necessarily correspond to

pixel locations, which are the points where ω is con-

structed.

Let (x1, x2) and (y1, y2) be two points in Ω correspond-

ing to pixel locations, i.e. x1, x2, y1, y2 ∈ N. We compute

the parallel transport of u(y1, y2) along the straight line

γy,x joining (y1, y2) and (x1, x2) in the following man-

ner:

(i) We discretize γ with max(|y1−x1|, |y2−x2|) points.

It gives

dt =
1

max(|y1 − x1|, |y2 − x2|)
√

(y1 − x1)2 + (y2 − x2)2

and

γ(tn) =

(
y1 − n

(y1 − x1)

max(|y1 − x1|, |y2 − x2|)
,

y2 − n
(y2 − x2)

max(|y1 − x1|, |y2 − x2|)

)
(ii) We approximate the coefficients

ωij(
.
γ(tn))(γ(tn)) : =

.
γ1(tn)Υ j1i(γ(tn))+

.
γ2(tn)Υ j2i(γ(tn))

of the matrix ω(
.
γ(tn)) at the point γ(tn), for i, j =

1, · · · , 3 and n = 0, · · · ,max(|y1−x1|, |y2−x2|) in (101)

as

(y1 − x1)

max(|y1 − x1|, |y2 − x2|)
Υ j1i (R(γ(tn))) +

(y2 − x2)

max(|y1 − x1|, |y2 − x2|)
Υ j2i (R(γ(tn)))

where R(γ(tn)) denotes the rounding of each coordinate

of γ(tn) to its nearest integer. In other words, we ap-

proximate the symbols Υ jkl, k = 1, 2, of the connection

1-form ω at the points γ(tn) by Υ jkl(γ̃(tn)) where γ̃(tn)

is the closest point to γ(tn) that corresponds to a pixel

location.

7.2 Analysis of the results

We test the model (31) with the covariant derivatives

induced by the connection 1-forms (79), (58), and the

connection 1-form that is derived from these two ones,

and that we describe in sect. 6.5.

7.2.1 On the choice of the parameters and its

consequences on the behavior of the model.

Taking β = 0 greatly affects the color constancy prop-

erty of the model.

Then, the behavior of the local contrast enhance-

ment model (31) is determined by the parameter λ and

by the relative size of the domainΩ′ in (98) with respect

to the size of the image domain Ω. We showed on exper-

iments conducted in [1] that relative small domain sizes

privilege texture and noise enhancement, while relative

large domain sizes privilege contrast enhancement. In

all the experiments conducted in this paper, we con-

sider Ω′ as a 40 × 40 window, which makes the model

enhance mainly the contrast as the input images are

medium sized images.

Then, the intensity of the enhancement is inversely

proportional to the value of the parameter λ.
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7.2.2 Evaluation of the results

We compare the different results visually and by an-

alyzing their behaviors with respect to the Intensity,

Chroma and Hue components in the HSI color space.

More precisely, we compute the Mean Local Contrast

(MLC) of the Intensity component ui

MLC(ui) =
1

|Ω|
∑
x∈Ω

∑
y∈Ω

w(x, y)|ui(x)− ui(y)| (102)

and Chroma component uc

MLC(uc) =
1

|Ω|
∑
x∈Ω

∑
y∈Ω

w(x, y)|uc(x)− uc(y)| (103)

of the output images u, and we compute the Hue Shift

HS of u, i.e. the mean hue difference with respect to the

original image u0

HS(u) =
1

|Ω|
∑
x∈Ω

d◦(H(u)(x), H(u0)(x)) (104)

where d◦ is the angular distance.

7.2.3 The standard representation of D+∗
3 on R3

The model (31) induced by the connection 1-form (79)

is parametrized by four scalars: the parameters

δ1/κ, δ2/κ, δ3/κ of the connection 1-form, and the pa-

rameter µ of the moving frame (80) in which the connec-

tion 1-form vanishes. Following the analysis performed

in sect. 4.3.2, we replace the constant δk/κ by mk in

Weber-Fechner’s law (40) for each channel k. In order

to get an explicit expression of the constant mk, we fol-

low the approach of Ferradans et al. [12], where Weber-

Fechner’s law has been applied in the context of tone

mapping.

Given a color image I representing light intensity,

Ferradans et al. determine the constant mk as follows.

First, they compute the background intensity Ikb of the

one-channel image Ik as

Ikb = median(Ik)0.5 ×mean(Ik)0.5

Then, inspired by the data presented by Valeton and

van Norren [31], they estimate the semisaturation con-

stant Iks , which represents the light level at which the

photoreceptor response is half maximal, by

log10 Iks = log10 Ikb − 0.37(4 + log10 Ikb ) + 1.9

Finally, based on results that are presented by Wyszecki

and Stiles [32], they compute mk as

mk = 10−1.2 Iks (105)

We observe in formula (105) that the constant mk is

actually image content dependent. In our context, the

light intensity of original image uk0 is approximated by

the image (uk0)
2
. Hence, we compute the constant mk

in (105) replacing Ik by (uk0)
2
, k = 1, 2, 3.

In Fig. 6-7, we show some results of the proposed

model (31) induced by the connection 1-form (79), where

we test different values of the parameters δk/κ. More

precisely, we test δk/κ = mk with Ik = (uk0)
2

in for-

mula (105) in order to encode Weber-Fechner’s law and

we also test δk/κ = 0 in order to encode Weber’s law.

Regarding this latter, we actually choose δk/κ = 10−6

in order to avoid division by 0. We express the origi-

nal image u0 in the RGB color space as Weber’s and

Weber-Fechner’s laws are related to the trichromatic

theory of colors (see sect. 4.3.2). Finally, the parameter

λ in (31) has been set to 0.1 and the parameter µ of

the moving frame (80) has been empirically set to 700

in Fig. 6 and 1200 in Fig. 7. We compare these mod-

els with the model of Bertalmı́o et al. (29) tested with

λ = 0.1 and β = 0. Note that, unlike the approach of

the authors who use a differentiable approximation of

the model (29) and then reach a solution through the

corresponding gradient descent (see [5]), we compute

the solution of the original model (29) through the pro-

posed numerical scheme (97) restricted to the Euclidean

channel-wise case.

We observe in both Fig. 6-7 that the proposed mod-

els (31) induced by the connection 1-forms encoding

Weber’s and Weber-Fechner’s laws have a behavior that

follows the properties of these laws as they enhance

more the contrast in the dark regions than in the bright

ones, while the Euclidean model treats dark and bright

regions in the same manner. Indeed, recall that these

laws state that the HVS is more sensitive to light changes

in dark areas than in the bright ones. In particular, we

observe that the noise in the sky (brighter area of the

image) has been much less enhanced than in Euclidean

case. We also observe that the model induced by We-

ber’s law enhances more the contrast in dark areas than

the one induced by Weber-Fechner’s law, but at the cost

of an increase of hue shift (see Table 1 and Table 2),

and the increase of noise and color artifacts (see Fig. 7).

It is coherent with the fact that Weber’s law is known

to fail at intensity values close to 0.

7.2.4 The standard representation of SO(3) on R3

The connection 1-form (58) is parametrized by the con-

stant δ/κ.
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The limit case δ/κ = 0: Enhancement of the local con-

trast of the color brightness. In Fig. 8, we show the

result of the proposed model (31) induced by the con-

nection 1-form (58) for δ/κ = 0, and where the original

image u0 is expressed in its CIE L∗a∗b∗ coordinates,

and the frame (e1, e2, e3) is equipped with the vector

bundle metric (74) so that the distance (32) encodes

the color brightness (73) difference. The parameter λ

in (31) has been set to 0.2.

We compare the model (31) to the channel-wise Eu-

clidean model (29) where the original image u0 is ex-

pressed in its RGB and its CIE L∗a∗b∗ coordinates for

β = 0. In order to make the visual comparisons fair,

we select the parameter λ in (29) such that the MLCs

of the Intensity components of the output images are

comparable. Table. 3 shows that they are comparable

when the model (29) is tested with λ = 0.075 in the

RGB coordinates and λ = 0.2 in the L∗a∗b∗ coordi-

nates.

According to the results on Fig. 8, the model (31)

provides the best results as it generates less hue shift,

which is confirmed by the results in Table. 3, and less

color artifacts as we can observe in the sky or in the

close-up images on Fig. 8.

Comparison of the results for different values of δ/κ.

In Table 4, we compute the mean over the whole Ko-

dak database [18] (24 images) of the three measures

MLC Intensity, MLC Chroma and HS, for the output

images of the model (31) for λ = 0.1, and tested with

the connection 1-form (58) for three different values of

the parameter δ/κ : 0, 1,+∞. Unlike the previous ex-

periments, the model is tested in the RGB color space

equipped with the Euclidean metric. The results reveal

that the MLCs of the Intensity (102) and Chroma (103)

components have opposite behaviors with respect to the

value of δ/κ. Indeed, the MLC of the Intensity decreases

with the value of δ/κ whereas the MLC of the Chroma

increases with δ/κ. Moreover, we observe that the HS

increases with δ/κ. For δ/κ = 0, we showed theoreti-

cally that the model preserves the hue of the original

image, meaning that the mean HS of 1.02◦ can be inter-

preted as numerical errors. It is also worth noting that

the behaviors we have just mentioned can actually be

observed in (almost) all the 24 images. Indeed, the MLC

of the Intensity decreases in 20 of the 24 images (in the

4 other images, it does not decrease because the MLC

of the Intensity for δ/κ = +∞ is higher than the one

for δ/κ = 1), the MLC of the Chroma increases in the

24 images, and the HS increases in 23 of the 24 images

(in the other image, it does not increase because the

HS for δ/κ = 1 is higher than the one for δ/κ = +∞.

Finally, we claim that the parameter value that pro-

vides the best results depends greatly on the user’s pref-

erences. Whereas there exists a consensus about the

fact that the HS has to be avoided, there is no con-

sensus about what should be the ratio enhancement of

Intensity/enhancement of Chroma.

7.2.5 The standard representation of SO(3) ×D+∗
3 on

R3.

In Fig. 9-10, we test the model (31) induced by the con-

nection 1-form associated to the group SO(3) ×D+∗
3 de-

scribed in sect. 6.5. The model is parametrized by the

scalar numbers µ and δ1/κ, that determine the moving

frame (90) in which the connection 1-form vanishes.

The original image u0 is expressed in the RGB color

space, and the model is tested with µ = 0.005, δ1/κ = 1

in Fig. 9 and µ = 0.0001, δ1/κ = 0.1 in Fig. 10. We

compare the results to the ones obtained by consider-

ing the model (31) induced by the connection 1-form

(79) tested with the same value for µ and δ1/κ and

with δ1/κ = δ2/κ = δ3/κ, as well as the model (31)

induced by the connection 1-form (58). All the models

have been tested with λ = 0.1.

We observe that the model induced by the connec-

tion 1-form constructed in sect. 6.5 provides the best

results, and it fulfills the desired properties that mo-

tivated its construction in sect. 6.5. Indeed, it enables

to correct the defects produced by the model induced

by (79) and (58) while keeping their desired properties.

More precisely, the model induced by (79) enhances

the local contrast in a greater extent in the dark ar-

eas than in the bright ones, which is a desirable prop-

erty when processing under-exposed images. However,

we observe that it produces color artifacts in the dark

areas as well, and that (colored) noise appears in the

sky. These two defects arise since the model does not

preserve the hue of the original image (see Tables 5-6).

These defects do not appear when testing the model

with (58), which is hue preserving (the hue shift that

appears in the las two rows in Table 6 is due to the

fact that the hue component gets very noisy in the very

dark areas). However, noise has been enhanced in the

sky and the contrast in the dark areas has not been

much enhanced, as the model processes dark and bright

areas in the same extent.

8 Conclusion

In this paper, we investigated the capacity of Lie group

representations and covariant derivatives to model some

properties of the human visual system, with a special

focus on brightness perception. We showed that some
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color appearance phenomena, i.e. Weber’s and Weber-

Fechner’s laws as well as the Helmholtz-Kohlrausch ef-

fect can be modeled through covariant derivatives that

are solutions of a variational problem parametrized by a

scalar number and by a Lie group representation. This

result suggests that the human visual system perceives

color brightness in an optimal manner. Another inter-

esting consequence is that the different color appear-

ance phenomena aforementioned only differ by param-

eters of a single variational problem.

By incorporating these covariant derivatives into a

variational model for image processing related to the

Retinex theory of color perception, we showed on some

examples that the images can be visually improved, the

behavior of the model being determined by the prop-

erty of the color appearance phenomena modeled by

the covariant derivative.

Finally, following the idea that increasing the accu-

racy of the properties of the human visual system incor-

porated in an image processing technique will increase

the visual quality of the output image, further work will

be devoted to first, construct a covariant derivative that

encodes both Weber-Fechner’s law and the Helmholtz-

Kohlrausch effect, then incorporate more properties of

the human visual system.
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Appendix. Expressions of some moving frames
cosϕ sin θ −g11 sinϕ− g21 cos θ cosϕ −g12 sinϕ− g22 cos θ cosϕ

sinϕ sin θ g11 cosϕ− g21 sinϕ cos θ g12 cosϕ− g22 sinϕ cos θ

cos θ g21 sin θ g22 sin θ

 (106)

with g11, g12, g21, g22 ∈ C1(Ω) satisfying 
g211 + g221 = 1

g212 + g222 = 1

g11g12 + g21g22 = 0

g11 dg12 + g21 dg22 = cos θ dϕ


sin θ cosα+ cos θ cosβ sinα − sin θ sinα+ cos θ cosβ cosα cos θ sinβ

− cos θ cosα+ cosβ sin θ sinα cos θ sinα+ cosβ sin θ cosα sin θ sinβ

− sinβ sinα − sinβ cosα cosβ

 (107)
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Table 1 Contrast enhancement of the top-left image in Fig. 6.

MLC Intensity MLC Chroma Hue Shift (in ◦)
Original image 5.60 2.16

The model (31) with Weber’s law 12.64 6.87 20.14

The model (31) with Weber-Fechner’s law 10.77 5.66 16.45

The Euclidean model (29) 12.61 7.63 24.39

Table 2 Contrast enhancement of the top-left image in Fig. 7.

MLC Intensity MLC Chroma Hue Shift (in ◦)
Original image 9.67 2.38

The model (31) with Weber’s law 21.66 6.42 29.69

The model (31) with Weber-Fechner’s law 14.63 2.96 13.94

The Euclidean model (29) 16.62 4.17 20.14

Table 3 Contrast enhancement of the top-left image in Fig. 8.

MLC Intensity MLC Chroma Hue Shift (in ◦)
Original image 18.07 13.75

The model (31) with the metric (74) 30.55 17.68 0.80

The Euclidean model (29) in the L∗a∗b∗ color space 31.05 20.02 13.61

The Euclidean model (29) in the RGB color space 30.34 18.61 9.59

Table 4 Contrast Enhancement of Kodak database images [18].

MLC Intensity MLC Chroma Hue Shift

δ = 0 (Flat connection) 32.22 14.62 1.02

δ/κ = 1 (Non flat connection) 32.04 15.70 6.34

δ = +∞ (Flat connection) 31.96 17.00 9.26

Table 5 Contrast enhancement of the top-left image in Fig. 9.

MLC Intensity MLC Chroma Hue Shift (in ◦)
Original image 5.60 2.16

The model (31) induced by the connection 1-form (79) 10.90 6.44 19.34

The model (31) induced by the connection 1-form (58) 9.28 2.69 0.53

The model (31) induced by the concatenation of (79) and (58) 11.04 3.09 0.50

Table 6 Contrast enhancement of the top-left image in Fig. 10.

MLC Intensity MLC Chroma Hue Shift (in ◦)
Original image 9.67 2.38

The model (31) induced by the connection 1-form (79) 14.22 3.48 19.73

The model (31) induced by the connection 1-form (58) 13.51 2.57 7.86

The model (31) induced by the concatenation of (79) and (58) 14.37 2.79 9.28
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Fig. 6 Contrast enhancement of top-left image. Top-right: Result given by the Euclidean model (29). Bottom row: Results given by
the model (31) induced by the connection 1-form (79) encoding Weber’s law (left) and Weber-Fechner’s law (45) (right).

Fig. 7 Contrast enhancement of top-left image. Top-right: Result given by the Euclidean model (29). Bottom row: Results given by
the model (31) induced by the connection 1-form (79) encoding Weber’s law (left) and Weber-Fechner’s law (45) (right).
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Fig. 8 Contrast enhancement of top-left image. Result given by the Euclidean model (29) in the RGB color space (top-right) and
in the L∗a∗b∗ color space (second row, left column). Result given by the model (31) induced by the connection 1-form (58) with the
metric (74) encoding the Helmholtz-Kohlrausch effect (73) - Last three rows: close-ups of the images on the top two rows. From left
to right: Original image, Euclidean model (29) in the RGB and L∗a∗b∗ color spaces, the model (31) induced by the connection 1-form
(58) with the metric (74) encoding the Helmholtz-Kohlrausch effect (73).
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Fig. 9 Contrast enhancement of top-left image with the model (31) induced by three different connection 1-forms. Top-right: the
connection 1-form (79). Bottom-left: The connection 1-form (58). Bottom-right: The connection 1-form concatenating (79) and (58).

Fig. 10 Contrast enhancement of top-left image with the model (31) induced by three different connection 1-forms. Top-right: the
connection 1-form (79). Bottom-left: The connection 1-form (58). Bottom-right: The connection 1-form concatenating (79) and (58).


