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ANALYTIC SCATTERING THEORY FOR JACOBI OPERATORS
AND BERNSTEIN-SZEGÖ ASYMPTOTICS OF ORTHOGONAL

POLYNOMIALS

D. R. YAFAEV

To the memory of Lyudvig Dmitrievich Faddeev

Abstract. We study semi-infinite Jacobi matrices H = H0 + V corresponding to
trace class perturbations V of the “free” discrete Schrödinger operator H0. Our
goal is to construct various spectral quantities of the operator H, such as the weight
function, eigenfunctions of its continuous spectrum, the wave operators for the pair
H0, H, the scattering matrix, the spectral shift function, etc. This allows us to
find the asymptotic behavior of the orthonormal polynomials Pn(z) associated to
the Jacobi matrix H as n → ∞. In particular, we consider the case of z inside
the spectrum [−1, 1] of H0 when this asymptotics has an oscillating character of the
Bernstein-Szegö type and the case of z at the end points ±1.

1. Introduction

1.1. The theory of the Schrödinger operator D2 + b(x), D = −id/dx, with a short-
range potential b(x) is to a large extent due to L. D. Faddeev. We note, in particular,
his classical papers [11, 12] on the direct and inverse quantum scattering problems
(both in the one- and multi-dimensional cases) and [10] on the trace formulas for the
operator D2 + b(x). Later, the paper [10] was significantly generalized by him jointly
with V. S. Buslaev in [4]. Some of these results were exposed in the book [13] by
L. D. Faddeev and L. A. Takhtajan.

As is well known, the theories of Jacobi operators given by three-diagonal matrices
and of differential operators Da(x)D + b(x) are to a large extent similar. This is true
for Jacobi operators acting in the space `2(Z) and differential operators acting in the
space L2(R) as well as for the corresponding operators acting in the spaces `2(Z+) and
L2(R+), respectively. We refer to the book [27] where this analogy is described in a
sufficiently detailed way. Both classes of the operators are very important in physical
applications. Moreover, Jacobi operators in the space `2(Z+) are intimately related
(see, e.g., the classical book [1]) to the theory of orthogonal polynomials. Necessary
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information on orthogonal polynomials can be found in the other classical book [26];
the theory of Jacobi operators is carefully presented in the books [1, 2].

Our goal is to develop the spectral and scattering theory for Jacobi operators in
the space `2(Z+) using basically the same approach as for the differential operator
Da(x)D + b(x) in the space L2(R+). This leads to new results for orthogonal polyno-
mials.

1.2. Jacobi operators are defined in the space `2(Z+) by matrices

H =


b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
...

...
...

. . . . . . . . .

 . (1.1)

The entries an here are arbitrary positive numbers, and bn are arbitrary real numbers.
We denote by en, n ∈ Z+, the canonical basis in `2(Z+), that is, all components of
the vector en are zeros, except the n-th component which equals 1. If the sequences
{an} and {bn} are bounded, then the Jacobi operator H is bounded in `2(Z+). Let
us denote by dE(λ) the spectral family of the self-adjoint operator H and define the
corresponding spectral measure dρ(λ) = d(E(λ)e0, e0).

Given matrix (1.1), one constructs polynomials Pn(z) by the recurrent relation

an−1Pn−1(z) + bnPn(z) + anPn+1(z) = zPn(z), n ∈ Z+, (1.2)

and the boundary conditions P−1(z) = 0, P0(z) = 1. Then Pn(z) is a polynomial of
degree n, that is,

Pn(z) = kn(zn + rnz
n−1 + · · · ). (1.3)

Comparing the coefficients at zn+1 and zn in the left- and right-hand sides of (1.2), we
see that kn = (a0a1 · · · an−1)−1 > 0 and

an =
kn
kn+1

, bn = rn − rn+1. (1.4)

Obviously, P (z) = {Pn(z)}∞n=0 satisfies the equation HP (z) = zP (z), that is, it is an
“eigenvector” of the operator H.

Putting together (1.1) and (1.2), we find that

en = Pn(H)e0 (1.5)

for all n ∈ Z+. It follows that

d(E(λ)en, em) = Pn(λ)Pm(λ)dρ(λ),

whence ∫ ∞
−∞

Pn(λ)Pm(λ)dρ(λ) = δn,m; (1.6)
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as usual, δn,n = 1 and δn,m = 0 for n 6= m. Thus, the polynomials Pn(λ) are orthogonal
and normalized in the space L2(R; dρ). Formula (1.5) also shows that the set of all
vectors Hne0, n ∈ Z+, is dense in the space `2(Z+), and hence the spectrum of the
Jacobi operator H is simple with the generating vector e0.

Alternatively, {P0(λ), P1(λ), . . . , Pn(λ), . . .} can be obtained by the Gram-Schmidt
orthogonalization of the monomials {1, λ, . . . , λn, . . .} in the space L2(R+; dρ); one also
has to additionally require that kn > 0 in (1.3). This fact is known as the Favard
theorem. In contract to the continuous case (see the paper [15] where an integral
equation was used), the inverse problem of reconstructing the Jacobi operator H given
its spectral measure dρ(λ) admits a quite explicit solution. Indeed, let a measure dρ(λ)
have a bounded and infinite support, and let Pn(z) be the corresponding polynomials
satisfying (1.3) and (1.6). Then the coefficients of the operator H can be recovered by
formulas (1.4).

1.3. In the particular case an = 1/2 and bn = 0, the operator (1.1) is denoted H0.
It plays the role of the “free” differential operator D2 in the space L2(R+) with the
boundary condition u(0) = 0. The operator H0 can be diagonalized explicitly.

In this paper, we suppose that the perturbation V = H−H0 satisfies a “short-range”
assumption

∞∑
n=0

(|an − 1/2|+ |bn|) <∞. (1.7)

Then V belongs to the trace class S1, and its trace norm is equivalent to the sum
(1.7). Under assumption (1.7) the spectrum σ(H) of the operator H is absolutely
continuous on the interval (−1, 1), but the operator H may have discrete spectrum
σd(H) (possibly, infinite) in R \ [−1, 1]; moreover, the points +1 or −1 may be its
eigenvalues.

We construct various spectral quantities of the operator H, such as the weight func-
tion w(λ) defined by the equation dρ(λ) = w(λ)dλ for λ ∈ (−1, 1), eigenfunctions of
its continuous spectrum, the perturbation determinant ∆(z) and the wave operators
W±(H,H0) for the pair H0, H, the scattering matrix S(λ), the spectral shift function
ξ(λ), etc. Under assumption (1.7) the functions w(λ), S(λ) and ξ(λ) are continuous in
λ ∈ (−1, 1). Moreover, w(λ) 6= 0 and, as shown in [20], the so-called Szegö condition∫ 1

−1
lnw(λ)(1− λ2)−1/2dλ > −∞ (1.8)

is satisfied.
Spectral results on Jacobi operators lead to the corresponding assertions for the

polynomials Pn(z) defined by (1.2). For example, we show (see Theorem 2.5) that, for
λ ∈ (−1, 1),

Pn(λ) =

√
2

π
w(λ)−1/2(1− λ2)−1/4 sin((n+ 1) arccosλ+ πξ(λ)) + o(1) (1.9)
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as n→∞. This asymptotic relation is the classical result of S. Bernstein [3] (see also
formula (12.1.8) in the G. Szegö book [26]). It is required in [3, 26] that supp ρ ⊂
[−1, 1] and Lipschitz-Dini conditions are imposed on the weight function w(λ). Under
assumption (1.7) formula (1.9) is probably new. In particular, we do no assume that
supp ρ ⊂ [−1, 1]. Note that the spectral shift function ξ(λ) in formula (1.9) is usually
replaced in the theory of orthogonal polynomials by the so-called Szego function.

As shows the example of Pollaczek polynomials (see formula (7.14), below), assump-
tion (1.7) cannot be significantly relaxed. For Pollaczek polynomials, an − 1/2 and
bn have order n−1 as n → ∞, and the phase in formula (1.9) is essentially changed
(see Section 5 in the Appendix to [26]). This resembles the modification of the phase
function for the Schrödinger operator with the Coulomb potential (see, e.g., formula
(36,23) in the book [22]).

As shown in the paper [4] by V. S. Buslaev and L. D. Faddeev (see Section 4.6 in [30],
for a detailed presentation), the expansion as |z| → ∞ of the perturbation determinant
∆(z) for a pair H0, H of Schrödinger operators contains both integer and half-integer
powers of z−1. This leads to two series of trace identities: of integer and of half-integer
orders. The first of them is stated in terms of integer powers of eigenvalues and moments
of the spectral shift function. The second series is stated in terms of half-integer powers
of eigenvalues and moments of the modulus of the perturbation determinant. For Jacobi
operators H0, H, the expansion of the perturbation determinant ∆(z) as |z| → ∞
contains integer powers of z−1 only. So there are no identities of half-integer orders. On
the other hand, there is a version of trace identities of integer order (known as Case sum
rules) stated in terms of the weight function, that is, of the modulus of the perturbation
determinant. We note that the Case sum rules involve Chebyshev polynomials of the
operators H0 and H while the identities in spirit of [4] yield expressions for the traces
Tr(Hn −Hn

0 ).
This paper contains relatively few new results. However, we hope that a consistent

analogy between Jacobi and differential operators might shed a new light on some
aspects of the theory of orthogonal polynomials. A similar point of view was adopted
in the paper [20] devoted to Hilbert-Schmidt perturbations V of the operator H0.

Note that, in [20], necessary and sufficient conditions in terms of spectral data of H
were found for V to be in the Hilbert-Schmidt class. The problem of characterization
of spectral data was also solved in [24] for perturbations V in the class (it is known
now as the Ryckman class) relatively close to the trace class S1. It looks tempting to
obtain exhaustive results of such type for V ∈ S1.

1.4. The paper is organized as follows. In Section 2, we consider equation (1.2) and,
in addition to its polynomial solutions Pn(z), we introduce so-called Jost solutions
fn(z) of this equation. The Jost function Ω(z) basically coincides with f−1(z). The
solutions fn(z) exponentially decay as n → ∞ for z 6∈ σ(H0) = [−1, 1] and oscillate
for z = λ ± i0 where λ ∈ (−1, 1). Then a link between fn(λ ± i0) and Pn(λ) leads to
asymptotic formulas for polynomials Pn(λ). Thus, we obtain formula (1.9) (with the
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argument of Ω(λ± i0) playing the role of ξ(λ)); see Theorem 2.5. Polynomial solutions
Pn(z) and their asymptotics as n → ∞ for z 6∈ [−1, 1] are studied in Section 3. Our
proofs of the existence of fn(z) and uniform bounds on Pn(z) rely on discrete “Volterra
integral” equations that are studied in the Appendix.

Section 4 is devoted to an investigation of the Jost solutions fn(z) and the polynomi-
als Pn(z) as z → ±1. This corresponds to the low energy scattering for the Schrödinger
equation. In particular, we exhibit here examples of Jacobi operators with eigenvalues
at the points 1 or −1.

In Section 5, we construct the perturbation determinant ∆(z) and the spectral shift
function for the pair H0, H and derive formulas for the traces Tr(Hn −Hn

0 ). We also
show in Theorem 5.6 that the Jost function Ω(z) differs from ∆(z) by a numerical
factor only. Scattering theory for the pair H0, H is developed in Section 6.

A link of the Szegö function with the perturbation determinant (or the Jost function)
is established in Section 7. We here also show (again on the example of Pollaczek poly-
nomials) that the weight function w(λ) may tend to zero exponentially if assumption
(1.7) is slightly relaxed. Therefore the Szegö condition (1.8) is sharp for trace class
perturbations. In Section 8, the results of the preceding sections are illustrated on the
example of the Jacobi polynomials when an − 1/2 and bn have order n−2 as n→∞

Some parts of this paper have non-trivial intersections with Section 2 of the paper
[20] where, however, specific features of the Jacobi operators were extensively used. The
analogy with the continuous case exploited in the present paper allows us to obtain
some results for free.

The modern approach based on a Riemann-Hilbert problem for matrix valued func-
tions of [14] combined with the steepest descent method of [7] is out of the scope of
the present paper.

2. Jost solutions of the Jacobi equations and Bernstein-Szegö
asymptotics

2.1. In the canonical basis en, n ∈ Z+, the Jacobi operator H is defined by the
formula

Hen = an−1en−1 + bnen + anen+1, n ∈ Z+, (2.1)

where we accept that e−1 = 0. Relations (1.1) and (2.1) are of course equivalent. The
sequences an > 0 and bn = b̄n where n = 0, 1, . . . are assumed to be bounded, so that
H is a bounded self-adjoint operator in the space `2(Z+).

Consider now the equation Hu = zu, that is

an−1un−1 + bnun + anun+1 = zun, n ∈ Z+, (2.2)

for a sequence u = {un}∞n=−1. The number a−1 6= 0 can be chosen at our convenience;
for definiteness, we put a−1 = 1/2. Obviously, the values of uk−1 and uk for some
k ∈ Z+ determine the whole sequence un satisfying equation (2.2).



6 D. R. YAFAEV

Let f = {fn}∞n=−1 and g = {gn}∞n=−1 be two solutions of equation (2.2). A direct
calculation shows that their Wronskian

{f, g} := an(fngn+1 − fn+1gn) (2.3)

does not depend on n = −1, 0, 1, . . .. In particular, for n = −1 and n = 0, we have

{f, g} = 2−1(f−1g0 − f0g−1) and {f, g} = a0(f0g1 − f1g0). (2.4)

Calculating the Wronskian (2.3) for n → ∞, we see that equation (2.2) may have at
most one (up to a multiplicative constant) solution un such that un → 0 as n→∞.

In the case an = 1/2, bn = 0, the operator (2.1) is known as the free discrete
Schrödinger operator; it will be denoted H0. The spectrum of the operator H0 is sim-
ple, absolutely continuous and coincides with the interval [−1, 1]. The corresponding
spectral measure dρ0(λ) = d(E0(λ)e0, e0) is given by the formula

dρ0(λ) = 2π−1
√

1− λ2dλ, λ ∈ (−1, 1).

Below we fix the branch of the analytic function
√
z2 − 1 of z ∈ C \ [−1, 1] =: Π by

the condition
√
z2 − 1 > 0 for z > 1. Obviously, this function is continuous on the

closure clos Π of Π, it equals ±i
√

1− λ2 for z = λ± i0, λ ∈ (−1, 1), and
√
z2 − 1 < 0

for z < −1. Put
ζ(z) = z −

√
z2 − 1 = (z +

√
z2 − 1)−1; (2.5)

then |ζ(z)| < 1 for z ∈ Π. Since

2z = ζ(z) + ζ(z)−1, (2.6)

the sequence {ζ(z)n}∞n=−1 satisfies the “free” equation (2.2): ζ(z)n−1 + ζ(z)n+1 =
2zζ(z)n. For λ ∈ [−1, 1], it is common to set λ = cos θ where θ ∈ [0, π]. Then

ζ(λ± i0) = e∓iθ. (2.7)

It is well known (see, e.g., [31] for a detailed proof) that the matrix elements of
the resolvent R0(z) = (H0 − zI)−1 (here and below I is the identity operator) of the
operator H0 are given by the formula

(R0(z)en, em) =
ζ(z)n+m+2 − ζ(z)|n−m|√

z2 − 1

for z ∈ Π and all n,m ∈ Z+. In particular, (R0(z)e0, e0) = −2ζ(z). The polynomials

P
(0)
n (z) defined by the recurrent equation (1.2) where an = 1/2, bn = 0 and obeying

the conditions P
(0)
−1 (z) = 0, P

(0)
0 (z) = 1 are normalized Chebyshev polynomials of the

second kind. They satisfy the equation

P (0)
n (z) =

1

2
√
z2 − 1

(
ζ(z)−n−1 − ζ(z)n+1

)
(2.8)

and, in particular,

P (0)
n (λ) =

sin((n+ 1)θ)√
1− λ2

, λ = cos θ ∈ (−1, 1). (2.9)
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Evidently, the “perturbation” V = H −H0 is given by the equality

V en = (an−1 − 1/2)en−1 + bnen + (an − 1/2)en+1. (2.10)

If an → 1/2 and bn → 0 as n → ∞, then the operator V is compact. In this case
the essential spectrum of the operator H coincides with the interval [−1, 1], and its
discrete spectrum σd(H) consists of simple eigenvalues accumulating, possibly, to the
points 1 and −1 only.

Under assumption (1.7) the equation (2.2) has the so called Jost solution f(z) =
{fn(z)}∞n=−1 distinguished by its asymptotics as n → ∞. Our proof of this fact is
similar to the continuous case, but we give it for the completeness of our presentation
in Appendix A.1. It is based on the discrete Volterra integral equation

fn(z) = ζ(z)n − 1√
z2 − 1

∞∑
m=n+1

(ζ(z)n−m − ζ(z)m−n)(V f(z))m (2.11)

where z ∈ Π and V is defined by formula (2.10). A somewhat different proof can be
found in [20] (see also the book [27]). Put

ρn =
∞∑
m=n

(|am − 1/2|+ |bm|). (2.12)

Then ρn → 0 as n→∞.

Theorem 2.1. Let assumption (1.7) be satisfied, and let z ∈ clos Π, z 6= ±1. Then
equation (2.2) has a solution satisfying the condition

fn(z) = ζ(z)n(1 +O(ρn)) (2.13)

as n→∞. Every function fn(z), n = −1, 0, 1, . . ., depends analytically on z ∈ Π, and
it is continuous in z up to the cut along [−1, 1] except, possibly, the points ±1.

Since |ζ(z)| < 1, it follows from (2.13) that fn(z) → 0 exponentially as n → ∞
for z ∈ Π. In particular, equation (2.2) has only one solution satisfying (2.13). Note
that for the operator H0, the error term in (2.13) disappears and the Jost function is
fn(z) = ζ(z)n.

Recall that the polynomials Pn(z) are defined by equation (2.2) and the conditions
P−1(z) = 0, P0(z) = 1. Put P (z) = {Pn(z)}∞n=−1, f(z) = {fn(z)}∞n=−1,

ω(z) := {P (z), f(z)} = −2−1f−1(z), (2.14)

where the first formula (2.4) has been used. In particular, for the operator H0 we have
ω0(z) = −(2ζ(z))−1. By analogy with the continuous case, we define the Jost function

Ω(z) := ω(z)/ω0(z) = −2ζ(z)ω(z). (2.15)

The following result is a direct consequence of Theorem 2.1.
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Corollary 2.2. Under assumption (1.7) the Jost function Ω(z) depends analytically
on z ∈ Π, and it is continuous in z up to the cut along [−1, 1] except, possibly, the
points ±1. A point z ∈ Π is an eigenvalue of the operator H if and only if ω(z) = 0.

Theorem 2.1 can be supplemented by the following assertion.

Theorem 2.3. Under the assumptions of Theorem 2.1 put a
(N)
n = an, b

(N)
n = bn for

n ≤ N and a
(N)
n = 1/2, b

(N)
n = 0 for n > N . Let f

(N)
n (z) be the Jost solution of equation

(2.2) with the coefficients a
(N)
n , b

(N)
n . Then for each n ≥ −1, we have

lim
N→∞

f (N)
n (z) = fn(z), z ∈ clos Π, z 6= ±1. (2.16)

2.3. For λ ∈ (−1, 1), equation (2.2) where z = λ has two solutions f(λ ± i0) =

{fn(λ± i0)}∞n=−1; of course fn(λ− i0) = fn(λ+ i0). It follows from Theorem 2.1 and
formula (2.7) that asymptotics of fn(λ± i0) as n→∞ is oscillating:

fn(λ± i0) = e∓iθn(1 +O(ρn)), θ = arccosλ ∈ (0, π). (2.17)

Calculating their Wronskian (2.3) for n→∞, we find that

{f(λ+ i0), f(λ− i0)} = i sin θ 6= 0, sin θ =
√

1− λ2, (2.18)

so that these solutions are linearly independent. Thus,

Pn(λ) = c(λ)fn(λ+ i0) + c(λ)fn(λ− i0) (2.19)

for some constant c(λ). Taking the Wronskians of this equation with f(λ + i0) and
using (2.14), (2.18), we find that

sin θ c(λ) = iω(λ+ i0).

Of course ω(λ− i0) = ω(λ+ i0). Thus (2.19) leads to an intermediary result.

Lemma 2.4. Under assumption (1.7) the representation

Pn(λ) =
ω(λ− i0)fn(λ+ i0)− ω(λ+ i0)fn(λ− i0)

i
√

1− λ2
, λ ∈ (−1, 1), n = 0, 1, 2, . . . ,

(2.20)
holds true.

In particular, representation (2.20) implies that

ω(λ± i0) 6= 0, λ ∈ (−1, 1). (2.21)

Indeed, otherwise we would have Pn(λ) = 0 for some λ ∈ (−1, 1) and all n ∈ Z+.
However, P0(λ) = 1 for all λ.

Let us set

κ(θ) = |Ω(cos θ + i0)|, Ω(cos θ + i0) = κ(θ)eiη(θ), θ ∈ (0, π). (2.22)

In the theory of the Schrödinger operator, the functions κ(θ) and η(θ) are known as
the limit amplitude and the limit phase, respectively; the function η(θ) is also known
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as the scattering phase or the phase shift. Definition (2.22) fixes η(θ) only up to a term
2πk where k ∈ Z.

It follows from (2.7) and (2.15) that

2ω(λ± i0) = −Ω(λ± i0)ζ(λ± i0)−1 = −κ(θ)e±i(η(θ)+θ).

Therefore, combined together relations (2.17) and (2.20) yield the Bernstein-Szegö
asymptotics of the polynomials Pn(λ).

Theorem 2.5. Under assumption (1.7) for λ ∈ (−1, 1) the polynomials Pn(λ) have
asymptotics

Pn(λ) = κ(θ)(sin θ)−1 sin((n+ 1)θ + η(θ)) +O(ρn), θ = arccosλ, (2.23)

as n→∞. Relation (2.23) is uniform in λ on compact subintervals of (−1, 1).

2.4. Let us construct the resolvent R(z) = (H − zI)−1 of the operator H. Recall
that ω(z) is the Wronskian (2.14).

Lemma 2.6. For all n,m ∈ Z+, we have

(R(z)en, em) = ω(z)−1Pn(z)fm(z), z ∈ Π, (2.24)

if n ≤ m and (R(z)en, em) = (R(z)em, en).

Proof. We will show that the operator R(z) defined by (2.24) is the resolvent of H. We
have

ω(z)(R(z)u)n = fn(z)An(z) + Pn(z)Bn(z) (2.25)

where

An(z) =
n∑

m=0

Pm(z)um, Bn(z) =
∞∑

m=n+1

fm(z)um, (2.26)

at least for all sequences u = {un} with a finite number of non-zero components un.
In this case R(z)u ∈ `2(Z+) because fn(z) ∈ `2(Z+) for all z ∈ Π.

Our goal is to check that (H − z)R(z)u = u. It follows from definition (1.1) of the
Jacobi operator H and formula (2.25) that

ω((H − z)Ru)n = an−1
(
fn−1An−1 + Pn−1Bn−1

)
+ (bn − z)

(
fnAn + PnBn

)
+ an

(
fn+1An+1 + Pn+1Bn+1

)
. (2.27)

According to (2.26) we have

fn−1An−1 + Pn−1Bn−1 = fn−1(An − Pnun) + Pn−1(Bn + fnun)

and

fn+1An+1 + Pn+1Bn+1 = fn+1An + Pn+1Bn.
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Let us substitute these expressions into the right-hand side of (2.27) and observe that
the coefficients at An and Bn equal zero by virtue of equation (2.2) for {fn} and {Pn},
respectively. It follows that

((H − z)Ru)n = ω−1an−1(−Pnfn−1 + fnPn−1)un = un

whence R(z) = (H−z)−1; in particular, the operator R(z) defined by (2.24) is bounded
in `2(Z+). �

In view of Theorem 2.1, fn(z) and ω(z) are continuous functions of z ∈ C \ [−1, 1]
up to the cut along [−1, 1] with possible exception of the points z = ±1. Therefore
using (2.21), we obtain the following result.

Theorem 2.7. Let assumption (1.7) hold. Then, for all n,m ∈ Z+, the functions
(R(z)en, em) are continuous as z ∈ Π approaches the interval (−1, 1) from above or
below, and the spectrum of the operator H is absolutely continuous on (−1, 1).

We emphasize that the points 1 and −1 may be eigenvalues of H; see Example 4.15
below.

Let us now calculate the spectral family dE(λ) of the operator H. We proceed from
the identity

2πi
d(E(λ)en, em)

dλ
= (R(λ+ i0)en, em)− (R(λ− i0)en, em). (2.28)

It follows from formula (2.24) that

(R(λ± i0)en, em) = ω(λ± i0)−1Pn(λ)fm(λ± i0), n ≤ m.

Substituting this expression into (2.28), we find that

2πi
d(E(λ)en, em)

dλ
= Pn(λ)

ω(λ− i0)fm(λ+ i0)− ω(λ+ i0)fm(λ− i0)

|ω(λ+ i0)|2
.

Let us combine this representation with formula (2.20) for Pm(λ). Since 2|ω(λ+i0)| =
|Ω(λ+ i0)|, we obtain the following result.

Theorem 2.8. Let assumption (1.7) hold. Then, for all n,m ∈ Z+ and λ ∈ (−1, 1),
we have the representation

d(E(λ)en, em)

dλ
= 2π−1

√
1− λ2|Ω(λ+ i0)|−2Pn(λ)Pm(λ).

Corollary 2.9. For λ ∈ (−1, 1), the spectral measure of the operator H equals

dρ(λ) := d(E(λ)e0, e0) = w(λ)dλ, (2.29)

where the weight function

w(λ) = 2π−1
√

1− λ2|Ω(λ+ i0)|−2. (2.30)

In particular, for the operator H0, we have

w0(λ) = 2π−1
√

1− λ2. (2.31)
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In view of (2.22), (2.30) the amplitude in (2.23) can be written as

κ(θ)(sin θ)−1 = 21/2π−1/2(1− λ2)−1/4w(λ)−1/2 (2.32)

which is more common in the orthogonal polynomials literature.
Note that Theorem 2.1 does not give any information on the behavior of the Jost

function Ω(z) as z → ±1. However relation (2.30) implies that∫ 1

−1

√
1− λ2|Ω(λ+ i0)|−2dλ =

π

2

∫ 1

−1
w(λ)dλ ≤ π/2, (2.33)

and hence Ω(λ+ i0) cannot vanish too rapidly as λ→ 1− 0 and λ→ −1 + 0 (even if
1 or −1 are eigenvalues of H). For example, the behavior Ω(λ+ i0) ∼ c±(λ∓ 1) where
c± 6= 0 is excluded.

3. Regular solutions of the Jacobi equations

3.1. The regular solution P (z) = {Pn(z)} of the Jacobi equation (1.2) is determined
by the boundary conditions P−1(z) = 0, P0(z) = 1. Then Pn(z) is a polynomial of
degree n and relation (1.6) is satisfied. By analogy with the continuous case (see, e.g.,
part 1 of Section 4.1 in [30]), we here obtain bounds on Pn(z) for large n. As usual,
the variable ζ(z) is defined by (2.5).

Theorem 3.1. If assumption (1.7) is satisfied, then

|Pn(z)| ≤ C|ζ(z)|−n (3.1)

with some positive constant C not depending on n and on z in compact subsets of
C \ {−1, 1}.

Theorem 3.1 will be proven in Appendix A.2. The proof relies on the equation (cf.
equation (2.11))

Pn(z) = P (0)
n (z) +

1√
z2 − 1

n−1∑
m=0

(ζ(z)n−m − ζ(z)m−n)(V P (z))m, n ≥ 1, (3.2)

where z ∈ Π, P
(0)
n (z) (normalized Chebyshev polynomials of the second kind) are given

by equation (2.8) and V is defined by formula (2.10).
Recall now formula (2.24) for the resolvent R(z) of the operator H. Putting together

estimates (2.13) and (3.1), we obtain the following result.

Theorem 3.2. Let assumption (1.7) be satisfied. For all n,m ∈ Z+, the functions
(R(z)en, em) are continuous in z up to the cut along [−1, 1] except, possibly, the points
±1. Moreover,

|(R(z)en, em)| ≤ C|ω(z)|−1|ζ(z)||n−m|

with some positive constant C that does not depend on n, m and on z in compact
subsets of clos Π and away from the points ±1.
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We need also a representation of the Jost function Ω(z) in terms of the orthogonal
polynomials Pn(z). It plays the role of the representation (see, e.g., formula (1.38)
in Chapter 4 of [30]) of the Jost function via the regular solution of the Schrödinger
equation in the continuous case.

Proposition 3.3. Let assumption (1.7) be satisfied, and let the Jost function Ω(z) be
defined by (2.14). Then

Ω(z) = 1− 2
∞∑
n=0

ζ(z)n+1(V P (z))n (3.3)

for all z ∈ clos Π except, possibly, the points ±1.

Proof. Suppose first that z = λ+ i0 where λ ∈ (−1, 1). Substituting expressions (2.9)
and (2.20) into equation (3.2) we see that

ω(λ− i0)fn(λ+ i0)− ω(λ+ i0)fn(λ− i0) = 2−1(ei(n+1)θ − e−i(n+1)θ)

+
n−1∑
m=0

(e−i(n−m)θ − ei(n−m)θ)(V P (λ+ i0))m.

Let us consider the asymptotics of both sides of this equation as n → ∞ and use
relation (2.17). Then comparing coefficients at einθ, we get (3.3) for z = λ + i0. Both
sides of (3.3) are analytic in z ∈ Π and continuous up to the cut along [−1, 1] according
to Theorems 2.1 and 3.1. Therefore relation (3.3) extends to all z. �

3.2. Let us find asymptotics of the polynomials Pn(z) for z 6∈ [−1, 1]. We follow
here closely the scheme exposed in Section 4.1 (see, in particular, Lemma 1.11) of [30].

We start by introducing solutions gn(z) of equation (2.2) exponentially growing as
n → ∞. Perhaps this construction is of interest in its own sake. For z ∈ Π, fix
n0 = n0(z) such that fn(z) 6= 0 for n ≥ n0 − 1. Note that, for Im z 6= 0, one can set
n0 = 0 because the equality fn0−1(z) = 0 implies that the Jacobi operator H(n0) with

the matrix elements a
(n0)
n = an+n0 , b

(n0)
n = bn+n0 has the eigenvalue z. Put

gn(z) = fn(z)Θn(z) where Θn(z) =
n∑

m=n0

(am−1fm−1(z)fm(z))−1. (3.4)

An elementary calculation shows that this sequence satisfies equation (2.2). It is also
easy to find the asymptotics of gn(z) as n→∞:

ζngn(z) = 2ζ2n
n∑

m=n0

ζ−2m+1(1 + o(1)) = 2ζ2n+1 ζ
−2n−2 − 1

ζ−2 − 1
(1 + o(1))

= 2
1− ζ2n+2

ζ−1 − ζ
(1 + o(1)) =

1 + o(1)√
z2 − 1
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where ζ = ζ(z). This yields the following result.

Lemma 3.4. Let z ∈ Π. Under assumption (1.7) the sequence gn(z) defined by (3.4)
satisfies equation (2.2) and

lim
n→∞

ζ(z)ngn(z) =
1√

z2 − 1
.

The Wronskian (2.3) of f(z) = {fn(z)}, g(z) = {gn(z)} equals

{f(z), g(z)} = anfn(z)fn+1(z)(Θn+1(z)−Θn(z)) = 1,

and hence solutions f(z) and g(z) are linearly independent. It follows that

Pn(z) = d+(z)fn(z) + d−(z)gn(z) (3.5)

where

{P (z), f(z)} = d−(z){g(z), f(z)} = −d−(z)

and

{P (z), g(z)} = d+(z){f(z), g(z)} = d+(z).

According to (2.14), (2.15) we have

d−(z) = (2ζ(z))−1Ω(z). (3.6)

Obviously, d+(z) 6= 0 if d−(z) = 0. Therefore Lemma 3.4 implies the following result.

Theorem 3.5. Under assumption (1.7) for all z ∈ Π, we have the relation

lim
n→∞

ζ(z)nPn(z) =
Ω(z)

1− ζ(z)2
(3.7)

with convergence uniform on compact subsets of Π. Moreover, if Ω(z) = 0, then

lim
n→∞

ζ(z)−nPn(z) = {P (z), g(z)} 6= 0. (3.8)

The existence of the limit in (3.7) is the classical result of the Szegö theory. It is
stated as Theorem 12.1.2 in the book [26] where the assumptions are imposed on the
measure dρ(λ); in particular, it is assumed that supp ρ ⊂ [−1, 1]. Under assumption
(1.7) asymptotic relation (3.7) was established in Theorem 2.20 of [20]; our proof is
rather different from that in [20]. Relation (3.8) is perhaps new.

4. Edge points of the spectrum

4.1. A study of the Jost function Ω(z) as z → 1 and z → −1 requires an additional
assumption on the coefficients an, bn. This is quite similar to the Schrödinger operator
in the space L2(R+) that has a threshold at the point z = 0. The presentation here
follows very closely Section 4.3 of [30] where the continuous case was considered; so
some technical details will be omitted.
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Theorem 4.1. Suppose that

∞∑
n=0

n(|an − 1/2|+ |bn|) <∞. (4.1)

Then all functions fn(z) and, in particular, the Jost function Ω(z) are continuous in z
up to the cut along [−1, 1]. Moreover, fn(±1) satisfies equation (2.2) for z = ±1, that
is

an−1fn−1(±1) + bnfn(±1) + anfn+1(±1) = ±fn(±1), n ∈ Z+, (4.2)

and fn(±1) = (±1)n + o(1) as n→∞.

Theorem 3.1 can be supplemented by the following result.

Theorem 4.2. If assumption (4.1) is satisfied, then

|Pn(z)| ≤ C(n+ 1)|ζ(z)|−n (4.3)

with some positive constant C not depending on n and on z in compact subsets of C.

The proofs of Theorem 4.1 and 4.2 will be discussed in Appendix A.3. We emphasize
that assumption (4.1) cannot be relaxed; see Remark 4.13 below.

Passing in (2.11) to the limit z → ±1 and taking into account the relation

ζ(z)k = (±1)k(1∓ k
√
z2 − 1) +O(|z2 − 1|), z → ±1, (4.4)

we obtain an equation for the sequences fn(±1):

fn(±1) = (±1)n + 2
∞∑

m=n+1

(±1)n−m+1(n−m)(V f(±1))m.

Similarly, since P
(0)
n (±1) = (n+ 1)(±1)n, equation (3.2) yields

Pn(±1) = (n+ 1)(±1)n − 2
n−1∑
m=0

(±1)n−m+1(n−m)(V P (±1))m. (4.5)

Estimate (4.3) allows us to pass to the limit z → ±1 in (3.3) which leads to the
following result.

Lemma 4.3. Under assumption (4.1), the representation

Ω(±1) = 1− 2
∞∑
n=0

(±1)n+1(V P (±1))n (4.6)

holds.

Similarly to Lemma 3.4, we can introduce a solution gn(±1) of the equation (4.2)
linearly independent with fn(±1).
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Lemma 4.4. Let assumption (4.1) hold. Define the sequence gn(±1) by formula (3.4).
Then gn(±1) satisfies equation (4.2), gn(±1) = 2(±1)n+1n(1 + o(1)) as n → ∞ and
{f(±1), g(±1)} = 1.

Since neither of solutions fn(±1), gn(±1) nor their linear combinations tend to zero
as n→∞, we obtain

Theorem 4.5. Under assumption (4.1) equations (4.2) do not have solutions tending
to zero as n→∞. In particular, the operator H cannot have eigenvalues 1 and −1.

To find the asymptotics of the polynomials Pn(z) at critical points z = ±1, we use
equalities (3.5) and (3.6) where z = ±1. The next result is a direct consequence of
Lemma 4.4.

Theorem 4.6. Let assumption (4.1), and let Ω(±1) 6= 0. Then

Pn(±1) = Ω(±1)(±1)nn(1 + o(1)) (4.7)

Of course, if Ω(±1) 6= 0, then according to (2.24) the resolvent kernel (R(z)en, em)
is continuous as z → ±1.

4.2. Our next goal is to find the asymptotic behavior as z → ±1 of Ω(z) and hence
of (R(z)en, em) in the exceptional case Ω(±1) = 0. Let us use the same terminology as
for Schrödinger operators.

Definition 4.7. Let assumption (4.1) hold. If Ω(±1) = 0, we say that the operator
H has a resonance at z = ±1.

Clearly, the condition Ω(±1) = 0 is equivalent to the linear dependence of the
solutions Pn(±1) and fn(±1) of equation (4.2). In this case the sequence Pn(±1) is
bounded as n→∞. The next result follows from equations (4.5) and (4.6).

Lemma 4.8. Suppose that Ω(±1) = 0 and put

γ± = 1 + 2
∞∑
m=0

(±1)m−1m(V P (±1))m. (4.8)

Then there exists

lim
n→∞

(±1)nPn(±1) = γ± 6= 0. (4.9)

In particular, Pn(±1) = (±1)nγ±fn(±1).

Now we are in a position to find the asymptotic behavior of the Jost function Ω(z)
as z → ±1 in the case Ω(±1) = 0. Let us proceed from representation (3.3). According
to (4.4), for each n, we have

ζ(z)n+1(V P (z))n =
(
(±1)n+1 − (±1)n(n+ 1)

√
z2 − 1

)
(V P (±1))n +O(z2 − 1).
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Substituting this expression into (3.3) and taking into account equation (4.6), we see
that

Ω(z) = Ω(±1) + 2
∞∑
n=0

(±1)n(n+ 1)(V P (±1))n
√
z2 − 1 + o(

√
|z2 − 1|).

If Ω(±1) = 0, then the coefficient at
√
z2 − 1 here equals ±γ±. Let us state the result

obtained.

Theorem 4.9. Under assumption (4.1) suppose that Ω(±1) = 0 and define the number
γ± by (4.8) or, equivalently, by (4.9). Then

Ω(z) = ±γ±
√
z2 − 1 + o(

√
|z2 − 1|)

as z → ±1.

Using formula (2.30), we obtain the following consequence for the weight function.

Corollary 4.10. Under the assumptions of Theorem 4.9, we have

w(λ) = 2π−1γ−2± (1− λ2)−1/2(1 + o(1)), λ ∈ (−1, 1),

as λ→ ±1.

In view of Lemmas 2.6 and 4.8, Theorem 4.9 implies also the following result.

Corollary 4.11. Under the assumptions of Theorem 4.9 for all n,m ∈ Z+, the repre-
sentation

(R(z)en, em) = −2
(±1)min{n,m}fn(±1)fm(±1) + o(1)√

z2 − 1
as z → ±1 is satisfied.

Remark 4.12. Combined together, Theorems 4.1 and 4.9 ensure that under assump-
tion (4.1) the discrete spectrum of the operator H is finite.

Remark 4.13. Under assumption (4.1) the asymptotics of the orthogonal polynomials
Pn(±1) is given by formulas (4.7) and (4.9). An example of the Jacobi polynomials
shows that the asymptotics of Pn(±1) is significantly changed (see formula (8.18),
below) if the condition (4.1) is even slightly relaxed. In particular, estimate (4.3) is
violated in this case.

Remark 4.14. The problem of characterization of spectral data corresponding to
assumption (4.1) was considered in [17].

4.3. The condition (4.1) of Theorem 4.5 guaranteeing, in particular, the absence
of eigenvalues ±1 is optimal. Indeed, there exist Jacobi operators satisfying condition
(1.7) but not (4.1) with an eigenvalue at the points +1 or −1. In the example below,
we suppose that an = 1/2. Set

ψ(±)
n = (±1)n(n+ 1)−l (4.10)



SCATTERING THEORY FOR JACOBI OPERATORS 17

for all n ∈ Z+ and ψ
(±)
−1 = 0. Then ψ(±) = {ψ(±)

n } ∈ `2(Z+) if l > 1/2. Let us consider

equation (2.2) where un = ψ
(±)
n and z = ±1 as an equation for b

(±)
n :

b(±)n = ±1− (2ψ(±)
n )−1(ψ

(±)
n−1 + ψ

(±)
n+1). (4.11)

It follows from (4.10) that

b(±)n = ∓2−1l(l + 3)n−2 +O(n−3)

as n→∞. In particular, condition (1.7) holds. Moreover, up to a finite rank operator,
the perturbation V (±) = H(±) −H0 of the operator H0 is negative for the upper sign
and positive for the lower sign. Thus, we have

Example 4.15. Let an = 1/2 and b
(±)
n be given by formulas (4.10) where l > 1/2 and

(4.11). Then condition (1.7) is satisfied. The Jacobi operator H(±) has the eigenvalue

±1 with the eigenvector ψ
(±)
n defined by (4.10). The spectrum of H(+) is finite above

the point 1, and spectrum of H(−) is finite below the point −1.

Note that the operators H(±) have infinite number of eigenvalues. For instance, this
fact follows from a general result of [6], Theorem 3, stating that the spectrum of a
Jacobi operator is purely absolutely continuous on [−1, 1] if it has only a finite number
of eigenvalues outside [−1, 1]. In our case H(±) has the eigenvalue ±1.

Example 4.15 exhibits an asymptotic behavior of orthogonal polynomials Pn(z) inter-
mediary between exponential (for z 6∈ [−1, 1]) and oscillating (for z ∈ (−1, 1)) regimes.

Indeed, if an = 1/2 and b
(±)
n are defined by (4.10) and (4.11), then Pn(±1) = ψ

(±)
n are

given by (4.10). So, this sequence behaves as some power of n (negative or positive)
as n→∞.

4.4. A similar result is true for the Schrödinger operator H = −d2/dx2 + b(x) with
the boundary condition u(0) = 0 in the space L2(R+). Let ψ ∈ C∞(R+), ψ(x) > 0 for
all x > 0, ψ(x) = x in a neighborhood of the point x = 0 and

ψ(x) = x−l where l > 1/2 (4.12)

for sufficiently large x. Then ψ ∈ L2(R+). Put

b(x) = ψ′′(x)ψ(x)−1 (4.13)

so that b(x) = l(l + 1)x−2 if x is large enough. This yields

Example 4.16. Let b(x) be given by formulas (4.12) and (4.13). Then the operator
H has the eigenvalue 0 with the eigenfunction ψ(x) defined by (4.12), and its negative
spectrum is finite.

The decay of b(x) as |x|−2 at infinity is critical. Actually, it is known (see part 1 in
Section 4.3 of [30]) that H cannot have the zero eigenvalue provided∫ ∞

0

(1 + x)|b(x)|dx <∞.
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5. The perturbation determinant and the spectral shift function.
Trace identities

5.1. Let H0 and H be arbitrary self-adjoint operators with a trace class difference
V = H −H0. Then the perturbation determinant

∆(z) = Det
(
I + V R0(z)

)
(5.1)

for the pair H0, H is well defined and is an analytic function of z ∈ C\σ(H0). Obviously,

∆(z̄) = ∆(z) and

∆(z)→ 1 as dist{z, σ(H0)} → ∞. (5.2)

Note also the general formula

Tr
(
R(z)−R0(z)

)
= −∆′(z)

∆(z)
. (5.3)

In view of our applications to Jacobi operators, below we suppose that the operators
H0 and H are bounded.

The Krĕın spectral shift function ξ(λ) is defined in terms of the perturbation de-
terminant (5.1). According to (5.2) we can fix the branch of the function ln ∆(z) for
Im z 6= 0 by the condition

arg ∆(z)→ 0 as dist{z, σ(H0)} → ∞. (5.4)

Then

ξ(λ) := π−1 lim
ε→+0

arg ∆(λ+ iε). (5.5)

This limit exists for a.e. λ ∈ R, ∫ ∞
−∞
|ξ(λ)|dλ ≤ ‖V ‖1 (5.6)

and the representation

ln ∆(z) =

∫ ∞
−∞

ξ(λ)(λ− z)−1dλ, Im z 6= 0, (5.7)

holds. The function ξ(λ) is constant on intervals not containing points of σ(H0)∪σ(H).
In particular, ξ(λ) = 0 for λ < inf

(
σ(H0) ∪ σ(H)

)
and λ > sup

(
σ(H0) ∪ σ(H)

)
. If λ1

is an isolated eigenvalue of finite multiplicity k0 of the operator H0 and multiplicity k
of the operator H, then

ξ(λ1 + 0)− ξ(λ1 − 0) = k0 − k. (5.8)

We refer to the books [16, 25, 29] for a detailed presentation of these notions.

5.2. Let us come back to Jacobi operators. Under the assumption (1.7), the per-
turbation V belongs to the trace class S1 so that all results mentioned in the previous
subsection are true.
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Let us find a link of the perturbation determinant ∆(z) with the Jost function (2.15).
We follow here closely the scheme of the paper [4] where the operator −D2 + b(x)
was considered; for its detailed presentation, see Section 4.1 of [30]. Note that there
exists also a different to proofs of such assertions relying on the Fredholm expansion
of determinants; this approach was developed in [19].

Let us find an expression of the left-hand side of (5.3) in terms of the Jost function
Ω(z). The first assertion is true without any assumptions on an and bn. Recall that
{fn(z)}∞n=−1 is the Jost solution of equations (2.2) and ω(z) is defined by (2.14).

Lemma 5.1. For all z ∈ Π and all N ≥ 0, we have the identity

N∑
n=0

fn(z)Pn(z) = −ω′(z) + aN
(
PN(z)f ′N+1(z)− PN+1(z)f ′N(z)

)
. (5.9)

Proof. Let us differentiate (in z) equation (2.2) for fn(z) and then multiply it by Pn(z):

an−1f
′
n−1(z)Pn(z) + anf

′
n+1(z)Pn(z) = (z − bn)f ′n(z)Pn(z) + fn(z)Pn(z). (5.10)

Multilplying equation (1.2) for Pn(z) by f ′n(z), we see that

an−1Pn−1(z)f ′n(z) + anPn+1(z)f ′n(z) = (z − bn)Pn(z)f ′n(z). (5.11)

Then we subtract (5.11) from (5.10):

fn(z)Pn(z) =
(
an−1f

′
n−1(z)Pn(z)− anf ′n(z)Pn+1(z)

)
+
(
anf

′
n+1(z)Pn(z)− an−1f ′n(z)Pn−1(z)

)
. (5.12)

Let us calculate the sums of the right-hand sides over n = 0, 1, . . . , N :

N∑
n=0

(
an−1f

′
n−1(z)Pn(z)− anf ′n(z)Pn+1(z)

)
= 2−1f ′−1(z)P0(z)− aNf ′N(z)PN+1(z)

and
N∑
n=0

(
anf

′
n+1(z)Pn(z)− an−1f ′n(z)Pn−1(z)

)
= aNf

′
N+1(z)PN(z)− 2−1f ′0(z)P−1(z).

Since P−1(z) = 0, P0(z) = 1 and f−1(z) = −2ω(z), taking the sum of equations (5.12),
we obtain the identity (5.9). �

Let us calculate the asymptotics of the right-hand side of (5.9) as n→∞ supposing
first that the perturbation V has finite support, that is, an = 1/2 and bn = 0 for
sufficiently large n. In view of (2.6), the equations (2.2) are satisfied in this case for
all z ∈ Π and n large enough if un(z) is a arbitrary linear combination of the functions
ζ(z)n and ζ(z)−n. In particular, we have

fn(z) = ζ(z)n and Pn(z) = γ+(z)ζ(z)n + γ−(z)ζ(z)−n (5.13)

for some numbers γ±(z). Recall that |ζ(z)| < 1 for z ∈ Π.
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Lemma 5.2. For all z ∈ Π, z 6∈ σd(H) and n→∞, we have the relation

ω(z)−1
(
Pn(z)f ′n+1(z)− Pn+1(z)f ′n(z)

)
= − 2n√

z2 − 1
+

ζ(z)

z2 − 1
+O(ζ(z)2n). (5.14)

Proof. It follows from formulas (5.13) that the Wronskian (2.14) calculated for large n
is given by the equation

2ω = (γ+ζ
n + γ−ζ

−n)ζn+1 − (γ+ζ
n+1 + γ−ζ

−n−1)ζn = γ−(ζ − ζ−1). (5.15)

Formulas (5.13) also imply that

Pnf
′
n+1 − Pn+1f

′
n = (γ+ζ

n + γ−ζ
−n)(ζn+1)′ − (γ+ζ

n+1 + γ−ζ
−n−1)(ζn)′

= − 1√
z2 − 1

(
γ−
(
(n+ 1)ζ − nζ−1

)
+ γ+ζ

2n+1
)

(5.16)

where we used that

ζ(z)′ = − ζ(z)√
z2 − 1

.

Dividing now (5.16) by (5.15), we arrive at (5.14). �

Using expression (2.24) for (R(z)en, en) and putting together Lemmas 5.1 and 5.2,
we get the following result.

Theorem 5.3. Suppose that an = 1/2 and bn = 0 for sufficiently large n. Then for all
z ∈ Π, z 6∈ σd(H) and N →∞, we have the relation

N∑
n=0

(R(z)en, en) = −ω′(z)ω(z)−1 − N√
z2 − 1

+
ζ(z)

2(z2 − 1)
+O(ζ(z)2N). (5.17)

Of course the same formula is true for the operator H0 when ω0(z) = −2−1ζ(z)−1.
Comparing formulas (5.17) for H and H0, we find that

N∑
n=0

(
(R(z)en, en)− (R0(z)en, en)

)
= −ω′(z)ω(z)−1 + ω′0(z)ω0(z)−1 +O(ζ(z)2N).

Passing here to the limit N →∞, we see that

Tr
(
R(z)−R0(z)

)
= −Ω′(z)

Ω(z)
, z ∈ Π, (5.18)

where the function Ω(z) is defined by (2.15).
Theorem 2.3 allows us to extend this result to arbitrary operators satisfying condition

(1.7). Indeed, set a
(N)
n = an, b

(N)
n = bn for n ≤ N and a

(N)
n = 1/2, b

(N)
n = 0 for

n > N . Let H(N) be the Jacobi operator with the matrix elements a
(N)
n , b

(N)
n , and let

Ω(N)(z) = −2ζ(z){P (N)(z), f (N)(z)}. Write formula (5.18) for the pair H0, H
(N) and
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pass to the limit N → ∞. Since V (N) := H(N) − H0 → V in the trace norm, we see
that

Tr
(
R(N)(z)−R0(z)

)
→ Tr

(
R(z)−R0(z)

)
as N → ∞. According to Theorem 2.3 we also have Ω(N)(z) → Ω(z) and hence
dΩ(N)(z)/dz → dΩ(z)/dz as N →∞. This leads to the desired result.

Theorem 5.4. The relation (5.18) holds true under assumption (1.7).

5.3. Putting together relations (5.3) and (5.18), we see that

∆(z) = AΩ(z), z ∈ Π, (5.19)

for some constant A ∈ C. Our goal is to check that

A =
∞∏
k=0

(2ak). (5.20)

Note that under assumption (1.7) the infinite product here converges and A > 0.
Let us compare the asymptotics of ∆(z) and Ω(z) as |z| → ∞. The first of them is

given by (5.2). So we only have to consider the Jost function Ω(z).

Lemma 5.5. Suppose that an = 1/2 and bn = 0 for all sufficiently large n. Then for
all n = −1, 0, 1, . . . and |z| → ∞, we have the asymptotic relation

fn(z) =
( ∞∏
k=n

(2ak)
)−1

ζ(z)n(1 +O(ζ(z))). (5.21)

In particular,

Ω(z) = A−1 +O(ζ(z)). (5.22)

Proof. Since fn(z) = ζn for n large enough, relations (5.21) are certainly satisfied for
such n. Suppose that, for some n0, relations (5.21) are true for all n ≥ n0. According
to equation (2.2) we have

an0−1fn0−1 =
(
2−1(ζ + ζ−1)− bn0

)
fn0 − an0fn0+1.

By our assumption on fn0 and fn0+1, this implies

an0−1fn0−1 = 2−1ζ−1
( ∞∏
k=n0

(2ak)
)−1

ζn0(1 +O(ζ)) +O(ζn0)

which yields (5.21) for fn0−1. In view of (2.14), (2.15), relation (5.22) is a consequence
of (5.21) for n = −1. �

Thus relations (5.19) and (5.20) are verified for perturbations of finite support. It
remains to extend them to arbitrary perturbations satisfying assumption (1.7). Let us
use the arguments and the notation H(N) = H0 + V (N), Ω(N)(z) already used by the
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proof of Theorem 5.4. Let ∆(N)(z) be the perturbation determinant for the pair H0,
H(N). For all N , we have the relation

∆(N)(z) = A(N)Ω(N)(z) where A(N) =
N−1∏
k=0

(2ak).

Let us pass here to the limit N →∞. Since V (N) → V in the trace norm, ∆(N)(z)→
∆(z) as N → ∞. We also see that Ω(N)(z) → Ω(z) by Theorem 2.3 and A(N) → A
under assumption (1.7). This yields the desired result.

Theorem 5.6. Under assumption (1.7) the equality (5.19) is true with constant (5.20).

Since ∆(z) satisfies (5.2), this gives us the asymptotics of the Jost function at infinity.

Corollary 5.7. Under assumption (1.7) we have

lim
|z|→∞

Ω(z) = A−1.

Thus, we can fix the branch of the function arg Ω(z) for Im z 6= 0 by the condition

lim
|z|→∞

arg Ω(z) = 0.

Then in view of normalization (5.4), we have

arg ∆(z) = arg Ω(z), Im z 6= 0.

5.4. Next, we discuss the spectral shift function ξ(λ) for a pair of Jacobi operators
H0, H satisfying assumption (1.7). According to Theorem 2.1 and formula (5.19), the
perturbation determinant ∆(z) is a continuous function of z ∈ clos Π except, possibly,
the points z = ±1. Moreover, according to (2.21), we have Ω(λ ± i0) 6= 0. Therefore
ξ(λ) is also a continuous function of λ ∈ (−1, 1).

A link between ξ(λ) and the scattering phase η(θ) follows from definitions (2.22) and
(5.5).

Theorem 5.8. Under assumption (1.7), the relation

ξ(λ) = π−1η(arccosλ) (5.23)

holds for all λ ∈ (−1, λ).

Substituting (5.23) into (2.23) and taking into account (2.32), we can reformulate
Theorem 2.5 in terms of the weight function w(λ) and the spectral shift function ξ(λ).
This yields asymptotic relation (1.9); note that the remainder o(1) in the right-hand
side can be replaced by O(ρn).

We emphasize that η(θ) is a continuous function of θ ∈ (0, π), but Theorem 2.1
yields no information about its behavior as θ → 0 and θ → π. Comparing relations
(5.6) and (5.23), we however see that∫ π

0

|η(θ)| sin θdθ ≤ π‖V ‖1.
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5.5. To find expressions of Tr(Hn − Hn
0 ) in terms of the spectral shift function,

we only have to compare asymptotic expansions as |z| → ∞ of both sides of the
representation (5.7). It follows from relation (5.3) that

ln ∆(z) = −
∞∑
n=1

n−1 Tr(Hn −Hn
0 ) z−n.

Since ∫ ∞
−∞

ξ(λ)(λ− z)−1dλ = −
∞∑
n=1

∫ ∞
−∞

ξ(λ)λn−1dλ z−n,

equating the coefficients at z−n, we see that

Tr(Hn −Hn
0 ) = n

∫ ∞
−∞

ξ(λ)λn−1dλ. (5.24)

On the discrete spectrum, the spectral shift function can be explicitly calculated.

Indeed, let λ
(+)
1 > λ

(+)
2 > · · · > 1 (and λ

(−)
1 < λ

(−)
2 < · · · < −1) be eigenvalues of

H lying above the point 1 (respectively, below the point −1). It follows from formula

(5.8) that ξ(λ) = n for λ ∈ (λ
(+)
n+1, λ

(+)
n ) and ξ(λ) = −n for λ ∈ (λ

(−)
n , λ

(−)
n+1).

Using formula (5.8), we find that

n

∫ ∞
1

ξ(λ)λn−1dλ =
∞∑
k=1

k
(
(λ

(+)
k )n − (λ

(+)
k+1)

n
)

and, similarly, for the integral over (−∞,−1). The series here is convergent by virtue
of estimate (5.6). Putting together this relation with (5.24), we obtain the following
result.

Theorem 5.9. Let assumption (1.7) be satisfied. Then

Tr(Hn−Hn
0 ) = n

∫ 1

−1
ξ(λ)λn−1dλ+

∞∑
k=1

k
(
(λ

(+)
k )n− (λ

(+)
k+1)

n
)

+
∞∑
k=1

k
(
(λ

(−)
k )n− (λ

(−)
k+1)

n
)
.

(5.25)

In view of (5.23), the integral on the right can be expressed in terms of the phase
function: ∫ 1

−1
ξ(λ)λn−1dλ =

1

π

∫ π

0

η(θ) cosn−1 θ sin θdλ.

In a very general framework, formulas of type (5.25) were studied in the book [27],
Chapter 6.

5.6. The trace formula of zero order (the Levinson theorem) requires a special
discussion. Now we assume a stronger condition (4.1) on the coefficients of the operator
H. Then according to Theorem 4.1, the corresponding perturbation determinant ∆(z)
is continuous as z → ±1. One has to distinguish the cases ∆(1) = 0 and ∆(−1) = 0
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when the operator H has threshold resonances at the points λ = 1 or λ = −1. Note
also (see Remark 4.12) that under assumption (4.1) the operator H has only a finite
number N of discrete eigenvalues.

Theorem 5.10. Let assumption (4.1) be satisfied. Then the limits ξ(1−0) and ξ(−1+
0) exist and

ξ(1− 0)− ξ(−1 + 0) = N + κ (5.26)

where κ = 0 if ∆(±1) 6= 0 for both signs, κ = 1/2 if ∆(±1) = 0 for one of the signs
and κ = 1 if ∆(±1) = 0 for both signs.

Proof. Let us consider a contour which consists of a part

Cr−,r+ = [−1+r−+i0, 1−r++i0]∪[−1+r−−i0, 1−r+−i0]∪{|z−1] = r+}∪{|z+1] = r−}
encircling the cut along [−1, 1] and of the circle |z| = R. We suppose that r− and r+
are sufficiently small, R is sufficiently large, and we go in the clockwise over Cr−,r+ and
in the counter-clockwise direction over |z| = R. Since ∆(z) has simple zeros at the
eigenvalues of H, the argument principle implies that

varCr−,r+
arg ∆(z) + var|z|=R arg ∆(z) = 2πN. (5.27)

According to (5.4) we have var|z|=R arg ∆(z)→ 0 as R→∞. It follows from (5.5) that

varCr−,r+
arg ∆(z) = 2π(ξ(1−r+)−ξ(1+r−))+var|z−1|=r+ arg ∆(z)+var|z+1|=r− arg ∆(z).

(5.28)
Let us now pass here to the limit r−, r+ → 0. If ∆(±1) 6= 0, then

var|z∓1|=r± arg ∆(z)→ 0. In the case ∆(±1) = 0 it follows from Theorem 4.9 that

lim
r±→0

var|z∓1|=r± arg ∆(z) = π.

Thus relation (5.26) is a direct consequence of (5.27) and (5.28). These arguments
prove also the existence of the limits ξ(1− 0) and ξ(−1 + 0). �

6. Scattering theory

6.1. First, we briefly recall basic notions of scattering theory. We refer, for example,
to the book [29] for a more complete presentation of this material.

The wave operators W±(H,H0) for a pair of self-adjoint operators H0, H in a Hilbert
space H are defined as strong limits

W±(H,H0) = s-lim
t→±∞

eiHte−iH0t; (6.1)

here H0 is supposed to be absolutely continuous. Under the assumption of the existence
of limits (6.1), W±(H,H0) are isometric operators and enjoy the intertwining property
HW±(H,H0) = W±(H,H0)H0. The wave operator W±(H,H0) is called complete if
its range coincides with the absolutely continuous subspace of the operator H. The
scattering operator

S = W+(H,H0)
∗W−(H,H0) (6.2)
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commutes with H0, SH0 = H0S, and it is unitary if both wave operators W+(H,H0)
and W−(H,H0) are complete.

To define the scattering matrix, we suppose for definiteness that the spectrum of
H0 is simple and coincides with [−1, 1]. Let F0 : H → L2(−1, 1) be unitary and
F0H = AF0 where A is the operator of multiplication by λ in the space L2(−1, 1).
Then the scattering matrix S(λ) ∈ C is defined by the relation

(F0Sf)(λ) = S(λ)(F0f)(λ), λ ∈ (−1, 1); (6.3)

obviously, |S(λ)| = 1 if S is unitary. Note that the scattering matrix does not depend
on the diagonalization F0 of H0 if it has simple spectrum.

Let us come back to Jacobi operators. Under condition (1.7) which is always assumed
in this section, the perturbation V = H−H0 is trace class. Therefore the wave operators
W±(H,H0) exist and are complete by the classical Kato-Rosenblum theorem.

Our goal here is to obtain representations of the wave operators and of the scattering
matrix in terms of the polynomials Pn(λ) and of the Jost function Ω(λ + i0) for λ ∈
(−1, 1). Such expressions are known as stationary representations. As a by-product of
our considerations, we will also give a direct proof of the existence and completeness
of the wave operators.

6.2. Let dρ(λ) be the spectral measure of the operator H. We define a mapping
U : `2(Z+)→ L2(R; dρ) by the formula

(Uen)(λ) = Pn(λ).

This mapping is isometric according to (1.6). It is also unitary because the set of all
polynomials Pn(λ), n ∈ Z+, is dense in L2(R; dρ). Finally, the intertwining property

(UHf)(λ) = λ(Uf)(λ) (6.4)

holds. Indeed, it suffices to check it for f = en when according to definition (2.1) of
the operator H, (UHen)(λ) coincides with the left-hand side of (1.2) (where z = λ)
while λ(Uen)(λ) equals its right-hand side.

Next, we reduce the absolutely continuous part of the operator H to the operator A
of multiplication by λ in L2(−1, 1). To that end, we put

ψn(λ) =
√
w(λ)Pn(λ), λ ∈ (−1, 1), (6.5)

where w(λ) is the weight function defined by (2.30) and introduce a mapping F :
`2(Z+)→ L2(−1, 1) by the formula

(Fen)(λ) = ψn(λ), λ ∈ (−1, 1). (6.6)

The operator F ∗ : L2(−1, 1)→ `2(Z+) adjoint to F is given by the equality

(F ∗g)n =

∫ 1

−1
ψn(λ)g(λ)dλ, n ∈ Z+. (6.7)
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According to (6.5) it follows from the unitarity of the operator U that

FF ∗ = I, F ∗F = E(−1, 1), (6.8)

where E(−1, 1) is the spectral projection of the operator H corresponding to the in-
terval (−1, 1). Thus the operator F ∗ is isometric, and it is unitary if H has no point
spectrum. By virtue of the equation (6.4) the intertwining property

HF ∗ = F ∗A (6.9)

holds.
For the free operator H0, the corresponding unitary mapping F0 : `2(Z+) →

L2(−1, 1) is defined by the formula

(F0en)(λ) = ψ(0)
n (λ) where ψ(0)

n (λ) =
√
w0(λ)P (0)

n (λ), λ ∈ (−1, 1). (6.10)

Here w0(λ) is defined by (2.31) and P
(0)
n (λ) are normalized Chebyshev polynomials of

the second kind.

6.3. The presentation below is very close to Section 4.2 of the book [30] where
the continuous case was considered. We start with two elementary facts. Recall that
ζ(λ± i0) and ρn are defined by formulas (2.7) and (2.12), respectively.

Lemma 6.1. Let
∫ 1

−1 |g(λ)|2
√

1− λ2dλ <∞. Then

lim
t→±∞

∞∑
n=0

∣∣ ∫ 1

−1
ζ(λ∓ i0)ne−iλtg(λ)dλ

∣∣2 = 0. (6.11)

Proof. It is more convenient to work in the variable θ using that∫ 1

−1
ζ(λ∓ i0)ne−iλtg(λ)dλ =

∫ π

0

e±inθe−it cos θg(cos θ) sin θdθ. (6.12)

The Parseval identity implies the uniform in t estimate

∞∑
n=0

∣∣ ∫ 1

−1
ζ(λ∓ i0)ne−iλtg(λ)dλ

∣∣2
≤ 2π

∫ π

0

|g(cos θ)|2 sin2 θdθ = 2π

∫ 1

−1
|g(λ)|2

√
1− λ2dλ.

Therefore it suffices to check (6.11) for g ∈ C∞0 ((−1, 1)).
Integrating in (6.12) by parts and observing that∣∣± n+ t sin θ

∣∣ ≥ c
∣∣n+ |t|

∣∣ for ± t > 0

where θ ∈ [ε0, π − ε0], ε0 > 0 and c = c(ε0) > 0, we find an estimate∣∣ ∫ π

0

e±inθe−it cos θg(cos θ) sin θdθ
∣∣ ≤ C(n+ |t|)−1, n ∈ Z+, ±t > 0.
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It follows that
∞∑
n=0

∣∣ ∫ 1

−1
ζ(λ∓ i0)ne−iλtg(λ)dλ

∣∣2 ≤ C
∞∑
n=0

(n+ |t|)−2 ≤ C1|t|−1, ±t > 0,

which implies (6.11). �

Lemma 6.2. Under assumption (1.7), suppose additionly that
∞∑
n=0

ρ2n <∞. (6.13)

Let g ∈ L1(−1, 1) and supp g ⊂ (−1, 1). Then

lim
|t|→∞

∞∑
n=0

∣∣ ∫ 1

−1

(
fn(λ± i0)− ζ(λ± i0)n

)
e−iλtg(λ)dλ

∣∣2 = 0. (6.14)

Proof. Theorem 2.1 yields the estimate∣∣ ∫ 1

−1

(
fn(λ± i0)− ζ(λ± i0)n

)
e−iλtg(λ)dλ

∣∣ ≤ Cρn

where C does not depend on t. For every n, the integrals in (6.14) tend to zero as
|t| → ∞ by the Riemann-Lebesgue lemma. So, under assumption (6.13), the dominated
convergence theorem implies (6.14). �

Let us now set

σ±(λ) =
Ω(λ± i0)

|Ω(λ± i0)|
= e±iη(arccosλ), λ ∈ (−1, 1). (6.15)

The operator Σ±(λ) of multiplication by σ±(λ) is of course unitary in the space
L2(−1, 1).

Using definitions (2.30) and (6.5) of the functions w(λ) and ψn(λ), we rewrite relation
(2.20) as

ψn(λ) =
1

i
√

2π 4
√

1− λ2
(
−ζ(λ+i0)σ−(λ)fn(λ+i0)+ζ(λ−i0)σ+(λ)fn(λ−i0)

)
. (6.16)

For the operator H0 and the function ψ
(0)
n (λ) defined in (6.10), this reduces to the

formula

ψ(0)
n (λ) =

1

i
√

2π 4
√

1− λ2
(
− ζ(λ+ i0)n+1 + ζ(λ− i0)n+1

)
. (6.17)

Recall that the operators F and F0 are defined by relations (6.6) and (6.10). Then
F ∗ is given by relation (6.7) and similarly for F ∗0 . The operator A acts as multiplication
by λ in the space L2(−1, 1).

Lemma 6.3. For all g ∈ L2(−1, 1), we have

lim
t→±∞

‖(F ∗Σ± − F ∗0 )e−iAtg‖ = 0. (6.18)
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Proof. Since σ+(λ)σ−(λ) = 1, it follows from relations (6.16) and (6.17) that, for both
signs “± ”,

i
√

2π
4
√

1− λ2
(
ψn(λ)σ±(λ)− ψ(0)

n (λ)
)

= ±(σ±(λ)2 − 1)ζ(λ∓ i0)n+1 + σ±(λ)rn(λ) (6.19)

where rn(λ) = −r(+)
n (λ) + r

(−)
n (λ) and

r(±)n (λ) = ζ(λ± i0)σ±(λ)
(
fn(λ± i0)− ζ(λ± i0)n

)
.

According to (6.19) we have

(F ∗Σ± − F ∗0 )e−iAtg)n = ±
∫ 1

−1
(σ±(λ)2 − 1)ζ(λ∓ i0)n+1e−iλtg̃(λ)dλ

+

∫ 1

−1
rn(λ)σ±(λ)e−iλtg̃(λ)dλ (6.20)

where

g̃(λ) =
g(λ)

i
√

2π 4
√

1− λ2
.

Let us come back to relation (6.18) where we may assume that supp g ⊂ (−1, 1). If
t→ +∞ (if t→ −∞), we use (6.20) for the upper (lower) sign. Then the contribution
to the norm in `2(Z+) of the first term in the right-hand side of (6.20) tends to zero
according to Lemma 6.1. The contribution of the second term tends to zero according
to Lemma 6.2. �

Theorem 6.4. Let assumptions (1.7) and (6.13) be satisfied. Then the strong limits
(6.1) exist and

W±(H,H0) = F ∗Σ±F0. (6.21)

Proof. We have to check that

lim
t→±∞

‖eiHte−iH0tf − F ∗Σ±F0f‖ = 0

for all f ∈ `2(Z+). In view of the intertwining property (6.9) this relation can be
rewritten as

lim
t→±∞

‖e−iH0tf − F ∗Σ±e−iAtF0f‖ = 0. (6.22)

Set now g = F0f . Then again in view of the intertwining property (6.9) for H0, we see
that relations (6.18) and (6.22) are equivalent. �

It follows from relations (6.8) and (6.21) that the scattering operator (6.2) is given
by the equality

S = F ∗0 Σ∗+Σ−F0.

Putting together this relation with the definition (6.3) of the scattering matrix and
definition (6.15) of σ±(λ), we can state the following result. Recall also that the
scattering phase η(θ) was defined by formula (2.22).
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Theorem 6.5. Under assumptions of Theorem 6.4, the scattering matrix for the pair
H0, H satisfies the equality

S(λ) =
Ω(λ− i0)

Ω(λ+ i0)
= e−2iη(arccosλ), λ ∈ (−1, 1). (6.23)

In view of relation (5.23), formula (6.23) can be rewritten as the Birman-Krĕın
formula

S(λ) = e−2iπξ(λ).

6.4. Theorems 6.4 and 6.5 remain true without additional assumption (6.13). The
proof of this fact requires some tools of abstract scattering theory. We give only basic
ideas of one of its possible proofs.

The following result is a direct consequence of Theorem 3.2.

Lemma 6.6. Let an operator Q in the space `2(Z+) be defined by the equality (Qf)n =
qnfn where qn = q̄n and

∑∞
n=0 q

2
n < ∞. Under assumption (1.7) the operator-valued

function QR(z)Q defined for Im z 6= 0 is continuous in the Hilbert-Schmidt norm up
to the cut along [−1, 1] with possible exception of the points z = ±1. In particular, the
operator Q is H-smooth in the sense of Kato on every compact subinterval of (−1, 1).

Under assumption (1.7) Lemma 6.6 is true with

qn = (|an − 1/2|+ |bn|)1/2.

Note that the perturbation V = QGQ where G is a bounded operator in the space
`2(Z+). Using Theorems 5.3.4 and 5.6.1 in [29], we can now deduce from Lemma 6.6
the following assertion.

Theorem 6.7. The wave operators W±(H,H0) exist, are complete and representations
(6.21), (6.23) are true under the only assumption (1.7).

7. The Szegö function and the Case sum rules

Here we establish a link between the perturbation determinant ∆(z) and the Szegö
function D(ζ). We also show that the Case sum rules are direct consequences of this
link. Since the Jost function Ω(z) is related to ∆(z) by simple formula (5.19), we do
not discuss it here. As usual, |ζ| < 1 and 2z = ζ + ζ−1.

7.1. We define the Szegö function D(ζ) by the formula

D(ζ) = exp
( 1

4π

∫ π

−π

eiθ + ζ

eiθ − ζ
ln
(
w(cos θ)| sin θ|

)
dθ
)
, |ζ| < 1, (7.1)

where w(λ) is the weight function (2.29). This is exactly formula (10.2.10) (see also
Theorem 12.1.2) in [26], but in contrast to [26] we do not suppose that H has no
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eigenvalues. Of course definition (7.1) requires that∫ π

−π
| ln
(
w(cos θ)| sin θ|

)
|dθ <∞

or, equivalently, (1.8) be satisfied. This is known as the Szegö condition.
Recall the standard Jensen-Poisson representation of functions f(ζ) analytic in the

unit disc |ζ| < 1. If f(ζ) is continuous in the closed disc |ζ| ≤ 1 and Im f(0) = 0, then

f(ζ) =
1

2π

∫ π

−π

eiθ + ζ

eiθ − ζ
Re f(eiθ)dθ. (7.2)

In particular, we see that

ln(1 + ζ) =
1

2π

∫ π

−π

eiθ + ζ

eiθ − ζ
ln cos(θ/2)dθ,

ln(1− ζ) =
1

2π

∫ π

−π

eiθ + ζ

eiθ − ζ
ln | sin(θ/2)|dθ.

(7.3)

We here fix arg(1 + ζ) and arg(1− ζ) by the condition arg 1 = 0.

Set ∆̃(ζ) = ∆(z). It follows from Corollary 2.2 that the function ∆̃(ζ) is analytic
in the unit disc and is continuous up to the unit circle with a possible exception of

the points ±1. Moreover, according to (2.21), ∆̃(ζ) 6= 0 if |ζ| = 1 but ζ 6= ±1.

Under assumption (1.7), an information on the behavior of ∆̃(ζ) as ζ → ±1 follows

from Theorem 9.14 in [20] where it is shown that the function ∆̃(ζ) belongs to the
Nevanlinna class N and does not have a singular inner component. We refer to the

book [8], Chapter 2, for precise definitions of these notions. We also note that ∆̃(0) = 1
according to (5.2).

Let λk be eigenvalues (lying on (−∞,−1) ∪ (1,∞)) of the operator H. In contrast
to Subsection 5.5, we do not distinguish positive and negative eigenvalues in notation
and suppose that |λ1| ≥ |λ2| ≥ · · · > 1. The numbers µk ∈ (−1, 1) defined by

µk + µ−1k = 2λk are zeros of the function ∆̃(ζ). Since ∆̃ ∈ N , we have

∞∑
k=1

(1− |µk|) <∞, (7.4)

so that the Blaschke product

B(ζ) =
∞∏
k=1

µk
|µk|

µk − ζ
1− µkζ

, |ζ| < 1, (7.5)

is well defined. The function B(ζ) is continuous in the closed disc |ζ| ≤ 1 except,
possibly, the points ±1 and |B(ζ)| = 1 for |ζ| = 1. Note that the proof of the inclusion

∆̃ ∈ N in [20] relied on the condition (7.4) established under assumption (1.7) earlier
in [18].
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Let us define the outer function

G(ζ) = exp
( 1

2π

∫ π

−π

eiθ + ζ

eiθ − ζ
ln |∆̃(eiθ)|dθ

)
(7.6)

where the function ln |∆̃(eiθ)| belongs to L1(−π, π) because ∆̃ ∈ N . This is equivalent
to the Szegö condition (1.8) since, by relations (2.30) and (5.19),

|∆̃(eiθ)|2 = |∆(cos θ)|2 = A2 2

π

| sin θ|
w(cos θ)

,

whence

2 ln |∆̃(eiθ)| = − ln(w(cos θ)| sin θ|) + ln(2π−1A2 sin2 θ). (7.7)

It follows from Theorem 2.9 in [8] that the factorization

∆̃(ζ) = B(ζ)G(ζ) (7.8)

holds. Of course (7.6) is the Jensen-Poisson representation (7.2) of the function f(ζ) =

ln
(
∆̃(ζ)/B(ζ)

)
, but, since this function is not continuous in the disc |ζ| ≤ 1, its

justification relies on the properties of ∆̃ stated above.
Let us now compare definitions (7.1) and (7.6). We substitute expression (7.7) into

(7.1) and take into account formulas (7.3). Thus, using factorization (7.8), we arrive
at the following result.

Theorem 7.1. Let assumption (1.7) be satisfied, and let |ζ| < 1. Set ∆̃(ζ) = ∆(2−1(ζ+
ζ−1)) where ∆(z) is the perturbation determinant (5.1). Define the Blaschke product
B(ζ) by formula (7.5), the Szegö function D(ζ) – by (7.1), and the product A – by
(5.20). Then the identity

∆̃(ζ) = AB(ζ)
1− ζ2√
2πD(ζ)

(7.9)

is true.

We emphasize that Theorem 7.1 is a direct consequence of classical results on the
factorization of functions in the Nevanlinna class combined with the analytical results
of [20].

According to (7.9) formulas (5.7) and (7.1) provide two different representations of
an essentially the same object named the perturbation determinant ∆(z) or the Szegö
function D(ζ). In view of (5.5) the first of them is given in terms of arg ∆(λ + i0)
while according to (2.30) and (5.19) the second representation is stated in terms of
ln |∆(λ+ i0)|. Obviously, these two functions are harmonic conjugate.

It is of course possible to rewrite representation (7.1) in terms of the variable z =
2−1(ζ + ζ−1) ∈ Π. Let us also introduce the weight function w0(λ) of the operator H0;
it is given by formula (2.31). Taking into account that the function w(cos θ)| sin θ| is
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even, making the change of variables λ = cos θ and using formulas (7.3), we see that

D(ζ) =
1− ζ2√

2π
exp

(1− ζ2

2π

∫ 1

−1

ln
(
w(λ)/w0(λ)

)
1− 2ζλ+ ζ2

dλ√
1− λ2

)
(7.10)

or, equivalently,

D(ζ(z)) = ζ(z)

√
2(z2 − 1)

π
exp

(
−
√
z2 − 1

2π

∫ 1

−1

ln
(
w(λ)/w0(λ)

)
λ− z

dλ√
1− λ2

)
.

7.2. Let us, finally, obtain the Case sum rules for the pair H0, H. Putting together
(7.9) and (7.10), we see that

ln ∆̃(ζ)− lnB(ζ)− lnA =
ζ2 − 1

2π

∫ 1

−1

ln
(
w(λ)/w0(λ)

)
1− 2ζλ+ ζ2

dλ√
1− λ2

. (7.11)

Let us compare the behavior of both sides of this equation as ζ → 0. Since ∆̃(0) = 1,
setting ζ = 0 and using definition (7.5), we obtain the identity

∞∑
k=1

ln(2ak) +
∞∑
k=1

ln |µk| =
1

2π

∫ 1

−1
ln
(
w(λ)/w0(λ)

) dλ√
1− λ2

. (7.12)

This Case sum rule of zero order is of course different from the Levinson theorem (5.26).
More generally, let us consider the asymptotic expansions of both sides of (7.11) as

ζ → 0 and compare the coefficients at the same powers of ζ. According to Theorem 2.13
in [20] we have

ln ∆̃(ζ) = −2
∞∑
n=1

n−1 Tr
(
Tn(H)− Tn(H0)

)
ζn

where Tn(λ) = cos(n arccosλ) are the Chebyshev polynomials of the first kind. It
directly follows from definition (7.5) that

lnB(ζ) =
∞∑
k=1

ln |µk|+
∞∑
n=1

n−1
( ∞∑
k=1

(µnk − µ−nk )
)
ζn

where the series over k are convergent due to the condition (7.4). Finally, we use
formula (10.11.29) in [9]:

1− ζ2

1− 2ζλ+ ζ2
= 1 + 2

∞∑
n=1

Tn(λ)ζn.
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Thus the equality of the coefficients at ζn in the left- and right-hand sides of (7.11)
yields the identity

Tr
(
Tn(H)− Tn(H0)

)
= −1

2

∞∑
k=1

(µnk − µ−nk )

+
n

2π

∫ 1

−1
ln
(
w(λ)/w0(λ)

)
Tn(λ)

dλ√
1− λ2

, n = 1, 2, . . . . (7.13)

The trace identities (7.12) and (7.13) known as the Case sum rules are not new. They
were obtained by him in [5] and rigorously proven in [20]. We note that, in the paper
[20], the identities (7.12) and (7.13) were first checked for finite rank perturbations
H −H0 and then (7.12) and (7.13) (for n = 1) were used for the proof of the inclusion

∆̃ ∈ N .

7.3. The Szegö condition (1.8) implies that the weight function w(λ) does not vanish
too rapidly as λ→ −1 and λ→ 1 or, to put it differently, |Ω(λ+ i0)| does not tend to
infinity too rapidly. The example of the Pollaczek polynomials shows that condition
(1.8) may be violated without assumption (1.7).

Recall that the normalized Pollaczek polynomials are defined (see, e.g., Appendix to
[26]) by recurrent relations (1.2) with

an =
n+ 1√

(2n+ 2α + 1)(2n+ 2α + 3)
, bn = − 2β

2n+ 2α + 1
; (7.14)

here the parameters α, β ∈ R and α > |β|. It follows that

an = 2−1 − α(2n)−1 +O(n−2), bn = −βn−1 +O(n−2). (7.15)

The corresponding normalized weight function is given by the formula

w(λ) = (α + 1/2)e(2θ−π)h(θ)
(

cosh(πh(θ)
)−1

where h(θ) = (α cos θ + β)(sin θ)−1

and as usual λ = cos θ. It is easy to see that

lnw(λ) = −π(α + β)θ−1 +O(1) (7.16)

as λ→ 1− 0 and a similar formula is true as λ→ −1 + 0.
It follows from (7.15) that V = H − H0 is Hilbert-Schmidt, but the series∑
n(an− 1/2) and

∑
n bn are divergent; in particular, assumption (1.7) is not satisfied.

According to (7.16) the Szegö condition (1.8) is violated for Pollaczek polynomials.
This is consistent with the classical theorem of Szegö, Shohat, Geronimus, Krĕın and
Kolmogorov; see, e.g., Theorem 4 in [20]. On the other hand, relation (7.16) implies
that ∫ 1

−1
lnw(λ)(1− λ2)1/2dλ > −∞.

This is consistent with Theorem 1 in [20].
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7.4. For the continuous operator H = −D2 + b(x), an analogue of the Szegö con-
dition means that the corresponding weight function w(λ) (for its definition, see, e.g.,
subsection 6 of § 4.1 in [30]) does not vanish too rapidly as λ→ +0, that is,∫ 1

0

ln w(λ)λ−αdλ > −∞ (7.17)

where α = 1/2 if b ∈ L1(R+). Note however that we were unable to find this assertion
in the literature.

Condition (7.17) appears to be sufficiently sharp. Indeed, suppose that b is a non-
negative smooth function such that

b(x) = b0x
−ρ, b0 > 0, ρ ∈ (0, 2),

for large x. It is shown in [28] that for such potentials

ln w(λ) ∼ −w0λ
−(2−ρ)/(2ρ), w0 = w0(b0, ρ) > 0,

as λ → +0. In this case condition (7.17) is satisfied if and only if α < 3/2 − 1/ρ.
Observe that formula (7.16) for Pollaczek polynomials corresponds to the exponential
decay as λ→ 0 of the weight function w(λ) for Coulomb repulsive potentials.

The trace class condition for the operator H requires that ρ > 1 which yields (7.17)
for any α < 1/2. Similarly, the Hilbert-Schmidt condition for the operator H requires
that ρ > 1/2 which yields (7.17) for any α < −1/2. This is very close to the so-called
quasi-Szegö condition established in [20] for the Jacobi operator H = H0 + V with a
Hilbert-Schmidt perturbation V .

8. Example. The Jacobi polynomials

8.1. In this section we suppose that the measure dρ(λ) is absolutely continuous and
supported on the interval [−1, 1] so that

dρ(λ) = w(λ)dλ, λ ∈ (−1, 1), (8.1)

and

w(λ) = κ(1− λ)α(1 + λ)β, α, β > −1. (8.2)

The weight function w(λ) = wα,β(λ) (as well as all other objects discussed below)
depends on α and β, but these parameters are often omitted in notation. The constant

κ = κα,β =
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)
(8.3)

is chosen in such a way that the measure (8.1) is normalized, i.e., ρ(R) = ρ((−1, 1)) = 1.

The orthonormal polynomials Pn(λ) = P
(α,β)
n (λ) constructed by the measure (8.1), (8.2)

are known as the Jacobi polynomials.
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Usually the Jacobi polynomials Pn(λ) = P
(α,β)
n (λ) are normalized (see, e.g., the books

[9, 26]) by the condition

Pn(1) =
Γ(α + 1 + n)

Γ(α + 1)Γ(n+ 1)
. (8.4)

According to formulas (10.8.4) and (10.8.5) in the book [9] we have∫ 1

−1
|Pn(λ)|2(1− λ)α(1 + λ)βdλ

=
2α+β+1Γ(α + 1 + n)Γ(β + 1 + n)

n!(2n+ α + β + 1)Γ(α + β + n+ 1)
=: hn (8.5)

and

Pn(z) = kn
(
zn +

n(α− β)

2n+ α + β
zn−1 + · · ·

)
where

kn =
Γ(α + β + 2n+ 1)

2nn!Γ(α + β + n+ 1)
. (8.6)

For α + β ≤ −1 and n = 0, we have to set

h0 = 2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
= κ−1 and k0 = 1. (8.7)

It follows from equalities (8.2) and (8.5) that

Pn(z) = (κhn)−1/2Pn(z).

Let H be the Jacobi operator corresponding to the measure (8.1), (8.2). Its coeffi-
cients are given by formulas (1.4) which yields

a2n =
k2n
k2n+1

hn+1

hn
=

4(n+ 1)(n+ α + 1)(n+ β + 1)

(2n+ α + β + 3)(2n+ α + β + 2)2
n+ α + β + 1

2n+ α + β + 1
(8.8)

(if n = 0 and α + β = −1 the last factor here should be replaced by 1) and

bn = (α− β)
( n

2n+ α + β
− n+ 1

2n+ 2 + α + β

)
(8.9)

(if n = 0 and α+β = 0 this formula should be replaced by b0 = (β−α)/2). Obviously,
for a symmetric weight function (8.2) when α = β, we have bn = 0. In the general
case, we have the asymptotic formulas

an = 1/2+2−4(1−2α2−2β2)n−2 +O
(
n−3
)
, bn = 2−2(β2−α2)n−2 +O

(
n−3
)
. (8.10)

Assumption (1.7) is of course true in this case, and the sequence (2.12) satisfies the
condition ρn = O(n−1) as n → ∞. Note that the coefficients at n−2 in (8.10) are not
zeros unless |α| = |β| = 1/2.
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Next, we calculate the product (5.20). It follows from (8.8) that

A(n) :=
n−1∏
k=0

(2ak) =
k0√
h0

√
hn
kn

2n.

Let us find the limit of the right-hand side as n → ∞. According to formula (1.18.4)
in the book [9], for all p ∈ R we have

Γ(n+ p) = np Γ(n)(1 +O(n−1)). (8.11)

Therefore the sequence hn defined by (8.5) satisfies

hn = 2α+βn−1 +O(n−2). (8.12)

Let us use additionally (see formula (1.3.11) in [9]) that

Γ(2n+ α + β + 1) = π−1/222n+α+βΓ(n+ (α + β + 1)/2)Γ(n+ (α + β + 2)/2).

So, we see that the sequence kn defined by (8.6) satisfies kn = 2α+β2n(πn)−1/2(1 +
O(n−1)). It follows that

lim
n→∞

2n
√
hn
kn

=
√
π2−(α+β)/2.

Taking also into account formulas (8.7), we finally find that

A = lim
n→∞

A(n) =
√
πκ 2−(α+β)/2 (8.13)

where κ is defined by (8.3).

8.2. Let us calculate the Szegö function defined by (7.1) for the measure (8.1), (8.2).
Now we have

w(cos θ)|sinθ| = κ 2α+β+1| sin(θ/2)|2α+1(cos(θ/2))2β+1.

Substituting this expression into (7.1) and using relations (7.3), we find that

D(ζ) =
√
κ2−(α+β+1)/2(1− ζ)α+1/2(1 + ζ)β+1/2. (8.14)

In particular, for the operator H0 when α = β = 1/2, we have D0(ζ) = (2π)−1/2(1−ζ2).
Setting in (8.14) ζ = 0 and taking into account that, by (7.9),

√
2πD(0) = A, we recover

expression (8.13).
Now the perturbation determinant (5.1) for the pair H0, H can be found from

formulas (7.9) where B(ζ) = 1 and (8.13), (8.14). Let us state the results obtained.

Theorem 8.1. Let H be the Jacobi operator with the coefficients (8.8), (8.9) or, equiv-
alently, corresponding to the spectral measure (8.1), (8.2). Then the Szegö function
D(ζ) and the perturbation determinant ∆(z) are given by formulas (8.14) and

∆(z) = (1− ζ(z))−α+1/2(1 + ζ(z))−β+1/2. (8.15)
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Recall that the Jost function Ω(z) is related to ∆(z) by formula (5.19). So it follows
from Theorem 3.5 that

lim
n→∞

ζ(z)nPn(z) = κ−1/2π−1/22(α+β)/2(1− ζ(z))−α−1/2(1 + ζ(z))−β−1/2, z ∈ Π.

Thus we recover the well known asymptotic formula (see, for example, formula (8.21.9)
in the book [26]) for the Jacobi polynomials.

Let us now calculate Ω(λ + i0) for λ ∈ (−1, 1); as usual, we set λ = cos θ where
θ ∈ (0, π). Then ζ = ζ(λ+ i0) = e−iθ belongs to the lower half-circle. It is easy to see
that

1− ζ = 1− cos θ + i sin θ = 2 sin(θ/2)ei(π−θ)/2 =
√

2(1− λ)ei(π−θ)/2

and

1 + ζ = 1 + cos θ − i sin θ = 2 cos(θ/2)e−iθ/2 =
√

2(1 + λ)e−iθ/2.

Substituting these expressions into formula (8.15) we obtain the following result.

Theorem 8.2. Under the assumptions of Theorem 8.1, the perturbation determinant
is given on the cut along [−1, 1] by the formula

∆(λ+ i0) = 2(1−α−β)/2(1− λ)(1−2α)/4(1 + λ)(1−2β)/4eiπξ(λ), λ ∈ (−1, 1), (8.16)

where the spectral shift function

ξ(λ) = (2π)−1(α + β − 1) arccosλ− 4−1(2α− 1). (8.17)

Using (5.19), (8.13) and substituting expression (8.16) for |∆(λ + i0)| into formula
(2.30), we recover relations (8.2), (8.3) for w(λ). In view of definition (2.22), Theo-
rem 8.2 yields expressions for the limit amplitude and the limit phase. Thus, formula
(2.23) means that

Pn(λ) = 21/2(πκ)−1/2(1− λ)−(1+2α)/4(1 + λ)−(1+2β)/4

× sin
(
(n+

α + β + 1

2
) arccosλ− 2α− 1

4
π
)

+O(n−1)

where κ is given by (8.3). This coincides of course with asymptotics (8.21.10) of the
Jacobi polynomials in the book [26].

Substituting expressions (8.15) for the perturbation determinant and (8.17) for the
spectral shift function into formula (5.7) we obtain a curious identity∫ 1

−1

arccosλ

λ− z
dλ = −2π ln(1 + ζ(z)).

The asymptotics of Jacobi polynomials at the edge points z = ±1 is different from
general results (4.7) and (4.9) of Section 4 because in view of formulas (8.9) and (8.10)
the condition (4.1) is not satisfied unless |α| = |β| = 1/2. Indeed, putting together
formulas (8.4), (8.11) and (8.12), we see that

Pn(1) = κ−1/2Γ(α + 1)−12−(α+β)/2nα+1/2
(
1 +O(n−1)

)
(8.18)
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where κ is defined by (8.3). This is consistent with asymptotics (4.7) if α = 1/2 and
with asymptotics (4.9) if α = −1/2. The results for Pn(−1) are quite similar.

8.3. Let us now discuss stationary representations for the wave operators W±(H,H0)
and the corresponding scattering matrix S(λ). Recall that the operator F was defined
by equations (6.5) and (6.6). Using formulas (6.15) and (6.23), we can state the
following result.

Theorem 8.3. Under the assumptions of Theorem 8.1, the wave operator W±(H,H0)
is given by the equality (6.21) where Σ± is the operator of multiplication by the function

σ±(λ) = e±i((α+β−1) arccosλ−π(α−1/2))/2.

The scattering matrix satisfies the equation

S(λ) = eiπ(α−1/2)e−i(α+β−1) arccosλ.

In view of asymptotics (8.10) the condition (4.1) is not satisfied (unless |α| = |β| =
1/2), and hence the results of Subsections 4.1 and 4.2, as well as Theorem 5.10, are
not applicable. Nevertheless representation (8.15) allows us to find the singularity of
the perturbation determinant ∆(z) as z → ±1. If z → 1, then

∆(z) = 2−β+1/2(1− ζ(z))−α+1/2
(
1 +O(|ζ(z)− 1|)

)
.

If z → −1, we have

∆(z) = 2−α+1/2(1 + ζ(z))−β+1/2
(
1 +O(|ζ(z) + 1|)

)
.

It follows from (8.17) that the limits of ξ(λ) as λ→ −1 + 0 and as λ→ 1− 0 exist and

ξ(−1 + 0) = (1− 2β)/4, ξ(1− 0) = (1− 2α)/4.

Recall that ξ(λ) = 0 for |λ| > 1. Thus, the spectral shift function is continuous at the
point −1 (at the point 1) if and only if β = 1/2 (α = 1/2). We are not aware of the
results of this type for the differential operator Da(x)D + b(x) in the space L2(R+).

Let us, finally, discuss the exceptional case |α| = |β| = 1/2:
10 If α = β = 1/2, then an = 1/2, bn = 0 for all n ∈ Z+, and hence H = H0.
20 If α = β = −1/2, then a0 = 1/

√
2, an = 1/2 for all n ≥ 1, bn = 0 for all

n ∈ Z+ and the perturbation V has rank 2. In this case, ∆(z) = 1− ζ(z)2 so that the
corresponding Jacobi operator has resonances at both points z = 1 and z = −1.

30 If α = −β = ±1/2, then an = 1/2 for all n ∈ Z+, b0 = ∓1, bn = 0 for all
n ≥ 1 and the perturbation V has rank 1. In this case, ∆(z) = 1 ± ζ(z) so that the
corresponding Jacobi operator has a resonance at the point z = ∓1.

Observe that in cases 10 and 20, Pn(λ) are the normalized Chebyshev polynomials
of the second and first kind, respectively.

8.4. Note that very detailed results on the asymptotics of the orthogonal polynomials
were obtained in [21] for the weight function

w̃(λ) = (1− λ)α(1 + λ)βh(λ);
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here h(λ) is an arbitrary real analytic function such that h(λ) > 0 for λ ∈ [−1, 1].
On the contrary, it was shown in [23] that, for the weight function w̃(λ)χc(λ) where
χc(λ) = 1 for λ ∈ [−1, 0) and χc(λ) = c 6= 1, c > 0, for λ ∈ (0, 1], the classical
asymptotics (1.9) of the orthogonal polynomials is significantly changed. For such
weight functions, an − 1/2 = O(n−1) and bn = O(n−1) so that condition (1.7) is not
satisfied.

Both papers [21] and [23] rely on the approach of [14, 7].

Appendix A. Discrete Volterra equations

A.1. Here we prove Theorems 2.1 and 2.3. We follow rather closely the scheme
exposed for the Schrödinger equation in a detailed way in Section 4.1 of [30]. Note
however that the operator H is obtained by a second order perturbation of the operator
H0. This circumstance should be taken into account.

Let us reduce equation (2.2) to a discrete Volterra integral equation.

Lemma A.1. Let assumption (1.7) be satisfied, and let z ∈ clos Π, z 6= ±1. Suppose
that f(z) = {fn(z)} ∈ `∞(Z+) and define V by formula (2.10). Then a solution of the
equation (2.11) satisfies also equation (2.2).

Proof. Under assumption (1.7), the sequence φ(z) := V f(z) ∈ `1(Z+). Put

Σ(+)
n (z) =

∞∑
m=n+1

ζ(z)mφm(z), Σ(−)
n (z) =

∞∑
m=n+1

ζ(z)−mφm(z).

Then equation (2.11) can be written as

fn = ζn − ζn√
z2 − 1

Σ(−)
n +

ζ−n√
z2 − 1

Σ(+)
n ,

whence

fn−1 = ζn−1 − ζn−1√
z2 − 1

Σ(−)
n +

ζ−n+1

√
z2 − 1

Σ(+)
n +

ζ − ζ−1√
z2 − 1

φn,

fn+1 = ζn+1 − ζn+1

√
z2 − 1

Σ(−)
n +

ζ−n−1√
z2 − 1

Σ(+)
n .

It follows that

2
√
z2 − 1((H0 − z)f)n =

√
z2 − 1

(
fn−1 + fn+1 − 2zfn

)
= (ζ − ζ−1)φn

+ (ζ−n+1 + ζ−n−1)Σ(+)
n − (ζn+1 + ζn−1)Σ(−)

n − 2z(ζ−nΣ(+)
n − ζnΣ(−)

n ). (A.1)

The sums of the terms containing Σ
(+)
n and Σ

(−)
n equal zero because ζ + ζ−1 = 2z.

Since ζ − ζ−1 = −2
√
z2 − 1, equality (A.1) yields the desired equation ((H0− z)f)n =

−(V f)n. �
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Next, we study equation (2.11). Let us distinguish the term corresponding to m =
n+ 1 in its right-hand side. Then equation (2.11) reads as

2anfn(z) = ζ(z)n − 2bn+1fn+1(z) + (1− 2an+1)fn+2(z)

− 1√
z2 − 1

∞∑
m=n+2

(ζ(z)n−m − ζ(z)m−n)(V f(z))m.

It is convenient to rewrite this equation in terms of the sequence

gn(z) = 2anζ(z)−nfn(z) (A.2)

as

gn(z) = 1 +
∞∑

m=n+1

Gn,m(z)gm(z) (A.3)

where

2am
√
z2 − 1Gn,m(z) = (ζ(z)2m−2n − 1)bm

+ (ζ(z)2m−2n−1 − ζ(z))(am−1 − 1/2) + (ζ(z)2m−2n+1 − ζ(z)−1)(am − 1/2). (A.4)

It is important that

|Gn,m(z)| ≤ Cαm (A.5)

where

αm = |am−1 − 1/2|+ |am − 1/2|+ |bm|
and the constant C = C(z) does not depend on n, m and on z in compact subsets of
clos Π away from the points ±1.

Let us solve equation (A.3) by iterations. Put g
(0)
n = 1 for all n ∈ Z+ and

g(k+1)
n (z) =

∞∑
m=n+1

Gn,m(z)g(k)m (z), k ≥ 0. (A.6)

Lemma A.2. The estimates

|g(k)n (z)| ≤ Ck

k!

( ∞∑
m=n+1

αm
)k
, ∀n ∈ Z+, (A.7)

are true for all k ∈ Z+.

Proof. Suppose that (A.7) is satisfied for some k ∈ Z+. We have to check that the

same estimate (with k replaced by k + 1 in the right-hand side) holds for g
(k+1)
n (z). It

follows from (A.5) and (A.7) that

|g(k+1)
n (z)| ≤ Ck+1

k!

∞∑
m=n+1

αm
( ∞∑
p=m+1

αp
)k
. (A.8)
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Observe that

(k + 1)αm
( ∞∑
p=m+1

αp
)k

+
( ∞∑
p=m+1

αp
)k+1 ≤

( ∞∑
p=m

αp
)k+1

,

and hence, for all N ∈ Z+,

(k + 1)
N∑

m=n+1

αm
( ∞∑
p=m+1

αp
)k

≤
N∑

m=n+1

(( ∞∑
p=m

αp
)k+1 −

( ∞∑
p=m+1

αp
)k+1

)
≤
( ∞∑
p=n+1

αp
)k+1

.

Substituting this estimate into (A.8), we obtain (A.7) for g
(k+1)
n (z). �

It is now easy to conclude the proof of Theorem 2.1. Set

gn(z) =
∞∑
k=0

g(k)n (z).

Estimate (A.7) shows that this series converges and, by the recurrent definition (A.6),
the functions gn(z) satisfy equation (A.3) equivalent to (2.11). Since every function

g
(k)
n (z) is analytic in z ∈ Π and is continuous up to the cut [−1, 1] (away from the

points ±1), estimate (A.7) guarantees that gn(z) and hence fn(z) possess the same
properties.

It also follows from (A.3) and (A.5) that

|gn(z)− 1| ≤ C
∞∑

m=n+1

αm

which in view of (A.2) implies (2.13). �
As far as Theorem 2.3 is concerned, we note that all functions g

(k)
n (z) are continuous

with respect to the cut-off parameter N →∞, and therefore estimates obtained in the
proof of Theorem 2.1 imply relation (2.16).

A.2. Next, we discuss Theorem 3.1. The first assertion is quite similar to
Lemma A.1, and so its proof will be omitted.

Lemma A.3. Let P (z) = {Pn(z)}∞n=−1 where P−1(z) = 0, P0(z) = 1 satisfy equations
(3.2). Then Pn(z) satisfy also equations (1.2); in particular, Pn(z) is a polynomial of
degree n.

We proceed from equation (3.2) and, following the scheme of the previous subsection,
distinguish the term corresponding to m = n−1 in the sum (3.2). Then equation (3.2)



42 D. R. YAFAEV

reads as

2an−1Pn(z) = P (0)
n (z)− 2αn−2Pn−2(z)− 2bn−1Pn−1(z)

+
1√

z2 − 1

n−2∑
m=0

(ζ(z)n−m − ζ(z)m−n)(V P (z))m, n ≥ 2.

It is convenient to rewrite this equation in terms of the sequence

Qn(z) = 2an−1ζ(z)nPn(z)

as

Qn(z) = Q(0)
n (z)−

n−1∑
m=0

Gn,m(z)Qm(z). (A.9)

Here Q
(0)
n (z) = ζ(z)nP

(0)
n (z) are bounded uniformly in n in view of (2.8). The matrix

elements Gn,m(z) are quite similar to Gn,m(z) defined by (A.4). It is only important
that Gn,m(z) satisfy estimate (A.5).

We again solve equation (A.9) by iterations. Put Q
(k)
0 = 0 for k ≥ 1 and

Q(k+1)
n (z) =

n−1∑
m=0

Gn,m(z)Q(k)
m (z), k ≥ 0, n ≥ 1. (A.10)

Lemma A.4. The estimates

|Q(k)
n (z)| ≤ Ck

k!

( n−1∑
m=0

αm
)k
, ∀n ≥ 1, (A.11)

are true for all k ∈ Z+.

Proof. Suppose that (A.11) is satisfied for some k ∈ Z+. We have to check that the

same estimate (with k replaced by k+ 1 in the right-hand side) holds for Q
(k+1)
n (z). It

follows from (A.10), (A.11) that

|Q(k+1)
n (z)| ≤ Ck+1

k!

n−1∑
m=0

αm
(m−1∑
p=0

αp
)k
. (A.12)

Observe that

(k + 1)αm
(m−1∑
p=0

αp
)k

+
(m−1∑
p=0

αp
)k+1 ≤

( m∑
p=0

αp
)k+1

,

and hence

(k + 1)
n−1∑
m=0

αm
(m−1∑
p=0

αp
)k ≤ n−1∑

m=0

(( m∑
p=0

αp
)k+1 −

(m−1∑
p=0

αp
)k+1

)
≤
( n−1∑
p=0

αp
)k+1

.

Substituting this estimate into (A.12), we obtain (A.11) for k + 1. �
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Let us now set

Qn(z) =
∞∑
k=0

Q(k)
n (z).

Estimate (A.11) shows that this series converges and

Qn(z) ≤
∞∑
k=0

Ck

k!

( n−1∑
m=0

αm
)k

= exp
(
C

n−1∑
m=0

αm
)
.

By the recurrent definition (A.10), the functionsQn(z) satisfy equation (A.9) equivalent
to (3.2). This proves estimate (3.1). �

A.3. The proof of Theorem 4.1 can be obtained similarly to that of Theorem 2.1 if
one observes that∣∣∣ ζ2k − 1√

z2 − 1

∣∣∣ = 2
∣∣∣ζ ζ2k − 1

ζ2 − 1

∣∣∣ = 2|ζ||ζ2(k−1) + ζ2(k−2) + · · ·+ ζ2 + 1| ≤ 2k. (A.13)

Thus instead of (A.5), we now have a bound

|Gn,m(z)| ≤ C(m+ 1)αm (A.14)

with a constant C not depending on ζ in the unit disc. Under assumption (4.1) this
bound allows us to repeat the arguments of Theorem 2.1.

The proof of Theorem 4.2 follows the scheme of proof of Theorem 3.1, but now we
again have to use estimate (A.13). This estimate implies that the kernels Gn,m(z) in
(A.9) obey bound (A.14).

References

[1] N. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and
Boyd, Edinburgh and London, 1965.

[2] Yu. M. Berezanskii, Expansion in eigenfunctions of selfadjoint operators, Amer. Math. Soc.,
Providence, R.I., 1968.
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