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We study semi-infinite Jacobi matrices H = H 0 + V corresponding to trace class perturbations V of the "free" discrete Schrödinger operator H 0 . Our goal is to construct various spectral quantities of the operator H, such as the weight function, eigenfunctions of its continuous spectrum, the wave operators for the pair H 0 , H, the scattering matrix, the spectral shift function, etc. This allows us to find the asymptotic behavior of the orthonormal polynomials P n (z) associated to the Jacobi matrix H as n → ∞. In particular, we consider the case of z inside the spectrum [-1, 1] of H 0 when this asymptotics has an oscillating character of the Bernstein-Szegö type and the case of z at the end points ±1.

1. Introduction 1.1. The theory of the Schrödinger operator D 2 + b(x), D = -id/dx, with a shortrange potential b(x) is to a large extent due to L. D. Faddeev. We note, in particular, his classical papers [START_REF] Faddeev | Properties of the S-matrix of the one-dimensional Schrödinger equation[END_REF][START_REF] Faddeev | Inverse problem of quantum scattering theory[END_REF] on the direct and inverse quantum scattering problems (both in the one-and multi-dimensional cases) and [START_REF] Faddeev | An expression for the trace of the difference between two singular differential operators of Sturm-Liouville type[END_REF] on the trace formulas for the operator D 2 + b(x). Later, the paper [START_REF] Faddeev | An expression for the trace of the difference between two singular differential operators of Sturm-Liouville type[END_REF] was significantly generalized by him jointly with V. S. Buslaev in [START_REF] Buslaev | Formulas for traces for a singular Sturm-Liouville differential operator[END_REF]. Some of these results were exposed in the book [START_REF] Faddeev | Hamiltonian methods in the theory of solitons[END_REF] by L. D. Faddeev and L. A. Takhtajan.

As is well known, the theories of Jacobi operators given by three-diagonal matrices and of differential operators Da(x)D + b(x) are to a large extent similar. This is true for Jacobi operators acting in the space 2 (Z) and differential operators acting in the space L 2 (R) as well as for the corresponding operators acting in the spaces 2 (Z + ) and L 2 (R + ), respectively. We refer to the book [START_REF] Teschl | Jacobi operators and completely integrable nonlinear lattices[END_REF] where this analogy is described in a sufficiently detailed way. Both classes of the operators are very important in physical applications. Moreover, Jacobi operators in the space 2 (Z + ) are intimately related (see, e.g., the classical book [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF]) to the theory of orthogonal polynomials. Necessary information on orthogonal polynomials can be found in the other classical book [START_REF] Szegö | Orthogonal polynomials[END_REF]; the theory of Jacobi operators is carefully presented in the books [START_REF] Akhiezer | The classical moment problem and some related questions in analysis[END_REF][START_REF] Yu | Expansion in eigenfunctions of selfadjoint operators[END_REF].

Our goal is to develop the spectral and scattering theory for Jacobi operators in the space 2 (Z + ) using basically the same approach as for the differential operator Da(x)D + b(x) in the space L 2 (R + ). This leads to new results for orthogonal polynomials.

1.2. Jacobi operators are defined in the space 2 (Z + ) by matrices

H =       b 0 a 0 0 0 0 • • • a 0 b 1 a 1 0 0 • • • 0 a 1 b 2 a 2 0 • • • 0 0 a 2 b 3 a 3 • • • . . . . . . . . . . . . . . . . . .       . (1.1)
The entries a n here are arbitrary positive numbers, and b n are arbitrary real numbers. We denote by e n , n ∈ Z + , the canonical basis in 2 (Z + ), that is, all components of the vector e n are zeros, except the n-th component which equals 1. If the sequences {a n } and {b n } are bounded, then the Jacobi operator H is bounded in 2 (Z + ). Let us denote by dE(λ) the spectral family of the self-adjoint operator H and define the corresponding spectral measure dρ(λ) = d(E(λ)e 0 , e 0 ). Given matrix (1.1), one constructs polynomials P n (z) by the recurrent relation a n-1 P n-1 (z) + b n P n (z) + a n P n+1 (z) = zP n (z), n ∈ Z + ,

and the boundary conditions P -1 (z) = 0, P 0 (z) = 1. Then P n (z) is a polynomial of degree n, that is,

P n (z) = k n (z n + r n z n-1 + • • • ). (1.3) 
Comparing the coefficients at z n+1 and z n in the left-and right-hand sides of (1.2), we see that k n = (a 0 a 1 • • • a n-1 ) -1 > 0 and

a n = k n k n+1 , b n = r n -r n+1 . (1.4) 
Obviously, P (z) = {P n (z)} ∞ n=0 satisfies the equation HP (z) = zP (z), that is, it is an "eigenvector" of the operator H.

Putting together (1.1) and (1.2), we find that as usual, δ n,n = 1 and δ n,m = 0 for n = m. Thus, the polynomials P n (λ) are orthogonal and normalized in the space L 2 (R; dρ). Formula (1.5) also shows that the set of all vectors H n e 0 , n ∈ Z + , is dense in the space 2 (Z + ), and hence the spectrum of the Jacobi operator H is simple with the generating vector e 0 . Alternatively, {P 0 (λ), P 1 (λ), . . . , P n (λ), . . .} can be obtained by the Gram-Schmidt orthogonalization of the monomials {1, λ, . . . , λ n , . . .} in the space L 2 (R + ; dρ); one also has to additionally require that k n > 0 in (1.3). This fact is known as the Favard theorem. In contract to the continuous case (see the paper [START_REF] Gel'fand | On the determination of a differential equation from its spectral function[END_REF] where an integral equation was used), the inverse problem of reconstructing the Jacobi operator H given its spectral measure dρ(λ) admits a quite explicit solution. Indeed, let a measure dρ(λ) have a bounded and infinite support, and let P n (z) be the corresponding polynomials satisfying (1.3) and (1.6). Then the coefficients of the operator H can be recovered by formulas (1.4).

1.3. In the particular case a n = 1/2 and b n = 0, the operator (1.1) is denoted H 0 . It plays the role of the "free" differential operator D 2 in the space L 2 (R + ) with the boundary condition u(0) = 0. The operator H 0 can be diagonalized explicitly.

In this paper, we suppose that the perturbation V = H -H 0 satisfies a "short-range" assumption

∞ n=0 (|a n -1/2| + |b n |) < ∞. (1.7) 
Then V belongs to the trace class S 1 , and its trace norm is equivalent to the sum (1.7). Under assumption (1.7) the spectrum σ(H) of the operator H is absolutely continuous on the interval (-1, 1), but the operator H may have discrete spectrum σ d (H) (possibly, infinite) in R \ [-1, 1]; moreover, the points +1 or -1 may be its eigenvalues.

We construct various spectral quantities of the operator H, such as the weight function w(λ) defined by the equation dρ(λ) = w(λ)dλ for λ ∈ (-1, 1), eigenfunctions of its continuous spectrum, the perturbation determinant ∆(z) and the wave operators W ± (H, H 0 ) for the pair H 0 , H, the scattering matrix S(λ), the spectral shift function ξ(λ), etc. Under assumption (1.7) the functions w(λ), S(λ) and ξ(λ) are continuous in λ ∈ (-1, 1). Moreover, w(λ) = 0 and, as shown in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF], the so-called Szegö condition

1 -1 ln w(λ)(1 -λ 2 ) -1/2 dλ > -∞ (1.8)
is satisfied. Spectral results on Jacobi operators lead to the corresponding assertions for the polynomials P n (z) defined by (1.2). For example, we show (see Theorem 2.5) that, for λ ∈ (-1, 1), P n (λ) = 2 π w(λ) -1/2 (1 -λ 2 ) -1/4 sin((n + 1) arccos λ + πξ(λ)) + o(1) (1.9)

as n → ∞. This asymptotic relation is the classical result of S. Bernstein [START_REF] Bernstein | Sur les polynômes orthogonaux relatifs à un segment fini[END_REF] (see also formula (12.1.8) in the G. Szegö book [START_REF] Szegö | Orthogonal polynomials[END_REF]). It is required in [START_REF] Bernstein | Sur les polynômes orthogonaux relatifs à un segment fini[END_REF][START_REF] Szegö | Orthogonal polynomials[END_REF] that supp ρ ⊂ [-1, 1] and Lipschitz-Dini conditions are imposed on the weight function w(λ). Under assumption (1.7) formula (1.9) is probably new. In particular, we do no assume that supp ρ ⊂ [-1 , 1]. Note that the spectral shift function ξ(λ) in formula (1.9) is usually replaced in the theory of orthogonal polynomials by the so-called Szego function.

As shows the example of Pollaczek polynomials (see formula (7.14), below), assumption (1.7) cannot be significantly relaxed. For Pollaczek polynomials, a n -1/2 and b n have order n -1 as n → ∞, and the phase in formula (1.9) is essentially changed (see Section 5 in the Appendix to [START_REF] Szegö | Orthogonal polynomials[END_REF]). This resembles the modification of the phase function for the Schrödinger operator with the Coulomb potential (see, e.g., formula (36,23) in the book [START_REF] Landau | Quantum mechanics[END_REF]).

As shown in the paper [START_REF] Buslaev | Formulas for traces for a singular Sturm-Liouville differential operator[END_REF] by V. S. Buslaev and L. D. Faddeev (see Section 4.6 in [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF], for a detailed presentation), the expansion as |z| → ∞ of the perturbation determinant ∆(z) for a pair H 0 , H of Schrödinger operators contains both integer and half-integer powers of z -1 . This leads to two series of trace identities: of integer and of half-integer orders. The first of them is stated in terms of integer powers of eigenvalues and moments of the spectral shift function. The second series is stated in terms of half-integer powers of eigenvalues and moments of the modulus of the perturbation determinant. For Jacobi operators H 0 , H, the expansion of the perturbation determinant ∆(z) as |z| → ∞ contains integer powers of z -1 only. So there are no identities of half-integer orders. On the other hand, there is a version of trace identities of integer order (known as Case sum rules) stated in terms of the weight function, that is, of the modulus of the perturbation determinant. We note that the Case sum rules involve Chebyshev polynomials of the operators H 0 and H while the identities in spirit of [START_REF] Buslaev | Formulas for traces for a singular Sturm-Liouville differential operator[END_REF] yield expressions for the traces Tr(H n -H n 0 ). This paper contains relatively few new results. However, we hope that a consistent analogy between Jacobi and differential operators might shed a new light on some aspects of the theory of orthogonal polynomials. A similar point of view was adopted in the paper [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF] devoted to Hilbert-Schmidt perturbations V of the operator H 0 .

Note that, in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF], necessary and sufficient conditions in terms of spectral data of H were found for V to be in the Hilbert-Schmidt class. The problem of characterization of spectral data was also solved in [START_REF] Ryckman | A strong Szegö theorem for Jacobi matrices[END_REF] for perturbations V in the class (it is known now as the Ryckman class) relatively close to the trace class S 1 . It looks tempting to obtain exhaustive results of such type for V ∈ S 1 .

1.4. The paper is organized as follows. In Section 2, we consider equation (1.2) and, in addition to its polynomial solutions P n (z), we introduce so-called Jost solutions f n (z) of this equation. The Jost function Ω(z) basically coincides with f -1 (z). The solutions f n (z) exponentially decay as n → ∞ for z ∈ σ(H 0 ) = [-1, 1] and oscillate for z = λ ± i0 where λ ∈ (-1, 1). Then a link between f n (λ ± i0) and P n (λ) leads to asymptotic formulas for polynomials P n (λ). Thus, we obtain formula (1.9) (with the argument of Ω(λ ± i0) playing the role of ξ(λ)); see Theorem 2.5. Polynomial solutions P n (z) and their asymptotics as n → ∞ for z ∈ [-1, 1] are studied in Section 3. Our proofs of the existence of f n (z) and uniform bounds on P n (z) rely on discrete "Volterra integral" equations that are studied in the Appendix.

Section 4 is devoted to an investigation of the Jost solutions f n (z) and the polynomials P n (z) as z → ±1. This corresponds to the low energy scattering for the Schrödinger equation. In particular, we exhibit here examples of Jacobi operators with eigenvalues at the points 1 or -1.

In Section 5, we construct the perturbation determinant ∆(z) and the spectral shift function for the pair H 0 , H and derive formulas for the traces Tr(H n -H n 0 ). We also show in Theorem 5.6 that the Jost function Ω(z) differs from ∆(z) by a numerical factor only. Scattering theory for the pair H 0 , H is developed in Section 6.

A link of the Szegö function with the perturbation determinant (or the Jost function) is established in Section 7. We here also show (again on the example of Pollaczek polynomials) that the weight function w(λ) may tend to zero exponentially if assumption (1.7) is slightly relaxed. Therefore the Szegö condition (1.8) is sharp for trace class perturbations. In Section 8, the results of the preceding sections are illustrated on the example of the Jacobi polynomials when a n -1/2 and b n have order n -2 as n → ∞ Some parts of this paper have non-trivial intersections with Section 2 of the paper [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF] where, however, specific features of the Jacobi operators were extensively used. The analogy with the continuous case exploited in the present paper allows us to obtain some results for free.

The modern approach based on a Riemann-Hilbert problem for matrix valued functions of [START_REF] Fokas | The isomonodromy approach to matrix models in 2D quantum gravity[END_REF] combined with the steepest descent method of [START_REF] Deift | A steepest descent method for oscillatory Riemann-Hilbert problem[END_REF] is out of the scope of the present paper.

Jost solutions of the Jacobi equations and Bernstein-Szegö asymptotics

2.1. In the canonical basis e n , n ∈ Z + , the Jacobi operator H is defined by the formula

He n = a n-1 e n-1 + b n e n + a n e n+1 , n ∈ Z + , (2.1) 
where we accept that e -1 = 0. Relations (1.1) and (2.1) are of course equivalent. The sequences a n > 0 and b n = bn where n = 0, 1, . . . are assumed to be bounded, so that H is a bounded self-adjoint operator in the space 2 (Z + ). Consider now the equation Hu = zu, that is

a n-1 u n-1 + b n u n + a n u n+1 = zu n , n ∈ Z + , (2.2) 
for a sequence u = {u n } ∞ n=-1 . The number a -1 = 0 can be chosen at our convenience; for definiteness, we put a -1 = 1/2. Obviously, the values of u k-1 and u k for some k ∈ Z + determine the whole sequence u n satisfying equation (2.2).

Let f = {f n } ∞ n=-1 and g = {g n } ∞ n=-1 be two solutions of equation (2.2). A direct calculation shows that their Wronskian {f, g} := a n (f n g n+1 -f n+1 g n ) (2.3)
does not depend on n = -1, 0, 1, . . .. In particular, for n = -1 and n = 0, we have

{f, g} = 2 -1 (f -1 g 0 -f 0 g -1 )
and {f, g} = a 0 (f 0 g 1 -f 1 g 0 ).

(2.4)

Calculating the Wronskian (2.3) for n → ∞, we see that equation (2.2) may have at most one (up to a multiplicative constant) solution u n such that u n → 0 as n → ∞.

In the case a n = 1/2, b n = 0, the operator (2.1) is known as the free discrete Schrödinger operator; it will be denoted H 0 . The spectrum of the operator H 0 is simple, absolutely continuous and coincides with the interval [-1, 1]. The corresponding spectral measure dρ 0 (λ) = d(E 0 (λ)e 0 , e 0 ) is given by the formula

dρ 0 (λ) = 2π -1 √ 1 -λ 2 dλ, λ ∈ (-1, 1).
Below we fix the branch of the analytic function

√ z 2 -1 of z ∈ C \ [-1, 1] =: Π by the condition √ z 2 -1 > 0 for z > 1.
Obviously, this function is continuous on the closure clos Π of Π, it equals ±i √ 1 -λ 2 for z = λ ± i0, λ ∈ (-1, 1), and

√ z 2 -1 < 0 for z < -1. Put ζ(z) = z - √ z 2 -1 = (z + √ z 2 -1) -1 ; (2.5) then |ζ(z)| < 1 for z ∈ Π. Since 2z = ζ(z) + ζ(z) -1 , (2.6) 
the sequence {ζ(z) n } ∞ n=-1 satisfies the "free" equation (2.2):

ζ(z) n-1 + ζ(z) n+1 = 2zζ(z) n . For λ ∈ [-1, 1], it is common to set λ = cos θ where θ ∈ [0, π]. Then ζ(λ ± i0) = e ∓iθ .
(2.7)

It is well known (see, e.g., [START_REF] Yafaev | A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials[END_REF] for a detailed proof) that the matrix elements of the resolvent R 0 (z) = (H 0 -zI) -1 (here and below I is the identity operator) of the operator H 0 are given by the formula

(R 0 (z)e n , e m ) = ζ(z) n+m+2 -ζ(z) |n-m| √ z 2 -1 for z ∈ Π
and all n, m ∈ Z + . In particular, (R 0 (z)e 0 , e 0 ) = -2ζ(z). The polynomials P 

P (0) n (z) = 1 2 √ z 2 -1 ζ(z) -n-1 -ζ(z) n+1 (2.8)
and, in particular,

P (0) n (λ) = sin((n + 1)θ) √ 1 -λ 2 , λ = cos θ ∈ (-1, 1). (2.9)
Evidently, the "perturbation" V = H -H 0 is given by the equality

V e n = (a n-1 -1/2)e n-1 + b n e n + (a n -1/2)e n+1 .
(2.10)

If a n → 1/2 and b n → 0 as n → ∞, then the operator V is compact. In this case the essential spectrum of the operator H coincides with the interval [-1, 1], and its discrete spectrum σ d (H) consists of simple eigenvalues accumulating, possibly, to the points 1 and -1 only.

Under assumption (1.7) the equation (2.2) has the so called Jost solution f (z) = {f n (z)} ∞ n=-1 distinguished by its asymptotics as n → ∞. Our proof of this fact is similar to the continuous case, but we give it for the completeness of our presentation in Appendix A.1. It is based on the discrete Volterra integral equation

f n (z) = ζ(z) n - 1 √ z 2 -1 ∞ m=n+1 (ζ(z) n-m -ζ(z) m-n )(V f (z)) m (2.11)
where z ∈ Π and V is defined by formula (2.10). A somewhat different proof can be found in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF] (see also the book [START_REF] Teschl | Jacobi operators and completely integrable nonlinear lattices[END_REF]). Put

ρ n = ∞ m=n (|a m -1/2| + |b m |). (2.12) 
Then ρ n → 0 as n → ∞.

Theorem 2.1. Let assumption (1.7) be satisfied, and let z ∈ clos Π, z = ±1. Then equation (2.2) has a solution satisfying the condition

f n (z) = ζ(z) n (1 + O(ρ n )) (2.13)
as n → ∞. Every function f n (z), n = -1, 0, 1, . . ., depends analytically on z ∈ Π, and it is continuous in z up to the cut along [-1, 1] except, possibly, the points ±1.

Since |ζ(z)| < 1, it follows from (2.13) that f n (z) → 0 exponentially as n → ∞ for z ∈ Π. In particular, equation (2.2) has only one solution satisfying (2.13). Note that for the operator H 0 , the error term in (2.13) disappears and the Jost function is

f n (z) = ζ(z) n .
Recall that the polynomials P n (z) are defined by equation (2.2) and the conditions

P -1 (z) = 0, P 0 (z) = 1. Put P (z) = {P n (z)} ∞ n=-1 , f (z) = {f n (z)} ∞ n=-1 , ω(z) := {P (z), f (z)} = -2 -1 f -1 (z), (2.14) 
where the first formula (2.4) has been used. In particular, for the operator H 0 we have ω 0 (z) = -(2ζ(z)) -1 . By analogy with the continuous case, we define the Jost function Ω(z) := ω(z)/ω 0 (z) = -2ζ(z)ω(z).

(2.15)

The following result is a direct consequence of Theorem 2.1.

Corollary 2.2. Under assumption (1.7) the Jost function Ω(z) depends analytically on z ∈ Π, and it is continuous in z up to the cut along [-1, 1] except, possibly, the points ±1. A point z ∈ Π is an eigenvalue of the operator H if and only if ω(z) = 0.

Theorem 2.1 can be supplemented by the following assertion. n . Then for each n ≥ -1, we have lim

N →∞ f (N ) n (z) = f n (z), z ∈ clos Π, z = ±1.
(2.16)

2.3. For λ ∈ (-1, 1), equation (2.2) where z = λ has two solutions f (λ ± i0) = {f n (λ ± i0)} ∞ n=-1 ; of course f n (λ -i0) = f n (λ + i0).
It follows from Theorem 2.1 and formula (2.7) that asymptotics of f n (λ ± i0) as n → ∞ is oscillating:

f n (λ ± i0) = e ∓iθn (1 + O(ρ n )), θ = arccos λ ∈ (0, π).
(2.17)

Calculating their Wronskian (2.3) for n → ∞, we find that

{f (λ + i0), f (λ -i0)} = i sin θ = 0, sin θ = √ 1 -λ 2 , (2.18) 
so that these solutions are linearly independent. Thus,

P n (λ) = c(λ)f n (λ + i0) + c(λ)f n (λ -i0) (2.19)
for some constant c(λ). Taking the Wronskians of this equation with f (λ + i0) and using (2.14), (2.18), we find that sin θ c(λ) = iω(λ + i0).

Of course ω(λ -i0) = ω(λ + i0). Thus (2.19) leads to an intermediary result.

Lemma 2.4. Under assumption (1.7) the representation

P n (λ) = ω(λ -i0)f n (λ + i0) -ω(λ + i0)f n (λ -i0) i √ 1 -λ 2 , λ ∈ (-1, 1), n = 0, 1, 2, . . . , (2.20 
) holds true.

In particular, representation (2.20) implies that ω(λ ± i0) = 0, λ ∈ (-1, 1).

(2.21) Indeed, otherwise we would have P n (λ) = 0 for some λ ∈ (-1, 1) and all n ∈ Z + . However, P 0 (λ) = 1 for all λ.

Let us set

κ(θ) = |Ω(cos θ + i0)|, Ω(cos θ + i0) = κ(θ)e iη(θ) , θ ∈ (0, π). (2.22)
In the theory of the Schrödinger operator, the functions κ(θ) and η(θ) are known as the limit amplitude and the limit phase, respectively; the function η(θ) is also known as the scattering phase or the phase shift. Definition (2.22) 

(λ ± i0) = -Ω(λ ± i0)ζ(λ ± i0) -1 = -κ(θ)e ±i(η(θ)+θ) .
Therefore, combined together relations (2.17) and (2.20) yield the Bernstein-Szegö asymptotics of the polynomials P n (λ).

Theorem 2.5. Under assumption (1.7) for λ ∈ (-1, 1) the polynomials P n (λ) have asymptotics

P n (λ) = κ(θ)(sin θ) -1 sin((n + 1)θ + η(θ)) + O(ρ n ), θ = arccos λ, (2.23) 
as n → ∞. Relation (2.23) is uniform in λ on compact subintervals of (-1, 1).

Let us construct the resolvent

R(z) = (H -zI) -1 of the operator H. Recall that ω(z) is the Wronskian (2.14). Lemma 2.6. For all n, m ∈ Z + , we have (R(z)e n , e m ) = ω(z) -1 P n (z)f m (z), z ∈ Π, (2.24) 
if n ≤ m and (R(z)e n , e m ) = (R(z)e m , e n ).

Proof. We will show that the operator R(z) defined by (2.24) is the resolvent of H. We have

ω(z)(R(z)u) n = f n (z)A n (z) + P n (z)B n (z) (2.25)
where

A n (z) = n m=0 P m (z)u m , B n (z) = ∞ m=n+1 f m (z)u m , (2.26) 
at least for all sequences u = {u n } with a finite number of non-zero components u n .

In

this case R(z)u ∈ 2 (Z + ) because f n (z) ∈ 2 (Z + ) for all z ∈ Π. Our goal is to check that (H -z)R(z)u = u. It follows from definition (1.1) of the Jacobi operator H and formula (2.25) that ω((H -z)Ru) n = a n-1 f n-1 A n-1 + P n-1 B n-1 + (b n -z) f n A n + P n B n + a n f n+1 A n+1 + P n+1 B n+1 . (2.27)
According to (2.26) we have

f n-1 A n-1 + P n-1 B n-1 = f n-1 (A n -P n u n ) + P n-1 (B n + f n u n ) and f n+1 A n+1 + P n+1 B n+1 = f n+1 A n + P n+1 B n .
Let us substitute these expressions into the right-hand side of (2.27) and observe that the coefficients at A n and B n equal zero by virtue of equation (2.2) for {f n } and {P n }, respectively. It follows that

((H -z)Ru) n = ω -1 a n-1 (-P n f n-1 + f n P n-1 )u n = u n whence R(z) = (H -z) -1 ; in particular, the operator R(z) defined by (2.24) is bounded in 2 (Z + ).
In view of Theorem 2.1, f n (z) and ω(z) are continuous functions of z ∈ C \ [-1, 1] up to the cut along [-1, 1] with possible exception of the points z = ±1. Therefore using (2.21), we obtain the following result.

Theorem 2.7. Let assumption (1.7) hold. Then, for all n, m ∈ Z + , the functions (R(z)e n , e m ) are continuous as z ∈ Π approaches the interval (-1, 1) from above or below, and the spectrum of the operator H is absolutely continuous on (-1, 1).

We emphasize that the points 1 and -1 may be eigenvalues of H; see Example 4.15 below.

Let us now calculate the spectral family dE(λ) of the operator H. We proceed from the identity

2πi d(E(λ)e n , e m ) dλ = (R(λ + i0)e n , e m ) -(R(λ -i0)e n , e m ).
(2.28)

It follows from formula (2.24) that (R(λ ± i0)e n , e m ) = ω(λ ± i0) -1 P n (λ)f m (λ ± i0), n ≤ m.
Substituting this expression into (2.28), we find that

2πi d(E(λ)e n , e m ) dλ = P n (λ) ω(λ -i0)f m (λ + i0) -ω(λ + i0)f m (λ -i0) |ω(λ + i0)| 2 .
Let us combine this representation with formula (2.20) for P m (λ). Since 2|ω(λ+i0)| = |Ω(λ + i0)|, we obtain the following result.

Theorem 2.8. Let assumption (1.7) hold. Then, for all n, m ∈ Z + and λ ∈ (-1, 1), we have the representation

d(E(λ)e n , e m ) dλ = 2π -1 √ 1 -λ 2 |Ω(λ + i0)| -2 P n (λ)P m (λ).
Corollary 2.9. For λ ∈ (-1, 1), the spectral measure of the operator H equals

dρ(λ) := d(E(λ)e 0 , e 0 ) = w(λ)dλ, (2.29) 
where the weight function

w(λ) = 2π -1 √ 1 -λ 2 |Ω(λ + i0)| -2 .
(2.30)

In particular, for the operator H 0 , we have

w 0 (λ) = 2π -1 √ 1 -λ 2 . (2.31)
In view of (2.22), (2.30) the amplitude in (2.23) can be written as

κ(θ)(sin θ) -1 = 2 1/2 π -1/2 (1 -λ 2 ) -1/4 w(λ) -1/2 (2.32)
which is more common in the orthogonal polynomials literature. Note that Theorem 2.1 does not give any information on the behavior of the Jost function Ω(z) as z → ±1. However relation (2.30) implies that

1 -1 √ 1 -λ 2 |Ω(λ + i0)| -2 dλ = π 2 1 -1 w(λ)dλ ≤ π/2, (2.33) 
and hence Ω(λ + i0) cannot vanish too rapidly as λ → 1 -0 and λ → -1 + 0 (even if 1 or -1 are eigenvalues of H). For example, the behavior Ω(λ + i0) ∼ c ± (λ ∓ 1) where c ± = 0 is excluded.

3. Regular solutions of the Jacobi equations

3.1. The regular solution P (z) = {P n (z)} of the Jacobi equation (1.
2) is determined by the boundary conditions P -1 (z) = 0, P 0 (z) = 1. Then P n (z) is a polynomial of degree n and relation (1.6) is satisfied. By analogy with the continuous case (see, e.g., part 1 of Section 4.1 in [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF]), we here obtain bounds on P n (z) for large n. As usual, the variable ζ(z) is defined by (2.5).

Theorem 3.1. If assumption (1.7) is satisfied, then |P n (z)| ≤ C|ζ(z)| -n (3.1)
with some positive constant C not depending on n and on z in compact subsets of C \ {-1, 1}.

Theorem 3.1 will be proven in Appendix A.2. The proof relies on the equation (cf. equation (2.11))

P n (z) = P (0) n (z) + 1 √ z 2 -1 n-1 m=0 (ζ(z) n-m -ζ(z) m-n )(V P (z)) m , n ≥ 1, (3.2) 
where z ∈ Π, P

n (z) (normalized Chebyshev polynomials of the second kind) are given by equation (2.8) and V is defined by formula (2.10).

Recall now formula (2.24) for the resolvent R(z) of the operator H. Putting together estimates (2.13) and (3.1), we obtain the following result. We need also a representation of the Jost function Ω(z) in terms of the orthogonal polynomials P n (z). It plays the role of the representation (see, e.g., formula (1.38) in Chapter 4 of [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF]) of the Jost function via the regular solution of the Schrödinger equation in the continuous case. Proposition 3.3. Let assumption (1.7) be satisfied, and let the Jost function Ω(z) be defined by (2.14). Then

Ω(z) = 1 -2 ∞ n=0 ζ(z) n+1 (V P (z)) n (3.3)
for all z ∈ clos Π except, possibly, the points ±1.

Proof. Suppose first that z = λ + i0 where λ ∈ (-1, 1). Substituting expressions (2.9) and (2.20) into equation (3.2) we see that

ω(λ -i0)f n (λ + i0) -ω(λ + i0)f n (λ -i0) = 2 -1 (e i(n+1)θ -e -i(n+1)θ ) + n-1 m=0 (e -i(n-m)θ -e i(n-m)θ )(V P (λ + i0)) m .
Let us consider the asymptotics of both sides of this equation as n → ∞ and use relation (2.17 

3.2.

Let us find asymptotics of the polynomials P n (z) for z ∈ [-1, 1]. We follow here closely the scheme exposed in Section 4.1 (see, in particular, Lemma 1.11) of [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF].

We start by introducing solutions g n (z) of equation (2.2) exponentially growing as n → ∞. Perhaps this construction is of interest in its own sake. For z ∈ Π, fix n 0 = n 0 (z) such that f n (z) = 0 for n ≥ n 0 -1. Note that, for Im z = 0, one can set n 0 = 0 because the equality f n 0 -1 (z) = 0 implies that the Jacobi operator H (n 0 ) with the matrix elements a

(n 0 ) n = a n+n 0 , b (n 0 ) n = b n+n 0 has the eigenvalue z. Put g n (z) = f n (z)Θ n (z) where Θ n (z) = n m=n 0 (a m-1 f m-1 (z)f m (z)) -1 . (3.4)
An elementary calculation shows that this sequence satisfies equation (2.2). It is also easy to find the asymptotics of g n (z) as n → ∞:

ζ n g n (z) = 2ζ 2n n m=n 0 ζ -2m+1 (1 + o(1)) = 2ζ 2n+1 ζ -2n-2 -1 ζ -2 -1 (1 + o(1)) = 2 1 -ζ 2n+2 ζ -1 -ζ (1 + o(1)) = 1 + o(1) √ z 2 -1 where ζ = ζ(z)
. This yields the following result. 

lim n→∞ ζ(z) n g n (z) = 1 √ z 2 -1 . The Wronskian (2.3) of f (z) = {f n (z)}, g(z) = {g n (z)} equals {f (z), g(z)} = a n f n (z)f n+1 (z)(Θ n+1 (z) -Θ n (z)) = 1,
and hence solutions f (z) and g(z) are linearly independent. It follows that

P n (z) = d + (z)f n (z) + d -(z)g n (z) (3.5)
where

{P (z), f (z)} = d -(z){g(z), f (z)} = -d -(z)
and

{P (z), g(z)} = d + (z){f (z), g(z)} = d + (z).
According to (2.14), (2.15) we have

d -(z) = (2ζ(z)) -1 Ω(z). (3.6) 
Obviously, d + (z) = 0 if d -(z) = 0. Therefore Lemma 3.4 implies the following result.

Theorem 3.5. Under assumption (1.7) for all z ∈ Π, we have the relation

lim n→∞ ζ(z) n P n (z) = Ω(z) 1 -ζ(z) 2 (3.7)
with convergence uniform on compact subsets of Π. Moreover, if Ω(z) = 0, then

lim n→∞ ζ(z) -n P n (z) = {P (z), g(z)} = 0. (3.8)
The existence of the limit in (3.7) is the classical result of the Szegö theory. It is stated as Theorem 12.1.2 in the book [START_REF] Szegö | Orthogonal polynomials[END_REF] where the assumptions are imposed on the measure dρ(λ); in particular, it is assumed that supp ρ ⊂ [-1, 1]. Under assumption (1.7) asymptotic relation (3.7) was established in Theorem 2.20 of [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF]; our proof is rather different from that in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF]. Relation (3.8) is perhaps new.

Edge points of the spectrum

4.1.

A study of the Jost function Ω(z) as z → 1 and z → -1 requires an additional assumption on the coefficients a n , b n . This is quite similar to the Schrödinger operator in the space L 2 (R + ) that has a threshold at the point z = 0. The presentation here follows very closely Section 4.3 of [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF] where the continuous case was considered; so some technical details will be omitted. Then all functions f n (z) and, in particular, the Jost function Ω(z) are continuous in z up to the cut along

[-1, 1]. Moreover, f n (±1) satisfies equation (2.2) for z = ±1, that is a n-1 f n-1 (±1) + b n f n (±1) + a n f n+1 (±1) = ±f n (±1), n ∈ Z + , (4.2 
)

and f n (±1) = (±1) n + o(1) as n → ∞.
Theorem 3.1 can be supplemented by the following result.

Theorem 4.2. If assumption (4.1) is satisfied, then

|P n (z)| ≤ C(n + 1)|ζ(z)| -n (4.3)
with some positive constant C not depending on n and on z in compact subsets of C.

The proofs of Theorem 4.1 and 4.2 will be discussed in Appendix A.3. We emphasize that assumption (4.1) cannot be relaxed; see Remark 4.13 below.

Passing in (2.11) to the limit z → ±1 and taking into account the relation

ζ(z) k = (±1) k (1 ∓ k √ z 2 -1) + O(|z 2 -1|), z → ±1, (4.4) 
we obtain an equation for the sequences f n (±1):

f n (±1) = (±1) n + 2 ∞ m=n+1 (±1) n-m+1 (n -m)(V f (±1)) m .
Similarly, since P (0)

n (±1) = (n + 1)(±1) n , equation (3.2) yields P n (±1) = (n + 1)(±1) n -2 n-1 m=0 (±1) n-m+1 (n -m)(V P (±1)) m . (4.5) 
Estimate (4.3) allows us to pass to the limit z → ±1 in (3.3) which leads to the following result. 

Ω(±1) = 1 -2 ∞ n=0 (±1) n+1 (V P (±1)) n (4.6)
holds.

Similarly to Lemma 3.4, we can introduce a solution g n (±1) of the equation (4.2) linearly independent with f n (±1). Since neither of solutions f n (±1), g n (±1) nor their linear combinations tend to zero as n → ∞, we obtain Theorem 4.5. Under assumption (4.1) equations (4.2) do not have solutions tending to zero as n → ∞. In particular, the operator H cannot have eigenvalues 1 and -1.

To find the asymptotics of the polynomials P n (z) at critical points z = ±1, we use equalities (3.5) and (3.6) where z = ±1. The next result is a direct consequence of Lemma 4.4.

Theorem 4.6. Let assumption (4.1), and let Ω(±1) = 0. Then

P n (±1) = Ω(±1)(±1) n n(1 + o(1)) (4.7)
Of course, if Ω(±1) = 0, then according to (2.24) the resolvent kernel (R(z)e n , e m ) is continuous as z → ±1.

4.2.

Our next goal is to find the asymptotic behavior as z → ±1 of Ω(z) and hence of (R(z)e n , e m ) in the exceptional case Ω(±1) = 0. Let us use the same terminology as for Schrödinger operators. Clearly, the condition Ω(±1) = 0 is equivalent to the linear dependence of the solutions P n (±1) and f n (±1) of equation (4.2). In this case the sequence P n (±1) is bounded as n → ∞. The next result follows from equations (4.5) and (4.6). Lemma 4.8. Suppose that Ω(±1) = 0 and put

γ ± = 1 + 2 ∞ m=0 (±1) m-1 m(V P (±1)) m . (4.8)
Then there exists

lim n→∞ (±1) n P n (±1) = γ ± = 0. (4.9)
In particular, P n (±1) = (±1) n γ ± f n (±1). Now we are in a position to find the asymptotic behavior of the Jost function Ω(z) as z → ±1 in the case Ω(±1) = 0. Let us proceed from representation (3.3). According to (4.4), for each n, we have

ζ(z) n+1 (V P (z)) n = (±1) n+1 -(±1) n (n + 1) √ z 2 -1 (V P (±1)) n + O(z 2 -1).
Substituting this expression into (3.3) and taking into account equation (4.6), we see that

Ω(z) = Ω(±1) + 2 ∞ n=0 (±1) n (n + 1)(V P (±1)) n √ z 2 -1 + o( |z 2 -1|).
If Ω(±1) = 0, then the coefficient at √ z 2 -1 here equals ±γ ± . Let us state the result obtained.

Theorem 4.9. Under assumption (4.1) suppose that Ω(±1) = 0 and define the number γ ± by (4.8) or, equivalently, by (4.9). Then

Ω(z) = ±γ ± √ z 2 -1 + o( |z 2 -1|)
as z → ±1.

Using formula (2.30), we obtain the following consequence for the weight function.

Corollary 4.10. Under the assumptions of Theorem 4.9, we have

w(λ) = 2π -1 γ -2 ± (1 -λ 2 ) -1/2 (1 + o(1)), λ ∈ (-1, 1), as λ → ±1.
In view of Lemmas 2.6 and 4.8, Theorem 4.9 implies also the following result. Remark 4.12. Combined together, Theorems 4.1 and 4.9 ensure that under assumption (4.1) the discrete spectrum of the operator H is finite. Remark 4.13. Under assumption (4.1) the asymptotics of the orthogonal polynomials P n (±1) is given by formulas (4.7) and (4.9). An example of the Jacobi polynomials shows that the asymptotics of P n (±1) is significantly changed (see formula (8.18), below) if the condition (4.1) is even slightly relaxed. In particular, estimate (4.3) is violated in this case.

Remark 4.14. The problem of characterization of spectral data corresponding to assumption (4.1) was considered in [START_REF] Sh | The scattering problem for an infinite Jacobi matrix[END_REF].

4.3.

The condition (4.1) of Theorem 4.5 guaranteeing, in particular, the absence of eigenvalues ±1 is optimal. Indeed, there exist Jacobi operators satisfying condition (1.7) but not (4.1) with an eigenvalue at the points +1 or -1. In the example below, we suppose that a n = 1/2. Set

ψ (±) n = (±1) n (n + 1) -l (4.10)
for all n ∈ Z + and ψ

(±) -1 = 0. Then ψ (±) = {ψ (±) n } ∈ 2 (Z + ) if l > 1/2. Let us consider equation (2.
2) where u n = ψ (±) n and z = ±1 as an equation for b 

(±) n : b (±) n = ±1 -(2ψ (±) n ) -1 (ψ (±) n-1 + ψ (±) n+1 ). ( 4 
(±) n = ∓2 -1 l(l + 3)n -2 + O(n -3 ) as n → ∞.
In particular, condition (1.7) holds. Moreover, up to a finite rank operator, the perturbation V (±) = H (±) -H 0 of the operator H 0 is negative for the upper sign and positive for the lower sign. Thus, we have defined by (4.10). The spectrum of H (+) is finite above the point 1, and spectrum of H (-) is finite below the point -1.

Note that the operators H (±) have infinite number of eigenvalues. For instance, this fact follows from a general result of [START_REF] Damanik | Half-line Schrödinger operators with no bound states[END_REF], Theorem 3, stating that the spectrum of a Jacobi operator is purely absolutely continuous on [-1, 1] if it has only a finite number of eigenvalues outside [-1, 1]. In our case H (±) has the eigenvalue ±1.

Example 4.15 exhibits an asymptotic behavior of orthogonal polynomials P n (z) intermediary between exponential (for z ∈ [-1, 1]) and oscillating (for z ∈ (-1, 1)) regimes. Indeed, if a n = 1/2 and b (±) n are defined by (4.10) and (4.11), then P n (±1) = ψ (±) n are given by (4.10). So, this sequence behaves as some power of n (negative or positive) as n → ∞.

4.4.

A similar result is true for the Schrödinger operator H = -d 2 /dx 2 + b(x) with the boundary condition u(0) = 0 in the space L 2 (R + ). Let ψ ∈ C ∞ (R + ), ψ(x) > 0 for all x > 0, ψ(x) = x in a neighborhood of the point x = 0 and ψ(x) = x -l where l > 1/2 (4.12)

for sufficiently large x.

Then ψ ∈ L 2 (R + ). Put b(x) = ψ (x)ψ(x) -1 (4.13) so that b(x) = l(l + 1)x -2 if
x is large enough. This yields Example 4.16. Let b(x) be given by formulas (4.12) and (4.13). Then the operator H has the eigenvalue 0 with the eigenfunction ψ(x) defined by (4.12), and its negative spectrum is finite.

The decay of b(x) as |x| -2 at infinity is critical. Actually, it is known (see part 1 in Section 4.3 of [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF]) that H cannot have the zero eigenvalue provided for the pair H 0 , H is well defined and is an analytic function of z ∈ C\σ(H 0 ). Obviously, ∆(z) = ∆(z) and ∆(z) → 1 as dist{z, σ(H 0 )} → ∞.

∞ 0 (1 + x)|b(x)|dx < ∞.
(5.2) Note also the general formula

Tr R(z) -R 0 (z) = - ∆ (z) ∆(z) . (5.3) 
In view of our applications to Jacobi operators, below we suppose that the operators H 0 and H are bounded. The Kreȋn spectral shift function ξ(λ) is defined in terms of the perturbation determinant (5.1). According to (5.2) we can fix the branch of the function ln ∆(z) for Im z = 0 by the condition arg ∆(z) → 0 as dist{z, σ(H 0 )} → ∞.

(

Then ξ(λ) := π -1 lim ε→+0 arg ∆(λ + iε).

(5.5)

This limit exists for a.e. λ ∈ R,

∞ -∞ |ξ(λ)|dλ ≤ V 1 (5.6)
and the representation

ln ∆(z) = ∞ -∞ ξ(λ)(λ -z) -1 dλ, Im z = 0, (5.7) 
holds. The function ξ(λ) is constant on intervals not containing points of σ(H 0 )∪σ(H).

In particular, ξ(λ

) = 0 for λ < inf σ(H 0 ) ∪ σ(H) and λ > sup σ(H 0 ) ∪ σ(H) . If λ 1
is an isolated eigenvalue of finite multiplicity k 0 of the operator H 0 and multiplicity k of the operator H, then

ξ(λ 1 + 0) -ξ(λ 1 -0) = k 0 -k. (5.8)
We refer to the books [START_REF] Gokhberg | Introduction to the theory of linear nonselfadjoint operators in Hilbert space[END_REF][START_REF] Simon | Trace ideal methods[END_REF][START_REF] Yafaev | Mathematical scattering theory: General theory[END_REF] for a detailed presentation of these notions.

5.2.

Let us come back to Jacobi operators. Under the assumption (1.7), the perturbation V belongs to the trace class S 1 so that all results mentioned in the previous subsection are true.

Let us find a link of the perturbation determinant ∆(z) with the Jost function (2.15). We follow here closely the scheme of the paper [START_REF] Buslaev | Formulas for traces for a singular Sturm-Liouville differential operator[END_REF] where the operator -D 2 + b(x) was considered; for its detailed presentation, see Section 4.1 of [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF]. Note that there exists also a different to proofs of such assertions relying on the Fredholm expansion of determinants; this approach was developed in [START_REF] Jost | On the scattering of a particle by a static potential[END_REF].

Let us find an expression of the left-hand side of (5.3) in terms of the Jost function Ω(z). The first assertion is true without any assumptions on a n and b n . Recall that {f n (z)} ∞ n=-1 is the Jost solution of equations (2.2) and ω(z) is defined by (2.14). Lemma 5.1. For all z ∈ Π and all N ≥ 0, we have the identity

N n=0 f n (z)P n (z) = -ω (z) + a N P N (z)f N +1 (z) -P N +1 (z)f N (z) .
(5.9)

Proof. Let us differentiate (in z) equation (2.2) for f n (z) and then multiply it by P n (z):

a n-1 f n-1 (z)P n (z) + a n f n+1 (z)P n (z) = (z -b n )f n (z)P n (z) + f n (z)P n (z).
(5.10)

Multilplying equation (1.2) for P n (z) by f n (z), we see that

a n-1 P n-1 (z)f n (z) + a n P n+1 (z)f n (z) = (z -b n )P n (z)f n (z). (5.11) 
Then we subtract (5.11) from (5.10):

f n (z)P n (z) = a n-1 f n-1 (z)P n (z) -a n f n (z)P n+1 (z)
+ a n f n+1 (z)P n (z) -a n-1 f n (z)P n-1 (z) . (5.12)

Let us calculate the sums of the right-hand sides over n = 0, 1, . . . , N :

N n=0 a n-1 f n-1 (z)P n (z) -a n f n (z)P n+1 (z) = 2 -1 f -1 (z)P 0 (z) -a N f N (z)P N +1 (z)
and

N n=0 a n f n+1 (z)P n (z) -a n-1 f n (z)P n-1 (z) = a N f N +1 (z)P N (z) -2 -1 f 0 (z)P -1 (z).
Since P -1 (z) = 0, P 0 (z) = 1 and f -1 (z) = -2ω(z), taking the sum of equations (5.12), we obtain the identity (5.9).

Let us calculate the asymptotics of the right-hand side of (5.9) as n → ∞ supposing first that the perturbation V has finite support, that is, a n = 1/2 and b n = 0 for sufficiently large n. In view of (2.6), the equations (2.2) are satisfied in this case for all z ∈ Π and n large enough if u n (z) is a arbitrary linear combination of the functions ζ(z) n and ζ(z) -n . In particular, we have

f n (z) = ζ(z) n and P n (z) = γ + (z)ζ(z) n + γ -(z)ζ(z) -n (5.13)
for some numbers γ ± (z). Recall that |ζ(z)| < 1 for z ∈ Π.

Lemma 5.2. For all z ∈ Π, z ∈ σ d (H) and n → ∞, we have the relation

ω(z) -1 P n (z)f n+1 (z) -P n+1 (z)f n (z) = - 2n √ z 2 -1 + ζ(z) z 2 -1 + O(ζ(z) 2n ). (5.14)
Proof. It follows from formulas (5.13) that the Wronskian (2.14) calculated for large n is given by the equation

2ω = (γ + ζ n + γ -ζ -n )ζ n+1 -(γ + ζ n+1 + γ -ζ -n-1 )ζ n = γ -(ζ -ζ -1
).

(5.15) Formulas (5.13) also imply that

P n f n+1 -P n+1 f n = (γ + ζ n + γ -ζ -n )(ζ n+1 ) -(γ + ζ n+1 + γ -ζ -n-1 )(ζ n ) = - 1 √ z 2 -1 γ -(n + 1)ζ -nζ -1 + γ + ζ 2n+1 (5.16)
where we used that

ζ(z) = - ζ(z) √ z 2 -1 .
Dividing now (5.16) by (5.15), we arrive at (5.14).

Using expression (2.24) for (R(z)e n , e n ) and putting together Lemmas 5.1 and 5.2, we get the following result. Theorem 5.3. Suppose that a n = 1/2 and b n = 0 for sufficiently large n. Then for all z ∈ Π, z ∈ σ d (H) and N → ∞, we have the relation

N n=0 (R(z)e n , e n ) = -ω (z)ω(z) -1 - N √ z 2 -1 + ζ(z) 2(z 2 -1) + O(ζ(z) 2N ).
(5.17)

Of course the same formula is true for the operator H 0 when ω 0 (z) = -2 -1 ζ(z) -1 . Comparing formulas (5.17) for H and H 0 , we find that

N n=0 (R(z)e n , e n ) -(R 0 (z)e n , e n ) = -ω (z)ω(z) -1 + ω 0 (z)ω 0 (z) -1 + O(ζ(z) 2N ).
Passing here to the limit N → ∞, we see that

Tr R(z) -R 0 (z) = - Ω (z) Ω(z) , z ∈ Π, (5.18) 
where the function Ω(z) is defined by (2.15). Theorem 2.3 allows us to extend this result to arbitrary operators satisfying condition (1.7). Indeed, set a n , and let Ω (N ) (z) = -2ζ(z){P (N ) (z), f (N ) (z)}. Write formula (5.18) for the pair H 0 , H (N ) and pass to the limit N → ∞. Since V (N ) := H (N ) -H 0 → V in the trace norm, we see that

Tr

R (N ) (z) -R 0 (z) → Tr R(z) -R 0 (z)
as N → ∞. According to Theorem 2.3 we also have Ω (N ) (z) → Ω(z) and hence dΩ (N ) (z)/dz → dΩ(z)/dz as N → ∞. This leads to the desired result.

Theorem 5.4. The relation (5.18) holds true under assumption (1.7).

5.3.

Putting together relations (5.3) and (5.18), we see that

∆(z) = A Ω(z), z ∈ Π, (5.19) 
for some constant A ∈ C. Our goal is to check that

A = ∞ k=0 (2a k ).
(5.20)

Note that under assumption (1.7) the infinite product here converges and A > 0.

Let us compare the asymptotics of ∆(z) and Ω(z) as |z| → ∞. The first of them given by (5.2). So we only have to consider the Jost function Ω(z). Lemma 5.5. Suppose that a n = 1/2 and b n = 0 for all sufficiently large n. Then for all n = -1, 0, 1, . . . and |z| → ∞, we have the asymptotic relation

f n (z) = ∞ k=n (2a k ) -1 ζ(z) n (1 + O(ζ(z))).
(5.21)

In particular,

Ω(z) = A -1 + O(ζ(z)). (5.22) 
Proof. Since f n (z) = ζ n for n large enough, relations (5.21) are certainly satisfied for such n. Suppose that, for some n 0 , relations (5.21) are true for all n ≥ n 0 . According to equation (2.2) we have

a n 0 -1 f n 0 -1 = 2 -1 (ζ + ζ -1 ) -b n 0 f n 0 -a n 0 f n 0 +1 .
By our assumption on f n 0 and f n 0 +1 , this implies

a n 0 -1 f n 0 -1 = 2 -1 ζ -1 ∞ k=n 0 (2a k ) -1 ζ n 0 (1 + O(ζ)) + O(ζ n 0 )
which yields (5.21) for f n 0 -1 . In view of (2.14), (2.15), relation (5.22) is a consequence of (5.21) for n = -1.

Thus relations (5. [START_REF] Jost | On the scattering of a particle by a static potential[END_REF]) and (5.20) are verified for perturbations of finite support. It remains to extend them to arbitrary perturbations satisfying assumption (1.7). Let us use the arguments and the notation H (N ) = H 0 + V (N ) , Ω (N ) (z) already used by the proof of Theorem 5.4. Let ∆ (N ) (z) be the perturbation determinant for the pair H 0 , H (N ) . For all N , we have the relation

∆ (N ) (z) = A (N ) Ω (N ) (z) where A (N ) = N -1 k=0 (2a k ).
Let us pass here to the limit N → ∞. Since V (N ) → V in the trace norm, ∆ (N ) (z) → ∆(z) as N → ∞. We also see that Ω (N ) (z) → Ω(z) by Theorem 2.3 and A (N ) → A under assumption (1.7). This yields the desired result. Then in view of normalization (5.4), we have arg ∆(z) = arg Ω(z), Im z = 0. 5.4. Next, we discuss the spectral shift function ξ(λ) for a pair of Jacobi operators H 0 , H satisfying assumption (1.7). According to Theorem 2.1 and formula (5.19), the perturbation determinant ∆(z) is a continuous function of z ∈ clos Π except, possibly, the points z = ±1. Moreover, according to (2.21), we have Ω(λ ± i0) = 0. Therefore ξ(λ) is also a continuous function of λ ∈ (-1, 1).

A link between ξ(λ) and the scattering phase η(θ) follows from definitions (2.22) and (5.5).

Theorem 5.8. Under assumption (1.7), the relation

ξ(λ) = π -1 η(arccos λ) (5.23)
holds for all λ ∈ (-1, λ).

Substituting (5.23) into (2.23) and taking into account (2.32), we can reformulate Theorem 2.5 in terms of the weight function w(λ) and the spectral shift function ξ(λ). This yields asymptotic relation (1.9); note that the remainder o(1) in the right-hand side can be replaced by O(ρ n ).

We emphasize that η(θ) is a continuous function of θ ∈ (0, π), but Theorem 2.1 yields no information about its behavior as θ → 0 and θ → π. Comparing relations (5.6) and (5.23), we however see that

π 0 |η(θ)| sin θdθ ≤ π V 1 .
5.5. To find expressions of Tr(H n -H n 0 ) in terms of the spectral shift function, we only have to compare asymptotic expansions as |z| → ∞ of both sides of the representation (5.7). It follows from relation (5.3) 

that ln ∆(z) = - ∞ n=1 n -1 Tr(H n -H n 0 ) z -n . Since ∞ -∞ ξ(λ)(λ -z) -1 dλ = - ∞ n=1 ∞ -∞ ξ(λ)λ n-1 dλ z -n ,
equating the coefficients at z -n , we see that

Tr(H n -H n 0 ) = n ∞ -∞ ξ(λ)λ n-1 dλ. (5.24)
On the discrete spectrum, the spectral shift function can be explicitly calculated. Indeed, let λ

(+) 1 > λ (+) 2 > • • • > 1 (and λ (-) 1 < λ (-) 2 < • • • < -1
) be eigenvalues of H lying above the point 1 (respectively, below the point -1). It follows from formula (5.8) that ξ(λ) = n for λ ∈ (λ

(+) n+1 , λ (+) n ) and ξ(λ) = -n for λ ∈ (λ (-) n , λ (-) n+1 ).
Using formula (5.8), we find that

n ∞ 1 ξ(λ)λ n-1 dλ = ∞ k=1 k (λ (+) k ) n -(λ (+) k+1 ) n
and, similarly, for the integral over (-∞, -1). The series here is convergent by virtue of estimate (5.6). Putting together this relation with (5.24), we obtain the following result.

Theorem 5.9. Let assumption (1.7) be satisfied. Then

Tr(H n -H n 0 ) = n 1 -1 ξ(λ)λ n-1 dλ + ∞ k=1 k (λ (+) k ) n -(λ (+) k+1 ) n + ∞ k=1 k (λ (-) k ) n -(λ (-) k+1 ) n .
(5.25)

In view of (5.23), the integral on the right can be expressed in terms of the phase function:

1 -1 ξ(λ)λ n-1 dλ = 1 π π 0 η(θ) cos n-1 θ sin θdλ.
In a very general framework, formulas of type (5.25) were studied in the book [START_REF] Teschl | Jacobi operators and completely integrable nonlinear lattices[END_REF], Chapter 6.

5.6.

The trace formula of zero order (the Levinson theorem) requires a special discussion. Now we assume a stronger condition (4.1) on the coefficients of the operator H. Then according to Theorem 4.1, the corresponding perturbation determinant ∆(z) is continuous as z → ±1. One has to distinguish the cases ∆(1) = 0 and ∆(-1) = 0 when the operator H has threshold resonances at the points λ = 1 or λ = -1. Note also (see Remark 4.12) that under assumption (4.1) the operator H has only a finite number N of discrete eigenvalues.

Theorem 5.10. Let assumption (4.1) be satisfied. Then the limits ξ(1-0) and ξ(-1+ 0) exist and ξ(1 -0) -ξ(-1 + 0) = N + κ (5.26) where κ = 0 if ∆(±1) = 0 for both signs, κ = 1/2 if ∆(±1) = 0 for one of the signs and κ = 1 if ∆(±1) = 0 for both signs.

Proof. Let us consider a contour which consists of a part

C r -,r + = [-1+r -+i0, 1-r + +i0]∪[-1+r --i0, 1-r + -i0]∪{|z-1] = r + }∪{|z+1] = r -}
encircling the cut along [-1, 1] and of the circle |z| = R. We suppose that r -and r + are sufficiently small, R is sufficiently large, and we go in the clockwise over C r -,r + and in the counter-clockwise direction over |z| = R. Since ∆(z) has simple zeros at the eigenvalues of H, the argument principle implies that var Cr -,r + arg ∆(z) + var |z|=R arg ∆(z) = 2πN.

(5. (5.28) Let us now pass here to the limit r -, r + → 0.

If ∆(±1) = 0, then var |z∓1|=r ± arg ∆(z) → 0. In the case ∆(±1) = 0 it follows from Theorem 4.9 that lim r ± →0 var |z∓1|=r ± arg ∆(z) = π.

Thus relation (5.26) is a direct consequence of (5.27) and (5.28). These arguments prove also the existence of the limits ξ(1 -0) and ξ(-1 + 0). 6. Scattering theory 6.1. First, we briefly recall basic notions of scattering theory. We refer, for example, to the book [START_REF] Yafaev | Mathematical scattering theory: General theory[END_REF] for a more complete presentation of this material.

The wave operators W ± (H, H 0 ) for a pair of self-adjoint operators H 0 , H in a Hilbert space H are defined as strong limits

W ± (H, H 0 ) = s-lim t→±∞ e iHt e -iH 0 t ; (6.1)
here H 0 is supposed to be absolutely continuous. Under the assumption of the existence of limits (6.1), W ± (H, H 0 ) are isometric operators and enjoy the intertwining property To define the scattering matrix, we suppose for definiteness that the spectrum of H 0 is simple and coincides with [-1, 1]. Let F 0 : H → L 2 (-1, 1) be unitary and F 0 H = AF 0 where A is the operator of multiplication by λ in the space L 2 (-1, 1). Then the scattering matrix S(λ) ∈ C is defined by the relation

HW ± (H, H 0 ) = W ± (H, H 0 )H 0 .
(F 0 Sf )(λ) = S(λ)(F 0 f )(λ), λ ∈ (-1, 1); (6.3)
obviously, |S(λ)| = 1 if S is unitary. Note that the scattering matrix does not depend on the diagonalization F 0 of H 0 if it has simple spectrum. Let us come back to Jacobi operators. Under condition (1.7) which is always assumed in this section, the perturbation V = H-H 0 is trace class. Therefore the wave operators W ± (H, H 0 ) exist and are complete by the classical Kato-Rosenblum theorem.

Our goal here is to obtain representations of the wave operators and of the scattering matrix in terms of the polynomials P n (λ) and of the Jost function Ω(λ + i0) for λ ∈ (-1, 1). Such expressions are known as stationary representations. As a by-product of our considerations, we will also give a direct proof of the existence and completeness of the wave operators.

6.2.

Let dρ(λ) be the spectral measure of the operator H. We define a mapping U : 2 (Z + ) → L 2 (R; dρ) by the formula

(U e n )(λ) = P n (λ).
This mapping is isometric according to (1.6). It is also unitary because the set of all polynomials P n (λ), n ∈ Z + , is dense in L 2 (R; dρ). Finally, the intertwining property

(U Hf )(λ) = λ(U f )(λ) (6.4) 
holds. Indeed, it suffices to check it for f = e n when according to definition (2.1) of the operator H, (U He n )(λ) coincides with the left-hand side of (1.2) (where z = λ) while λ(U e n )(λ) equals its right-hand side. Next, we reduce the absolutely continuous part of the operator H to the operator A of multiplication by λ in L 2 (-1, 1). To that end, we put

ψ n (λ) = w(λ)P n (λ), λ ∈ (-1, 1), (6.5) 
where w(λ) is the weight function defined by (2.30) and introduce a mapping F :

2 (Z + ) → L 2 (-1, 1) by the formula (F e n )(λ) = ψ n (λ), λ ∈ (-1, 1). ( 6.6) 
The operator F * : L 2 (-1, 1) → 2 (Z + ) adjoint to F is given by the equality

(F * g) n = 1 -1 ψ n (λ)g(λ)dλ, n ∈ Z + . (6.7) 
According to (6.5) it follows from the unitarity of the operator U that

F F * = I, F * F = E(-1, 1), (6.8) 
where E(-1, 1) is the spectral projection of the operator H corresponding to the interval (-1, 1). Thus the operator F * is isometric, and it is unitary if H has no point spectrum. By virtue of the equation (6.4) the intertwining property

HF * = F * A (6.9)
holds.

For the free operator H 0 , the corresponding unitary mapping F 0 :

2 (Z + ) → L 2 (-1, 1) is defined by the formula (F 0 e n )(λ) = ψ (0) n (λ) where ψ (0) n (λ) = w 0 (λ)P (0) n (λ), λ ∈ (-1 , 1). (6.10) 
Here w 0 (λ) is defined by (2.31) and P

n (λ) are normalized Chebyshev polynomials of the second kind.

6.3.

The presentation below is very close to Section 4.2 of the book [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF] where the continuous case was considered. We start with two elementary facts. Recall that ζ(λ ± i0) and ρ n are defined by formulas (2.7) and (2.12), respectively.

Lemma 6.1. Let 1 -1 |g(λ)| 2 √ 1 -λ 2 dλ < ∞. Then lim t→±∞ ∞ n=0 1 -1 ζ(λ ∓ i0) n e -iλt g(λ)dλ 2 = 0. (6.11)
Proof. It is more convenient to work in the variable θ using that

1 -1 ζ(λ ∓ i0) n e -iλt g(λ)dλ = π 0
e ±inθ e -it cos θ g(cos θ) sin θdθ. (6.12)

The Parseval identity implies the uniform in t estimate

∞ n=0 1 -1 ζ(λ ∓ i0) n e -iλt g(λ)dλ 2 ≤ 2π π 0 |g(cos θ)| 2 sin 2 θdθ = 2π 1 -1 |g(λ)| 2 √ 1 -λ 2 dλ.
Therefore it suffices to check (6.11) for g ∈ C ∞ 0 ((-1, 1)). Integrating in (6.12) by parts and observing that

± n + t sin θ ≥ c n + |t| for ± t > 0 where θ ∈ [ε 0 , π -ε 0 ], ε 0 > 0 and c = c(ε 0 ) > 0, we find an estimate π 0 e ±inθ e -it cos θ g(cos θ) sin θdθ ≤ C(n + |t|) -1 , n ∈ Z + , ±t > 0. It follows that ∞ n=0 1 -1 ζ(λ ∓ i0) n e -iλt g(λ)dλ 2 ≤ C ∞ n=0 (n + |t|) -2 ≤ C 1 |t| -1 , ±t > 0,
which implies (6.11).

Lemma 6.2. Under assumption (1.7), suppose additionly that

∞ n=0 ρ 2 n < ∞. (6.13) 
Let g ∈ L 1 (-1, 1) and supp g ⊂ (-1, 1). Then

lim |t|→∞ ∞ n=0 1 -1 f n (λ ± i0) -ζ(λ ± i0) n e -iλt g(λ)dλ 2 = 0. (6.14) 
Proof. Theorem 2.1 yields the estimate

1 -1 f n (λ ± i0) -ζ(λ ± i0) n e -iλt g(λ)dλ ≤ Cρ n
where C does not depend on t. For every n, the integrals in (6.14) tend to zero as |t| ∞ by the Riemann-Lebesgue lemma. So, under assumption (6.13), the dominated convergence theorem implies (6.14).

Let us now set

σ ± (λ) = Ω(λ ± i0) |Ω(λ ± i0)| = e ±iη(arccos λ) , λ ∈ (-1 , 1). (6.15) 
The operator Σ ± (λ) of multiplication by σ ± (λ) is of course unitary in the space L 2 (-1, 1). Using definitions (2.30) and (6.5) of the functions w(λ) and ψ n (λ), we rewrite relation (2.20) as

ψ n (λ) = 1 i √ 2π 4 √ 1 -λ 2 -ζ(λ+i0)σ -(λ)f n (λ+i0)+ζ(λ-i0)σ + (λ)f n (λ-i0) . (6.16)
For the operator H 0 and the function ψ

n (λ) defined in (6.10), this reduces to the formula

ψ (0) n (λ) = 1 i √ 2π 4 √ 1 -λ 2 -ζ(λ + i0) n+1 + ζ(λ -i0) n+1 . (6.17) 
Recall that the operators F and F 0 are defined by relations (6.6) and (6.10). Then F * is given by relation (6.7) and similarly for F * 0 . The operator A acts as multiplication by λ in the space L 2 (-1, 1). Lemma 6.3. For all g ∈ L 2 (-1, 1), we have

lim t→±∞ (F * Σ ± -F * 0 )e -iAt g = 0. (6.18) 
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Proof. Since σ + (λ)σ -(λ) = 1, it follows from relations (6.16) and (6.17) that, for both signs " ± ",

i √ 2π 4 √ 1 -λ 2 ψ n (λ)σ ± (λ) -ψ (0) n (λ) = ±(σ ± (λ) 2 -1)ζ(λ ∓ i0) n+1 + σ ± (λ)r n (λ) (6.19)
where r n (λ) = -r

(+) n (λ) + r (-) n (λ) and r (±) n (λ) = ζ(λ ± i0)σ ± (λ) f n (λ ± i0) -ζ(λ ± i0) n . According to (6.19) we have (F * Σ ± -F * 0 )e -iAt g) n = ± 1 -1 (σ ± (λ) 2 -1)ζ(λ ∓ i0) n+1 e -iλt g(λ)dλ + 1 -1 r n (λ)σ ± (λ)e -iλt g(λ)dλ (6.20)
where

g(λ) = g(λ) i √ 2π 4 √ 1 -λ 2 .
Let us come back to relation (6.18) where we may assume that supp g ⊂ (-1, 1). If t → +∞ (if t → -∞), we use (6.20) for the upper (lower) sign. Then the contribution to the norm in 2 (Z + ) of the first term in the right-hand side of (6.20) tends to zero according to Lemma 6.1. The contribution of the second term tends to zero according to Lemma 6.2. Theorem 6.4. Let assumptions (1.7) and (6.13) be satisfied. Then the strong limits (6.1) exist and

W ± (H, H 0 ) = F * Σ ± F 0 . (6.21) 
Proof. We have to check that lim t→±∞ e iHt e -iH 0 t f -F * Σ ± F 0 f = 0 for all f ∈ 2 (Z + ). In view of the intertwining property (6.9) this relation can be rewritten as lim

t→±∞ e -iH 0 t f -F * Σ ± e -iAt F 0 f = 0. ( 6.22) 
Set now g = F 0 f . Then again in view of the intertwining property (6.9) for H 0 , we see that relations (6.18) and (6.22) are equivalent.

It follows from relations (6.8) and (6.21) that the scattering operator (6.2) is given by the equality S = F * 0 Σ * + Σ -F 0 . Putting together this relation with the definition (6.3) of the scattering matrix and definition (6.15) of σ ± (λ), we can state the following result. Recall also that the scattering phase η(θ) was defined by formula (2.22). Theorem 6.5. Under assumptions of Theorem 6.4, the scattering matrix for the pair H 0 , H satisfies the equality S(λ) = Ω(λ -i0) Ω(λ + i0) = e -2iη(arccos λ) , λ ∈ (-1, 1). (6.23) In view of relation (5.23), formula (6.23) can be rewritten as the Birman-Kreȋn formula S(λ) = e -2iπξ(λ) .

6.4. Theorems 6.4 and 6.5 remain true without additional assumption (6.13). The proof of this fact requires some tools of abstract scattering theory. We give only basic ideas of one of its possible proofs.

The following result is a direct consequence of Theorem 3.2.

Lemma 6.6. Let an operator Q in the space 2 (Z + ) be defined by the equality (Qf ) n = q n f n where q n = qn and ∞ n=0 q 2 n < ∞. Under assumption (1.7) the operator-valued function QR(z)Q defined for Im z = 0 is continuous in the Hilbert-Schmidt norm up to the cut along [-1, 1] with possible exception of the points z = ±1. In particular, the operator Q is H-smooth in the sense of Kato on every compact subinterval of (-1, 1).

Under assumption (1.7) Lemma 6.6 is true with

q n = (|a n -1/2| + |b n |) 1/2 .
Note that the perturbation V = QGQ where G is a bounded operator in the space 2 (Z + ). Using Theorems 5.3.4 and 5.6.1 in [START_REF] Yafaev | Mathematical scattering theory: General theory[END_REF], we can now deduce from Lemma 6.6 the following assertion.

Theorem 6.7. The wave operators W ± (H, H 0 ) exist, are complete and representations (6.21), (6.23) are true under the only assumption (1.7).

The Szegö function and the Case sum rules

Here we establish a link between the perturbation determinant ∆(z) and the Szegö function D(ζ). We also show that the Case sum rules are direct consequences of this link. Since the Jost function Ω(z) is related to ∆(z) by simple formula (5.19), we do not discuss it here. As usual, |ζ| < 1 and 2z = ζ + ζ -1 . where w(λ) is the weight function (2.29). This is exactly formula (10.2.10) (see also Theorem 12.1.2) in [START_REF] Szegö | Orthogonal polynomials[END_REF], but in contrast to [START_REF] Szegö | Orthogonal polynomials[END_REF] we do not suppose that H has no Under assumption (1.7), an information on the behavior of ∆(ζ) as ζ → ±1 follows from Theorem 9.14 in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF] where it is shown that the function ∆(ζ) belongs to the Nevanlinna class N and does not have a singular inner component. We refer to the book [START_REF] Duren | Theory of H p spaces[END_REF], Chapter 2, for precise definitions of these notions. We also note that ∆(0) = 1 according to (5.2).

Let λ k be eigenvalues (lying on (-∞, -1) ∪ (1, ∞)) of the operator H. In contrast to Subsection 5.5, we do not distinguish positive and negative eigenvalues in notation and suppose that |λ

1 | ≥ |λ 2 | ≥ • • • > 1. The numbers µ k ∈ (-1, 1) defined by µ k + µ -1 k = 2λ k are zeros of the function ∆(ζ). Since ∆ ∈ N , we have ∞ k=1 (1 -|µ k |) < ∞, (7.4) 
so that the Blaschke product Let us now compare definitions (7.1) and (7.6). We substitute expression (7.7) into (7.1) and take into account formulas (7.3). Thus, using factorization (7.8), we arrive at the following result. 

B(ζ) = ∞ k=1 µ k |µ k | µ k -ζ 1 -µ k ζ , |ζ| < 1, ( 7 
∆(ζ) = AB(ζ) 1 -ζ 2 √ 2πD(ζ) (7.9)
is true.

We emphasize that Theorem 7.1 is a direct consequence of classical results on the factorization of functions in the Nevanlinna class combined with the analytical results of [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF].

According to (7.9) formulas (5.7) and (7.1) provide two different representations of an essentially the same object named the perturbation determinant ∆(z) or the Szegö function D(ζ). In view of (5.5) the first of them is given in terms of arg ∆(λ + i0) while according to (2.30) and (5.19) the second representation is stated in terms of ln |∆(λ + i0)|. Obviously, these two functions are harmonic conjugate.

It is of course possible to rewrite representation (7.1) in terms of the variable z = 2 -1 (ζ + ζ -1 ) ∈ Π. Let us also introduce the weight function w 0 (λ) of the operator H 0 ; it is given by formula (2.31). Taking into account that the function w(cos θ)| sin θ| is even, making the change of variables λ = cos θ and using formulas (7.3), we see that

D(ζ) = 1 -ζ 2 √ 2π exp 1 -ζ 2 2π 1 -1 ln w(λ)/w 0 (λ) 1 -2ζλ + ζ 2 dλ √ 1 -λ 2 (7.10)
or, equivalently,

D(ζ(z)) = ζ(z) 2(z 2 -1) π exp - √ z 2 -1 2π 1 -1 ln w(λ)/w 0 (λ) λ -z dλ √ 1 -λ 2 .
7.2. Let us, finally, obtain the Case sum rules for the pair H 0 , H. Putting together (7.9) and (7.10), we see that 

ln ∆(ζ) -ln B(ζ) -ln A = ζ 2 -1 2π 1 -1 ln w(λ)/w 0 (λ) 1 -2ζλ + ζ 2 dλ √ 1 -λ 2 . ( 7 
(ζ) = ∞ k=1 ln |µ k | + ∞ n=1 n -1 ∞ k=1 (µ n k -µ -n k ) ζ n
where the series over k are convergent due to the condition (7.4). Finally, we use formula (10.11.29) in [START_REF] Erdélyi | Higher transcendental functions[END_REF]:

1 -ζ 2 1 -2ζλ + ζ 2 = 1 + 2 ∞ n=1 T n (λ)ζ n .
Thus the equality of the coefficients at ζ n in the left-and right-hand sides of (7.11) yields the identity

Tr T n (H) -T n (H 0 ) = - 1 2 ∞ k=1 (µ n k -µ -n k ) + n 2π 1 -1 ln w(λ)/w 0 (λ) T n (λ) dλ √ 1 -λ 2 , n = 1, 2, . . . . (7.13)
The trace identities (7.12) and (7.13) known as the Case sum rules are not new. They were obtained by him in [START_REF] Case | Orthogonal polynomials. II[END_REF] and rigorously proven in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF]. We note that, in the paper [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF], the identities (7.12) and (7.13) were first checked for finite rank perturbations H -H 0 and then (7.12) and (7.13) (for n = 1) were used for the proof of the inclusion ∆ ∈ N . 7.3. The Szegö condition (1.8) implies that the weight function w(λ) does not vanish too rapidly as λ → -1 and λ → 1 or, to put it differently, |Ω(λ + i0)| does not tend to infinity too rapidly. The example of the Pollaczek polynomials shows that condition (1.8) may be violated without assumption (1.7).

Recall that the normalized Pollaczek polynomials are defined (see, e.g., Appendix to [START_REF] Szegö | Orthogonal polynomials[END_REF]) by recurrent relations (1.2) with

a n = n + 1 (2n + 2α + 1)(2n + 2α + 3) , b n = - 2β 2n + 2α + 1 ; (7.14)
here the parameters α, β ∈ R and α > |β|. It follows that

a n = 2 -1 -α(2n) -1 + O(n -2 ), b n = -βn -1 + O(n -2 ). ( 7 

.15)

The corresponding normalized weight function is given by the formula

w(λ) = (α + 1/2)e (2θ-π)h(θ) cosh(πh(θ) -1
where h(θ) = (α cos θ + β)(sin θ) -1 and as usual λ = cos θ. It is easy to see that

ln w(λ) = -π(α + β)θ -1 + O(1) (7.16) 
as λ → 1 -0 and a similar formula is true as λ → -1 + 0. It follows from (7.15) that V = H -H 0 is Hilbert-Schmidt, but the series n (a n -1/2) and n b n are divergent; in particular, assumption (1.7) is not satisfied. According to (7.16) the Szegö condition (1.8) is violated for Pollaczek polynomials. This is consistent with the classical theorem of Szegö, Shohat, Geronimus, Kreȋn and Kolmogorov; see, e.g., Theorem 4 in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF]. On the other hand, relation (7.16) implies that

1 -1 ln w(λ)(1 -λ 2 ) 1/2 dλ > -∞.
This is consistent with Theorem 1 in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF].

7.4.

For the continuous operator H = -D 2 + b(x), an analogue of the Szegö condition means that the corresponding weight function w(λ) (for its definition, see, e.g., subsection 6 of § 4.1 in [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF]) does not vanish too rapidly as λ → +0, that is,

1 0 ln w(λ)λ -α dλ > -∞ (7.17) 
where α = 1/2 if b ∈ L 1 (R + ). Note however that we were unable to find this assertion in the literature. Condition (7.17) appears to be sufficiently sharp. Indeed, suppose that b is a nonnegative smooth function such that b(x) = b 0 x -ρ , b 0 > 0, ρ ∈ (0, 2), for large x. It is shown in [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF] that for such potentials ln w(λ) ∼ -w 0 λ -(2-ρ)/(2ρ) , w 0 = w 0 (b 0 , ρ) > 0, as λ → +0. In this case condition (7.17) is satisfied if and only if α < 3/2 -1/ρ. Observe that formula (7.16) for Pollaczek polynomials corresponds to the exponential decay as λ → 0 of the weight function w(λ) for Coulomb repulsive potentials.

The trace class condition for the operator H requires that ρ > 1 which yields (7.17) for any α < 1/2. Similarly, the Hilbert-Schmidt condition for the operator H requires that ρ > 1/2 which yields (7.17) for any α < -1/2. This is very close to the so-called quasi-Szegö condition established in [START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF] for the Jacobi operator H = H 0 + V with a Hilbert-Schmidt perturbation V .

8.

Example. The Jacobi polynomials 8.1. In this section we suppose that the measure dρ(λ) is absolutely continuous and supported on the interval [-1, 1] so that dρ(λ) = w(λ)dλ, λ ∈ (-1, 1), (

and

w(λ) = κ(1 -λ) α (1 + λ) β , α, β > -1. (8.2) 
The weight function w(λ) = w α,β (λ) (as well as all other objects discussed below) depends on α and β, but these parameters are often omitted in notation. The constant

κ = κ α,β = Γ(α + β + 2) 2 α+β+1 Γ(α + 1)Γ(β + 1) (8.3)
is chosen in such a way that the measure (8.1) is normalized, i.e., ρ(R) = ρ((-1, 1)) = 1.

The orthonormal polynomials P n (λ) = P (α,β) n (λ) constructed by the measure (8.1), (8.2) are known as the Jacobi polynomials.

Usually the Jacobi polynomials P n (λ) = P (α,β) n (λ) are normalized (see, e.g., the books [START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Szegö | Orthogonal polynomials[END_REF]) by the condition

P n (1) = Γ(α + 1 + n) Γ(α + 1)Γ(n + 1) . ( 8.4) 
According to formulas (10.8.4) and (10.8.5) in the book [START_REF] Erdélyi | Higher transcendental functions[END_REF] we have

1 -1 |P n (λ)| 2 (1 -λ) α (1 + λ) β dλ = 2 α+β+1 Γ(α + 1 + n)Γ(β + 1 + n) n!(2n + α + β + 1)Γ(α + β + n + 1) =: h n (8.5)
and

P n (z) = k n z n + n(α -β) 2n + α + β z n-1 + • • •
where

k n = Γ(α + β + 2n + 1) 2 n n!Γ(α + β + n + 1) . (8.6) 
For α + β ≤ -1 and n = 0, we have to set

h 0 = 2 α+β+1 Γ(α + 1)Γ(β + 1) Γ(α + β + 2) = κ -1 and k 0 = 1. (8.7) 
It follows from equalities (8.2) and (8.5) that

P n (z) = (κh n ) -1/2 P n (z).
Let H be the Jacobi operator corresponding to the measure (8.1), (8.2). Its coefficients are given by formulas (1.4) which yields Next, we calculate the product (5.20). It follows from (8.8) that

A (n) := n-1 k=0 (2a k ) = k 0 √ h 0 √ h n k n 2 n .
Let us find the limit of the right-hand side as n → ∞. According to formula (1.18.4) in the book [START_REF] Erdélyi | Higher transcendental functions[END_REF], for all p ∈ R we have Γ(n + p) = n p Γ(n)(1 + O(n -1 )). (8.11) Therefore the sequence h n defined by (8.5) satisfies

h n = 2 α+β n -1 + O(n -2
). (8.12)

Let us use additionally (see formula (1.3.11) in [START_REF] Erdélyi | Higher transcendental functions[END_REF]) that Γ(2n + α + β + 1) = π -1/2 2 2n+α+β Γ(n + (α + β + 1)/2)Γ(n + (α + β + 2)/2).

So, we see that the sequence k n defined by (8.6) satisfies k n = 2 α+β 2 n (πn) -1/2 (1 + O(n -1 )). It follows that

lim n→∞ 2 n √ h n k n = √ π2 -(α+β)/2 .
Taking also into account formulas (8.7), we finally find that

A = lim n→∞ A (n) = √ πκ 2 -(α+β)/2 (8. 13 
)
where κ is defined by (8.3). Substituting this expression into (7.1) and using relations (7.3), we find that

D(ζ) = √ κ2 -(α+β+1)/2 (1 -ζ) α+1/2 (1 + ζ) β+1/2 . (8.14)
In particular, for the operator H 0 when α = β = 1/2, we have D 0 (ζ) = (2π) -1/2 (1-ζ 2 ). Setting in (8.14) ζ = 0 and taking into account that, by (7.9), √ 2πD(0) = A, we recover expression (8.13). Now the perturbation determinant (5.1) for the pair H 0 , H can be found from formulas (7.9) where B(ζ) = 1 and (8.13), (8.14). Let us state the results obtained. Recall that the Jost function Ω(z) is related to ∆(z) by formula (5.19). So it follows from Theorem 3.5 that lim n→∞ ζ(z) n P n (z) = κ -1/2 π -1/2 2 (α+β)/2 (1 -ζ(z)) -α-1/2 (1 + ζ(z)) -β-1/2 , z ∈ Π.

Thus we recover the well known asymptotic formula (see, for example, formula (8.21.9) in the book [START_REF] Szegö | Orthogonal polynomials[END_REF]) for the Jacobi polynomials.

Let us now calculate Ω(λ + i0) for λ ∈ (-1, 1); as usual, we set λ = cos θ where θ ∈ (0, π). Then ζ = ζ(λ + i0) = e -iθ belongs to the lower half-circle. It is easy to see that 1 -ζ = 1 -cos θ + i sin θ = 2 sin(θ/2)e i(π-θ)/2 = 2(1 -λ)e i(π-θ)/2 and 1 + ζ = 1 + cos θ -i sin θ = 2 cos(θ/2)e -iθ/2 = 2(1 + λ)e -iθ/2 . Substituting these expressions into formula (8.15) we obtain the following result. Theorem 8.2. Under the assumptions of Theorem 8.1, the perturbation determinant is given on the cut along [-1, 1] by the formula ∆(λ + i0) = 2 (1-α-β)/2 (1 -λ) (1-2α)/4 (1 + λ) (1-2β)/4 e iπξ(λ) , λ ∈ (-1, 1), (8.16) where the spectral shift function ξ(λ) = (2π) -1 (α + β -1) arccos λ -4 -1 (2α -1). (8.17)

Using (5.19), (8.13) and substituting expression (8.16) for |∆(λ + i0)| into formula (2.30), we recover relations (8.2), (8.3) for w(λ). In view of definition (2.22), Theorem 8.2 yields expressions for the limit amplitude and the limit phase. Thus, formula (2.23) means that P n (λ) = 2 1/2 (πκ) -1/2 (1 -λ) -(1+2α)/4 (1 + λ) -(1+2β)/4 × sin (n + α

+ β + 1 2 ) arccos λ - 2α -1 4 π + O(n -1 )
where κ is given by (8.3). This coincides of course with asymptotics (8.21.10) of the Jacobi polynomials in the book [START_REF] Szegö | Orthogonal polynomials[END_REF]. Substituting expressions (8.15) for the perturbation determinant and (8.17) for the spectral shift function into formula (5.7) we obtain a curious identity The asymptotics of Jacobi polynomials at the edge points z = ±1 is different from general results (4.7) and (4.9) of Section 4 because in view of formulas (8.9) and (8.10) the condition (4.1) is not satisfied unless |α| = |β| = 1/2. Indeed, putting together formulas (8.4), (8.11) and (8.12), we see that P n (1) = κ -1/2 Γ(α + 1) -1 2 -(α+β)/2 n α+1/2 1 + O(n -1 ) (8.18) reads as 2a n-1 P n (z) = P (0) n (z) -2α n-2 P n-2 (z) -2b n-1 P n-1 (z)

+ 1 √ z 2 -1 n-2 m=0 (ζ(z) n-m -ζ(z) m-n )(V P (z)) m , n ≥ 2.
It is convenient to rewrite this equation in terms of the sequence

Q n (z) = 2a n-1 ζ(z) n P n (z)
as

Q n (z) = Q (0) n (z) - n-1 m=0
G n,m (z)Q m (z). (A.9)

Here Q are true for all k ∈ Z + .

Proof. Suppose that (A.11) is satisfied for some k ∈ Z + . We have to check that the same estimate (with k replaced by k + 1 in the right-hand side) holds for Q Substituting this estimate into (A.12), we obtain (A.11) for k + 1.

e

  n = P n (H)e 0 (1.5) for all n ∈ Z + . It follows that d(E(λ)e n , e m ) = P n (λ)P m (λ)dρ(λ), whence ∞ -∞ P n (λ)P m (λ)dρ(λ) = δ n,m ;(1.6)

n

  (z) defined by the recurrent equation (1.2) where a n = 1/2, b n = 0 and obeying the conditions P ) = 1 are normalized Chebyshev polynomials of the second kind. They satisfy the equation

Theorem 2 . 3 .= 0

 230 Under the assumptions of Theorem 2.1 put a for n > N . Let f (N ) n (z) be the Jost solution of equation (2.2) with the coefficients a

Theorem 3 . 2 .

 32 Let assumption (1.7) be satisfied. For all n, m ∈ Z + , the functions (R(z)e n , e m ) are continuous in z up to the cut along [-1, 1] except, possibly, the points ±1. Moreover, |(R(z)e n , e m )| ≤ C|ω(z)| -1 |ζ(z)| |n-m| with some positive constant C that does not depend on n, m and on z in compact subsets of clos Π and away from the points ±1.

  ). Then comparing coefficients at e inθ , we get (3.3) for z = λ + i0. Both sides of (3.3) are analytic in z ∈ Π and continuous up to the cut along [-1, 1] according to Theorems 2.1 and 3.1. Therefore relation(3.3) extends to all z.

Lemma 3 . 4 .

 34 Let z ∈ Π. Under assumption (1.7) the sequence g n (z) defined by (3.4) satisfies equation (2.2) and

Theorem 4 . 1 .

 41 Suppose that ∞ n=0 n(|a n -1/2| + |b n |) < ∞. (4.1)

Lemma 4 . 3 .

 43 Under assumption (4.1), the representation

Lemma 4 . 4 .

 44 Let assumption (4.1) hold. Define the sequence g n (±1) by formula (3.4). Then g n (±1) satisfies equation (4.2), g n (±1) = 2(±1) n+1 n(1 + o(1)) as n → ∞ and {f (±1), g(±1)} = 1.

Definition 4 . 7 .

 47 Let assumption (4.1) hold. If Ω(±1) = 0, we say that the operator H has a resonance at z = ±1.

Corollary 4 . 11 .

 411 Under the assumptions of Theorem 4.9 for all n, m ∈ Z + , the representation(R(z)e n , e m ) = -2 (±1) min{n,m} f n (±1)f m (±1) + o(1) √ z 2 -1 as z → ±1 is satisfied.

. 11 )

 11 It follows from (4.10) that b

Example 4 . 15 .

 415 Let a n = 1/2 and b (±) n be given by formulas (4.10) where l > 1/2 and (4.11). Then condition (1.7) is satisfied. The Jacobi operator H (±) has the eigenvalue ±1 with the eigenvector ψ (±) n

5 . 5 . 1 .

 551 The perturbation determinant and the spectral shift function. Trace identities Let H 0 and H be arbitrary self-adjoint operators with a trace class difference V = H -H 0 . Then the perturbation determinant ∆(z) = Det I + V R 0 (z)(5.1) 

=

  b n for n ≤ N and a n > N . Let H (N ) be the Jacobi operator with the matrix elements a (N ) n , b (N )

Theorem 5 . 6 .

 56 Under assumption (1.7) the equality (5.[START_REF] Jost | On the scattering of a particle by a static potential[END_REF]) is true with constant (5.20).Since ∆(z) satisfies (5.2), this gives us the asymptotics of the Jost function at infinity. Corollary 5.7. Under assumption (1.7) we have lim |z|→∞ Ω(z) = A -1 . Thus, we can fix the branch of the function arg Ω(z) for Im z = 0 by the condition lim |z|→∞ arg Ω(z) = 0.

27 )

 27 According to(5.4) we have var |z|=R arg ∆(z) → 0 as R → ∞. It follows from (5.5) that var Cr -,r + arg ∆(z) = 2π(ξ(1-r + )-ξ(1+r -))+var |z-1|=r + arg ∆(z)+var |z+1|=r -arg ∆(z).

7. 1 .

 1 We define the Szegö function D(ζ) by the formula D(ζ) = exp 1 4π π -π e iθ + ζ e iθ -ζ ln w(cos θ)| sin θ| dθ , |ζ| < 1, (7.1)

|e

  ln w(cos θ)| sin θ| |dθ < ∞ or, equivalently, (1.8) be satisfied. This is known as the Szegö condition. Recall the standard Jensen-Poisson representation of functions f (ζ) analytic in the unit disc |ζ| < 1. If f (ζ) is continuous in the closed disc |ζ| ≤ 1 and Im f (0) = 0, then f (iθ + ζ e iθ -ζ ln cos(θ/2)dθ, ln(1 -ζ) = 1 2π π -π e iθ + ζ e iθ -ζ ln | sin(θ/2)|dθ. (7.3) We here fix arg(1 + ζ) and arg(1 -ζ) by the condition arg 1 = 0. Set ∆(ζ) = ∆(z). It follows from Corollary 2.2 that the function ∆(ζ) is analytic in the unit disc and is continuous up to the unit circle with a possible exception of the points ±1. Moreover, according to (2.21), ∆(ζ) = 0 if |ζ| = 1 but ζ = ±1.

. 5 )e

 5 is well defined. The function B(ζ) is continuous in the closed disc |ζ| ≤ 1 except, possibly, the points ±1 and |B(ζ)| = 1 for |ζ| = 1. Note that the proof of the inclusion ∆ ∈ N in [20] relied on the condition (7.4) established under assumption (1.7) earlier in [18]. Let us define the outer function iθ + ζ e iθ -ζ ln | ∆(e iθ )|dθ (7.6) where the function ln | ∆(e iθ )| belongs to L 1 (-π, π) because ∆ ∈ N . This is equivalent to the Szegö condition (1.8) since, by relations (2.30) and (5.19), | ∆(e iθ )| 2 = |∆(cos θ)| 2 = A 2 2 π | sin θ| w(cos θ) , whence 2 ln | ∆(e iθ )| = -ln(w(cos θ)| sin θ|) + ln(2π -1 A 2 sin 2 θ). (7.7) It follows from Theorem 2.9 in [8] that the factorization ∆(ζ) = B(ζ)G(ζ) (7.8) holds. Of course (7.6) is the Jensen-Poisson representation (7.2) of the function f (ζ) = ln ∆(ζ)/B(ζ) , but, since this function is not continuous in the disc |ζ| ≤ 1, its justification relies on the properties of ∆ stated above.

Theorem 7 . 1 .

 71 Let assumption (1.7) be satisfied, and let |ζ| < 1. Set ∆(ζ) = ∆(2 -1 (ζ+ ζ -1 )) where ∆(z) is the perturbation determinant (5.1). Define the Blaschke product B(ζ) by formula (7.5), the Szegö function D(ζ) -by (7.1), and the product A -by (5.20). Then the identity

. 11 ) 2 ∞n - 1

 1121 Let us compare the behavior of both sides of this equation as ζ → 0. Since ∆(0) = 1, setting ζ = 0 and using definition (7.5), we obtain the identity rule of zero order is of course different from the Levinson theorem(5.26).More generally, let us consider the asymptotic expansions of both sides of (7.11) as ζ → 0 and compare the coefficients at the same powers of ζ. According to Theorem 2.13 in[START_REF] Killip | Sum rules for Jacobi matrices and their applications to spectral theory[END_REF] we have ln ∆(ζ) = -n=1 Tr T n (H) -T n (H 0 ) ζ n where T n (λ) = cos(n arccos λ) are the Chebyshev polynomials of the first kind. It directly follows from definition (7.5) that ln B

  + 1)(n + α + 1)(n + β + 1) (2n + α + β + 3)(2n + α + β + 2) 2 n + α + β + 1 2n + α + β + 1(8.8)(if n = 0 and α + β = -1 the last factor here should be replaced by 1) andb n = (α -β) n 2n + α + β -n + 1 2n + 2 + α + β(8.9)(if n = 0 and α + β = 0 this formula should be replaced by b 0 = (β -α)/2). Obviously, for a symmetric weight function (8.2) when α = β, we have b n = 0. In the general case, we have the asymptotic formulasa n = 1/2 + 2 -4 (1 -2α 2 -2β 2 )n -2 + O n -3 , b n = 2 -2 (β 2 -α 2 )n -2 + O n -3 . (8.10)Assumption (1.7) is of course true in this case, and the sequence (2.12) satisfies the condition ρ n = O(n -1 ) as n → ∞. Note that the coefficients at n -2 in (8.10) are not zeros unless |α| = |β| = 1/2.

8. 2 .

 2 Let us calculate the Szegö function defined by (7.1) for the measure (8.1), (8.2). Now we have w(cos θ)|sinθ| = κ 2 α+β+1 | sin(θ/2)| 2α+1 (cos(θ/2)) 2β+1 .

Theorem 8 . 1 .

 81 Let H be the Jacobi operator with the coefficients (8.8), (8.9) or, equivalently, corresponding to the spectral measure (8.1), (8.2). Then the Szegö function D(ζ) and the perturbation determinant ∆(z) are given by formulas(8.14) and∆(z) = (1 -ζ(z)) -α+1/2 (1 + ζ(z)) -β+1/2 . (8.15) 

  dλ = -2π ln(1 + ζ(z)).

nG

  (z) = ζ(z) n P (0)n (z) are bounded uniformly in n in view of (2.8). The matrix elements G n,m (z) are quite to G n,m (z) defined by (A.4). It is only important that G n,m (z) satisfy estimate (A.5).We again solve equation (A.9) by iterations. Put Q n,m (z)Q (k) m (z), k ≥ 0, n ≥ 1

  SH 0 = H 0 S, and it is unitary if both wave operators W + (H, H 0 ) and W -(H, H 0 ) are complete.

The wave operator W ± (H, H 0 ) is called complete if its range coincides with the absolutely continuous subspace of the operator H. The scattering operator

S = W + (H, H 0 ) * W -(H, H 0 ) (6.2)

commutes with H 0 ,

Supported by project Russian Science Foundation 17-11-01126.

where κ is defined by (8.3). This is consistent with asymptotics (4.7) if α = 1/2 and with asymptotics (4.9) if α = -1/2. The results for P n (-1) are quite similar.

8.3.

Let us now discuss stationary representations for the wave operators W ± (H, H 0 ) and the corresponding scattering matrix S(λ). Recall that the operator F was defined by equations (6.5) and (6.6). Using formulas (6.15) and (6.23), we can state the following result.

Theorem 8.3. Under the assumptions of Theorem 8.1, the wave operator W ± (H, H 0 ) is given by the equality (6.21) where Σ ± is the operator of multiplication by the function σ ± (λ) = e ±i((α+β-1) arccos λ-π(α-1/2))/2 .

The scattering matrix satisfies the equation

In view of asymptotics (8.10) the condition (4.1) is not satisfied (unless |α| = |β| = 1/2), and hence the results of Subsections 4.1 and 4.2, as well as Theorem 5.10, are not applicable. Nevertheless representation (8.15) allows us to find the singularity of the perturbation determinant ∆(z) as z → ±1.

It follows from (8.17) that the limits of ξ(λ) as λ → -1 + 0 and as λ → 1 -0 exist and

Recall that ξ(λ) = 0 for |λ| > 1. Thus, the spectral shift function is continuous at the point -1 (at the point 1) if and only if β = 1/2 (α = 1/2). We are not aware of the results of this type for the differential operator Da(x)D + b(x) in the space L 2 (R + ).

Let us, finally, discuss the exceptional case |α| = |β| = 1/2:

0 for all n ∈ Z + and the perturbation V has rank 2. In this case, ∆(z) = 1 -ζ(z) 2 so that the corresponding Jacobi operator has resonances at both points z = 1 and z = -1.

0 for all n ≥ 1 and the perturbation V has rank 1. In this case, ∆(z) = 1 ± ζ(z) so that the corresponding Jacobi operator has a resonance at the point z = ∓1.

Observe that in cases 1 0 and 2 0 , P n (λ) are the normalized Chebyshev polynomials of the second and first kind, respectively.

8.4.

Note that very detailed results on the asymptotics of the orthogonal polynomials were obtained in [START_REF] Kuijlaars | The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on[END_REF] for the weight function

On the contrary, it was shown in [START_REF] Moreno | Asymptotics of orthogonal polynomials for a weight with a jump on [-1, 1[END_REF] that, for the weight function w(λ)χ c (λ) where χ c (λ) = 1 for λ ∈ [-1, 0) and χ c (λ) = c = 1, c > 0, for λ ∈ (0, 1], the classical asymptotics (1.9) of the orthogonal polynomials is significantly changed. For such weight functions, a n -1/2 = O(n -1 ) and b n = O(n -1 ) so that condition (1.7) is not satisfied.

Both papers [START_REF] Kuijlaars | The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on[END_REF] and [START_REF] Moreno | Asymptotics of orthogonal polynomials for a weight with a jump on [-1, 1[END_REF] rely on the approach of [START_REF] Fokas | The isomonodromy approach to matrix models in 2D quantum gravity[END_REF][START_REF] Deift | A steepest descent method for oscillatory Riemann-Hilbert problem[END_REF].

Here we prove Theorems 2.1 and 2.3. We follow rather closely the scheme exposed for the Schrödinger equation in a detailed way in Section 4.1 of [START_REF] Yafaev | Mathematical scattering theory: Analytic theory[END_REF]. Note however that the operator H is obtained by a second order perturbation of the operator H 0 . This circumstance should be taken into account.

Let us reduce equation (2.2) to a discrete Volterra integral equation. Proof. Under assumption (1.7), the sequence φ(z

Then equation (2.11) can be written as

The sums of the terms containing Σ

Next, we study equation (2.11). Let us distinguish the term corresponding to m = n + 1 in its right-hand side. Then equation (2.11) reads as

It is convenient to rewrite this equation in terms of the sequence n = 1 for all n ∈ Z + and

Lemma A.2. The estimates

are true for all k ∈ Z + .

Proof. Suppose that (A.7) is satisfied for some k ∈ Z + . We have to check that the same estimate (with k replaced by k + 1 in the right-hand side) holds for g (k+1) n (z). It follows from (A.5) and (A.7) that

Observe that

and hence, for all N ∈ Z + ,

Substituting this estimate into (A.8), we obtain (A.7) for g

It is now easy to conclude the proof of Theorem 2.1. Set .7) shows that this series converges and, by the recurrent definition (A.6), the functions g n (z) satisfy equation (A.3) equivalent to (2.11). Since every function g

n (z) is analytic in z ∈ Π and is continuous up to the cut [-1, 1] (away from the points ±1), estimate (A.7) guarantees that g n (z) and hence f n (z) possess the same properties.

It also follows from (A.3) and (A.5) that

which in view of (A.2) implies (2.13).

As far as Theorem 2.3 is concerned, we note that all functions g (k)

n (z) are continuous with respect to the cut-off parameter N → ∞, and therefore estimates obtained in the proof of Theorem 2.1 imply relation (2.16).

A.2. Next, we discuss Theorem 3.1. The first assertion is quite similar to Lemma A.1, and so its proof will be omitted.

n=-1 where P -1 (z) = 0, P 0 (z) = 1 satisfy equations (3.2). Then P n (z) satisfy also equations (1.2); in particular, P n (z) is a polynomial of degree n.

We proceed from equation (3.2) and, following the scheme of the previous subsection, distinguish the term corresponding to m = n -1 in the sum (3.2). Then equation (3.2) Let us now set

Estimate (A.11) shows that this series converges and

By the recurrent definition (A.10), the functions Q n (z) satisfy equation (A.9) equivalent to (3.2). This proves estimate (3.1).

A.3. The proof of Theorem 4.1 can be obtained similarly to that of Theorem 2.1 if one observes that

Thus instead of (A.5), we now have a bound The proof of Theorem 4.2 follows the scheme of proof of Theorem 3.1, but now we again have to use estimate (A.13). This estimate implies that the kernels G n,m (z) in (A.9) obey bound (A.14).