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A PROXIMAL APPROACH FOR A CLASS OF MATRIX1

OPTIMIZATION PROBLEMS∗2

ALESSANDRO BENFENATI† , EMILIE CHOUZENOUX‡ , AND JEAN–CHRISTOPHE3

PESQUET‡4

Abstract. In recent years, there has been a growing interest in mathematical models leading5
to the minimization, in a symmetric matrix space, of a Bregman divergence coupled with a regular-6
ization term. We address problems of this type within a general framework where the regularization7
term is split in two parts, one being a spectral function while the other is arbitrary. A Douglas–8
Rachford approach is proposed to address such problems and a list of proximity operators is provided9
allowing us to consider various choices for the fit–to–data functional and for the regularization term.10
Numerical experiments show the validity of this approach for solving convex optimization problems11
encountered in the context of sparse covariance matrix estimation. Based on our theoretical re-12
sults, an algorithm is also proposed for noisy graphical lasso where a precision matrix has to be13
estimated in the presence of noise. The nonconvexity of the resulting objective function is dealt with14
a majorization–minimization approach, i.e. by building a sequence of convex surrogates and solv-15
ing the inner optimization subproblems via the aforementioned Douglas–Rachford procedure. We16
establish conditions for the convergence of this iterative scheme and we illustrate its good numerical17
performance with respect to state–of–the–art approaches.18

Key words. Covariance estimation, Graphical Lasso, matrix optimization, Douglas-Rachford19
method, majorization-minimization, Bregman divergence20
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1. Introduction. In recent years, various applications such as shape classifica-22

tion models [30], gene expression [44], model selection [3, 18], computer vision [33],23

inverse covariance estimation [31, 29, 68, 28, 62], graph estimation [48, 53, 67], social24

network and corporate inter-relationships analysis [2], or brain network analysis [65]25

have led to matrix variational formulations of the form:26

(1) minimize
C∈Sn

f(C)− trace (TC) + g(C),27

where Sn is the set of real symmetric matrices of dimension n × n, T is a given28

n×n real matrix (without loss of generality, it will be assumed to be symmetric), and29

f : Sn →] − ∞,+∞] and g : : Sn →] − ∞,+∞] are lower-semicontinuous functions30

which are proper, in the sense that they are finite at least in one point.31

It is worth noticing that the notion of Bregman divergence [13] gives a particular32

insight into Problem (1). Indeed, suppose that f is a convex function differentiable33

on the interior of its domain int(dom f) 6= ∅. Let us recall that, in Sn endowed with34

the Frobenius norm, the f -Bregman divergence between C ∈ Sn and Y ∈ int(dom f)35

is36

(2) Df (C,Y) = f(C)− f(Y)− trace (T(C−Y)) ,37
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2 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

where T = ∇f(Y) is the gradient of f at Y. Hence, the original problem (1) is38

equivalently expressed as39

(3) minimize
C∈Sn

g(C) +Df (C,Y).40

Solving Problem (3) amounts to computing the proximity operator of g at Y with41

respect to the divergence Df [5, 7] in the space Sn. In the vector case, such kind42

of proximity operator has been found to be useful in a number of recent works re-43

garding, for example, image restoration [14, 8, 9, 70], image reconstruction [71], and44

compressive sensing problems [66, 32].45

In this paper, it will be assumed that f belongs to the class of spectral functions [11,46

Chapter 5, Section 2], i.e., for every permutation matrix Σ ∈ Rn×n,47

(4) (∀C ∈ Sn) f(C) = ϕ(Σd),48

where ϕ : Rn →]−∞,+∞] is a proper lower semi-continuous convex function and d49

is a vector of eigenvalues of C.50

Due to the nature of the problems, in many of the aforementioned applications, g is a51

regularization function promoting the sparsity of C. We consider here a more generic52

class of regularization functions obtained by decomposing g as g0 + g1, where g0 is a53

spectral function, i.e., for every permutation matrix Σ ∈ Rn×n,54

(5) (∀C ∈ Sn) g0(C) = ψ(Σd),55

with ψ : Rn →] −∞,+∞] a proper lower semi–continuous function, d still denoting56

a vector of the eigenvalues of C, while g1 : Sn →] −∞,+∞] is a proper lower semi–57

continuous function which cannot be expressed under a spectral form.58

A very popular and useful example encompassed by our framework is the graph-59

ical lasso (GLASSO) problem, where f is the minus log-determinant function, g160

is a component–wise `1 norm (of the matrix elements), and g0 ≡ 0. Various algo-61

rithms have been proposed to solve Problem (1) in this context, including the popular62

GLASSO algorithm [31] and some of its recent variants [47]. We can also mention the63

dual block coordinate ascent method from [3], the SPICE algorithm [57], the gradi-64

ent projection method in [30], the Refitted CLIME algorithm [17], various algorithms65

[28, 42, 43] based on Nesterov’s smooth gradient approach [50], ADMM approaches66

[68, 58], an inexact Newton method [62], and interior point methods [67, 40]. A re-67

lated model is addressed in [44, 18], with the additional assumption that the sought68

solution can be split as C1 + C2, where C1 is sparse and C2 is low–rank. Finally, let69

us mention the ADMM algorithm from [72], and the incremental proximal gradient70

approach from [54], both addressing Problem (1) when f is the squared Frobenius71

norm, g0 is a nuclear norm, and g1 is an element–wise `1 norm.72

The main goal of this paper is to propose numerical approaches for solving Prob-73

lem (1). Two settings will be investigated, namely (i) g1 ≡ 0, i.e. the whole cost74

function is a spectral one, (ii) g1 6≡ 0. In the former case, some general results75

concerning the Df -proximity operator of g0 are established. In the latter case, a76

Douglas–Rachford optimization method is proposed, which leads us to calculate the77

proximity operators of several spectral functions of interest. We then consider ap-78

plications of our results to the estimation of (possibly low-rank) covariance matrices79

from noisy observations of multivalued random variables. Two variational approaches80

are proposed for estimating the unknown covariance matrix, depending on the prior81

assumptions made on it. We show that the cost function arising from the first for-82

mulation can be minimized through our proposed Douglas-Rachford procedure under83
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A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 3

mild assumptions on the involved regularization functions. The second formulation of84

the problem aims at preserving desirable sparsity properties of the inverse covariance85

(i.e., precision) matrix. We establish that the proposed objective function is a dif-86

ference of convex terms, and we introduce a novel majorization-minimization (MM)87

algorithm to optimize it.88

The paper is organized as follows. Section 2 is devoted to the solution of the89

particular instance of Problem (1) corresponding to g1 ≡ 0. Section 3 describes a a90

proximal to address the problem when g1 6≡ 0. Its implementation is discussed for91

a bunch of useful choices for the involved functionals. Section 4 presents two new92

approaches for estimating covariance matrices from noisy data. Finally, in Section 5,93

numerical experiments illustrate the applicability of the proposed methods, and its94

good performance with respect to the state-of-the-art, in two distinct scenarios.95

Notation: Greek letters usually designate real numbers, bold letters designate96

vectors in a Euclidean space, capital bold letters indicate matrices. The i–th element97

of the vector d is denoted by di. Diag(d) denotes the diagonal matrix whose diagonal98

elements are the components of d. Dn is the cone of vectors d ∈ Rn whose components99

are ordered by decreasing values. The symbol vect(C) denotes the vector resulting100

from a column–wise ordering of the elements of matrix C. The product A⊗B denotes101

the classical Kronecker product of matrices A and B. Let H be a real Hilbert space102

endowed with an inner product 〈·, ·〉 and a norm ‖·‖, the domain of a function f : H →103

]−∞,+∞] is dom f = {x ∈ H | f(x) < +∞}. f is coercive if lim‖x‖→+∞ f(x) = +∞104

and supercoercive if lim‖x‖→+∞ f(x)/‖x‖ = +∞. The Moreau subdifferential of f at105

x ∈ H is ∂f(x) = {t ∈ H | (∀y ∈ H)f(y) > f(x)+〈t, y−x〉}. Γ0(H) denotes the class of106

lower-semicontinuous convex functions fromH to ]−∞,+∞] with a nonempty domain107

(proper). If f ∈ Γ0(H) is (Gâteaux) differentiable at x ∈ H, then ∂f(x) = {∇f(x)}108

where ∇f(x) is the gradient of f at x. If a function f : H →] −∞,+∞] possesses a109

unique minimizer on a set E ⊂ H, it will be denoted by argmin
x∈E

f(x). If there are110

possibly several minimizers, their set will be denoted by Argmin
x∈E

f(x). Given a set E,111

int(E) designates the interior of E and ιE denotes the indicator function of the set,112

which is equal to 0 over this set and +∞ otherwise. In the remainder of the paper, the113

underlying Hilbert space will be Sn, the set of real symmetric matrices equipped with114

the Frobenius norm, denoted by ‖ · ‖F. The matrix spectral norm is denoted by ‖ · ‖S,115

the `1 norm of a matrix A = (Ai,j)i,j is ‖A‖1 =
∑
i,j |Ai,j |. For every p ∈ [1,+∞[,116

Rp (·) denotes the Schatten p–norm, the nuclear norm being obtained when p = 1.117

On denotes the set of orthogonal matrices of dimension n with real elements; S+n and118

S++
n denote the set of real symmetric positive semidefinite, and symmetric positive119

definite matrices, respectively, of dimension n. Id denotes the identity matrix whose120

dimension will be clear from the context. The soft thresholding operator softµ and121

the hard thresholding operator hardµ of parameter µ ∈ [0,+∞[ are given by122

(6) (∀ξ ∈ R) softµ(ξ) =


ξ − µ if ξ > µ

ξ + µ if ξ < −µ
0 otherwise

, hardµ(ξ) =

{
ξ if |ξ| > µ

0 otherwise.
123

2. Spectral Approach. In this section, we show that, in the particular case124

when g1 ≡ 0, Problem (1) reduces to the optimization of a function defined on Rn.125

Indeed, the problem then reads:126

(7) minimize
C∈Sn

f(C)− trace (TC) + g0(C),127

This manuscript is for review purposes only.



4 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

where the spectral forms of f and g0 allow us to take advantage of the eigendecom-128

positions of C and T in order to simplify the optimization problem, as stated below.129

Theorem 2.1. Let t ∈ Rn be a vector of eigenvalues of T and let UT ∈ On130

be such that T = UT Diag(t)U>T . Let f and g0 be functions satisfying (4) and (5),131

respectively, where ϕ and ψ are lower-semicontinuous functions. Assume that domϕ∩132

domψ 6= ∅ and that the function d 7→ ϕ(d)−d>t+ψ(d) is coercive. Then a solution133

to Problem (7) exists, which is given by134

(8) Ĉ = UT Diag(d̂)U>T135

where d̂ is any solution to the following problem:136

(9) minimize
d∈Rn

ϕ(d)− d>t + ψ(d).137

For the sake of clarity, before establishing this result, we recall two useful lemmas138

from linear algebra.139

Lemma 2.2. [46, Chapter 9, Sec. H, p. 340] Let C ∈ Sn and let d ∈ Dn be a140

vector of ordered eigenvalues of this matrix. Let T ∈ Sn and let t ∈ Dn be a vector of141

ordered eigenvalues of this matrix. The following inequality holds:142

(10) trace (CT) 6 d>t.143

In addition, the upper bound is reached if and only if T and C share the same eigen-144

basis, i.e. there exists U ∈ On such that C = U Diag(d)U> and T = U Diag(t)U>.145

The subsequent lemma is also known as the rearrangement inequality :146

Lemma 2.3. [34, Section 10.2, Theorem 368] Let a ∈ Dn and b ∈ Dn. Then, for147

every permutation matrix P of dimension n× n,148

(11) a>Pb 6 a>b.149

We are now ready to prove Theorem 2.1.150

Proof of Theorem 2.1. Due to the assumptions made on f and g0, Problem (7)
can be reformulated as

minimize
d∈Dn,UC∈On

ϕ(d)− trace
(
UC Diag(d)U>CT

)
+ ψ(d).

According to the first claim in Lemma 2.2,

inf
d∈Dn,UC∈On

ϕ(d)− trace
(
UC Diag(d)U>CT

)
+ ψ(d) > inf

d∈Dn
ϕ(d)− d>t̃ + ψ(d),

where t̃ ∈ Dn is the vector of ordered eigenvalues of T = ŨT Diag(t̃)Ũ>T with ŨT ∈151

On. In addition, the last claim in Lemma 2.2 allows us to conclude that the lower152

bound is attained when UC = ŨT. This proves that153

(12) inf
C∈Sn

f(C)− trace (TC) + g0(C) = inf
d∈Dn

ϕ(d)− d>t̃ + ψ(d).154

Let us now show that ordering the eigenvalues is unnecessary for our purposes. Let t ∈155

Rn be a vector of non necessarily ordered eigenvalues of T. Then, T = UT Diag(t)U>T156
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with UT ∈ On and there exists a permutation matrix Q such that t = Qt̃. For every157

vector d ∈ Dn and for every permutation matrix P of dimension n× n, we have then158

ϕ(Pd)− (Pd)>t + ψ(Pd) =ϕ(Pd)− (Pd)>Qt̃ + ψ(Pd)(13)159

=ϕ(d)− (Q>Pd)>t̃ + ψ(d)160

>ϕ(d)− d>t̃ + ψ(d),161162

where the last inequality is a direct consequence of Lemma 2.3. In addition, the163

equality is obviously reached if P = Q. Since every vector in Rn can be expressed as164

permutation of a vector in Dn, we deduce that165

(14) inf
d∈Rn

ϕ(d)− d>t + ψ(d) = inf
d∈Dn

ϕ(d)− d>t̃ + ψ(d).166

Altogether, (12) and (14) lead to167

(15) inf
C∈Sn

f(C)− trace (TC) + g0(C) = inf
d∈Rn

ϕ(d)− d>t + ψ(d).168

Since the function d 7→ ϕ(d) − d>t + ψ(d) is proper, lower-semicontinuous, and169

coercive, it follows from [56, Theorem 1.9] that there exists d̂ ∈ Rn such that170

(16) ϕ(d̂)− d̂>t + ψ(d̂) = inf
d∈Rn

ϕ(d)− d>t + ψ(d).171

In addition, it is easy to check that if Ĉ is given by (8) then172

(17) f(Ĉ)− trace
(
TĈ

)
+ g0(Ĉ) = ϕ(d̂)− d̂>t + ψ(d̂),173

which yields the desired result.174

Before deriving a main consequence of this result, we need to recall some definitions175

from convex analysis [55, Chapter 26] [5, Section 3.4]:176

Definition 2.4. Let H be a finite dimensional real Hilbert space with norm ‖ · ‖177

and scalar product 〈·, ·〉. Let h : H →]−∞,+∞] be a proper convex function.178

• h is essentially smooth if h is differentiable on int(domh) 6= ∅ and179

limn→+∞ ‖∇h(xn)‖ = +∞ for every sequence (xn)n∈N of int(domh) con-180

verging to a point on the boundary of domh.181

• h is essentially strictly convex if h is strictly convex on every convex subset182

of the domain of its subdifferential.183

• h is a Legendre function if it is both essentially smooth and essentially strictly184

convex.185

• If h is differentiable on int(domh) 6= ∅, the h-Bregman divergence is the186

function Dh defined on H2 as187

188

(18) (∀(x, y) ∈ H2)189

Dh(x, y) =

{
h(x)− h(y)− 〈∇h(y), x− y〉 if y ∈ int(dom f)

+∞ otherwise.
190

191

• Assume that h is a lower-semicontinuous Legendre function and that ` is192

a lower-semicontinuous convex function such that int(domh) ∩ dom ` 6= ∅193
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6 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

and either ` is bounded from below or h + ` is supercoercive. Then, the Dh-194

proximity operator of ` is195

proxh` : int(domh)→ int(domh) ∩ dom `(19)196

y 7→ argmin
x∈H

`(x) +Dh(x, y).197
198

In this definition, when h = ‖·‖2/2, we recover the classical definition of the proximity199

operator in [49], which is defined over H, for every function ` ∈ Γ0(H), and that will200

be simply denoted by prox`.201

We will also need the following result:202

Lemma 2.5. Let f be a function satisfying (4) where ϕ : Rn →] −∞,+∞]. Let203

C ∈ Sn and let d ∈ Rn be a vector of eigenvalues of this matrix. The following hold:204

(i) C ∈ dom f if and only if d ∈ domϕ;205

(ii) C ∈ int(dom f) if and only if d ∈ int(domϕ).206

Proof. (i) obviously holds since f is a spectral function.207

Let us now prove (ii). If C ∈ int(dom f), then d ∈ domϕ. In addition, there exists208

ρ ∈]0,+∞[ such that, for every C′ ∈ Sn, if ‖C′ − C‖F 6 ρ, then C′ ∈ dom f . Let209

UC ∈ On be such that C = UC Diag(d)U>C and let us choose C′ = UC Diag(d′)U>C210

with d′ ∈ Rn. Since C and C′ share the same eigenbasis,211

(20) ‖C′ −C‖F = ‖d′ − d‖.212

Hence, for any d′ ∈ Rn such that ‖d′ − d‖ 6 ρ, C′ ∈ dom f , hence d′ ∈ domϕ. This213

shows that d ∈ int(domϕ).214

Conversely, let us assume that d = (di)16i6n ∈ int(domϕ). Without loss of generality,215

it can be assumed that d ∈ Dn. There thus exists ρ ∈]0,+∞[ such that for every216

d′ = (d′i)16i6n ∈ Dn, if217

(21) (∀i ∈ {1, . . . , n}) |d′i − di| 6 ρ,218

then d′ ∈ domϕ. Furthermore, let C′ be any matrix in Sn such that219

(22) ‖C′ −C‖F 6 ρ220

and let d′ = (d′i)16i6n ∈ Dn be a vector of eigenvalues of C. It follows from Weyl’s221

inequality [46] that222

(23) (∀i ∈ {1, . . . , n}) |d′i − di| 6 ‖C′ −C‖S 6 ‖C′ −C‖F 6 ρ.223

We deduce that d′ ∈ domϕ and, consequently C′ ∈ dom f . This shows that C ∈224

int(dom f).225

As an offspring of Theorem 2.1, we then get:226

Corollary 2.6. Let f and g0 be functions satisfying (4) and (5), respectively,227

where ϕ ∈ Γ0(Rn) is a Legendre function, ψ ∈ Γ0(Rn), int(domϕ) ∩ domψ 6= ∅, and228

either ψ is bounded from below or ϕ + ψ is supercoercive. Then, the Df -proximity229

operator of g0 is defined at every Y ∈ Sn such that Y = UY Diag(y)U>Y with UY ∈230

On and y ∈ int(domϕ), and it is expressed as231

proxfg0(Y) = UY Diag(proxϕψ(y))U>Y.(24)232
233
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Proof. According to the properties of spectral functions [38, Corollary 2.7],234

(25) ϕ ∈ Γ0(Rn) (resp. ψ ∈ Γ0(Rn)) ⇒ f ∈ Γ0(Sn) (resp. g0 ∈ Γ0(Sn)).235

In addition, according to [38, Corollaries 3.3&3.5], since ϕ is a Legendre function,236

f is a Legendre function. It is also straightforward to check that, when ψ is lower237

bounded, then g0 is lower bounded and, when ϕ + ψ is supercoercive, then f + g0238

is supercoercive. It also follows from Lemma 2.5 that int(domϕ) ∩ domψ 6= ∅ ⇔239

int(dom f) ∩ dom g0 6= ∅.240

The above results show that the Df -proximity operator of g0 is properly defined241

as follows:242

proxfg0 : int(dom f)→ int(dom f) ∩ dom g0(26)243

Y 7→ argmin
C∈Sn

g0(C) +Df (C,Y).244

245

This implies that computing the Df -proximity operator of g0 at Y ∈ int(dom f)246

amounts to finding the unique solution to Problem (7) where T = ∇f(Y). Let Y =247

UY Diag(y)U>Y with UY ∈ On and y ∈ Rn. By Lemma 2.5(ii), Y ∈ int(dom f) ⇔248

y ∈ int(dom(ϕ)) and, according to [38, Corollary 3.3], T = UY Diag(t)U>Y with249

t = ∇ϕ(y).250

Furthermore, as ϕ is essentially strictly convex, it follows from [4, Theorem 5.9(ii)]251

that t = ∇ϕ(y) ∈ int(dom f∗), which according to [6, Theorem 14.17] is equivalent252

to the fact that d 7→ ϕ(d)− d>t is coercive. So, if ψ is lower-bounded, d 7→ ϕ(d)−253

d>t+ψ(d) is coercive. The same conclusion obviously holds if ϕ+ψ is supercoercive.254

This shows that the assumptions of Theorem 2.1 are met. Consequently, applying255

this theorem yields256

(27) proxfg0(Y) = UY Diag(d̂)U>Y,257

where d̂ minimizes258

(28) d 7→ ϕ(d)− d>t + ψ(d)259

or, equivalently,260

(29) d 7→ ψ(d) +Dϕ(d,y).261

This shows that d̂ = proxϕψ(y).262

Remark 2.7. Corollary 2.6 extends known results concerning the case when f =263

‖ · ‖F/2 [16]. A rigorous derivation of the proximity operator of spectral functions264

in Γ0(Sn) for the standard Frobenius metric can be found in [6, Corollary 24.65].265

Our proof allows us to recover a similar result by adopting a more general approach.266

In particular, it is worth noticing that Theorem 2.1 does not require any convexity267

assumption.268

3. Proximal Iterative Approach. Let us now turn to the more general case269

of the resolution of Problem (1) when f ∈ Γ0(Sn) and g1 6≡ 0. Proximal splitting270

approaches for finding a minimizer of a sum of non-necessarily smooth functions have271

attracted a large interest in the last years [24, 51, 37, 15]. In these methods, the272

functions can be dealt with either via their gradient or their proximity operator de-273

pending on their differentiability properties. In this section, we first list a number of274
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8 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

proximity operators of scaled versions of f − trace (T ·) + g0, where f and g0, satisfy-275

ing (4) and (5), are chosen among several options that can be useful in a wide range276

of practical scenarios. Based on these results, we then propose a proximal splitting277

Douglas-Rachford algorithm to solve Problem (1).278

3.1. Proximity Operators. By definition, computing the proximity operator279

of γ (f − trace (T ·) + g0) with γ ∈]0,+∞[ at C ∈ Sn amounts to find a minimizer of280

the function281

(30) C 7→ f(C)− trace (TC) + g0(C) +
1

2γ
‖C−C‖2F282

over Sn. The (possibly empty) set of such minimizers is denoted by283

Proxγ(f−trace(T ·)+g0)(C). As pointed out in Section 2, if f + g0 ∈ Γ0(Sn) then this284

set is a singleton {proxγ(f−trace(T ·)+g0)(C)}. We have the following characterization285

of this proximity operator:286

Proposition 3.1. Let γ ∈]0,+∞[ and C ∈ Sn. Let f and g0 be functions sat-287

isfying (4) and (5), respectively, where ϕ ∈ Γ0(Rn) and ψ is a lower-semicontinuous288

function such that domϕ ∩ domψ 6= ∅. Let λ ∈ Rn and U ∈ On be such that289

C + γT = U Diag(λ)U>.290

(i) If ψ is lower bounded by an affine function then Proxγ(ϕ+ψ) (λ) 6= ∅ and, for291

every λ̂ ∈ Proxγ(ϕ+ψ) (λ),292

(31) U Diag(λ̂)U> ∈ Proxγ(f−trace(T ·)+g0)(C).293

(ii) If ψ is convex, then294

(32) proxγ(f−trace(T ·)+g0)(C) = U Diag
(

proxγ(ϕ+ψ) (λ)
)
U>.295

Proof. (i): Since it has been assumed that f and g0 are spectral functions, we296

have297

(33) (∀C ∈ Sn) f(C) + g0(C) = ϕ(d) + ψ(d),298

where d ∈ Rn is a vector of the eigenvalues of C. It can be noticed that minimizing299

(30) is obviously equivalent to minimize f̃ − γ−1 trace
(
(C + γT

)
·) + g0 where f̃ =300

f + ‖ · ‖2F/(2γ). Then301

(34) f̃(C) = ϕ̃(d),302

where ϕ̃ = ϕ+‖·‖2/(2γ). Since we have assumed that ϕ ∈ Γ0(Rn), ϕ̃ is proper, lower-303

semicontinuous, and strongly convex. As ψ is lower bounded by an affine function, it304

follows that305

(35) d 7→ ϕ̃(d)− γ−1λ>d + ψ(d)306

is lower bounded by a strongly convex function and it is thus coercive. In addition,307

dom ϕ̃ = domϕ, hence dom ϕ̃∩domψ 6= ∅. Let us now apply Theorem 2.1. Let λ̂ be308

a minimizer of (35). It can be claimed that Ĉ = U Diag(λ̂)U> is a minimizer of (30).309

On the other hand, minimizing (35) is equivalent to minimize γ(ϕ+ ψ) + 1
2‖ · −λ‖

2,310

which shows that λ̂ ∈ Proxγ(ϕ+ψ) (λ).311

This manuscript is for review purposes only.



A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 9

(ii): If ψ ∈ Γ0(Rn), then it is lower bounded by an affine function [6, Theo-312

rem 9.20]. Furthermore, ϕ + ψ ∈ Γ0(Rn) and the proximity operator of γ (ϕ+ ψ) is313

thus single valued. On the other hand, we also have γ (f − trace (T ·) + g0) ∈ Γ0(Sn)314

[38, Corollary 2.7], and the proximity operator of this function is single valued too.315

The result directly follows from (i).316

We will next focus on the use of Proposition 3.1 for three choices for f , namely the317

classical squared Frobenius norm, the minus log det functional, and the Von Neumann318

entropy, each choice being coupled with various possible choices for g0.319

3.1.1. Squared Frobenius Norm. A suitable choice in Problem (1) is f =320

‖ · ‖2F/2 [72, 54, 19]. The squared Froebenius norm is the spectral function associated321

with the function ϕ = ‖ · ‖2/2. It is worth mentioning that this choice for f allows us322

to rewrite the original Problem (1) under the form (3), where323

(36)
(
∀(C,Y) ∈ S2n

)
Df (C,Y) =

1

2
‖C−Y‖2F.324

We have thus re-expressed Problem (1) as the determination of a proximal point of325

function g at T in the Frobenius metric.326

Table 1 presents several examples of spectral functions g0 and the expression of the327

proximity operator of γ(ϕ+ ψ) with γ ∈]0,+∞[. These expressions were established328

by using the properties of proximity operators of functions defined on Rn (see [20,329

Example 4.4] and [24, Tables 10.1 and 10.2]).330

331

Remark 3.2. Another option for g0 is to choose it equal to µ‖ · ‖S where µ ∈332

]0,+∞[. For every γ ∈]0,+∞[, we have then333

(37) (∀λ ∈ Rn) proxγ(ϕ+ψ) (λ) = prox µγ
1+γ ‖·‖+∞

(
λ

1 + γ

)
,334

where ‖ · ‖+∞ is the infinity norm of Rn. By noticing that ‖ · ‖+∞ is the conjugate335

function of the indicator function of B`1 , the unit `1 ball centered at 0 of Rn, and336

using Moreau’s decomposition formula, [6, Proposition 24.8(ix)] yields337

(38) (∀λ ∈ Rn) proxγ(ϕ+ψ) (λ) =
1

1 + γ

(
λ− µγ projB`1

(
λ

µγ

))
.338

The required projection onto B`1 can be computed through efficient algorithms [61,339

25].340

3.1.2. Logdet Function. Another popular choice for f is the negative logarith-341

mic determinant function [30, 58, 44, 48, 3, 31, 67, 18], which is defined as follows342

(39) (∀C ∈ Sn) f(C) =

{
− log det(C) if C ∈ S++

n

+∞ otherwise.
343

The above function satisfies property (5) with344

(40)
(
∀λ = (λi)16i6n ∈ Rn

)
ϕ(λ) =

−
n∑
i=1

log(λi) if λ ∈]0,+∞[n

+∞ otherwise.

345
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10 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

Table 1
Proximity operators of γ( 1

2
‖ · ‖2F + g0) with γ > 0 evaluated at symmetric matrix with vector of

eigenvalues λ = (λi)16i6n. For the inverse Schatten penalty, the function is set to +∞ when the
argument C is not positive definite. E1 denotes the set of matrices in Sn with Frobenius norm less
than or equal to α and E2 the set of matrices in Sn with eigenvalues between α and β. In the last
line, the i-th component of the proximity operator is obtained by searching among the nonnegative
roots of a third order polynomial those minimizing λ′i 7→

1
2

(λ′i−|λi|)2 +γ
(
1
2

(λ′i)
2 +µ log((λ′i)

2 +ε)
)
.

g0(C), µ > 0 proxγ(ϕ+ψ)(λ)

Nuclear norm
(

soft µγ
γ+1

(
λi
γ+1

))
16i6nµR1(C)

Frobenius norm (
1− γµ

‖λ‖

)
λ

1+γ if ‖λ‖ > γµ and 0 otherwise
µ‖C‖F

Squared Frobenius norm λ

1 + γ (1 + 2µ)µ‖C‖2F
Schatten 3–penalty

(6γµ)−1
(

sign (λi)
√

(γ + 1)2 + 12|λi|γµ− γ − 1
)
16i6nµR3

3(C)

Schatten 4–penalty
(8γµ)−1/3

(
3

√
λi +

√
λ2i + ζ +

3

√
λi −

√
λ2i + ζ

)
16i6n

with ζ = (γ+1)3

27γµµR4
4(C)

Schatten 4/3–penalty 1
1+γ

(
λi + 4γµ

3 3
√

2(1+γ)

(
3

√√
λ2i + ζ − λi − 3

√√
λ2i + ζ + λi

))
16i6n

µR4/3
4/3(C) with ζ = 256(γµ)3

729(1+γ)

Schatten 3/2–penalty
1

1+γ

(
λi + 9γ2µ2

8(1+γ) sign(λi)
(

1−
√

1 + 16(1+γ)
9γ2µ2 |λi|

))
16i6nµR3/2

3/2(C)

Schatten p–penalty
(

sign(λi)di
)
16i6n

µRpp(C), p > 1 with (∀i ∈ {1, . . . , n}) di > 0 and µγpdp−1i + (γ + 1)di = λi

Inverse Schatten p–penalty
(
di
)
16i6n

µRpp(C−1), p > 0 with (∀i ∈ {1, . . . , n}) di > 0 and (γ + 1)dp+2
i − λidp+1

i = µγp

Bound on the Frobenius norm
α

λ

‖λ‖
if ‖λ‖ > α(1 + γ) and

λ

1 + γ
otherwise, α ∈ [0,+∞[

ιE1(C)

Bounds on eigenvalues
(min(max(λi/(γ + 1), α), β))16i6n, [α, β] ⊂ [−∞,+∞]

ιE2
(C)

Rank
(

hard√
2µγ
1+γ

(
λi

1 + γ

))
16i6n

µ rank(C)

Cauchy ∈
{

(sign(λi)di)16i6n | (∀i ∈ {1, . . . , n}) di > 0 and
µ log det(C2 + εId), ε > 0 (γ + 1)d3i − |λi|d2i +

(
2γµ+ ε(γ + 1)

)
di = |λi|ε

}

Actually, for a given positive definite matrix, the value of function (39) simply reduces346

to the Burg entropy of its eigenvalues. Hereagain, if Y ∈ S++
n and T = −Y−1, we347

can rewrite Problem (1) under the form (3), so that it becomes equivalent to the348

computation of the proximity operator of g with respect to the Bregman divergence349

given by350

(41) (∀C ∈ Sn) Df (C,Y) =

log
(det(Y)

det(C)

)
+ trace

(
Y−1C

)
− n if C ∈ S++

n

+∞ otherwise.
351

In Table 2, we list some particular choices for g0, and provide the associated352

closed form expression of the proximity operator proxγ(ϕ+ψ) for γ ∈]0,+∞[, where ϕ353

is defined in (40). These expressions were derived from [24, Table 10.2].354
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Remark 3.3. Let g0 be any of the convex spectral functions listed in Table 2. Let355

W be an invertible matrix in Rn×n, and let C ∈ Sn From the above results, one can356

deduce the minimizer of C 7→ γ(f(C) + g0(WCW>)) + 1
2‖WCW> − C‖2F where357

γ ∈]0,+∞[. Indeed, by making a change of variable and by using basic properties of358

the log det function, this minimizer is equal to W−1 proxγ(f+g0)(C)(W−1)>.359

Table 2
Proximity operators of γ(f + g0) with γ > 0 and f given by (39), evaluated at a symmetric

matrix with vector of eigenvalues λ = (λi)16i6n. For the inverse Schatten penalty, the function
is set to +∞ when the argument C is not positive definite. E2 denotes the set of matrices in Sn
with eigenvalues between α and β. In the last line, the i-th component of the proximity operator
is obtained by searching among the positive roots of a fourth order polynomial those minimizing
λ′i 7→

1
2

(λ′i − λi)2 + γ
(
µ log((λ′i)

2 + ε)− log λ′i
)
.

g0(C), µ > 0 proxγ(ϕ+ψ)(λ)

Nuclear norm 1
2

(
λi − γµ+

√
(λi − γµ)2 + 4γ

)
16i6nµR1(C)

Squared Frobenius norm 1

2(2γµ+ 1)

(
λi +

√
λ2i + 4γ(2γµ+ 1)

)
16i6nµ‖C‖2F

Schatten p–penalty
(
di
)
16i6n

µRpp(C), p > 1 with (∀i ∈ {1, . . . , n}) di > 0 and µγpdpi + d2i − λidi = γ

Inverse Schatten p–penalty
(
di
)
16i6n

µRpp(C−1), p > 0 with (∀i ∈ {1, . . . , n}) di > 0 and dp+2
i − λidp+1

i − γdpi = µγp

Bounds on eigenvalues
(

min
(

max
(

1
2

(
λi +

√
λ2i + 4γ

)
, α
)
, β
))

16i6n
, [α, β] ⊂ [0,+∞]

ιE2
(C)

Cauchy ∈
{

(di)16i6n | (∀i ∈ {1, . . . , n}) di > 0 and
µ log det(C2 + εId), ε > 0 d4i − λd3i +

(
ε+ γ(2µ− 1)

)
d2i − ελidi = γε

}
3.1.3. Von Neumann Entropy. Our third example is the negative Von Neu-360

mann entropy, which appears to be useful in some quantum mechanics problems [10].361

It is defined as362

(42) (∀C ∈ Sn) f(C) =

{
trace (C log(C)) if C ∈ S+n
+∞ otherwise.

363

In the above expression, if C = U Diag(λ)U> with λ = (λi)16i6n ∈]0,+∞[n and364

U ∈ On, then log(C) = U Diag
(
(log λi)16i6n

)
U>. The logarithm of a symmetric365

definite positive matrix is uniquely defined and the function C 7→ C log(C) can be366

extended by continuity on S+n similarly to the case when n = 1. Thus, f is the spectral367

function associated with368

(43)
(
∀λ = (λi)16i6n ∈ Rn

)
ϕ(λ) =


n∑
i=1

λi log(λi) if λ ∈ [0,+∞[n

+∞ otherwise.

369

Note that the Von Neumann entropy defined for symmetric matrices is simply equal370

to the well–known Shannon entropy [27] of the input eigenvalues. With this choice371

for function f , by setting T = log(Y) + Id where Y ∈ S++
n , Problem (1) can be372

recast under the form (3), so that it becomes equivalent to the computation of the373
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12 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

proximity operator of g with respect to the Bregman divergence associated with the374

Von Neumann entropy:375

376

(∀C ∈ Sn) Df (C,Y) =377 {
trace (C log(C)−Y log(Y)− (log(Y) + Id) (C−Y)) if C ∈ S+n
+∞ otherwise.

378

379

We provide in Table 3 a list of closed form expressions of the proximity operator380

of γ(f + g0) for several choices of the spectral function g0.381

Table 3
Proximity operators of γ(f+g0) with γ > 0 and f given by (42), evaluated at a symmetric matrix

with vector of eigenvalues λ = (λi)16i6n. E2 denotes the set of matrices in Sn with eigenvalues
between α and β. W(·) denotes the W-Lambert function [26].

g0(C), µ > 0 proxγ(ϕ+ψ)(λ)

Nuclear norm
γ
(

W
(

1
γ exp

(
λi
γ − µ− 1

)))
16i6nµR1(C)

Squared Frobenius norm γ
2µγ+1

(
W
(

2µγ+1
γ exp

(
λi
γ − 1

)))
16i6nµ‖C‖2F

Schatten p–penalty
(
di
)
16i6n

µRpp(C), p > 1 with (∀i ∈ {1, . . . , n}) di > 0 and pµγdp−1i + di + γ log di + γ = λi

Bounds on eigenvalues
(

min
(

max
(
γW

(
1
γ exp

(
λi
γ − 1

))
, α
)
, β
))

16i6n
, [α, β] ⊂ [0,+∞]

ιE2
(C)

Rank (di)16i6n with

µ rank(C) (∀i ∈ {1, . . . , n}) di =


ρi if ρi > χ

0 or ρi if ρi = χ

0 otherwise

and

{
χ =

√
γ(γ + 2µ)− γ,

ρi = γW
(

1
γ exp

(
λi
γ − 1

))

3.2. Douglas-Rachford Algorithm. We now propose a Douglas-Rachford382

(DR) approach ([41, 24, 23]) for numerically solving Problem (1). The DR method383

minimizes the sum of f − trace (T·) + g0 and g1 by alternately computing proxim-384

ity operators of each of these functions. Proposition 3.1 allows us to calculate the385

proximity operator of γ(f − trace (T·) + g0) with γ ∈]0,+∞[, by possibly using the386

expressions listed in Tables 1, 2, and 3. Since g1 is not a spectral function, proxγg1387

has to be derived from other expressions of proximity operators. For instance, if g1 is388

a separable sum of functions of its elements, e.g. g = ‖ · ‖1, standard expressions for389

the proximity operator of vector functions can be employed [20, 24].1390

The computations to be performed are summarized in Algorithm 1. We state a391

convergence theorem in the matrix framework, which is an offspring of existing results392

in arbitrary Hilbert spaces (see, for example, [24] and [52, Proposition 3.5]).393

Theorem 3.4. Let f and g0 be functions satisfying (4) and (5), respectively,394

where ϕ ∈ Γ0(Rn) and ψ ∈ Γ0(Rn). Let g1 ∈ Γ0(Sn) be such that f−trace (T·)+g0+g1395

is coercive. Assume that the intersection of the relative interiors of the domains of f+396

g0 and g1 is non empty. Let (α(k))k>0 be a sequence in [0, 2] such that
∑+∞
k=0 α

(k)(2−397

α(k)) = +∞. Then, the sequences (C(k+ 1
2 ))k>0 and

(
proxγg1(2C(k+ 1

2 ) − C(k))
)
k>0

398

generated by Algorithm 1 converge to a solution to Problem (1) where g = g0 + g1.399

1See also http://proximity-operator.net.
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Algorithm 1 Douglas–Rachford Algorithm for solving Problem (1)

1: Let T be a given matrix in Sn, set γ > 0 and C(0) ∈ Sn.
2: for k = 0, 1, . . . do
3: Diagonalize C(k) + γT, i.e. find U(k) ∈ On and λ(k) ∈ Rn such that

C(k) + γT = U(k) Diag(λ(k))(U(k))>

4: d(k+ 1
2 ) ∈ Proxγ(ϕ+ψ)

(
λ(k)

)
5: C(k+ 1

2 ) = U(k) Diag(d(k+ 1
2 ))(U(k))>

6: Choose α(k) ∈ [0, 2]

7: C(k+1) ∈ C(k) + α(k)
(

Proxγg1(2C(k+ 1
2 ) −C(k))−C(k+ 1

2 )
)

.

8: end for

We have restricted the above convergence analysis to the convex case. Note however400

that recent convergence results for the DR algorithm in a non-convex setting are401

available in [1, 39] for specific choices of the involved functionals.402

3.3. Positive Semi-Definite Constraint. Instead of solving Problem (1), one403

may be interested in:404

(44) minimize
C∈S+

n

f(C)− trace (CT) + g(C),405

when dom f ∩ dom g 6⊂ S+n . This problem can be recast as minimizing over Sn406

f − trace (·T) + g̃0 + g1 where g̃0 = g0 + ιS+
n

. We are thus coming back to the original407

formulation where g̃0 has been substituted for g0. In order to solve this problem with408

the proposed proximal approach, a useful result is stated below.409

Proposition 3.5. Let γ ∈]0,+∞[ and C ∈ Sn. Let f and g0 be functions satis-410

fying (4) and (5), respectively, where ϕ ∈ Γ0(Rn) and ψ ∈ Γ0(Rn). Assume that411

(45)
(
∀λ′ = (λ′i)16i6n ∈ Rn

)
ϕ(λ′) + ψ(λ′) =

n∑
i=1

ρi(λ
′
i)412

where, for every i ∈ {1, . . . , n}, ρi : R→]−∞,+∞] is such that dom ρi∩ [0,+∞[6= ∅.413

Let λ = (λi)16i6n ∈ Rn and U ∈ On be such that C + γT = U Diag(λ)U>. Then414

(46) proxγ(f−trace(T ·)+g̃0)(C) = U Diag
((

max(0,proxγρi(λi))
)
16i6n

)
U>.415

Proof. Expression (46) readily follows from Proposition 3.1(ii) and [21, Proposi-416

tion 2.2].417

4. Application to Covariance Matrix Estimation. Estimating the covari-418

ance matrix of a random vector is a key problem in statistics, signal processing over419

graphs, and machine learning. Nonetheless, in existing optimization techniques, little420

attention is usually paid to the presence of noise corrupting the available observations.421

We show in this section how the results obtained in the previous sections can be used422

to tackle this problem in various contexts.423
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14 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

4.1. Model and Proposed Approaches. Let S ∈ S+n be a sample estimate of424

a covariance matrix Σ which is assumed to be decomposed as425

(47) Σ = Y∗ + σ2Id426

where σ ∈ [0,+∞[ and Y∗ ∈ S+n may have a low-rank structure. Our objective in427

this section will be to propose variational methods to provide an estimate of Y∗ from428

S by assuming that σ is known. Such a problem arises when considering the following429

observation model [59]:430

(48) (∀i ∈ {1, . . . , N}) x(i) = As(i) + e(i)
431

where A ∈ Rn×m with m 6 n and, for every i ∈ {1, . . . , N}, s(i) ∈ Rm and e(i) ∈ Rn432

are realizations of mutually independent identically distributed Gaussian multivalued433

random variables with zero mean and covariance matrices P ∈ S++
m and σ2Id, re-434

spectively. This model has been employed for instance in [60, 63] in the context of435

the “Relevant Vector Machine problem”. The covariance matrix Σ of the noisy input436

data
(
x(i)
)
16i6N

takes the form (47) with Y∗ = APA>. On the other hand, a simple437

estimate of Σ from the observed data
(
x(i)
)
16i6N

is438

(49) S =
1

N

N∑
i=1

x(i)
(
x(i)
)>
.439

Covariance-based model. A first estimate Ŷ of Y∗ is given by440

(50) Ŷ = argmin
Y∈S+

n

1

2
‖Y − S + σ2Id‖2F + g0(Y) + g1(Y),441

where S is the empirical covariance matrix, g0 satisfies (5) with ψ ∈ Γ0(Rn), g1 ∈442

Γ0(Sn), and the intersection of the relative interiors of the domains of g0 and g1 is443

assumed to be non empty. A particular instance of this model with σ = 0, g0 =444

µ0R1, g1 = µ1‖ · ‖1, and (µ0, µ1) ∈ [0,+∞[2 was investigated in [72] and [54] for445

estimating sparse low-rank covariance matrices. In the latter reference, an application446

to real data processing arising from protein interaction and social network analysis447

is presented. One can observe that Problem (50) takes the form (44) by setting448

f = 1
2‖ · ‖

2
F and T = S−σ2Id. This allows us to solve (50) with Algorithm 1. Since it449

is assumed that g0 satisfies (5), the proximity step on f + g0 + ιS+
n

can be performed450

by employing Proposition 3.5 and formulas from Table 1. The resulting Douglas–451

Rachford procedure can thus be viewed as an alternative to the methods developed452

in [54] and [72]. Let us emphasize that these two algorithms were devised to solve an453

instance of (50) corresponding to the aforementioned specific choices for g0 and g1,454

while our approach leaves more freedom in the choice of the regularization functions.455

Precision-based model. An alternative strategy consists of focusing on the esti-456

mation of the inverse of the covariance matrix, i.e. the precision matrix C∗ = (Y∗)−1457

by assuming that Y∗ ∈ S++
n but may have very small eigenvalues in order to model458

a possible low-rank structure. Tackling the problem from this viewpoint leads us to459

propose the following penalized negative log-likelihood cost function:460

(51) (∀C ∈ Sn) F(C) = f(C) + TS (C) + g0(C) + g1(C)461
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where462

(∀C ∈ Sn) f(C) =

{
log det

(
C−1 + σ2Id

)
if C ∈ S++

n

+∞ otherwise,
(52)463

(∀C ∈ Sn) TS(C) =

{
trace

((
Id + σ2C

)−1
CS
)

if C ∈ S+n
+∞ otherwise,

(53)464

465

g0 ∈ Γ0(Sn) satisfies (5) with ψ ∈ Γ0(Rn), and g1 ∈ Γ0(Sn). Typical choices of466

interest for the latter two functions are467

(54) (∀C ∈ Sn) g0(C) =

{
µ0R1(C−1) if C ∈ S++

n

+∞ otherwise,
468

and g1 = µ1‖ · ‖1 with (µ0, µ1) ∈ [0,+∞[2. The first function serves to promote469

a desired low-rank property by penalizing small eigenvalues of the precision matrix,470

whereas the second one enforces the sparsity of this matrix as it is usual in graph471

inference problems. This constitutes a main difference with respect to the covariance-472

based model which is more suitable to estimate sparse covariance matrices. Note that473

the standard Graphical Lasso framework [31] is then recovered by setting σ = 0 and474

µ0 = 0. The advantage of our formulation is that it allows us to consider more flexible475

variational models while accounting for the presence of noise corrupting the observed476

data. The main difficulty however is that Algorithm 1 cannot be directly applied to477

minimize F . In Subsection 4.2, we will study in more details the properties of the478

cost function. This will allow us to derive a novel optimization algorithm making use479

of our previously developed Douglas-Rachford scheme for its inner steps480

4.2. Study of Objective Function F . The following lemma will reveal useful481

in our subsequent analysis.482

Lemma 4.1. Let σ ∈]0,+∞[. Let h : ]0, σ−2[→ R be a twice differentiable function483

and let484

(55) u : [0,+∞[→ R : λ 7→ λ

1 + σ2λ
.485

The composition h ◦ u is convex on ]0,+∞[ if and only if486

(56) (∀υ ∈]0, σ−2[) ḧ(υ)(1− σ2υ)− 2σ2ḣ(υ) > 0,487

where ḣ (resp. ḧ) denotes the first (resp. second) derivative of h.488

Proof. The result directly follows from the calculation of the second-order deriva-489

tive of h ◦ u.490

Let us now note that f is a spectral function fulfilling (4) with491

(57)
(
∀λ = (λi)16i6n ∈ Rn

)
ϕ(λ) =

−
n∑
i=1

log
(
u(λi)

)
if λ ∈]0,+∞[n

+∞ otherwise,

492

where u is defined by (55). According to Lemma 4.1 (with h = − log), f ∈ Γ0(Sn).493

Thus, the assumptions made on g0 and g1, allow us to deduce that f + g0 + g1 is494

convex and lower-semicontinuous on Sn.495

Let us now focus on the properties of the second term in (51).496
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16 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

Lemma 4.2. Let S ∈ S+n . The function TS in (53) is concave on S+n .497

Proof. By using differential calculus rules in [45], we will show that the Hessian498

of −TS evaluated at any matrix in S++
n is a positive semidefinite operator. In order499

to lighten our notation, for every invertible matrix C, let us define M = C−1 + σ2Id.500

Then, the first-order differential of TS at every C ∈ S++
n is501

d trace (TS(C)) = trace
((

d M−1)S
)

502

= trace
(
−M−1(d M)M−1S

)
503

= trace
((

C−1 + σ2Id
)−1

S
(
C−1 + σ2Id

)−1
C−1(d C)C−1

)
504

= trace
((

Id + σ2C
)−1

S
(
Id + σ2C

)−1
(d C)

)
.(58)505

We have used the expression of the differential of the inverse [45, Chapter 8, Theo-506

rem 3] and the invariance of the trace with respect to cyclic permutations. It follows507

from (58) that the gradient of TS reads508

(59) (∀C ∈ S++
n ) ∇TS(C) =

(
Id + σ2C

)−1
S
(
Id + σ2C

)−1
.509

In order to calculate the Hessian H of TS, we calculate the differential of ∇TS. Again,510

in order to simplify our notation, for every matrix C, we define511

(60) N = Id + σ2C ⇒ d N = σ2 d C.512

The differential of ∇TS at every C ∈ S++
n then reads513

d vect (∇TS(C)) = vect
(
d(N−1SN−1)

)
514

= vect
(
(d N−1)SN−1 + N−1(d SN−1)

)
515

= − vect(N−1(d N)N−1SN−1)− vect
(
N−1SN−1(d N)N−1

)
516

= −
((

N−1SN−1
)> ⊗N−1

)
vect(d N)−

((
N−1

)> ⊗N−1SN−1
)

vect(d N)517

= −
( (

N−1SN−1
)
⊗N−1 + N−1 ⊗

(
N−1SN−1

) )
d vect(N)518

= H(C) d vect(C)519

with520

(61) H(C) = −σ2
(
∇TS (C)⊗

(
Id + σ2C

)−1
+
(
Id + σ2C

)−1 ⊗∇TS (C)
)
.521

To derive the above expression, we have used the facts that, for every A ∈ Rn×m, X ∈522

Rm×p, and B ∈ Rp×q, vect (AXB) =
(
B> ⊗A

)
vect X [45, Chapter 2,Theorem 2]523

and that matrices N and S are symmetric.524

Let us now check that, for every C ∈ S++
n , H(C) is negative semidefinite. It525

follows from expression (59), the symmetry of C, and the positive semidefiniteness of526

S that ∇TS(C) belongs to S+n . Since527 (
∇TS (C)⊗

(
Id + σ2C

)−1 )>
=
(
∇TS (C)

)> ⊗ ( (Id + σ2C
)−1 )>

528

= ∇TS (C)⊗
(
Id + σ2C

)−1
,529530

∇TS (C) ⊗
(
Id + σ2C

)−1
is symmetric. Let us denote by (γi)16i6n ∈ [0,+∞[n531

the eigenvalues of ∇TS (C) and by (ζi)16i6n ∈ [0,+∞[n those of of C. Accord-532

ing to [45, Chapter 2, Theorem 1], the eigenvalues of ∇TS (C) ⊗
(
Id + σ2C

)−1
are533

This manuscript is for review purposes only.



A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 17(
γi/(1 + σ2ζj)

)
16i,j6n

and they are therefore nonnegative. This allows us to claim534

that ∇TS (C) ⊗
(
Id + σ2C

)−1
belongs to S+n2 . For similar reasons,

(
Id + σ2C

)−1 ⊗535

∇TS (C) ∈ S+n2 , which allows us to conclude that −H(C) ∈ S+n2 . Hence, we have536

proved that TS is concave on S++
n . By continuity of TS relative to S+n , the concavity537

property extends on S+n .538

As a last worth mentioning property, TS is bounded on S++
n . So, if dom f ∩ dom g0 ∩539

dom g1 6= ∅ and f + g0 + g1 is coercive, then there exists a minimizer of F . Because540

of the form of f , the coercivity condition is satisfied if g0 + g1 is lower bounded and541

limC∈S+
n ,‖C‖→+∞ g0(C) + g1(C) = +∞.542

4.3. Minimization Algorithm for F . In order to find a minimizer of F , we543

propose a Majorize–Minimize (MM) approach, following the ideas in [22, 59, 35, 36].544

At each iteration of an MM algorithm, one constructs a tangent function that ma-545

jorizes the given cost function and is equal to it at the current iterate. The next iterate546

is obtained by minimizing this tangent majorant function, resulting in a sequence of547

iterates that reduces the cost function value monotonically. According to the results548

stated in the previous section, our objective function reads as a difference of convex549

terms. We propose to build a majorizing approximation of function TS at C′ ∈ S++
n550

by exploiting Lemma 4.2 and the classical concavity inequality on TS :551

(62) (∀C ∈ S++
n ) TS (C) 6 TS (C′) + trace (∇TS(C′) (C−C′)) .552

As f is finite only on S++
n , a tangent majorant of the cost function (51) at C′ reads:553

(∀C ∈ Sn) G(C | C′) = f (C)+TS (C′)+trace (∇TS(C′) (C−C′))+g0(C)+g1(C).554

This leads to the general MM scheme:555

(63) (∀` ∈ N) C(`+1) ∈ Argmin
C∈Sn

f(C) + trace
(
∇TS(C(`))C

)
+ g0(C) + g1(C)556

with C(0) ∈ S++
n . At each iteration of the MM algorithm, we have then to solve557

a convex optimization problem of the form (1). In the case when g1 ≡ 0, we can558

employ the procedure described in Section 2 to perform this task in a direct manner.559

The presence of a regularization term g1 6≡ 0 usually prevents us to have an explicit560

solution to the inner minimization problem involved in the MM procedure. We then561

propose in Algorithm 2 to resort to the Douglas–Rachford approach in Section 3 to562

solve it iteratively.563
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18 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

Algorithm 2 MM algorithm with DR inner steps

1: Let S ∈ S+n be the data matrix. Let ϕ be as in (57), let ψ ∈ Γ0(Rn) be associated
with g0. Let (γ`)`∈N be a sequence in ]0,+∞[. Set C(0,0) = C(0) ∈ S++

n .
2: for ` = 0, 1, . . . do
3: for k = 0, 1, . . . do
4: Compute U(`,k) ∈ On and λ(`,k) ∈ Rn such that

C(`,k) − γ`∇TS(C(`)) = U(`,k) Diag(λ(`,k))
(
U(`,k)

)>
5: d(`,k+ 1

2 ) = proxγ`(ϕ+ψ)
(
λ(`,k)

)
6: C(`,k+ 1

2 ) = U(`,k) Diag
(
d(`,k+ 1

2 )
) (

U(`,k)
)>

7: if Convergence of MM sub-iteration is reached then
8: C(`+1) = C(`,k+ 1

2 )

9: C(`+1,0) = C(`,k)

10: exit inner loop
11: end if
12: Choose α`,k ∈]0, 2[

13: C(`,k+1) = C(`,k) + α`,k

(
proxγ`g1

(
2C(`,k+ 1

2 ) −C(`,k)
)
−C(`,k+ 1

2 )
)

14: end for
15: end for

A convergence result is next stated, which is inspired from [64] (itself relying on564

[69, p. 6]), but does not require the differentiability of g0 + g1.565

Theorem 4.3. Let (C(`))`>0 be a sequence generated by (63). Assume that566

dom f ∩ dom g0 ∩ dom g1 6= ∅, f + g0 + g1 is coercive, and E = {C ∈ Sn | F(C) 6567

F(C(0))} is a subset of the relative interior of dom g0 ∩ dom g1. Then, the following568

properties hold:569

(i)
(
F(C(`))

)
`>0

is a decaying sequence converging to F̂ ∈ R.570

(ii) (C(`))`>0 has a cluster point.571

(iii) Every cluster point Ĉ of (C(`))`>0 is such that F(Ĉ) = F̂ and it is a critical572

point of F , i.e. −∇f(Ĉ)−∇TS(Ĉ) ∈ ∂(g0 + g1)(Ĉ).573

Proof. First note that (C(`))`>0 is properly defined by (63) since, for every C ∈574

S++
n , G(· | C) is a coercive lower-semicontinuous function. It indeed majorizes F575

which is coercive, since f + g0 + g1 has been assumed coercive.576

(i): As a known property of MM strategies,
(
F(C(`))

)
`>0

is a decaying sequence [36].577

Under our assumptions, we have already seen that F has a minimizer. We deduce578

that
(
F(C(`))

)
`>0

is lower bounded, hence convergent.579

(ii): Since
(
F(C(`))

)
`>0

is a decaying sequence, (∀` > 0) C(`) ∈ E. Since F is proper,580

lower-semicontinuous, and coercive, E is a nonempty compact set and (C(`))`>0 ad-581

mits a cluster point in E.582

(iii): If Ĉ is a cluster point of (C(`))`>0, then there exists a subsequence (C(`k))k>0583

converging to Ĉ. Since E is a nonempty subset of the relative interior of dom g0 ∩584

dom g1 and g0+g1 ∈ Γ0(Sn), g0+g1 is continuous relative to E [6, Corollary 8.41]. As585

f +TS is continuous on dom f ∩dom TS = S++
n , F is continuous relative to E. Hence,586

F̂ = limk→+∞ F(C(`k)) = F(Ĉ). On the other hand, by similar arguments applied to587
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sequence (C(`k+1))k>0, there exists a subsequence (C(`kq+1))q>0 converging to some588

Ĉ′ ∈ E such that F̂ = F(Ĉ′). In addition, thanks to (63), we have589

(64) (∀C ∈ Sn)(∀q ∈ N) G(C(`kq+1) | C(`kq )) 6 G(C | C(`kq )).590

By continuity of f and ∇TS on S++
n and by continuity of g0 + g1 relative to E,591

(65) (∀C ∈ Sn) G(Ĉ′ | Ĉ) 6 G(C | Ĉ).592

Let us now suppose that Ĉ is not a critical point of F . Since the subdifferential of593

G(· | Ĉ) at Ĉ is ∇f(Ĉ) + ∇TS(Ĉ) + ∂(g0 + g1)(Ĉ) [6, Corollary 16.48(ii)], the null594

matrix does not belong to this subdifferential, which means that Ĉ is not a minimizer595

of G(· | Ĉ) [6, Theorem 16.3]. It follows from (65) and standard MM properties that596

F(Ĉ′) 6 G(Ĉ′ | Ĉ) < G(Ĉ | Ĉ) = F(Ĉ). The resulting strict inequality contradicts597

the already established fact that F(Ĉ′) = F(Ĉ).598

5. Numerical Experiments. This section presents some numerical tests illus-599

trating the validity of the proposed algorithms. More specifically, in Subsection 5.1 the600

Douglas–Rachford (DR) approach of Section 3 is compared with other state–of–the–601

art algorithms previously mentioned, namely Incremental Proximal Descent (IPD)602

[54] and ADMM [72], on a problem of covariance matrix estimation. In Subsec-603

tion 5.2, we present an application of the MM approach from Section 4 to a graphical604

lasso problem in the presence of noisy data. All the experiments were conducted on605

a MacBook Pro equipped with an Intel Core i7 at 2.2 GHz, 16 Gb of RAM (DDR3606

1600 MHz), and Matlab R2015b.607

5.1. Application to Sparse Covariance Matrix Estimation. We first con-608

sider the application of the DR algorithm from Section 3 to the sparse covariance609

matrix estimation problem introduced in [54]. The objective is to retrieve an estimate610

of a low rank covariance matrix Y∗ ∈ S+n from N noisy realizations (x(i))16i6N of a611

Gaussian multivalued random vector with zero mean and covariance matrix Y∗+σ2Id,612

with σ > 0. As we have shown in Subsection 4.1, a solution to this problem can be613

obtained by solving the penalized least-squares problem (50), where S is the empirical614

covariance matrix defined in (49), and the regularization terms are g0 = µ0R1 and615

g1 = µ1‖ · ‖1. We propose to compare the performance of the DR approach from Sub-616

section 3.2, with the IPD algorithm [54] and the ADMM procedure [72], for solving617

this convex optimization problem.618

The synthetic data are generated using a procedure similar to the one in [54].619

A block-diagonal covariance matrix Y∗ is considered, composed with r blocks with620

dimensions (rj)16j6r, so that n =
∑r
j=1 rj . The j-th diagonal block of Y∗ reads as621

a product aja
>
j , where the components of aj ∈ Rrj are randomly drawn on [−1, 1].622

The number of observations N is equal to n and σ = 0.1. The three algorithms623

are initialized with S + Id, and stopped as soon as a relative decrease criterion on624

the objective function is met, i.e. when |Fk+1 − Fk|/|Fk| 6 ε, ε > 0 being a given625

tolerance and Fk denoting the objective function value at iteration k. The maximum626

number of iterations is set to 2000. The penalty parameters µ1 and µ0 are chosen627

in order to get a reliable estimation of the original covariance matrix. The gradient628

stepsize for IPD is set to k−1. In Algorithm 1, αk is set to 1.5. In ADMM, the initial629

Lagrange multiplier is set to a matrix with all entries equal to one, and the parameter630

of the proximal step is set to 1.631

Figure 1 illustrates the quality of the recovered covariance matrices when setting632

ε = 10−10. Three different indicators for estimation quality are provided, namely633
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rmse : 0.3461 
tpr     : 70.38%
fpr     :   0.00%

rmse : 0.3461 
tpr     : 70.88%
fpr     :   0.00%

rmse : 0.3461 
tpr     : 72.71%
fpr     :   0.66%

Y∗

rmse : 0.3664 
tpr     : 67.62%
fpr     :   0.01%

DR

rmse : 0.3664 
tpr     : 68.06%
fpr     :   0.02%

ADMM

rmse : 0.3664 
tpr     : 68.71%
fpr     :   0.01%

IPD

Fig. 1. Original matrix and reconstruction results for DR, ADMM and IPD algorithms, for
n = 100 (top) and n = 300 (bottom).

the true positive rate (tpr), i.e. the correctly recognized non–zero entries, the false634

positive rate (fpr), i.e. the entries erroneously added to the support of the matrix,635

and the relative mean square error (rmse), computed as ‖Yrec −Y∗‖2F/‖Y∗‖2F, with636

Yrec the recovered matrix. Note that the two first measurements are employed when637

the main interest lies in the recovery of the matrix support. A visual inspection shows638

that the three methods provide similar results in terms of matrix support estimation.639

Moreover, the reconstruction error as well as the values of fpr and tpr slightly differ.640

Table 4
Comparison in terms of convergence speed between DR, ADMM and IPD procedures. The

enlighten times refers to the shortest ones.

n = 100, µ0 = 0.2, µ1 = 0.1,r = 5 n = 300, µ0 = 0.01, µ1 = 0.12

{rj} = {14, 36, 18, 10, 22} r = 10, {rj} = {39, 46, 27, 42, 39, 19, 14, 4, 21, 49}

DR ADMM IPD DR ADMM IPD

ε Time(iter) Time(iter) Time(iter) Time(iter) Time(iter) Time(iter)

10−6 0.03 (23) 0.02 (17) 0.18 (167) 0.14 (17) 0.11 (14) 1.34 (170)
10−7 0.03 (27) 0.02 (21) 0.58 (533) 0.32 (38) 0.34 (42) 4.35 (548)
10−8 0.03 (30) 0.04 (34) 1.83 (685) 0.81 (95) 0.91 (115) 13.72 (1748)
10−9 0.06 (56) 0.06 (54) 2.16 (2000) 1.79 (211) 2.06 (258) 15.70 (2000)
10−10 0.07 (59) 0.07 (58) 2.16 (2000) 5.23 (620) 5.45 (686) 15.68 (2000)

Table 4 presents the comparative performance of the algorithms in terms of com-641

putation time (in second) and iteration number (averaged on 20 noise realizations),642

for two scenarios corresponding to distinct problem sizes and block distributions. It643

can be observed that the behaviors of ADMM and DR are similar, while IPD requires644

more iterations and time to reach the same precision. Furthermore, the latter fails645

to reach a high precision in the allowed maximum number of iterations, for both646

examples.647

5.2. Application to Robust Graphical Lasso. Let us now illustrate the648

applicability of the MM approach presented in Subsection 4.3 to the problem of649
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precision matrix estimation introduced in (51). The test datasets have been gener-650

ated by using the code available at http://stanford.edu/boyd/papers/admm/covsel/651

covsel example.html. A sparse precision matrix C∗ of dimension n × n is randomly652

created, where the number of non–zero entries is chosen as a proportion p ∈]0, 1[ of653

the total number n2. Then, N realizations (x(i))16i6N of a Gaussian multivalued654

random variable with zero mean and covariance Y∗ = (C∗)−1 are generated. Gaus-655

sian noise with zero mean and covariance σ2Id, σ > 0, is finally added to the x(i)’s,656

so that the covariance matrix Σ associated with the input data reads as in (47) with657

A = Id. As explained in Subsection 4.1, the estimation of C∗ can be performed by658

using the MM algorithm from Subsection 4.3 based on the minimization of the non-659

convex cost (51) with regularization functions g1 = µ1‖ · ‖1, µ1 > 0, and (∀C ∈ S++
n )660

g0(C) = µ0R1

(
C−1

)
, µ0 > 0. The computation of proxγ(ϕ+ψ) with γ ∈]0,+∞[ re-661

lated to this particular choice for g0 and function ϕ given by (57) and (55) leads to662

the search of the only positive root of a polynomial of degree 4.663

A synthetic dataset of size n = 100 is created, where matrix C∗ has 20 off-664

diagonal non-zero entries (i.e., p = 10−3) and the corresponding covariance matrix665

has condition number 0.125. N = 1000 realizations are used to compute the empirical666

covariance matrix S. In our MM algorithm, the inner stopping criterion (line 7 in667

Algorithm 2) is based on the relative difference of majorant function values with a668

tolerance of 10−10, while the outer cycle is stopped when the relative difference of669

the objective function values falls below 10−8. The DR algorithm is used to solve the670

inner subproblems, by using parameters (∀`) γ` = 1, (∀k) α`,k = 1 (see Algorithm 2,671

lines 4–13). The allowed maximum inner (resp. outer) iteration number is 2000 (resp.672

20). The quality of the results is quantified in terms of fpr on the precision matrix and673

rmse with respect to the true covariance matrix. The parameters µ1 and µ0 are set in674

order to obtain the best reconstruction in terms of rmse. For eight values of the noise675

standard deviation σ, Figure 2 illustrates the reconstruction quality (averaged on 20676

noise realizations) obtained with our method, as well as two other approaches that677

do not take into account the noise in their formulation, namely the classical GLASSO678

approach from [12], which amounts to solve (1) with f = − log det, g = µ1‖ · ‖1,679

and the DR approach described in Section 3, in the formulation given by (1) with680

f = − log det, (∀C ∈ S++
n ) g(C) = µ0R1

(
C−1

)
+ µ1‖C‖1. For the DR approach,681

proxγ(ϕ+ψ) with γ ∈]0,+∞[ is given by the fourth line of Table 2 (when p = 1).682

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Noise level σ

0.1
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0.5
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0.7

0.8

0.9

1

rm
s
e

MM

DR

GLASSO

(a) Behaviour of rmse wrt σ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0.15

0.2

0.25

0.3

0.35

0.4

0.45

fp
r

MM
DR
GLASSO

(b) Behaviour of fpr wrt σ.

Fig. 2. Estimation results for different noise levels in terms of rmse (left) and fpr (right) for
MM, GLASSO and DR approaches.
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As expected, as the noise variance increases the reconstruction quality deterio-683

rates. The GLASSO procedure is strongly impacted by the presence of noise, whereas684

the MM approach achieves better results, also when compared with DR algorithm.685

Moreover, the MM algorithm significantly outperforms both other methods in terms686

of support reconstruction, revealing itself very robust with respect to an increasing687

level of noise.688

6. Conclusions. In this work, various proximal tools have been introduced to689

deal with optimization problems involving real symmetric matrices. We have focused690

on the variational framework (1) which is closely related to the computation of a691

proximity operator with respect to a Bregman divergence. It has been assumed that692

f in (3) is a convex spectral function, and g reads as g0 + g1, where g0 is a spectral693

function. We have given a fully spectral solution in Section 2 when g1 ≡ 0, and,694

in particular, Corollary 2.6 could be useful for developing algorithms involving prox-695

imity operators in other metrics than the Frobenius one. When g1 6≡ 0, a proximal696

iterative approach has been presented, which is grounded on the use of the Douglas–697

Rachford procedure. As illustrated by the tables of proximity operators provided698

for a wide range of choices for f and g0, the main advantage of the proposed algo-699

rithm is its great flexibility. The proposed framework also has allowed us to propose700

a nonconvex formulation of the precision matrix estimation problem arising in the701

context of noisy graphical lasso. The nonconvexity of the obtained objective function702

has been cirmcumvented through a Majorization–Minimization approach, each step703

of which consists of solving a convex problem by a Douglas-Rachford sub-iteration.704

Comparisons with state–of–the–art solutions have demonstrated the robustness of the705

proposed method. It is worth mentioning that all the results presented in this paper706

can be easily extended to complex Hermitian matrices.707
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[34] G. Hardy, J. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library,794
Cambridge University Press, 1952.795

[35] D. R. Hunter and K. Lange, A tutorial on MM algorithms, Amer. Statist., 58 (2004), pp. 30–796
37, https://doi.org/10.1198/0003130042836.797

This manuscript is for review purposes only.

https://doi.org/10.1017/CBO9780511535048
https://doi.org/10.1017/CBO9780511535048
https://doi.org/10.1561/2200000016
https://doi.org/10.1007/s11263-010-0339-5
https://doi.org/10.1007/s11263-010-0339-5
https://doi.org/10.1007/s11263-010-0339-5
https://doi.org/10.1007/978-3-319-41589-5_10
https://doi.org/10.1007/978-3-319-41589-5_10
https://doi.org/10.1007/978-3-319-41589-5_10
https://doi.org/10.1137/080738970
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1214/11-AOS949
https://doi.org/10.1214/11-AOS949
https://doi.org/10.1214/11-AOS949
https://doi.org/10.1109/LSP.2016.2593589
https://doi.org/10.1109/LSP.2016.2593589
https://doi.org/10.1109/LSP.2016.2593589
https://doi.org/10.1007/978-1-4419-9569-8
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1137/060670985
https://doi.org/10.1137/060670985
https://doi.org/10.1137/060670985
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1137/080725891
https://doi.org/10.1093/biomet/asq060
https://doi.org/10.1198/0003130042836


24 A. BENFENATI, E. CHOUZENOUX, AND J.–C. PESQUET

[36] M. W. Jacobson and J. A. Fessler, An expanded theoretical treatment of iteration-dependent798
majorize-minimize algorithms, IEEE Trans. Image Process., 16 (2007), pp. 2411–2422,799
https://doi.org/10.1109/TIP.2007.904387.800

[37] N. Komodakis and J. C. Pesquet, Playing with duality: An overview of recent primal–dual801
approaches for solving large-scale optimization problems, IEEE Signal Process. Mag., 32802
(2015), pp. 31–54, https://doi.org/10.1109/MSP.2014.2377273.803

[38] A. S. Lewis, Convex analysis on the Hermitian matrices, SIAM J. Optim., 6 (1996), pp. 164–804
177, https://doi.org/10.1137/0806009.805

[39] G. Li and T. K. Pong, Douglas–Rachford splitting for nonconvex optimization with application806
to nonconvex feasibility problems, Math. Programm., 159 (2016), pp. 371–401, https://doi.807
org/10.1007/s10107-015-0963-5.808

[40] L. Li and K.-C. Toh, An inexact interior point method for `1–regularized sparse covari-809
ance selection, Math. Program. Comput., 2 (2010), pp. 291–315, https://doi.org/10.1007/810
s12532-010-0020-6.811

[41] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,812
SIAM J. Numer. Anal., 16 (1979), pp. 964–979, https://doi.org/10.1137/0716071.813

[42] Z. Lu, Smooth optimization approach for sparse covariance selection, SIAM J. Optim., 19814
(2009), pp. 1807–1827, https://doi.org/10.1137/070695915.815

[43] Z. Lu, Adaptive first-order methods for general sparse inverse covariance selection, SIAM J.816
Matrix Anal. Appl., 31 (2010), pp. 2000–2016, https://doi.org/10.1137/080742531.817

[44] S. Ma, L. Xue, and H. Zou, Alternating direction methods for latent variable Gaussian graph-818
ical model selection, Neural Comput., 25 (2013), pp. 2172–2198, https://doi.org/10.1162/819
NECO a 00379.820

[45] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics821
and Econometrics, John Wiley, second ed., 1999.822

[46] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization823
and its Applications, vol. 143, Springer, second ed., 2011, https://doi.org/10.1007/824
978-0-387-68276-1.825

[47] R. Mazumder and T. Hastie, The graphical lasso: New insights and alternatives, Electron.826
J. Stat., 6 (2012), pp. 2125–2149, https://doi.org/10.1214/12-EJS740.827

[48] N. Meinshausen and P. Bhlmann, High-dimensional graphs and variable selection828
with the lasso, Ann. Statist., 34 (2006), pp. 1436–1462, https://doi.org/10.1214/829
009053606000000281.830

[49] J. Moreau, Proximit et dualit dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965),831
pp. 273–299.832

[50] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Programm., 103 (2005),833
pp. 127–152, https://doi.org/10.1007/s10107-004-0552-5.834

[51] N. Parikh and S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), pp. 127–239,835
https://doi.org/10.1561/2400000003.836

[52] J.-C. Pesquet and N. Pustelnik, A parallel inertial proximal optimization method, Pac. J.837
Optim., 8 (2012), pp. 273–305.838

[53] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, High-dimensional covariance839
estimation by minimizing `1-penalized log-determinant divergence, Electron. J. Statist., 5840
(2011), pp. 935–980, https://doi.org/10.1214/11-EJS631.841

[54] E. Richard, P. andre Savalle, and N. Vayatis, Estimation of simultaneously sparse and low842
rank matrices, in Proceedings of the 29th International Conference on Machine Learning843
(ICML-12), ACM, 2012, pp. 1351–1358.844

[55] R. Rockafellar, Convex Analysis, Princeton landmarks in mathematics and physics, Prince-845
ton University Press, 1970.846

[56] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, 1st ed., 1997.847
[57] A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu, Sparse permutation invariant co-848

variance estimation, Electron. J. Statist., 2 (2008), pp. 494–515, https://doi.org/10.1214/849
08-EJS176.850

[58] K. Scheinberg, S. Ma, and D. Goldfarb, Sparse inverse covariance selection via alternating851
linearization methods, in Advances in Neural Information Processing Systems 23, 2010,852
pp. 2101–2109.853

[59] Y. Sun, P. Babu, and D. P. Palomar, Majorization-Minimization algorithms in signal pro-854
cessing, communications, and machine learning, IEEE Trans. Signal Process., 65 (2017),855
pp. 794–816, https://doi.org/10.1109/TSP.2016.2601299.856

[60] M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn.857
Res., 1 (2001), pp. 211–244, https://doi.org/10.1162/15324430152748236.858

[61] E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solu-859

This manuscript is for review purposes only.

https://doi.org/10.1109/TIP.2007.904387
https://doi.org/10.1109/MSP.2014.2377273
https://doi.org/10.1137/0806009
https://doi.org/10.1007/s10107-015-0963-5
https://doi.org/10.1007/s10107-015-0963-5
https://doi.org/10.1007/s10107-015-0963-5
https://doi.org/10.1007/s12532-010-0020-6
https://doi.org/10.1007/s12532-010-0020-6
https://doi.org/10.1007/s12532-010-0020-6
https://doi.org/10.1137/0716071
https://doi.org/10.1137/070695915
https://doi.org/10.1137/080742531
https://doi.org/10.1162/NECO_a_00379
https://doi.org/10.1162/NECO_a_00379
https://doi.org/10.1162/NECO_a_00379
https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1214/12-EJS740
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1007/s10107-004-0552-5
https://doi.org/10.1561/2400000003
https://doi.org/10.1214/11-EJS631
https://doi.org/10.1214/08-EJS176
https://doi.org/10.1214/08-EJS176
https://doi.org/10.1214/08-EJS176
https://doi.org/10.1109/TSP.2016.2601299
https://doi.org/10.1162/15324430152748236


A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 25

tions, SIAM J. Sci. Comput., 31 (2009), pp. 890–912, https://doi.org/10.1137/080714488.860
[62] C. Wang, D. Sun, and K.-C. Toh, Solving log-determinant optimization problems by a861

Newton-CG primal proximal point algorithm, SIAM J. Optim., 20 (2010), pp. 2994–3013,862
https://doi.org/10.1137/090772514.863

[63] D. P. Wipf and B. D. Rao, Sparse Bayesian learning for basis selection, IEEE Trans. Signal864
Process., 52 (2004), pp. 2153–2164, https://doi.org/10.1109/TSP.2004.831016.865

[64] C. F. J. Wu, On the convergence properties of the EM algorithm, Ann. Statist., 11 (1983),866
pp. 95–103, https://doi.org/10.1214/aos/1176346060.867

[65] S. Yang, Z. Lu, X. Shen, P. Wonka, and J. Ye, Fused multiple graphical lasso, SIAM J.868
Optim., 25 (2015), pp. 916–943, https://doi.org/10.1137/130936397.869

[66] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for `1-870
minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008),871
pp. 143–168, https://doi.org/10.1137/070703983.872

[67] M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model,873
Biometrika, 94 (2007), p. 19, https://doi.org/10.1093/biomet/asm018.874

[68] X. Yuan, Alternating direction methods for sparse covariance selection, (2009), http://www.875
optimization-online.org/DBFILE/2009/09/2390.pdf.876

[69] W. I. Zangwill, Nonlinear programming : a unified approach, Englewood Cliffs, N.J. :877
Prentice-Hall, 1969.878

[70] X. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized nonlocal regularization for879
deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), pp. 253–276,880
https://doi.org/10.1137/090746379.881

[71] X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework based882
on Bregman iteration, J. Sci. Comput., 46 (2011), pp. 20–46, https://doi.org/10.1007/883
s10915-010-9408-8.884

[72] S. Zhou, N. Xiu, Z. Luo, and L. Kong, Sparse and low-rank covariance matrices estimation,885
(2014), https://arxiv.org/abs/1407.4596.886

This manuscript is for review purposes only.

https://doi.org/10.1137/080714488
https://doi.org/10.1137/090772514
https://doi.org/10.1109/TSP.2004.831016
https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1137/130936397
https://doi.org/10.1137/070703983
https://doi.org/10.1093/biomet/asm018
http://www.optimization-online.org/DBFILE/2009/09/2390.pdf
http://www.optimization-online.org/DBFILE/2009/09/2390.pdf
http://www.optimization-online.org/DBFILE/2009/09/2390.pdf
https://doi.org/10.1137/090746379
https://doi.org/10.1007/s10915-010-9408-8
https://doi.org/10.1007/s10915-010-9408-8
https://doi.org/10.1007/s10915-010-9408-8
https://arxiv.org/abs/1407.4596

	Introduction
	Spectral Approach
	Proximal Iterative Approach
	Proximity Operators
	Squared Frobenius Norm
	Logdet Function
	Von Neumann Entropy

	Douglas-Rachford Algorithm
	Positive Semi-Definite Constraint

	Application to Covariance Matrix Estimation
	Model and Proposed Approaches
	Study of Objective Function F
	Minimization Algorithm for F

	Numerical Experiments
	Application to Sparse Covariance Matrix Estimation
	Application to Robust Graphical Lasso

	Conclusions
	References

