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In recent years, there has been a growing interest in mathematical models leading to the minimization, in a symmetric matrix space, of a Bregman divergence coupled with a regularization term. We address problems of this type within a general framework where the regularization term is split in two parts, one being a spectral function while the other is arbitrary. A Douglas-Rachford approach is proposed to address such problems and a list of proximity operators is provided allowing us to consider various choices for the fit-to-data functional and for the regularization term. Numerical experiments show the validity of this approach for solving convex optimization problems encountered in the context of sparse covariance matrix estimation. Based on our theoretical results, an algorithm is also proposed for noisy graphical lasso where a precision matrix has to be estimated in the presence of noise. The nonconvexity of the resulting objective function is dealt with a majorization-minimization approach, i.e. by building a sequence of convex surrogates and solving the inner optimization subproblems via the aforementioned Douglas-Rachford procedure. We establish conditions for the convergence of this iterative scheme and we illustrate its good numerical performance with respect to state-of-the-art approaches.

1. Introduction. In recent years, various applications such as shape classification models [START_REF] Duchi | Projected Subgradient Methods for Learning Sparse Gaussians[END_REF], gene expression [START_REF] Ma | Alternating direction methods for latent variable Gaussian graphical model selection[END_REF], model selection [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data[END_REF][START_REF] Chandrasekaran | Latent variable graphical model selection via convex optimization[END_REF], computer vision [START_REF] Guo | Joint estimation of multiple graphical models[END_REF], inverse covariance estimation [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF][START_REF] Dempster | Covariance selection[END_REF][START_REF] Yuan | Alternating direction methods for sparse covariance selection[END_REF][START_REF] Aspremont | First-order methods for sparse covariance selection[END_REF][START_REF] Wang | Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm[END_REF], graph estimation [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF][START_REF] Ravikumar | High-dimensional covariance estimation by minimizing 1 -penalized log-determinant divergence[END_REF][START_REF] Yuan | Model selection and estimation in the Gaussian graphical model[END_REF], social network and corporate inter-relationships analysis [START_REF] Aslan | Analyzing and learning sparse and scale-free networks using Gaussian graphical models[END_REF], or brain network analysis [START_REF] Yang | Fused multiple graphical lasso[END_REF] have led to matrix variational formulations of the form: [START_REF] Aragón Artacho | Global convergence of a non-convex Douglas-Rachford iteration[END_REF] minimize C∈Sn f (C) -trace (TC) + g(C),

where S n is the set of real symmetric matrices of dimension n × n, T is a given n × n real matrix (without loss of generality, it will be assumed to be symmetric), and f : S n →] -∞, +∞] and g : : S n →] -∞, +∞] are lower-semicontinuous functions which are proper, in the sense that they are finite at least in one point.

It is worth noticing that the notion of Bregman divergence [START_REF] Bregman | The Relaxation Method of Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming[END_REF] gives a particular insight into Problem [START_REF] Aragón Artacho | Global convergence of a non-convex Douglas-Rachford iteration[END_REF]. Indeed, suppose that f is a convex function differentiable on the interior of its domain int(dom f ) = ∅. Let us recall that, in S n endowed with the Frobenius norm, the f -Bregman divergence between C ∈ S n and Solving Problem (3) amounts to computing the proximity operator of g at Y with respect to the divergence D f [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF][START_REF] Bauschke | Joint minimization with alternating Bregman proximity operators[END_REF] in the space S n . In the vector case, such kind of proximity operator has been found to be useful in a number of recent works regarding, for example, image restoration [START_REF] Brune | Primal and dual Bregman methods with application to optical nanoscopy[END_REF][START_REF] Benfenati | Inexact Bregman iteration with an application to Poisson data reconstruction[END_REF][START_REF] Benfenati | Inexact Bregman iteration for deconvolution of superimposed extended and point sources[END_REF][START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF], image reconstruction [START_REF] Zhang | A unified primal-dual algorithm framework based on Bregman iteration[END_REF], and compressive sensing problems [START_REF] Yin | Bregman iterative algorithms for 1minimization with applications to compressed sensing[END_REF][START_REF] Goldstein | The split Bregman method for l1-regularized problems[END_REF].

Y ∈ int(dom f ) is (2) D f (C, Y) = f (C) -f ( 
In this paper, it will be assumed that f belongs to the class of spectral functions [11, Chapter 5, Section 2], i.e., for every permutation matrix

Σ ∈ R n×n , ( 4 
) (∀C ∈ S n ) f (C) = ϕ(Σd),
where ϕ : R n →] -∞, +∞] is a proper lower semi-continuous convex function and d is a vector of eigenvalues of C.

Due to the nature of the problems, in many of the aforementioned applications, g is a regularization function promoting the sparsity of C. We consider here a more generic class of regularization functions obtained by decomposing g as g 0 + g 1 , where g 0 is a spectral function, i.e., for every permutation matrix Σ ∈ R n×n ,

(∀C ∈ S n ) g 0 (C) = ψ(Σd), (5) 
with ψ : R n →] -∞, +∞] a proper lower semi-continuous function, d still denoting a vector of the eigenvalues of C, while g 1 : S n →] -∞, +∞] is a proper lower semicontinuous function which cannot be expressed under a spectral form.

A very popular and useful example encompassed by our framework is the graphical lasso (GLASSO) problem, where f is the minus log-determinant function, g 1 is a component-wise 1 norm (of the matrix elements), and g 0 ≡ 0. Various algorithms have been proposed to solve Problem [START_REF] Aragón Artacho | Global convergence of a non-convex Douglas-Rachford iteration[END_REF] in this context, including the popular GLASSO algorithm [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] and some of its recent variants [START_REF] Mazumder | The graphical lasso: New insights and alternatives[END_REF]. We can also mention the dual block coordinate ascent method from [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data[END_REF], the SPICE algorithm [START_REF] Rothman | Sparse permutation invariant covariance estimation[END_REF], the gradient projection method in [START_REF] Duchi | Projected Subgradient Methods for Learning Sparse Gaussians[END_REF], the Refitted CLIME algorithm [START_REF] Cai | A constrained 1 minimization approach to sparse precision matrix estimation[END_REF], various algorithms [START_REF] Aspremont | First-order methods for sparse covariance selection[END_REF][START_REF] Lu | Smooth optimization approach for sparse covariance selection[END_REF][START_REF] Lu | Adaptive first-order methods for general sparse inverse covariance selection[END_REF] based on Nesterov's smooth gradient approach [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF], ADMM approaches [START_REF] Yuan | Alternating direction methods for sparse covariance selection[END_REF][START_REF] Scheinberg | Sparse inverse covariance selection via alternating linearization methods[END_REF], an inexact Newton method [START_REF] Wang | Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm[END_REF], and interior point methods [START_REF] Yuan | Model selection and estimation in the Gaussian graphical model[END_REF][START_REF] Li | An inexact interior point method for 1 -regularized sparse covariance selection[END_REF]. A related model is addressed in [START_REF] Ma | Alternating direction methods for latent variable Gaussian graphical model selection[END_REF][START_REF] Chandrasekaran | Latent variable graphical model selection via convex optimization[END_REF], with the additional assumption that the sought solution can be split as C 1 + C 2 , where C 1 is sparse and C 2 is low-rank. Finally, let us mention the ADMM algorithm from [START_REF] Zhou | Sparse and low-rank covariance matrices estimation[END_REF], and the incremental proximal gradient approach from [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF], both addressing Problem (1) when f is the squared Frobenius norm, g 0 is a nuclear norm, and g 1 is an element-wise 1 norm.

The main goal of this paper is to propose numerical approaches for solving Problem [START_REF] Aragón Artacho | Global convergence of a non-convex Douglas-Rachford iteration[END_REF]. Two settings will be investigated, namely (i ) g 1 ≡ 0, i.e. the whole cost function is a spectral one, (ii ) g 1 ≡ 0. In the former case, some general results concerning the D f -proximity operator of g 0 are established. In the latter case, a Douglas-Rachford optimization method is proposed, which leads us to calculate the proximity operators of several spectral functions of interest. We then consider applications of our results to the estimation of (possibly low-rank) covariance matrices from noisy observations of multivalued random variables. Two variational approaches are proposed for estimating the unknown covariance matrix, depending on the prior assumptions made on it. We show that the cost function arising from the first formulation can be minimized through our proposed Douglas-Rachford procedure under
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mild assumptions on the involved regularization functions. The second formulation of the problem aims at preserving desirable sparsity properties of the inverse covariance (i.e., precision) matrix. We establish that the proposed objective function is a difference of convex terms, and we introduce a novel majorization-minimization (MM) algorithm to optimize it.

The paper is organized as follows. Section 2 is devoted to the solution of the particular instance of Problem (1) corresponding to g 1 ≡ 0. Section 3 describes a a proximal to address the problem when g 1 ≡ 0. Its implementation is discussed for a bunch of useful choices for the involved functionals. which is equal to 0 over this set and +∞ otherwise. In the remainder of the paper, the underlying Hilbert space will be S n , the set of real symmetric matrices equipped with the Frobenius norm, denoted by • F . The matrix spectral norm is denoted by 

f : H → ] -∞, +∞] is dom f = {x ∈ H | f (x) < +∞}. f is coercive if lim x →+∞ f (x) = +∞ and supercoercive if lim x →+∞ f (x)/ x = +∞. The Moreau subdifferential of f at x ∈ H is ∂f (x) = {t ∈ H | (∀y ∈ H)f (y) f (x)+ t, y-x }. Γ 0 (H) denotes the class of lower-semicontinuous convex functions from H to ]-∞, +∞] with a nonempty domain (proper). If f ∈ Γ 0 (H) is (Gâteaux) differentiable at x ∈ H, then ∂f (x) = {∇f (x)
• S , the 1 norm of a matrix A = (A i,j ) i,j is A 1 = i,j |A i,j |. For every p ∈ [1, +∞[, R p (•)
(6) (∀ξ ∈ R) soft µ (ξ) =      ξ -µ if ξ > µ ξ + µ if ξ < -µ 0 otherwise , hard µ (ξ) = ξ if |ξ| > µ 0 otherwise.
2. Spectral Approach. In this section, we show that, in the particular case when g 1 ≡ 0, Problem (1) reduces to the optimization of a function defined on R n .

Indeed, the problem then reads:

(7) minimize C∈Sn f (C) -trace (TC) + g 0 (C),
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where the spectral forms of f and g 0 allow us to take advantage of the eigendecompositions of C and T in order to simplify the optimization problem, as stated below.

Theorem 2.1. Let t ∈ R n be a vector of eigenvalues of T and let U T ∈ O n be such that T = U T Diag(t)U T . Let f and g 0 be functions satisfying (4) and (5), respectively, where ϕ and ψ are lower-semicontinuous functions. Assume that dom ϕ∩ dom ψ = ∅ and that the function

d → ϕ(d) -d t + ψ(d) is coercive. Then a solution
to Problem (7) exists, which is given by

(8) C = U T Diag( d)U T
where d is any solution to the following problem:

(9) minimize

d∈R n ϕ(d) -d t + ψ(d).
For the sake of clarity, before establishing this result, we recall two useful lemmas from linear algebra. The subsequent lemma is also known as the rearrangement inequality: We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Due to the assumptions made on f and g 0 , Problem (7) can be reformulated as minimize

d∈Dn,U C ∈On ϕ(d) -trace U C Diag(d)U C T + ψ(d).
According to the first claim in Lemma 2.2,

inf d∈Dn,U C ∈On ϕ(d) -trace U C Diag(d)U C T + ψ(d) inf d∈Dn ϕ(d) -d t + ψ(d),
where t ∈ D n is the vector of ordered eigenvalues of T = U T Diag( t) U T with U T ∈ O n . In addition, the last claim in Lemma 2.2 allows us to conclude that the lower bound is attained when U C = U T . This proves that [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] inf

C∈Sn f (C) -trace (TC) + g 0 (C) = inf d∈Dn ϕ(d) -d t + ψ(d).
Let us now show that ordering the eigenvalues is unnecessary for our purposes. Let t ∈ R n be a vector of non necessarily ordered eigenvalues of T. Then, T = U T Diag(t)U T This manuscript is for review purposes only.

with U T ∈ O n and there exists a permutation matrix Q such that t = Q t. For every vector d ∈ D n and for every permutation matrix P of dimension n × n, we have then

ϕ(Pd) -(Pd) t + ψ(Pd) = ϕ(Pd) -(Pd) Q t + ψ(Pd) (13) = ϕ(d) -(Q Pd) t + ψ(d) ϕ(d) -d t + ψ(d),
where the last inequality is a direct consequence of Lemma 2.3. In addition, the equality is obviously reached if P = Q. Since every vector in R n can be expressed as permutation of a vector in D n , we deduce that [START_REF] Brune | Primal and dual Bregman methods with application to optical nanoscopy[END_REF] inf

d∈R n ϕ(d) -d t + ψ(d) = inf d∈Dn ϕ(d) -d t + ψ(d).
Altogether, ( 12) and ( 14) lead to [START_REF] Burger | First Order Algorithms in Variational Image Processing[END_REF] inf

C∈Sn f (C) -trace (TC) + g 0 (C) = inf d∈R n ϕ(d) -d t + ψ(d).
Since the function d → ϕ(d) -d t + ψ(d) is proper, lower-semicontinuous, and coercive, it follows from [56, Theorem 1.9] that there exists d ∈ R n such that ( 16)

ϕ( d) -d t + ψ( d) = inf d∈R n ϕ(d) -d t + ψ(d).
In addition, it is easy to check that if C is given by ( 8) then ( 17)

f ( C) -trace T C + g 0 ( C) = ϕ( d) -d t + ψ( d),
which yields the desired result.

Before deriving a main consequence of this result, we need to recall some definitions from convex analysis [55, Chapter 26] [5, Section 3.4]:

Definition 2.4. Let H be a finite dimensional real Hilbert space with norm • and scalar product •, • . Let h : H →] -∞, +∞] be a proper convex function.

• h is essentially smooth if h is differentiable on int(dom h) = ∅ and lim n→+∞ ∇h(x n ) = +∞ for every sequence (x n ) n∈N of int(dom h) converging to a point on the boundary of dom h.

• h is essentially strictly convex if h is strictly convex on every convex subset of the domain of its subdifferential.

• h is a Legendre function if it is both essentially smooth and essentially strictly convex.

• If h is differentiable on int(dom h) = ∅, the h-Bregman divergence is the function D h defined on H 2 as (18) (∀(x, y) ∈ H 2 ) D h (x, y) = h(x) -h(y) -∇h(y), x -y if y ∈ int(dom f ) +∞ otherwise.
• Assume that h is a lower-semicontinuous Legendre function and that is a lower-semicontinuous convex function such that int(dom h) ∩ dom = ∅ This manuscript is for review purposes only.

and either is bounded from below or h + is supercoercive. Then, the D hproximity operator of is

prox h : int(dom h) → int(dom h) ∩ dom (19) y → argmin x∈H (x) + D h (x, y).
In this definition, when h = • 2 /2, we recover the classical definition of the proximity operator in [START_REF] Moreau | Proximit et dualit dans un espace hilbertien[END_REF], which is defined over H, for every function ∈ Γ 0 (H), and that will be simply denoted by prox .

We will also need the following result: Lemma 2.5. Let f be a function satisfying (4) where ϕ : R n →] -∞, +∞]. Let C ∈ S n and let d ∈ R n be a vector of eigenvalues of this matrix. The following hold:

(i) C ∈ dom f if and only if d ∈ dom ϕ; (ii) C ∈ int(dom f ) if and only if d ∈ int(dom ϕ).
Proof. (i) obviously holds since f is a spectral function.

Let us now prove (ii). If C ∈ int(dom f ), then d ∈ dom ϕ. In addition, there exists

ρ ∈]0, +∞[ such that, for every C ∈ S n , if C -C F ρ, then C ∈ dom f . Let U C ∈ O n be such that C = U C Diag(d)U C and let us choose C = U C Diag(d )U C with d ∈ R n . Since C and C share the same eigenbasis, (20) 
C -C F = d -d . Hence, for any d ∈ R n such that d -d ρ, C ∈ dom f , hence d ∈ dom ϕ. This shows that d ∈ int(dom ϕ).
Conversely, let us assume that d = (d i ) 1 i n ∈ int(dom ϕ). Without loss of generality, it can be assumed that d ∈ D n . There thus exists ρ ∈]0, +∞[ such that for every

d = (d i ) 1 i n ∈ D n , if (21) 
(∀i ∈ {1, . . . , n}) |d i -d i | ρ, then d ∈ dom ϕ. Furthermore, let C be any matrix in S n such that (22) C -C F ρ and let d = (d i ) 1 i n ∈ D n be a vector of eigenvalues of C. It follows from Weyl's inequality [46] that (23) (∀i ∈ {1, . . . , n}) |d i -d i | C -C S C -C F ρ.
We deduce that d ∈ dom ϕ and, consequently C ∈ dom f . This shows that C ∈ int(dom f ).

As an offspring of Theorem 2.1, we then get:

Corollary 2.6. Let f and g 0 be functions satisfying (4) and (5), respectively,

where ϕ ∈ Γ 0 (R n ) is a Legendre function, ψ ∈ Γ 0 (R n ), int(dom ϕ) ∩ dom ψ = ∅, and either ψ is bounded from below or ϕ + ψ is supercoercive. Then, the D f -proximity operator of g 0 is defined at every Y ∈ S n such that Y = U Y Diag(y)U Y with U Y ∈
O n and y ∈ int(dom ϕ), and it is expressed as

prox f g0 (Y) = U Y Diag(prox ϕ ψ (y))U Y . ( 24 
)
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Proof. According to the properties of spectral functions [38, Corollary 2.7], [START_REF] Condat | Fast projection onto the simplex and the 1 ball[END_REF] ϕ

∈ Γ 0 (R n ) (resp. ψ ∈ Γ 0 (R n )) ⇒ f ∈ Γ 0 (S n ) (resp. g 0 ∈ Γ 0 (S n )).
In addition, according to [38, Corollaries 3.3&3.5], since ϕ is a Legendre function, f is a Legendre function. It is also straightforward to check that, when ψ is lower bounded, then g 0 is lower bounded and, when ϕ + ψ is supercoercive, then f + g 0 is supercoercive. It also follows from Lemma 2.5 that int(dom ϕ)

∩ dom ψ = ∅ ⇔ int(dom f ) ∩ dom g 0 = ∅.
The above results show that the D f -proximity operator of g 0 is properly defined as follows:

prox f g0 : int(dom f ) → int(dom f ) ∩ dom g 0 (26) Y → argmin C∈Sn g 0 (C) + D f (C, Y).
This implies that computing the D f -proximity operator of g 0 at Y ∈ int(dom f ) amounts to finding the unique solution to Problem [START_REF] Bauschke | Joint minimization with alternating Bregman proximity operators[END_REF] where

T = ∇f (Y). Let Y = U Y Diag(y)U Y with U Y ∈ O n and y ∈ R n . By Lemma 2.5(ii), Y ∈ int(dom f ) ⇔ y ∈ int(dom(ϕ)) and, according to [38, Corollary 3.3], T = U Y Diag(t)U Y with t = ∇ϕ(y).
Furthermore, as ϕ is essentially strictly convex, it follows from [4, Theorem 5.9(ii)] that t = ∇ϕ(y) ∈ int(dom f * ), which according to [6, Theorem 14.17] is equivalent

to the fact that d → ϕ(d) -d t is coercive. So, if ψ is lower-bounded, d → ϕ(d) - d t + ψ(d) is coercive. The same conclusion obviously holds if ϕ + ψ is supercoercive.
This shows that the assumptions of Theorem 2.1 are met. Consequently, applying this theorem yields [START_REF] Cover | Elements of Information Theory[END_REF] prox

f g0 (Y) = U Y Diag( d)U Y ,
where d minimizes

(28) d → ϕ(d) -d t + ψ(d) or, equivalently, (29) 
d → ψ(d) + D ϕ (d, y).
This shows that d = prox ϕ ψ (y).

Remark 2.7. Corollary 2.6 extends known results concerning the case when f =

• F /2 [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. A rigorous derivation of the proximity operator of spectral functions in Γ 0 (S n ) for the standard Frobenius metric can be found in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 24.65].

Our proof allows us to recover a similar result by adopting a more general approach.

In particular, it is worth noticing that Theorem 2.1 does not require any convexity assumption.

Proximal Iterative Approach.

Let us now turn to the more general case of the resolution of Problem (1) when f ∈ Γ 0 (S n ) and g 1 ≡ 0. Proximal splitting approaches for finding a minimizer of a sum of non-necessarily smooth functions have attracted a large interest in the last years [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF][START_REF] Parikh | Proximal algorithms[END_REF][START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF][START_REF] Burger | First Order Algorithms in Variational Image Processing[END_REF]. In these methods, the functions can be dealt with either via their gradient or their proximity operator depending on their differentiability properties. In this section, we first list a number of This manuscript is for review purposes only.

proximity operators of scaled versions of f -trace (T •) + g 0 , where f and g 0 , satisfying ( 4) and ( 5), are chosen among several options that can be useful in a wide range of practical scenarios. Based on these results, we then propose a proximal splitting Douglas-Rachford algorithm to solve Problem (1).

3.1. Proximity Operators. By definition, computing the proximity operator of γ (f -trace (T •) + g 0 ) with γ ∈]0, +∞[ at C ∈ S n amounts to find a minimizer of the function

(30) C → f (C) -trace (TC) + g 0 (C) + 1 2γ C -C 2 F over S n .
The (possibly empty) set of such minimizers is denoted by 

Prox γ(f -trace(T •)+g0) (C). As pointed out in Section 2, if f + g 0 ∈ Γ 0 (S n ) then this set is a singleton {prox γ(f -trace(T •)+g0) (C)}. We
every λ ∈ Prox γ(ϕ+ψ) (λ), (31) 
U Diag( λ)U ∈ Prox γ(f -trace(T •)+g0) (C). (ii) If ψ is convex, then (32) prox γ(f -trace(T •)+g0) (C) = U Diag prox γ(ϕ+ψ) (λ) U .
Proof. (i): Since it has been assumed that f and g 0 are spectral functions, we have

(33) (∀C ∈ S n ) f (C) + g 0 (C) = ϕ(d) + ψ(d),
where d ∈ R n is a vector of the eigenvalues of C. It can be noticed that minimizing

(30) is obviously equivalent to minimize f -γ -1 trace (C + γT •) + g 0 where f = f + • 2 F /(2γ). Then (34) f (C) = ϕ(d),
where ϕ = ϕ+ • 2 /(2γ). Since we have assumed that ϕ ∈ Γ 0 (R n ), ϕ is proper, lowersemicontinuous, and strongly convex. As ψ is lower bounded by an affine function, it follows that

(35) d → ϕ(d) -γ -1 λ d + ψ(d)
is lower bounded by a strongly convex function and it is thus coercive. In addition, dom ϕ = dom ϕ, hence dom ϕ ∩ dom ψ = ∅. Let us now apply Theorem 2.1. Let λ be a minimizer of [START_REF] Hunter | A tutorial on MM algorithms[END_REF]. It can be claimed that C = U Diag( λ)U is a minimizer of [START_REF] Duchi | Projected Subgradient Methods for Learning Sparse Gaussians[END_REF].

On the other hand, minimizing [START_REF] Hunter | A tutorial on MM algorithms[END_REF] is equivalent to minimize γ(ϕ + ψ)

+ 1 2 • -λ 2 , which shows that λ ∈ Prox γ(ϕ+ψ) (λ).
This manuscript is for review purposes only. The result directly follows from (i).

(ii): If ψ ∈ Γ 0 (R n ),
We will next focus on the use of Proposition 3.1 for three choices for f , namely the classical squared Frobenius norm, the minus log det functional, and the Von Neumann entropy, each choice being coupled with various possible choices for g 0 . 

3.1.1. Squared Frobenius Norm. A suitable choice in Problem (1) is f = • 2 F /2 [
∀(C, Y) ∈ S 2 n D f (C, Y) = 1 2 C -Y 2 F .
We have thus re-expressed Problem (1) as the determination of a proximal point of function g at T in the Frobenius metric. 

(∀λ ∈ R n ) prox γ(ϕ+ψ) (λ) = 1 1 + γ λ -µγ proj B 1 λ µγ .
The required projection onto B 1 can be computed through efficient algorithms [START_REF] Van Den | Probing the Pareto frontier for basis pursuit solu-tions[END_REF][START_REF] Condat | Fast projection onto the simplex and the 1 ball[END_REF].

3.1.2. Logdet Function. Another popular choice for f is the negative logarithmic determinant function [START_REF] Duchi | Projected Subgradient Methods for Learning Sparse Gaussians[END_REF][START_REF] Scheinberg | Sparse inverse covariance selection via alternating linearization methods[END_REF][START_REF] Ma | Alternating direction methods for latent variable Gaussian graphical model selection[END_REF][START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF][START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data[END_REF][START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF][START_REF] Yuan | Model selection and estimation in the Gaussian graphical model[END_REF][START_REF] Chandrasekaran | Latent variable graphical model selection via convex optimization[END_REF], which is defined as follows

(39) (∀C ∈ S n ) f (C) = -log det(C) if C ∈ S ++ n +∞ otherwise.
The above function satisfies property (5) with

(40) ∀λ = (λ i ) 1 i n ∈ R n ϕ(λ) =      - n i=1 log(λ i ) if λ ∈]0, +∞[ n +∞ otherwise.
This manuscript is for review purposes only. • 2 F + g 0 ) with γ > 0 evaluated at symmetric matrix with vector of eigenvalues λ = (λ i ) 1 i n . For the inverse Schatten penalty, the function is set to +∞ when the argument C is not positive definite. E 1 denotes the set of matrices in Sn with Frobenius norm less than or equal to α and E 2 the set of matrices in Sn with eigenvalues between α and β. In the last line, the i-th component of the proximity operator is obtained by searching among the nonnegative roots of a third order polynomial those minimizing

λ i → 1 2 (λ i -|λ i |) 2 + γ 1 2 (λ i ) 2 + µ log((λ i ) 2 + ε) . g 0 (C), µ > 0 prox γ(ϕ+ψ) (λ) Nuclear norm soft µγ γ+1 λi γ+1 1 i n µR 1 (C) Frobenius norm 1 -γµ λ λ 1+γ if λ > γµ and 0 otherwise µ C F Squared Frobenius norm λ 1 + γ (1 + 2µ) µ C 2 F Schatten 3-penalty (6γµ) -1 sign (λ i ) (γ + 1) 2 + 12|λ i |γµ -γ -1 1 i n µR 3 3 (C) Schatten 4-penalty (8γµ) -1/3 3 λ i + λ 2 i + ζ + 3 λ i -λ 2 i + ζ 1 i n with ζ = (γ+1) 3 27γµ µR 4 4 (C)
Schatten 4/3-penalty

1 1+γ λ i + 4γµ 3 3 √ 2(1+γ) 3 λ 2 i + ζ -λ i -3 λ 2 i + ζ + λ i 1 i n µR 4/3 4/3 (C) with ζ = 256(γµ) 3 729(1+γ)
Schatten 3/2-penalty (min(max(λ i /(γ + 1), α), β))

1 1+γ λ i + 9γ 2 µ 2 8(1+γ) sign(λ i ) 1 -1 + 16(1+γ) 9γ 2 µ 2 |λ i | 1 i n µR 3/2 3/2 (C) Schatten p-penalty sign(λ i )d i 1 i n µR p p (C), p 1 
1 i n , [α, β] ⊂ [-∞, +∞] ι E2 (C) Rank hard 2µγ 1+γ λ i 1 + γ 1 i n µ rank(C) Cauchy ∈ (sign(λ i )d i ) 1 i n | (∀i ∈ {1, . . . , n}) d i 0 and µ log det(C 2 + εI d ), ε > 0 (γ + 1)d 3 i -|λ i |d 2 i + 2γµ + ε(γ + 1) d i = |λ i |ε
Actually, for a given positive definite matrix, the value of function [START_REF] Li | Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems[END_REF] 

) (∀C ∈ S n ) D f (C, Y) =    log det(Y) det(C) + trace Y -1 C -n if C ∈ S ++ n +∞ otherwise. 41 
In Table 2, we list some particular choices for g 0 , and provide the associated closed form expression of the proximity operator prox γ(ϕ+ψ) for γ ∈]0, +∞[, where ϕ is defined in [START_REF] Li | An inexact interior point method for 1 -regularized sparse covariance selection[END_REF]. These expressions were derived from [24, Table 10.2].
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Remark 3.3. Let g 0 be any of the convex spectral functions listed in Table 2. Let W be an invertible matrix in R n×n , and let C ∈ S n From the above results, one can deduce the minimizer of C → γ(f (C) + g 0 (WCW )) + 1 2 WCW -C 2 F where γ ∈]0, +∞[. Indeed, by making a change of variable and by using basic properties of the log det function, this minimizer is equal to

W -1 prox γ(f +g0) (C)(W -1 ) .
Table 2 Proximity operators of γ(f + g 0 ) with γ > 0 and f given by [START_REF] Li | Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems[END_REF], evaluated at a symmetric matrix with vector of eigenvalues λ = (λ i ) 1 i n . For the inverse Schatten penalty, the function is set to +∞ when the argument C is not positive definite. E 2 denotes the set of matrices in Sn with eigenvalues between α and β. In the last line, the i-th component of the proximity operator is obtained by searching among the positive roots of a fourth order polynomial those minimizing

λ i → 1 2 (λ i -λ i ) 2 + γ µ log((λ i ) 2 + ε) -log λ i . g 0 (C), µ > 0 prox γ(ϕ+ψ) (λ) Nuclear norm 1 2 λ i -γµ + (λ i -γµ) 2 + 4γ 1 i n µR 1 (C) Squared Frobenius norm 1 2(2γµ + 1) λ i + λ 2 i + 4γ(2γµ + 1) 1 i n µ C 2 F Schatten p-penalty d i 1 i n µR p p (C), p 1 with (∀i ∈ {1, . . . , n}) d i > 0 and µγpd p i + d 2 i -λ i d i = γ Inverse Schatten p-penalty d i 1 i n µR p p (C -1 ), p > 0 with (∀i ∈ {1, . . . , n}) d i > 0 and d p+2 i -λ i d p+1 i -γd p i = µγp Bounds on eigenvalues min max 1 2 λ i + λ 2 i + 4γ , α , β 1 i n , [α, β] ⊂ [0, +∞] ι E2 (C) Cauchy ∈ (d i ) 1 i n | (∀i ∈ {1, . . . , n}) d i > 0 and µ log det(C 2 + εI d ), ε > 0 d 4 i -λd 3 i + ε + γ(2µ -1) d 2 i -ελ i d i = γε
3.1.3. Von Neumann Entropy. Our third example is the negative Von Neumann entropy, which appears to be useful in some quantum mechanics problems [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF].

It is defined as

(42) (∀C ∈ S n ) f (C) = trace (C log(C)) if C ∈ S + n +∞ otherwise.
In the above expression, if

C = U Diag(λ)U with λ = (λ i ) 1 i n ∈]0, +∞[ n and U ∈ O n , then log(C) = U Diag (log λ i ) 1 i n U .
The logarithm of a symmetric definite positive matrix is uniquely defined and the function C → C log(C) can be extended by continuity on S + n similarly to the case when n = 1. Thus, f is the spectral function associated with

(43) ∀λ = (λ i ) 1 i n ∈ R n ϕ(λ) =      n i=1 λ i log(λ i ) if λ ∈ [0, +∞[ n +∞ otherwise.
Note that the Von Neumann entropy defined for symmetric matrices is simply equal to the well-known Shannon entropy [START_REF] Cover | Elements of Information Theory[END_REF] of the input eigenvalues. With this choice for function f , by setting T = log(Y) + I d where Y ∈ S ++ n , Problem (1) can be recast under the form (3), so that it becomes equivalent to the computation of the This manuscript is for review purposes only.

proximity operator of g with respect to the Bregman divergence associated with the Von Neumann entropy:

(∀C ∈ S n ) D f (C, Y) = trace (C log(C) -Y log(Y) -(log(Y) + I d ) (C -Y)) if C ∈ S + n +∞ otherwise.
We provide in Table 3 a list of closed form expressions of the proximity operator of γ(f + g 0 ) for several choices of the spectral function g 0 .

Table 3 Proximity operators of γ(f +g 0 ) with γ > 0 and f given by [START_REF] Lu | Smooth optimization approach for sparse covariance selection[END_REF], evaluated at a symmetric matrix with vector of eigenvalues λ = (λ i ) 1 i n . E 2 denotes the set of matrices in Sn with eigenvalues between α and β. W(•) denotes the W-Lambert function [START_REF] Corless | On the Lambert W function[END_REF].

g 0 (C), µ > 0 prox γ(ϕ+ψ) (λ) Nuclear norm γ W 1 γ exp λi γ -µ -1 1 i n µR 1 (C) Squared Frobenius norm γ 2µγ+1 W 2µγ+1 γ exp λi γ -1 1 i n µ C 2 F Schatten p-penalty d i 1 i n µR p p (C), p 1 with (∀i ∈ {1, . . . , n}) d i > 0 and pµγd p-1 i + d i + γ log d i + γ = λ i Bounds on eigenvalues min max γW 1 γ exp λi γ -1 , α , β 1 i n , [α, β] ⊂ [0, +∞] ι E2 (C) Rank (d i ) 1 i n with µ rank(C) (∀i ∈ {1, . . . , n}) d i =      ρ i if ρ i > χ 0 or ρ i if ρ i = χ 0 otherwise and χ = γ(γ + 2µ) -γ, ρ i = γW 1 γ exp λi γ -1
3.2. Douglas-Rachford Algorithm. We now propose a Douglas-Rachford (DR) approach ( [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF][START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]) for numerically solving Problem (1). The DR method minimizes the sum of f -trace (T•) + g 0 and g 1 by alternately computing proximity operators of each of these functions. Proposition 3.1 allows us to calculate the proximity operator of γ(f -trace (T•) + g 0 ) with γ ∈]0, +∞[, by possibly using the expressions listed in Tables 1,2, and 3. Since g 1 is not a spectral function, prox γg1

has to be derived from other expressions of proximity operators. For instance, if g 1 is a separable sum of functions of its elements, e.g. g = • 1 , standard expressions for the proximity operator of vector functions can be employed [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF]. 1 The computations to be performed are summarized in Algorithm 1. We state a convergence theorem in the matrix framework, which is an offspring of existing results in arbitrary Hilbert spaces (see, for example, [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF] and [52, Proposition 3.5]).

Theorem 3.4. Let f and g 0 be functions satisfying (4) and (5), respectively,

where ϕ ∈ Γ 0 (R n ) and ψ ∈ Γ 0 (R n ). Let g 1 ∈ Γ 0 (S n ) be such that f -trace (T•)+g 0 +g 1 is coercive.
Assume that the intersection of the relative interiors of the domains of f + g 0 and g 1 is non empty. Let (α (k) ) k 0 be a sequence in [0, 2] such that

+∞ k=0 α (k) (2 - α (k) ) = +∞.
Then, the sequences (C (k+ 1 2 ) ) k 0 and prox γg1 (2C (k+ 1 2 ) -C (k) ) k 0 generated by Algorithm 1 converge to a solution to Problem (1) where g = g 0 + g 1 .

1 See also http://proximity-operator.net.
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Algorithm 1 Douglas-Rachford Algorithm for solving Problem (1)

1: Let T be a given matrix in S n , set γ > 0 and C (0) ∈ S n .

2: for k = 0, 1, . . . do

3:

Diagonalize C (k) + γT, i.e. find U (k) ∈ O n and λ (k) ∈ R n such that

C (k) + γT = U (k) Diag(λ (k) )(U (k) ) 4: d (k+ 1 2 ) ∈ Prox γ(ϕ+ψ) λ (k)
5:

C (k+ 1 2 ) = U (k) Diag(d (k+ 1 2 ) )(U (k) ) 6: Choose α (k) ∈ [0, 2]
7:

C (k+1) ∈ C (k) + α (k) Prox γg1 (2C (k+ 1 2 ) -C (k) ) -C (k+ 1 2
) . 8: end for

We have restricted the above convergence analysis to the convex case. Note however that recent convergence results for the DR algorithm in a non-convex setting are available in [START_REF] Aragón Artacho | Global convergence of a non-convex Douglas-Rachford iteration[END_REF][START_REF] Li | Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems[END_REF] for specific choices of the involved functionals.

Positive

Semi-Definite Constraint. Instead of solving Problem (1), one may be interested in: [START_REF] Ma | Alternating direction methods for latent variable Gaussian graphical model selection[END_REF] minimize

C∈S + n f (C) -trace (CT) + g(C),
when dom f ∩ dom g ⊂ S + n . This problem can be recast as minimizing over S n f -trace (•T) + g 0 + g 1 where g 0 = g 0 + ι S + n . We are thus coming back to the original formulation where g 0 has been substituted for g 0 . In order to solve this problem with the proposed proximal approach, a useful result is stated below.

Proposition 3.5. Let γ ∈]0, +∞[ and C ∈ S n . Let f and g 0 be functions satisfying (4) and (5), respectively, where ϕ ∈ Γ 0 (R n ) and ψ ∈ Γ 0 (R n ). Assume that

(45) ∀λ = (λ i ) 1 i n ∈ R n ϕ(λ ) + ψ(λ ) = n i=1 ρ i (λ i )
where, for every i ∈ {1, . . . , n}, ρ

i : R →] -∞, +∞] is such that dom ρ i ∩ [0, +∞[ = ∅. Let λ = (λ i ) 1 i n ∈ R n and U ∈ O n be such that C + γT = U Diag(λ)U . Then (46) prox γ(f -trace(T •)+ g0) (C) = U Diag max(0, prox γρi (λ i )) 1 i n U .
Proof. Expression ( 46) readily follows from Proposition 3.1(ii) and [21, Proposition 2.2].

Application to Covariance Matrix Estimation. Estimating the covari-

ance matrix of a random vector is a key problem in statistics, signal processing over graphs, and machine learning. Nonetheless, in existing optimization techniques, little attention is usually paid to the presence of noise corrupting the available observations. We show in this section how the results obtained in the previous sections can be used to tackle this problem in various contexts.

This manuscript is for review purposes only. S by assuming that σ is known. Such a problem arises when considering the following observation model [START_REF] Sun | Majorization-Minimization algorithms in signal processing, communications, and machine learning[END_REF]:

(48) (∀i ∈ {1, . . . , N }) x (i) = As (i) + e (i)
where A ∈ R n×m with m n and, for every i ∈ {1, . . . , N }, s (i) ∈ R m and e (i) ∈ R n are realizations of mutually independent identically distributed Gaussian multivalued random variables with zero mean and covariance matrices P ∈ S ++ m and σ 2 I d , respectively. This model has been employed for instance in [START_REF] Tipping | Sparse Bayesian learning and the relevance vector machine[END_REF][START_REF] Wipf | Sparse Bayesian learning for basis selection[END_REF] in the context of the "Relevant Vector Machine problem". The covariance matrix Σ of the noisy input data x (i) 1 i N takes the form [START_REF] Mazumder | The graphical lasso: New insights and alternatives[END_REF] with Y * = APA . On the other hand, a simple estimate of Σ from the observed data

x (i) 1 i N is (49) S = 1 N N i=1 x (i) x (i) . Covariance-based model. A first estimate Y of Y * is given by (50) Y = argmin Y∈S + n 1 2 Y -S + σ 2 I d 2 F + g 0 (Y) + g 1 (Y),
where S is the empirical covariance matrix, g 0 satisfies (5) with ψ ∈ Γ 0 (R n ), g 1 ∈ Γ 0 (S n ), and the intersection of the relative interiors of the domains of g 0 and g 1 is assumed to be non empty. A particular instance of this model with σ = 0, g 0 = µ 0 R 1 , g 1 = µ 1 • 1 , and (µ 0 , µ 1 ) ∈ [0, +∞[ 2 was investigated in [START_REF] Zhou | Sparse and low-rank covariance matrices estimation[END_REF] and [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF] for estimating sparse low-rank covariance matrices. In the latter reference, an application to real data processing arising from protein interaction and social network analysis is presented. One can observe that Problem (50) takes the form (44) by setting

f = 1 2 • 2 F and T = S -σ 2 I d .
This allows us to solve (50) with Algorithm 1. Since it is assumed that g 0 satisfies ( 5), the proximity step on f + g 0 + ι S + n can be performed by employing Proposition 3.5 and formulas from Table 1. The resulting Douglas-Rachford procedure can thus be viewed as an alternative to the methods developed in [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF] and [START_REF] Zhou | Sparse and low-rank covariance matrices estimation[END_REF]. Let us emphasize that these two algorithms were devised to solve an instance of ( 50) corresponding to the aforementioned specific choices for g 0 and g 1 , while our approach leaves more freedom in the choice of the regularization functions. propose the following penalized negative log-likelihood cost function:

(51) (∀C ∈ S n ) F(C) = f (C) + T S (C) + g 0 (C) + g 1 (C)
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where

(∀C ∈ S n ) f (C) = log det C -1 + σ 2 I d if C ∈ S ++ n +∞ otherwise, (52) (∀C ∈ S n ) T S (C) = trace I d + σ 2 C -1 CS if C ∈ S + n +∞ otherwise, (53) 
g 0 ∈ Γ 0 (S n ) satisfies ( 5) with ψ ∈ Γ 0 (R n ), and g 1 ∈ Γ 0 (S n ). Typical choices of interest for the latter two functions are

(54) (∀C ∈ S n ) g 0 (C) = µ 0 R 1 (C -1 ) if C ∈ S ++ n +∞ otherwise,
and

g 1 = µ 1 • 1 with (µ 0 , µ 1 ) ∈ [0, +∞[ 2 .
The first function serves to promote a desired low-rank property by penalizing small eigenvalues of the precision matrix, whereas the second one enforces the sparsity of this matrix as it is usual in graph inference problems. This constitutes a main difference with respect to the covariancebased model which is more suitable to estimate sparse covariance matrices. Note that the standard Graphical Lasso framework [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] is then recovered by setting σ = 0 and µ 0 = 0. The advantage of our formulation is that it allows us to consider more flexible variational models while accounting for the presence of noise corrupting the observed data. The main difficulty however is that Algorithm 1 cannot be directly applied to minimize F. In Subsection 4.2, we will study in more details the properties of the cost function. This will allow us to derive a novel optimization algorithm making use of our previously developed Douglas-Rachford scheme for its inner steps 

u : [0, +∞[→ R : λ → λ 1 + σ 2 λ . The composition h • u is convex on ]0, +∞[ if and only if (56) (∀υ ∈]0, σ -2 [) ḧ(υ)(1 -σ 2 υ) -2σ 2 ḣ(υ) 0, (55) 
where ḣ (resp. ḧ) denotes the first (resp. second) derivative of h.

Proof. The result directly follows from the calculation of the second-order derivative of h • u.

Let us now note that f is a spectral function fulfilling (4) with

(57) ∀λ = (λ i ) 1 i n ∈ R n ϕ(λ) =      - n i=1 log u(λ i ) if λ ∈]0, +∞[ n +∞ otherwise,
where u is defined by [START_REF] Rockafellar | Convex Analysis[END_REF]. According to Lemma 4.1 (with h = -log), f ∈ Γ 0 (S n ).

Thus, the assumptions made on g 0 and g 1 , allow us to deduce that f + g 0 + g 1 is convex and lower-semicontinuous on S n .

Let us now focus on the properties of the second term in [START_REF] Parikh | Proximal algorithms[END_REF].

This manuscript is for review purposes only. Proof. By using differential calculus rules in [START_REF] Magnus | Matrix Differential Calculus with Applications in Statistics and Econometrics[END_REF], we will show that the Hessian of -T S evaluated at any matrix in S ++ n is a positive semidefinite operator. In order to lighten our notation, for every invertible matrix C, let us define

M = C -1 + σ 2 I d .
Then, the first-order differential of T S at every

C ∈ S ++ n is d trace (T S (C)) = trace d M -1 S = trace -M -1 (d M)M -1 S = trace C -1 + σ 2 I d -1 S C -1 + σ 2 I d -1 C -1 (d C)C -1 = trace I d + σ 2 C -1 S I d + σ 2 C -1 (d C) . (58) 
We have used the expression of the differential of the inverse [45, Chapter 8, Theorem 3] and the invariance of the trace with respect to cyclic permutations. It follows from ( 58) that the gradient of T S reads

(59) (∀C ∈ S ++ n ) ∇T S (C) = I d + σ 2 C -1 S I d + σ 2 C -1 .
In order to calculate the Hessian H of T S , we calculate the differential of ∇T S . Again, in order to simplify our notation, for every matrix C, we define ( 60)

N = I d + σ 2 C ⇒ d N = σ 2 d C.
The differential of ∇T S at every C ∈ S ++ n then reads

d vect (∇T S (C)) = vect d(N -1 SN -1 ) = vect (d N -1 )SN -1 + N -1 (d SN -1 ) = -vect(N -1 (d N)N -1 SN -1 ) -vect N -1 SN -1 (d N)N -1 = -N -1 SN -1 ⊗ N -1 vect(d N) -N -1 ⊗ N -1 SN -1 vect(d N) = -N -1 SN -1 ⊗ N -1 + N -1 ⊗ N -1 SN -1 d vect(N) = H(C) d vect(C) with (61) H(C) = -σ 2 ∇T S (C) ⊗ I d + σ 2 C -1 + I d + σ 2 C -1 ⊗ ∇T S (C) .
To derive the above expression, we have used the facts that, for every A ∈ R n×m , X ∈ R m×p , and

B ∈ R p×q , vect (AXB) = B ⊗ A vect X [45, Chapter 2,Theorem 2]
and that matrices N and S are symmetric.

Let us now check that, for every C ∈ S ++ n , H(C) is negative semidefinite. It follows from expression [START_REF] Sun | Majorization-Minimization algorithms in signal processing, communications, and machine learning[END_REF], the symmetry of C, and the positive semidefiniteness of

S that ∇T S (C) belongs to S + n . Since ∇T S (C) ⊗ I d + σ 2 C -1 = ∇T S (C) ⊗ I d + σ 2 C -1 = ∇T S (C) ⊗ I d + σ 2 C -1 , ∇T S (C) ⊗ I d + σ 2 C -1 is symmetric. Let us denote by (γ i ) 1 i n ∈ [0, +∞[ n the eigenvalues of ∇T S (C) and by (ζ i ) 1 i n ∈ [0, +∞[ n those of of C. Accord- ing to [45, Chapter 2, Theorem 1], the eigenvalues of ∇T S (C) ⊗ I d + σ 2 C -1 are
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γ i /(1 + σ 2 ζ j ) 1 i,
(∀C ∈ S ++ n ) T S (C) T S (C ) + trace (∇T S (C ) (C -C )) . (62) 
As f is finite only on S ++ n , a tangent majorant of the cost function [START_REF] Parikh | Proximal algorithms[END_REF] at C reads:

(∀C ∈ S n ) G(C | C ) = f (C) + T S (C ) + trace (∇T S (C ) (C -C )) + g 0 (C) + g 1 (C).
This leads to the general MM scheme:

(63) (∀ ∈ N) C ( +1) ∈ Argmin C∈Sn f (C) + trace ∇T S (C ( ) )C + g 0 (C) + g 1 (C)
with C (0) ∈ S ++ n . At each iteration of the MM algorithm, we have then to solve a convex optimization problem of the form (1). In the case when g 1 ≡ 0, we can employ the procedure described in Section 2 to perform this task in a direct manner.

The presence of a regularization term g 1 ≡ 0 usually prevents us to have an explicit solution to the inner minimization problem involved in the MM procedure. We then propose in Algorithm 2 to resort to the Douglas-Rachford approach in Section 3 to solve it iteratively.
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Algorithm 2 MM algorithm with DR inner steps 1: Let S ∈ S + n be the data matrix. Let ϕ be as in [START_REF] Rothman | Sparse permutation invariant covariance estimation[END_REF], let ψ ∈ Γ 0 (R n ) be associated with g 0 . Let (γ ) ∈N be a sequence in ]0, +∞[. Set C (0,0) = C (0) ∈ S ++ n . 2: for = 0, 1, . . . do

3:

for k = 0, 1, . . . do

4:

Compute U ( ,k) ∈ O n and λ ( ,k) ∈ R n such that

C ( ,k) -γ ∇T S (C ( ) ) = U ( ,k) Diag(λ ( ,k) ) U ( ,k) 5: d ( ,k+ 1 2 ) = prox γ (ϕ+ψ) λ ( ,k) 6: C ( ,k+ 1 2 ) = U ( ,k) Diag d ( ,k+ 1 2 ) U ( ,k) 7:
if Convergence of MM sub-iteration is reached then 8:

C ( +1) = C ( ,k+ 1 
2 )

9:

C ( +1,0) = C ( ,k) 10:
exit inner loop 

C ( ,k+1) = C ( ,k) + α ,k prox γ g1 2C ( ,k+ 1 2 ) -C ( ,k) -C ( ,k+ 1 
2 )

14:

end for 15: end for A convergence result is next stated, which is inspired from [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF] (itself relying on [69, p. 6]), but does not require the differentiability of g 0 + g 1 .

Theorem 4.3. Let (C ( ) ) 0 be a sequence generated by [START_REF] Wipf | Sparse Bayesian learning for basis selection[END_REF]. Assume that dom f ∩ dom g 0 ∩ dom g 1 = ∅, f + g 0 + g 1 is coercive, and E = {C ∈ S n | F(C) F(C (0) )} is a subset of the relative interior of dom g 0 ∩ dom g 1 . Then, the following properties hold:

(i) F(C ( ) ) 0 is a decaying sequence converging to F ∈ R.

(ii) (C ( ) ) 0 has a cluster point.

(iii) Every cluster point C of (C ( ) ) 0 is such that F( C) = F and it is a critical point of F, i.e. -∇f ( C) -∇T S ( C) ∈ ∂(g 0 + g 1 )( C).

Proof. First note that (C ( ) ) 0 is properly defined by ( 63 which is coercive, since f + g 0 + g 1 has been assumed coercive.

(i): As a known property of MM strategies, F(C ( ) ) 0 is a decaying sequence [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF].

Under our assumptions, we have already seen that F has a minimizer. We deduce that F(C ( ) ) 0 is lower bounded, hence convergent.

(ii): Since F(C ( ) ) 0 is a decaying sequence, (∀ 0) C ( ) ∈ E. Since F is proper, lower-semicontinuous, and coercive, E is a nonempty compact set and (C ( ) ) 0 admits a cluster point in E.

(iii): If C is a cluster point of (C ( ) ) 0 , then there exists a subsequence (C ( k ) ) k 0 converging to C. Since E is a nonempty subset of the relative interior of dom g 0 ∩ dom g 1 and g 0 +g 1 ∈ Γ 0 (S n ), g 0 +g 1 is continuous relative to E [6, Corollary 8.41]. As

f + T S is continuous on dom f ∩ dom T S = S ++ n , F is continuous relative to E. Hence, F = lim k→+∞ F(C ( k ) ) = F( C).
On the other hand, by similar arguments applied to
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sequence (C ( k +1) ) k 0 , there exists a subsequence (C ( kq +1) ) q 0 converging to some

C ∈ E such that F = F( C ). In addition, thanks to (63), we have

(64) (∀C ∈ S n )(∀q ∈ N) G(C ( kq +1) | C ( kq ) ) G(C | C ( kq ) ).
By continuity of f and ∇T S on S ++ n and by continuity of g 0 + g 1 relative to E,

(∀C ∈ S n ) G( C | C) G(C | C). (65) 
Let us now suppose that C is not a critical point of F. Since the subdifferential of 

G(• | C) at C is ∇f ( C) + ∇T S ( C) + ∂(g 0 + g 1 )( C) [6,
F( C ) G( C | C) < G( C | C) = F( C).
The resulting strict inequality contradicts the already established fact that F( C ) = F( C).

5. Numerical Experiments. This section presents some numerical tests illustrating the validity of the proposed algorithms. More specifically, in Subsection 5.1 the Douglas-Rachford (DR) approach of Section 3 is compared with other state-of-theart algorithms previously mentioned, namely Incremental Proximal Descent (IPD) [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF] and ADMM [START_REF] Zhou | Sparse and low-rank covariance matrices estimation[END_REF], on a problem of covariance matrix estimation. In Subsection 5.2, we present an application of the MM approach from Section 4 to a graphical lasso problem in the presence of noisy data. All the experiments were conducted on a MacBook Pro equipped with an Intel Core i7 at 2.2 GHz, 16 Gb of RAM (DDR3 1600 MHz), and Matlab R2015b. [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF], where S is the empirical covariance matrix defined in [START_REF] Moreau | Proximit et dualit dans un espace hilbertien[END_REF], and the regularization terms are g 0 = µ 0 R 1 and

g 1 = µ 1 • 1 .
We propose to compare the performance of the DR approach from Subsection 3.2, with the IPD algorithm [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF] and the ADMM procedure [START_REF] Zhou | Sparse and low-rank covariance matrices estimation[END_REF], for solving this convex optimization problem.

The synthetic data are generated using a procedure similar to the one in [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF].

A block-diagonal covariance matrix Y * is considered, composed with r blocks with dimensions (r j ) 1 j r , so that n = noise realizations) obtained with our method, as well as two other approaches that do not take into account the noise in their formulation, namely the classical GLASSO approach from [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], which amounts to solve (1) with f = -log det, g = µ 1 • 1 , and the DR approach described in Section 3, in the formulation given by (1) with f = -log det, (∀C ∈ S ++ n ) g(C) = µ 0 R 1 C -1 + µ 1 C 1 . For the DR approach, prox γ(ϕ+ψ) with γ ∈]0, +∞[ is given by the fourth line of Table 2 (when p = 1). As expected, as the noise variance increases the reconstruction quality deteriorates. The GLASSO procedure is strongly impacted by the presence of noise, whereas the MM approach achieves better results, also when compared with DR algorithm. Moreover, the MM algorithm significantly outperforms both other methods in terms of support reconstruction, revealing itself very robust with respect to an increasing level of noise.

6. Conclusions. In this work, various proximal tools have been introduced to deal with optimization problems involving real symmetric matrices. We have focused on the variational framework (1) which is closely related to the computation of a proximity operator with respect to a Bregman divergence. It has been assumed that f in (3) is a convex spectral function, and g reads as g 0 + g 1 , where g 0 is a spectral function. We have given a fully spectral solution in Section 2 when g 1 ≡ 0, and, in particular, Corollary 2.6 could be useful for developing algorithms involving proximity operators in other metrics than the Frobenius one. When g 1 ≡ 0, a proximal iterative approach has been presented, which is grounded on the use of the Douglas-Rachford procedure. As illustrated by the tables of proximity operators provided for a wide range of choices for f and g 0 , the main advantage of the proposed algorithm is its great flexibility. The proposed framework also has allowed us to propose a nonconvex formulation of the precision matrix estimation problem arising in the context of noisy graphical lasso. The nonconvexity of the obtained objective function has been cirmcumvented through a Majorization-Minimization approach, each step of which consists of solving a convex problem by a Douglas-Rachford sub-iteration.

Comparisons with state-of-the-art solutions have demonstrated the robustness of the proposed method. It is worth mentioning that all the results presented in this paper can be easily extended to complex Hermitian matrices.

  Y) -trace (T(C -Y)) , where T = ∇f (Y) is the gradient of f at Y. Hence, the original problem () + D f (C, Y).

  } where ∇f (x) is the gradient of f at x. If a function f : H →] -∞, +∞] possesses a unique minimizer on a set E ⊂ H, it will be denoted by argmin x∈E f (x). If there are possibly several minimizers, their set will be denoted by Argmin x∈E f (x). Given a set E, int(E) designates the interior of E and ι E denotes the indicator function of the set,

  denotes the Schatten p-norm, the nuclear norm being obtained when p = 1. O n denotes the set of orthogonal matrices of dimension n with real elements; S + n and S ++ n denote the set of real symmetric positive semidefinite, and symmetric positive definite matrices, respectively, of dimension n. I d denotes the identity matrix whose dimension will be clear from the context. The soft thresholding operator soft µ and the hard thresholding operator hard µ of parameter µ ∈ [0, +∞[ are given by

Lemma 2 . 3 . [ 34 ,

 2334 Section 10.2, Theorem 368] Let a ∈ D n and b ∈ D n . Then, for every permutation matrix P of dimension n × n,

  have the following characterization of this proximity operator: Proposition 3.1. Let γ ∈]0, +∞[ and C ∈ S n . Let f and g 0 be functions satisfying (4) and (5), respectively, where ϕ ∈ Γ 0 (R n ) and ψ is a lower-semicontinuous function such that dom ϕ ∩ dom ψ = ∅. Let λ ∈ R n and U ∈ O n be such that C + γT = U Diag(λ)U . (i) If ψ is lower bounded by an affine function then Prox γ(ϕ+ψ) (λ) = ∅ and, for

  then it is lower bounded by an affine function[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. Furthermore, ϕ + ψ ∈ Γ 0 (R n ) and the proximity operator of γ (ϕ + ψ) is thus single valued. On the other hand, we also have γ (f -trace (T •) + g 0 ) ∈ Γ 0 (S n )[START_REF] Lewis | Convex analysis on the Hermitian matrices[END_REF] Corollary 2.7], and the proximity operator of this function is single valued too.

  with (∀i ∈ {1, . . . , n}) d i 0 and µγpd p-1 i + (γ + 1)d i = λ i Inverse Schatten p-penalty d i 1 i n µR p p (C -1 ), p > 0 with (∀i ∈ {1, . . . , n}) d i > 0 and (γ + 1)d p+2 i -λ i d p+1 i = µγp Bound on the Frobenius norm α λ λ if λ > α(1 + γ) and λ 1 + γ otherwise, α ∈ [0, +∞[ ι E1 (C) Bounds on eigenvalues

  simply reduces to the Burg entropy of its eigenvalues. Hereagain, if Y ∈ S ++ n and T = -Y -1 , we can rewrite Problem (1) under the form (3), so that it becomes equivalent to the computation of the proximity operator of g with respect to the Bregman divergence given by (

4. 1 .

 1 Model and Proposed Approaches. Let S ∈ S + n be a sample estimate of a covariance matrix Σ which is assumed to be decomposed as (47) Σ = Y * + σ 2 I d where σ ∈ [0, +∞[ and Y * ∈ S + n may have a low-rank structure. Our objective in this section will be to propose variational methods to provide an estimate of Y * from

  Precision-based model. An alternative strategy consists of focusing on the estimation of the inverse of the covariance matrix, i.e. the precision matrix C * = (Y * ) -1 by assuming that Y * ∈ S ++ n but may have very small eigenvalues in order to model a possible low-rank structure. Tackling the problem from this viewpoint leads us to

4. 2 .Lemma 4 . 1 .

 241 Study of Objective Function F. The following lemma will reveal useful in our subsequent analysis. Let σ ∈]0, +∞[. Let h : ]0, σ -2 [→ R be a twice differentiable function and let

Lemma 4 . 2 .

 42 Let S ∈ S + n . The function T S in (53) is concave on S + n .

  ) since, for every C ∈ S ++ n , G(• | C) is a coercive lower-semicontinuous function. It indeed majorizes F

5. 1 .

 1 Application to Sparse Covariance Matrix Estimation. We first consider the application of the DR algorithm from Section 3 to the sparse covariance matrix estimation problem introduced in [54]. The objective is to retrieve an estimate of a low rank covariance matrix Y * ∈ S + n from N noisy realizations (x (i) ) 1 i N of a Gaussian multivalued random vector with zero mean and covariance matrix Y * +σ 2 I d , with σ > 0. As we have shown in Subsection 4.1, a solution to this problem can be obtained by solving the penalized least-squares problem

r

  j=1 r j . The j-th diagonal block of Y * reads as a product a j a j , where the components of a j ∈ R rj are randomly drawn on [-1, 1]. The number of observations N is equal to n and σ = 0.1. The three algorithms are initialized with S + I d , and stopped as soon as a relative decrease criterion on the objective function is met, i.e. when |F k+1 -F k |/|F k | ε, ε > 0 being a given tolerance and F k denoting the objective function value at iteration k. The maximum number of iterations is set to 2000. The penalty parameters µ 1 and µ 0 are chosen in order to get a reliable estimation of the original covariance matrix. The gradient stepsize for IPD is set to k -1 . In Algorithm 1, α k is set to 1.5. In ADMM, the initial Lagrange multiplier is set to a matrix with all entries equal to one, and the parameter of the proximal step is set to 1.

Figure 1

 1 Figure 1 illustrates the quality of the recovered covariance matrices when setting ε = 10 -10 . Three different indicators for estimation quality are provided, namely

  Behaviour of fpr wrt σ.

Fig. 2 .

 2 Fig. 2. Estimation results for different noise levels in terms of rmse (left) and fpr (right) for MM, GLASSO and DR approaches.

  Section 4 presents two new approaches for estimating covariance matrices from noisy data. Finally, in Section 5, numerical experiments illustrate the applicability of the proposed methods, and its good performance with respect to the state-of-the-art, in two distinct scenarios.

Notation: Greek letters usually designate real numbers, bold letters designate vectors in a Euclidean space, capital bold letters indicate matrices. The i-th element of the vector d is denoted by d i . Diag(d) denotes the diagonal matrix whose diagonal elements are the components of d. D n is the cone of vectors d ∈ R n whose components are ordered by decreasing values. The symbol vect(C) denotes the vector resulting from a column-wise ordering of the elements of matrix C. The product A⊗B denotes the classical Kronecker product of matrices A and B. Let H be a real Hilbert space endowed with an inner product •, • and a norm • , the domain of a function

  [START_REF] Zhou | Sparse and low-rank covariance matrices estimation[END_REF][START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF][START_REF] Chartrand | Nonconvex splitting for regularized low-rank + sparse decomposition[END_REF]. The squared Froebenius norm is the spectral function associated with the function ϕ = • 2 /2. It is worth mentioning that this choice for f allows us

	to rewrite the original Problem (1) under the form (3), where
	(36)

Table 1

 1 

presents several examples of spectral functions g 0 and the expression of the proximity operator of γ(ϕ + ψ) with γ ∈]0, +∞[. These expressions were established by using the properties of proximity operators of functions defined on R n (see

[START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF] Example 4.4

] and [24, Tables 10.1 and 10.2]). Remark 3.2. Another option for g 0 is to choose it equal to µ • S where µ ∈ ]0, +∞[. For every γ ∈]0, +∞[, we have then

[START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF] 

(∀λ

∈ R n ) prox γ(ϕ+ψ) (λ) = prox µγ 1+γ • +∞ λ 1 + γ ,

where • +∞ is the infinity norm of R n . By noticing that • +∞ is the conjugate function of the indicator function of B 1 , the unit 1 ball centered at 0 of R n , and using Moreau's decomposition formula, [6, Proposition 24.8(ix)] yields

[START_REF] Lewis | Convex analysis on the Hermitian matrices[END_REF] 

Table 1

 1 Proximity operators of γ( 1 2

  j n and they are therefore nonnegative. This allows us to claim that ∇T S (C) ⊗ I d + σ 2 C -1 belongs to S + n 2 . For similar reasons, I d + σ 2 C -1 ⊗ ∇T S (C) ∈ S + n 2 , which allows us to conclude that -H(C) ∈ S + n 2 . Hence, we have proved that T S is concave on S ++ n . By continuity of T S relative to S + n , the concavity property extends on S + n . As a last worth mentioning property, T S is bounded on S ++ n . So, if dom f ∩ dom g 0 ∩ dom g 1 = ∅ and f + g 0 + g 1 is coercive, then there exists a minimizer of F. Because of the form of f , the coercivity condition is satisfied if g 0 + g 1 is lower bounded and lim C∈S + n , C →+∞ g 0 (C) + g 1 (C) = +∞. 4.3. Minimization Algorithm for F. In order to find a minimizer of F, we propose a Majorize-Minimize (MM) approach, following the ideas in [22, 59, 35, 36]. At each iteration of an MM algorithm, one constructs a tangent function that majorizes the given cost function and is equal to it at the current iterate. The next iterate is obtained by minimizing this tangent majorant function, resulting in a sequence of iterates that reduces the cost function value monotonically. According to the results stated in the previous section, our objective function reads as a difference of convex terms. We propose to build a majorizing approximation of function T S at C ∈ S ++ n by exploiting Lemma 4.2 and the classical concavity inequality on T S :

  Corollary 16.48(ii)], the null matrix does not belong to this subdifferential, which means that C is not a minimizer of G(• | C)[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Theorem 16.3]. It follows from[START_REF] Yang | Fused multiple graphical lasso[END_REF] and standard MM properties that
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the true positive rate (tpr), i.e. the correctly recognized non-zero entries, the false positive rate (fpr), i.e. the entries erroneously added to the support of the matrix, and the relative mean square error (rmse), computed as

Y rec the recovered matrix. Note that the two first measurements are employed when the main interest lies in the recovery of the matrix support. A visual inspection shows that the three methods provide similar results in terms of matrix support estimation.

Moreover, the reconstruction error as well as the values of fpr and tpr slightly differ.