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Ferromagnetic thin multi-structures

Antonio Gaudiello∗and Rejeb Hadiji†

Abstract

In this paper, starting from the classical 3D non-convex and nonlocal micromagnetic
energy for ferromagnetic materials, we determine, via an asymptotic analysis, the free
energy of a multi-structure consisting of a nano-wire in junction with a thin film and of
a multi-structure consisting of two joined nano-wires. We assume that the volumes of
the two parts composing each multi-structure vanish with same rate. In the first case,
we obtain a 1D limit problem on the nano-wire and a 2D limit problem on the thin
film, and the two limit problems are uncoupled. In the second case, we obtain two 1D
limit problems coupled by a junction condition on the magnetization. In both cases,
the limit problem remains non-convex, but now it becomes completely local.

Keywords: micromagnetics, variational problem, thin film, nano-wire, junctions.

2000 AMS subject classifications: 78A25, 49S05, 78M35

1 Introduction

In this paper, starting from the classical 3D micromagnetic energy for ferromagnetic ma-
terials (see L. D. Landau and E. M. Lifshitz [24] and W. F. Brown [6]), we determine,
via an asymptotic analysis, the free energy of a multi-structure consisting of a nano-wire
in junction with a thin film and of a multi-structure consisting of two joined nano-wires.
These multi-structures appear in nano electronic devices (for instance, see [14] and [27]).
For reasons of simplicity and economy, especially by a numerical point of view, one tries to
reshape three-dimensional multi-structures, with multi-structures having a smaller size in
thin components.

In the sequel, x = (x1, x2, x3) denotes the generic point of R3. If η1, η2, η3 ∈ R
3, then

(η1|η2|η3) denotes the 3× 3 real matrix having ηT1 as first column, ηT2 as second column, and
ηT3 as third column. In according to this notation, if v : A ⊂ R

3 → R
3, then Dv denotes the

3 × 3 real matrix (Dx1
v|Dx2

v|Dx3
v), where Dxi

v ∈ R
3, i=1,2,3, stands for the derivative of

v with respect to xi.
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Let {hn}n∈N ⊂]0, 1[ be a vanishing sequence of positive numbers, and let Θ ⊂ ]0, 1[2 be
an open connected set with smooth boundary. In this paper, we consider two kinds of thin
multistructures in R

3. In the first case, for every n ∈ N, we set

Ωn = (hnΘ× [0, 1[) ∪
(
Θ×]− h2

n, 0[
)
,

which approximates a wire in junction with a thin film (see Fig. 1), as n diverges. In the
second case, we set

Ωn =
(
]− hn, 0[

2×[0, 1[
)
×
(
]− hn, 1[×]− hn, 0[

2
)

which approximates two joined wires (see Fig. 2), as n diverges. In both cases, the volumes
of the two parts of the multi-structure vanish with same rate. The aim of this paper

Figure 1: Ωn in the case wire - thin film

is to study the asymptotic behavior, as n diverges, of the following non-convex, nonlocal
variational problem:





Jn = min

{∫

Ωn

(
λ|DM |2 + ϕ(M) +

1

2
DUMM − 2FnM

)
dx :

M ∈ H1(Ωn, S
2)

}
,

div(−DUM +M) = 0 in R
3,

(1.1)
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Figure 2: Ωn in the case wire - wire

where λ is a positive constant, ϕ : S2 → [0,+∞[ is a continuous and even function, S2

denotes the unit sphere of R3, and Fn ∈ L2(Ωn,R
3). It is understood that M = 0 in R

3 \Ωn.

In classical theory of micromagnetics, M : Ωn → R
3 denotes the magnetization and the

body is always locally magnetized to a saturation magnetization |M(x)| = m(T ) > 0 unless
the local temperature T is greater or equal to Curie temperature depending on the body.
In the latter case m(T ) = 0, and the material ceases to behave ferromagnetically. In this
paper, we suppose constant temperature lower than Curie temperature and, without loss of
generality, we assume that m = 1, that is M(x) ∈ S2. The exchange energy

∫
Ωn

|DM |2dx
penalizes the spatial variation of M , driving the body to have large regions of uniform
magnetization separated by thin transition layers. The scalar function UM : R3 → R is the
so-called magnetostatic potential. The magnetostatic energy

∫
Ωn

DUMMdx =
∫
R3 |DUM |2dx

favors divM = 0 in Ωn and M · ν = 0 on ∂Ωn, where ν is the exterior unit normal to
∂Ωn. The constant λ is typically on order of 100 nanometers and measures the relative
strength of exchange energy with respect to the magnetostatic energy. The anisotropy energy∫
Ωn

ϕ(M)dx favors magnetization along special crystallographic directions, while the external

(Zeeman) energy
∫
Ωn

FnMdx favors magnetization parallel to an externally applied field.

Reformulating the problem on a fixed domain through appropriate rescalings of the kind
proposed by P. G. Ciarlet and P. Destuynder [10], imposing appropriate convergence as-
sumptions on the rescaled exterior fields and using the main ideas of Γ-convergence method
introduced by E. De Giorgi [11], we derive the limit problem in both previous cases. Specif-
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ically, in the case: wire - thin film, we prove that (see Theorem 3.1)

lim
n

Jn

h2
n

= min

{
|Θ|
∫ 1

0

(
λ

∣∣∣∣
dµa

dx3

∣∣∣∣
2

+ ϕ(µa)− 2

|Θ|F
aµa

)
dx3+

1

2

(
α(Θ)

∫ 1

0

|µa
1|2dx3 + β(Θ)

∫ 1

0

|µa
2|2dx3 + γ(Θ)

∫ 1

0

µa
1µ

a
2dx3

)
:

µa = (µa
1, µ

a
2, µ

a
3) ∈ H1 (]0, 1[ , S2)

}
+

min

{∫

Θ

(
λ
∣∣Dµb

∣∣2 + ϕ(µb) +
1

2
|µb

3|2 − 2F bµb

)
dx1dx2 :

µb = (µb
1, µ

b
2, µ

b
3) ∈ H1 (Θ, S2)

}
.

In the case: wire - wire, we prove that (see Theorem 4.1)

lim
n

Jn

h2
n

= min

{∫ 1

0

(
λ

∣∣∣∣
dµa

dx3

∣∣∣∣
2

+ ϕ(µa)− 2F aµa

)
dx3+

1

2

(
α(]− 1, 0[2)

∫ 1

0

|µa
1|2dx3 + β(]− 1, 0[2)

∫ 1

0

|µa
2|2dx3 + γ(]− 1, 0[2)

∫ 1

0

µa
1µ

a
2dx3

)
+

∫ 1

0

(
λ

∣∣∣∣
dµb

dx1

∣∣∣∣
2

+ ϕ(µb)− 2Gbµb

)
dx1+

1

2

(
α(]− 1, 0[2)

∫ 1

0

|µb
2|2dx1 + β(]− 1, 0[2)

∫ 1

0

|µb
3|2dx1 + γ(]− 1, 0[2)

∫ 1

0

µb
2µ

b
3dx1

)
:

(µa, µb) =
(
(µa

1, µ
a
2, µ

a
3), (µ

b
1, µ

b
2, µ

b
3)
)
∈ H1 (]0, 1[ , S2)×H1 (]0, 1[ , S2) , µa(0) = µb(0)

}
.

Above, F a(x3) is the integral in dx1dx2 of the L2-weak limit of the rescaled external field
in the vertical domain, F b(x1, x2) is the integral in dx3 of the L2-weak limit of the rescaled
external field in the horizontal domain, Gb(x1) is the integral in dx2dx3 of the L

2-weak limit
of the rescaled external field in the horizontal domain. To define coefficients α, β, γ, if S ⊂ R

2

is a bounded open connected set, we introduce the weak solutions p and q, depending on S,
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of the following problems





p ∈ W 1(R2),

∆p = 0 in S,

∆p = 0 in R
2 \ S,

[
∂p

∂ν

]
= νe1 on ∂S,





q ∈ W 1(R2),

∆q = 0 in S,

∆q = 0 in R
2 \ S,

[
∂q

∂ν

]
= νe2 on ∂S,

whereW 1(R2) denotes the Beppo-Levi space on R
2 (see Section 2), ν the exterior unit normal

to ∂S,
[
∂·
∂ν

]
the jump of ∂·

∂ν
on ∂S, and e1 = (1, 0), e2 = (0, 1). Then, we set

α(S) =

∫

R2

|Dp|2dydz, β(S) =

∫

R2

|Dq|2dydz, γ(S) = 2

∫

R2

DpDqdydz, (1.2)

where (y, z) denote the coordinates in R
2. We remark that, if S is sufficiently smooth,

definitions in (1.2) are equivalent to

α(S) =

∫

∂S

pνe1ds, β(S) =

∫

∂S

qνe2ds, γ(S) =

∫

∂S

qνe1ds+

∫

∂S

pνe2ds.

If S = {(x1, x2) ∈ R
2 : x2

1 + x2
2 < 1}, it results that α(S) = β(S) = π

2
and γ(S) = 0 (see

Theorem 3.1 in [29]).
In the case: wire - thin film, we obtain a 1D limit problem on the wire and a 2D

limit problem on the thin film, and the two limit problems are uncoupled. In particular, if
Θ = {(x1, x2) ∈ R

2 : x2
1+x2

2 < 1}, ϕ = 0, F a = 0 and F b = 0, then the minimum in the wire
is attained by (0, 0, 1) or (0, 0,−1), while the minimum in the thin film is attained by every
constant S2-vector parallel to the thin film.

In the case: wire - wire, we obtain two 1D limit problems coupled by the junction
condition on the magnetization µa(0) = µb(0).

In both cases, the limit problem remains non-convex, but now it becomes completely
local. Strong convergences in H1-norm are obtained for the rescaled magnetization.

In Section 2, we recall the definition and some properties of the Beppo Levi space on R
2.

In Section 3, we study the case wire - thin film. We use two different rescalings: one for the
wire and a second one for the thin film. The main difficulty is to identify the limit of the
magnetostatic energy. While it is quite classical in the thin film where only the component
of the magnetization orthogonal to the film appears in the limit (see [19]), it becomes more
complicated in the wire where the following combination of the first two components of
the magnetization with coefficients involving solutions of PDE in Beppo Levi space on R

2

intervene: α(Θ)
∫ 1

0
|µa

1|2dx3+ β(Θ)
∫ 1

0
|µa

2|2dx3+ γ(Θ)
∫ 1

0
µa
1µ

a
2dx3. These coefficients depend

on the geometry of the cross section of the wire. We explicitly remark that, to our knowledge,
we are the first to obtain this explicit formula for a wire with a generic cross section. Finally,
using the Γ-convergence method with suitable test functions and a density result proved in
[16], we identify the limit problem which results uncoupled. In Section 4, we study the case
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wire - wire, with wires having rectangular cross section. In this case, the main difficulty is
to obtain the junction condition and to perform the limit of the magnetostatic energy. To
this aim we have to use different and more sophisticated rescaling and symmetry arguments
which, in some sense, take into account the geometry and that the limit problem will be
coupled.

Our study can be easily extended to treat multi-structures as in Figure 3, or cruciform
multi-structures.

Figure 3:

Several results regarding the study of a single ferromagnetic thin film are present in
literature. G. Gioia and R. D. James [19] were the first to prove that the magnetostatic
energy behaves, at the limit, like an anisotropic local term which forces the magnetization
to be tangent to the thin film. This result was extended by C. Leone and R. Alicandro [1]
to the case with non-convex exchange energy, and by M. Báıa and E. Zappale [5] to a thin
film with nonhomogeneous profile. The case with degenerative coefficients was considered
by R. Hadiji and K. Shirakawa [20]. The time-dependent case was treated by H. Ammari,
L. Halpern and K. Hamdache [4], and by G. Carbou [7]. F. Alouges, T. Rivière and S.
Serfaty [3] and C. Rivière and S. Serfaty [28] considered an infinite cylinder where the
magnetization does not depend on the vertical coordinate. In [3] the authors showed that
bounded-energy configurations tend to be planar, except in small regions where one can
observe vortices. In [28] the magnetization is moreover constrained to be in the horizontal
plane, which avoids the vortices. F. Alouges and S. Labbé [2] proposed a model of films with
strong convergence of minimizers when the exchange parameter vanishes and with vertically
invariant configurations on the cylindrical domain. For reproducing the non uniform states
observed experimentally in thin films, very different regimes were considered by A. Desimone,
R.V. Kohn, S. Muller and F. Otto [13], and by R.V. Kohn and V.V. Slastikov in [22], where
h
l
and λ

l
vanish, h being the film thickness, l the in-plane diameter and λ the exchange length

of the ferromagnetic material. Ferroelectric thin films were studied by A. Gaudiello and K.
Hamdache in [18].

Single ferromagnetic nano-wire with circular cross section and finite length was studied
by G. Carbou and S. Labbé [8]. In this paper, they also consider a stabilization problem. A
similar model of wire with infinite length was studied by G. Carbou, S. Labbé and E. Trélat
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[9]. Curved nano-wire was examined by V.V. Slastikov and C. Sonnenberg in [31].

In [17] we considered two joined ferromagnetic thin films and we proved that the limit
magnetizations are coupled when the volumes of the two thin films vanish with the same
rate.

Multi-structures like in this paper were considered in [16] and [15], where we developed
an asymptotic analysis of minimizing maps with values in S2 for the energy

∫
Ωn
(|DM |2 −

2FnM)dx, neglecting the term with the nonlocal magnetostatic energy which characterizes
the actual paper.

2 Preliminaries

Let
W 1(R2) =

{
φ ∈ L2

loc(R
2) : Dφ ∈

(
L2(R2)

)2}
/R

equipped with the inner product

(φ1, φ2) ∈ W 1(R2)×W 1(R2) →
∫

R2

Dφ1Dφ2dydz, (2.1)

where (y, z) denote the coordinates in R
2. It is well known that W 1(R2) is a Hilbert space

(see [12], Corol. 1.1) and it is separable. Consequently, if S ⊂ R
2 is a bounded open set,

every one of the following problems




p ∈ W 1(R2),

∫

R2

DpDφdydz =

∫

S

Dyφ dydz, ∀φ ∈ W 1(R2),
(2.2)





q ∈ W 1(R2),

∫

R2

DqDφ dydz =

∫

S

Dzφ dydz, ∀φ ∈ W 1(R2),
(2.3)





pc ∈ W 1(R2),

∫

R2

DpcDφdydz =

∫

S

cDφ dydz, ∀φ ∈ W 1(R2),
(2.4)

with c = (c1, c2) ∈ R
2, admits a unique solution which obviously depends on S. Then, we

set

α(S) =

∫

R2

|Dp|2dydz, β(S) =

∫

R2

|Dq|2dydz, γ(S) = 2

∫

R2

DpDqdydz. (2.5)

In the sequel, we shall use the following evident result.

Lemma 2.1. Let p and q be the unique solutions of (2.2) and (2.3), respectively. Then, for
every c = (c1, c2) ∈ R

2, the unique solution pc of (2.4) is given by:

pc = c1p+ c2q.

7



We recall the Poincaré Lemma (which is well known if the domain is bounded).

Lemma 2.2. Let ξ ∈ (L2(R2))
2
such that rot ξ = 0. Then, there exists a unique w ∈ W 1(R2)

such that ξ = Dw.

Proof. The fact that rot ξ = 0 provides the existence of T ∈ D′(R2) such that ξ = DT , and
T is unique up to a constant (see [30], Ch. II, Th. VI, page 59). On the other hand, since
ξ ∈ (L2(R2))

2
, Kryloff Theorem assures that T ∈ L2

loc(R
2) (see [30], Ch. VI, Th. XV, page

181).

The following result was suggested by F. Murat [26].

Proposition 2.3. Let u ∈ L2
loc(R

2) be such that Du ∈ (L2(R2))
2
. Then, there exist a

sequence {ϕn}n∈N ⊂ C∞
0 (R2) such that Dϕn → Du strongly in (L2(R2))

2
.

For sake of completeness, we conclude this section giving another representation of
W 1(R2). There exists a constant c > 0, and for every φ ∈ W 1(R2) there exists φ ∈ φ
(we recall that φ denotes a class of equivalence) such that (see [23], Th. 6.3)

∫

R2

φ
2

(
1 + log

√
|x|2 + 1

)2
(|x|2 + 1)

dxdy ≤ c

∫

R2

|Dφ|2dxdy.

Consequently, it results that

W 1(R2) =



φ ∈ L2

loc(R
2) :

φ(
1 + log

√
|x|2 + 1

)√
|x|2 + 1

∈ L2(R2), Dφ ∈
(
L2(R2)

)2


 /R

equipped with the inner product in (2.1). About this question see also [25].

3 Wire - thin film

This section is devoted to study the asymptotic behavior, as n diverges, of problem (1.1) in
the first case, that is the case wire - thin film.

3.1 The setting of the problem

Let Θ ⊂ ]0, 1[2 be an open connected set with smooth boundary and, for every n ∈ N, let
Ωa

n = hnΘ× [0, 1[, Ωb
n = Θ×]− h2

n, 0[ and Ωn = Ωa
n ∪ Ωb

n (see Fig. 1).
Let B =]− 2, 2[3, and set

U =

{
U ∈ L1

loc(R
3) : U ∈ L2(B), DU ∈ (L2(R3))3,

∫

B

Udx = 0

}
. (3.1)

It is easy to prove that U is contained in L2
loc(R

3) and it is a Hilbert space with the inner prod-
uct: (U, V ) =

∫
R3 DUDV dx +

∫
B
UV dx. Moreover, it follows from the Poincaré-Wirtinger

8



inequality that a norm on U equivalent to (U, U)
1

2 is given by
(∫

R3 |DU |2dx
) 1

2 . Then, Lax-
Milgram theorem provides that, for M ∈ L2(Ωn,R

3), the following equation





UM,n ∈ U ,
∫

R3

DUM,nDUdx =

∫

Ωn

MDUdx, ∀U ∈ U ,
(3.2)

admits a unique solution and UM,n is characterized as the unique minimizer of the following
problem

min

{
1

2

∫

R3

|DU −M |2dx : U ∈ U
}
, (3.3)

where it is understood that M = 0 in R
3 \ Ωn. Moreover, UM belongs to H1(R3) up to an

additive constant (see [21]).
Let λ be a positive constant, ϕ : S2 → [0,+∞[ be a continuous, even function and, for

every n ∈ N, Fn ∈ L2(Ωn,R
3). The following problem:

min

{∫

Ωn

(
λ|DM |2 + ϕ(M) +

1

2
DUM,nM − 2FnM

)
dx : M ∈ H1(Ωn, S

2)

}
(3.4)

has at least one solution (see [32]). In general, one can not expect a unique solution, because
of the non-convexity of the constraint M(x) ∈ S2. The aim of this section is to study the
asymptotic behavior, as n diverges, of problem (3.4).

3.2 The rescaled problem

By setting 



R
3
a = {(x1, x2, x3) ∈ R

3 : x3 > 0},

R
3
b = {(x1, x2, x3) ∈ R

3 : x3 < 0},
For every n ∈ N, problem (3.4) will be reformulated on a fixed domain through the following
rescaling:

(x1, x2, x3) ∈ R
3 →





(hnx1, hnx2, x3), if (x1, x2, x3) ∈ R
3
a,

(x1, x2, h
2
nx3), if (x1, x2, x3) ∈ R

3
b .

Namely, setting
Ωa = Θ×]0, 1[, Ωb = Θ×]− 1, 0[,

and

Ba
n =

]
− 2

hn

,
2

hn

[2
×]0, 2[, Bb

n =]− 2, 2[2×
]
− 2

h2
n

, 0

[
, ∀n ∈ N,

9



the space U defined in (3.1) is rescaled in the following

Un =
{

u = (ua, ub) ∈ L1
loc(R

3
a)× L1

loc(R
3
b) : (ua

|Ba
n

, ub
|
Bb
n

) ∈ L2(Ba
n)× L2(Bb

n),

(Dua, Dub) ∈ (L2(R3
a))

3 × (L2(R3
b))

3,

∫

Ba
n

uadx+

∫

Bb
n

ubdx = 0,

ua(x1, x2, 0) = ub(hnx1, hnx2, 0), for (x1, x2) a.e. in R
2
}
.

(3.5)

Then, for every m = (ma, mb) ∈ L2(Ωa,R3)× L2(Ωb,R3), the following equation




um,n = (ua
m,n, u

b
m,n) ∈ Un,

∫

R3
a

(
1

hn

Dx1
ua
m,n,

1

hn

Dx2
ua
m,n, Dx3

ua
m,n

)(
1

hn

Dx1
ua,

1

hn

Dx2
ua, Dx3

ua

)
dx+

∫

R3

b

(
Dx1

ub
m,n, Dx2

ub
m,n,

1

h2
n

Dx3
ub
m,n

)(
Dx1

ub, Dx2
ub,

1

h2
n

Dx3
ub

)
dx =

∫

Ωa

(
1

hn

Dx1
ua,

1

hn

Dx2
ua, Dx3

ua

)
madx+

∫

Ωb

(
Dx1

ub, Dx2
ub,

1

h2
n

Dx3
ub

)
mbdx, ∀u = (ua, ub) ∈ Un,

(3.6)

which rescales equation (3.2), admits a unique solution. Its solution um,n = (ua
m,n, u

b
m,n) ∈ Un

is characterized as the unique minimizer of the following problem rescaling problem (3.3)
after the renormalization by h2

n:

jm,n(um,n) = min {jm,n(u) : u ∈ Un} , (3.7)

where

jm,n : u = (ua, ub) ∈ Un −→ 1

2

∫

R3
a

∣∣∣∣
(

1

hn

Dx1
ua,

1

hn

Dx2
ua, Dx3

ua

)
−ma

∣∣∣∣
2

dx+

1

2

∫

R3

b

∣∣∣∣
(
Dx1

ub, Dx2
ub,

1

h2
n

Dx3
ub

)
−mb

∣∣∣∣
2

dx,

(3.8)

understanding ma = 0 in R
3
a \ Ωa and mb = 0 in R

3
b \ Ωb. We note that um,n = (ua

m,n, u
b
m,n)

belongs to H1(R3
a)×H1(R3

b) up to an additive constant.
For every n ∈ N, H1(Ωn, S

2), Fn ∈ L2(Ωn) and the functional involved in problem (3.4)
renormalized by h2

n are rescaled in

Mn =
{

m = (ma, mb) ∈ H1(Ωa, S2)×H1(Ωb, S2) :

ma(x1, x2, 0) = mb(hnx1, hnx2, 0), for (x1, x2) a.e. in Θ
}
,

(3.9)
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fn : x ∈ Ωa ∪ Ωb → fn(x) =





fa
n(x) = Fn(hnx1, hnx2, x3), for x a.e. in Ωa,

f b
n(x) = Fn(x1, x2, h

2
nx3), for x a.e. in Ωb,

(3.10)

and
En : m = (ma, mb) ∈ Mn −→

∫

Ωa

(
λ

∣∣∣∣
(

1

hn

Dx1
ma| 1

hn

Dx2
ma|Dx3

ma

)∣∣∣∣
2

+ ϕ(ma)− 2fa
nm

a

)
dx+

1

2

∫

Ωa

((
1

hn

Dx1
ua
m,n,

1

hn

Dx2
ua
m,n, Dx3

ua
m,n

)
ma

)
dx+

∫

Ωb

(
λ

∣∣∣∣
(
Dx1

mb|Dx2
mb| 1

h2
n

Dx3
mb

)∣∣∣∣
2

+ ϕ(mb)− 2f b
nm

b

)
dx+

1

2

∫

Ωb

((
Dx1

ub
m,n, Dx2

ub
m,n,

1

h2
n

Dx3
ub
m,n

)
mb

)
dx,

(3.11)

respectively. Then, the function defined by

Mn(hnx1, hnx2, x3), for x a.e. in Ωa, Mn(x1, x2, h
2
nx3), for x a.e. in Ωb,

with Mn solution of problem (3.4), is a minimizer of the following problem:

min {En(m) : m ∈ Mn} . (3.12)

Actually, the goal becomes to study the asymptotic behavior, as n diverges, of problem
(3.12). To this aim, it will be assumed that

fa
n ⇀ fa weakly in L2(Ωa,R3), f b

n ⇀ f b weakly in L2(Ωb,R3). (3.13)

Note that, setting for every n ∈ N

Emag
n : m = (ma, mb) ∈ L2(Ωa,R3)× L2(Ωb,R3) −→

1

2

∫

R3
a

∣∣∣∣
(

1

hn

Dx1
ua
m,n,

1

hn

Dx2
ua
m,n, Dx3

ua
m,n

)∣∣∣∣
2

dx+

1

2

∫

R3

b

∣∣∣∣
(
Dx1

ub
m,n, Dx2

ub
m,n,

1

h2
n

Dx3
ub
m,n

)∣∣∣∣
2

dx,

(3.14)
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by virtue of (3.6), functional En can be rewritten in the following way:

En(m) =

∫

Ωa

(
λ

∣∣∣∣
(

1

hn

Dx1
ma| 1

hn

Dx2
ma|Dx3

ma

)∣∣∣∣
2

+ ϕ(ma)− 2fa
nm

a

)
dx+

∫

Ωb

(
λ

∣∣∣∣
(
Dx1

mb|Dx2
mb| 1

h2
n

Dx3
mb

)∣∣∣∣
2

+ ϕ(mb)− 2f b
nm

b

)
dx+

Emag
n (m), ∀m = (ma, mb) ∈ Mn, ∀n ∈ N.

(3.15)

3.3 The main result

Let

M =
{
µ = (µa, µb) ∈ H1(Ωa, S2)×H1(Ωb, S2) : µa is independent of (x1, x2),

µb is independent of x3

}
≃ H1(]0, 1[, S2)×H1 (Θ, S2) ,

(3.16)





F a : x3 ∈]0, 1[−→
1

|Θ|

∫

Θ

fa(x1, x2, x3)dx1dx2,

F b : (x1, x2) ∈ Θ −→
∫ 0

−1

f b(x1, x2, x3)dx3,

(3.17)

and
E : µ = (µa, µb) = ((µa

1, µ
a
2, µ

a
3), (µ

b
1, µ

b
2, µ

b
3)) ∈ M −→

|Θ|
∫ 1

0

(
λ

∣∣∣∣
dµa

dx3

∣∣∣∣
2

+ ϕ(µa)− 2F aµa

)
dx3+

1

2

(
α(Θ)

∫ 1

0

|µa
1|2dx3 + β(Θ)

∫ 1

0

|µa
2|2dx3 + γ(Θ)

∫ 1

0

µa
1µ

a
2dx3

)
+

∫

Θ

(
λ
∣∣Dµb

∣∣2 + ϕ(µb) +
1

2
|µb

3|2 − 2F bµb

)
dx1dx2,

(3.18)

where α(Θ), β(Θ) and γ(Θ) are defined by (2.5) with S = Θ.
This section is devoted to prove the following main result:

Theorem 3.1. Assume (3.13). For every n ∈ N, let mn = (ma
n, m

b
n) be a solution of (3.12)

and un = (ua
n, u

b
n) be the unique solution of (3.7) corresponding to mn. Moreover, let M

and E be defined by (3.16) and (3.18), respectively. Then, there exist an increasing sequence
of positive integer numbers {ni}i∈N and µ̂ = (µ̂a, µ̂b) = ((µ̂a

1, µ̂
a
2, µ̂

a
3), (µ̂

b
1, µ̂

b
2, µ̂

b
3)) ∈ M,

depending on the selected subsequence, such that

ma
ni

→ µ̂a stongly in H1(Ωa, S2), mb
ni

→ µ̂b strongly in H1(Ωb, S2), (3.19)
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



1

hn

Dx1
ma

n → 0,
1

hn

Dx2
ma

n → 0 stongly in L2(Ωa,R3),

1

h2
n

Dx3
mb

n → 0 strongly in L2(Ωb,R3),

(3.20)





1

hni

Dx1
ua
ni

→ ξ̂a1 ,
1

hni

Dx2
ua
ni

→ ξ̂a2 , Dx3
ua
n → 0 strongly in L2(R3

a),

Dx1
ub
n → 0, Dx2

ub
n → 0,

1

h2
ni

Dx3
ub
ni

→ µ̂b
3 strongly in L2(R3

b),

(3.21)

as n and i diverge, where µ̂ is a solution of the following problem:

E(µ̂) = min {E(µ) : µ ∈ M} , (3.22)

and

(ξ̂a1 , ξ̂
a
2)(x1, x2, x3) =





(0, 0), a.e. in R
2×]1,+∞[,

µ̂a
1(x3)Dp(x1, x2) + µ̂a

2(x3)Dq(x1, x2), a.e. in R
2×]0, 1[,

(3.23)

with p (resp. q) the unique solution of (2.2) (resp. (2.3)). It is understood that µ̂b
3 = 0 in

R
3
b \ Ωb. Moreover, the convergence of the energies holds true:

lim
n

En(mn) = E(µ̂). (3.24)

3.4 A Convergence result for the magnetostatic energy

Proposition 3.2. Let {mn = (ma
n, m

b
n)}n∈N ⊂ L2(Ωa,R3) × L2(Ωb,R3) and µ = (µa, µb) =

((µa
1, µ

a
2, µ

a
3, ), (µ

b
1, µ

b
2, µ

b
3)) ∈ L2(Ωa,R3)×L2(Ωb,R3) be such that µa is independent of (x1, x2),

µb is independent of x3 and

ma
n → µa strongly in L2(Ωa,R3), mb

n → µb strongly in L2(Ωb,R3), (3.25)

as n diverges. Moreover, for every n ∈ N, let un = (ua
n, u

b
n) be the unique solution of (3.7)

corresponding to mn, and let Emag
n be defined by (3.14). Then, it results that





1

hn

Dx1
ua
n → ξa1 ,

1

hn

Dx2
ua
n → ξa2 , Dx3

ua
n → 0 strongly in L2(R3

a),

Dx1
ub
n → 0, Dx2

ub
n → 0,

1

h2
n

Dx3
ub
n → µb

3 strongly in L2(R3
b),

(3.26)

as n diverges, where it is understood that µb
3 = 0 in R

3
b \ Ωb, and

(ξa1 , ξ
a
2)(x1, x2, x3) =





(0, 0), a.e. in R
2×]1,+∞[,

µa
1(x3)Dp(x1, x2) + µa

2(x3)Dq(x1, x2), a.e. in R
2×]0, 1[,

(3.27)
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with p (resp. q) the unique solution of (2.2) (resp. (2.3)). Furthermore, one has that

lim
n

Emag
n (mn) =

1

2

(∫

R2×]0,1[

|µa
1Dp+ µa

2Dq|2dx+

∫

Θ

|µb
3|2dx3

)
=

1

2

(
α(Θ)

∫ 1

0

|µa
1|2dx3 + β(Θ)

∫ 1

0

|µa
2|2dx3 + γ(Θ)

∫ 1

0

µa
1µ

a
2dx3 +

∫

Θ

|µb
3|2dx1dx2

)
,

(3.28)

where α(Θ), β(Θ) and γ(Θ) are defined by (2.5) with S = Θ.

Proof. The proof will be developed in four steps.
By arguing as in the first part of the proof of proposition 5.1 in [17], one can proves that

Dua
n ⇀ 0 weakly in (L2(R3

a))
3, Dub

n ⇀ 0 weakly in (L2(R3
b))

3, (3.29)

as n diverges, and that there exist ξa = (ξa1 , ξ
a
2) ∈ (L2(R3

a))
2
and ξb ∈ L2(R3

b) such that, on
extraction of a suitable subsequence (not relabeled),





1

hn

Dx1
ua
n ⇀ ξa1 weakly in L2(R3

a),
1

hn

Dx2
ua
n ⇀ ξa2 weakly in L2(R3

a),

1

h2
n

Dx3
ub
n ⇀ ξb weakly in L2(R3

b),

(3.30)

as n diverges.
The second step is devoted to identify ξa. To this aim, starting from the following evident

relation:

Dx2

(
1

hn

Dx1
ua
n

)
= Dx1

(
1

hn

Dx2
ua
n

)
in D′(R3

a), ∀n ∈ N,

and using the first two limits in (3.30), one obtains that

∫

R3
a

ξa1Dx2
ϕdx =

∫

R3
a

ξa2Dx1
ϕdx, ∀ϕ ∈ H1

0 (R
3
a). (3.31)

By taking ϕ(x) = φ(x1, x2)χ(x3) with φ ∈ H1(R2) and χ ∈ C∞
0 (]0,+∞[) and recalling that

H1(R2) is separable, it follows from (3.31) that





for x3 a.e. in ]0,+∞[,

∫

R2

ξa1(x1, x2, x3)Dx2
φ(x1, x2)dx1dx2 =

∫

R2

ξa2(x1, x2, x3)Dx1
φ(x1, x2)dx1dx2, ∀φ ∈ H1(R2).

Consequently, by virtue of the Poincaré Lemma (see Section 2), it results that





for x3 a.e. in ]0,+∞[, ∃!w(·, ·, x3) ∈ W 1(R2) :

ξa1(·, ·, x3) = Dx1
w(·, ·, x3), ξa2(·, ·, x3) = Dx2

w(·, ·, x3), a.e. in R
2.

(3.32)
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Now, in equation (3.6) with m = mn choose ua = ϕ+ cn and ub = cn, with ϕ ∈ C∞
0 (R3

a)
and cn = −(|Ba

n| + |Bb
n|)−1

∫
Ba

n
ϕdx (such that (ua, ub) ∈ Un). By multiplying this equation

by hn, one has




∫

R3
a

(
1

hn

Dx1
ua
n,

1

hn

Dx2
ua
n, Dx3

ua
n

)
(Dx1

ϕ,Dx2
ϕ, hnDx3

ϕ) dx =

∫

Ωa

(Dx1
ϕ,Dx2

ϕ, hnDx3
ϕ)ma

ndx, ∀ϕ ∈ C∞
0 (R3

a).

(3.33)

Then, passing to the limit, as n diverges, in (3.33), convergences (3.25), (3.29) and (3.30)
give that
∫

R3
a

(ξa1 , ξ
a
2)(Dx1

ϕ,Dx2
ϕ)dx =

∫ 1

0

(
(µa

1, µ
a
2)

∫

Θ

(Dx1
ϕ,Dx2

ϕ)dx1dx2

)
dx3, ∀ϕ ∈ C∞

0 (R3
a).

Consequently, arguing as above, taking into account that W 1(R2) is separable, and using
Proposition 2.3 and (3.32), it follows that, for x3 a.e. in ]1,+∞[, w(·, ·, x3) solves the following
problem:




w(·, ·, x3) ∈ W 1(R2),

∫

R2

(Dx1
w(x1, x2, x3), Dx2

w(x1, x2, x3))(Dx1
φ(x1, x2), Dx2

φ(x1, x2))dx1dx2 = 0, ∀φ ∈ W 1(R2),

while, for x3 a.e. in ]0, 1[, w(·, ·, x3) solves the following one:




w(·, ·, x3) ∈ W 1(R2),

∫

R2

(Dx1
w(x1, x2, x3), Dx2

w(x1, x2, x3))(Dx1
φ(x1, x2), Dx2

φ(x1, x2))dx1dx2 =

(µa
1(x3), µ

a
2(x3))

∫

Θ

(Dx1
φ(x1, x2), Dx2

φ(x1, x2))dx1dx2, ∀φ ∈ W 1(R2).

(3.34)

Then, by virtue of Lemma 2.1, it results that, for x3 a.e. in ]0,+∞[,

w(·, ·, x3) =





0, a.e. in R
2, if x3 > 1,

µa
1(x3)p(·, ·) + µa

2(x3)q(·, ·), a.e. in R
2, if x3 < 1,

(3.35)

with p (resp. q) the unique solution of (2.2) (resp. (2.3)).
Finally, since Tonelli theorem assures that ξa and µa

1Dp1+µa
2Dp2 belong to (L2(R3

a))
2 ⊂

(L1

loc(R
3
a))

2, using Fubini theorem with (3.32) and (3.35) one entails that

∫

R3
a

ξaϕdx =

∫ +∞

0

(∫

R2

ξaϕdx1dx2

)
dx3 =

∫ 1

0

(∫

R2

(µa
1Dp+ µa

2Dq)ϕdx1dx2

)
dx3 =

∫

R2×]0,1[

(µa
1Dp+ µa

2Dq)ϕdx, ∀ϕ ∈ C∞
0 (R3

a),
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that is

ξa(x1, x2, x3) =





(0, 0), a.e. in R
2×]1,+∞[,

µa
1(x3)Dp(x1, x2) + µa

2(x3)Dq(x1, x2), a.e. in R
2×]0, 1[,

(3.36)

with p (resp. q) the unique solution of (2.2) (resp. (2.3)). Consequently, the first two limits
in (3.30) hold true for the whole sequence.

The third step is devoted to identify ξb. To this aim, in equation (3.6) with m = mn

choose ua = cn and ub = ϕ+ cn, with ϕ ∈ C∞
0 (R3

b) and cn = −(|Ba
n|+ |Bb

n|)−1
∫
Bb

n
ϕdx (such

that (ua, ub) ∈ Un). By multiplying this equation by h2
n, one has





∫

R3

b

(
Dx1

ub
n, Dx2

ub
n,

1

h2
n

Dx3
ub
n

)(
h2
nDx1

ϕ, h2
nDx2

ϕ,Dx3
ϕ
)
dx =

∫

Ωb

(
h2
nDx1

ϕ, h2
nDx2

ϕ,Dx3
ϕ
)
mb

ndx, ∀ϕ ∈ C∞
0 (R3

b).

(3.37)

Then, passing to the limit, as n diverges, in (3.37), convergences (3.25), (3.29) and (3.30)
give that ∫

R3

b

ξbDx3
ϕdx =

∫

Ωb

µb
3Dx3

ϕdx ∀ϕ ∈ C∞
0 (R3

b),

which provides that, for (x1, x2) a.e. in R
2, the function ξb(x1, x2, ·)− µ̃b

3(x1, x2, ·) is constant
in ] −∞, 0[, where µ̃b

3 denotes the zero extension of µb
3 on R

3
b \ Ωb. On the other hand, for

(x1, x2) a.e. in R
2, ξb(x1, x2, ·)− µ̃b

3(x1, x2, ·) ∈ L2(]−∞, 0[). Then, for (x1, x2) a.e. in R
2, it

results that
ξb(x1, x2, ·) = µ̃b

3(x1, x2, ·), a.e. in ]−∞, 0[,

from which, arguing as above, it follows that

ξb(x1, x2, x3) =





0, a.e. in R
3
b \ Ωb,

µb(x3), a.e. in Ωb.
(3.38)

Consequently, also the last limit in (3.30) holds true for the whole sequence.
The last step is devoted to prove that convergences in (3.29) and (3.30) are strong, and

to obtain convergence (3.28). By passing to the limit in (3.6) with m = mn, u
a = ua

n and
ub = ub

n, and using (3.25), (3.29), (3.30), (3.36), (3.38) and equation (3.34) with test function
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µa
1p+ µa

2q, one obtains the convergence of the energies:

lim
n

[∫

R3
a

∣∣∣∣
(

1

hn

Dx1
ua
n,

1

hn

Dx2
ua
n, Dx3

ua
n

)∣∣∣∣
2

dx+

∫

R3

b

∣∣∣∣
(
Dx1

ub
n, Dx2

ub
n,

1

h2
n

Dx3
ub
n

)∣∣∣∣
2

dx

]
=

lim
n

[∫

Ωa

(
1

hn

Dx1
ua
n,

1

hn

Dx2
ua
n, Dx3

ua
n

)
ma

ndx+

∫

Ωb

(
Dx1

ub
n, Dx2

ub
n,

1

h2
n

Dx3
ub
n

)
mb

ndx

]
=

∫

Ωa

(µa
1Dp+ µa

2Dq) (µa
1, µ

a
2)dx+

∫

Ωb

|µb
3|2dx =

∫

R2×]0,1[

|µa
1Dp+ µa

2Dq|2dx+

∫

Ωb

|µb
3|2dx.

(3.39)

By combining (3.29), (3.30), (3.36), (3.38) with (3.39), one deduces limits in (3.26). Limit
(3.28) is a consequence of (3.26) and (3.27).

3.5 Proof of theorem 3.1

Proof. By choosing m = ((0, 1, 0), (0, 1, 0)) as test function in (3.12), and taking into account
(3.13) and that |mn| = 1 a.e. in Ωa

⋃
Ωb, it is easy to see that there exists c ∈]0,+∞[ such

that

∫

Ωa

∣∣∣∣
(

1

hn

Dx1
ma

n|
1

hn

Dx2
ma

n|Dx3
ma

n

)∣∣∣∣
2

dx+

∫

Ωb

∣∣∣∣
(
Dx1

mb
n|Dx2

mb
n|

1

h2
n

Dx3
mb

n

)∣∣∣∣
2

dx ≤

c+ Emag
n ((0, 1, 0), (0, 1, 0)), ∀n ∈ N,

where Emag
n is defined (3.14). in Consequently, since proposition 3.2 provides that the se-

quence {Emag
n ((0, 1, 0), (0, 1, 0))}n∈N is bounded, one obtains that there exists c ∈]0,+∞[

such that




‖Dx1
ma

n‖(L2(Ωa))3 ≤ chn, ‖Dx2
ma

n‖(L2(Ωa))3 ≤ chn, ‖Dx3
ma

n‖(L2(Ωa))3 ≤ c,

‖Dx1
mb

n‖(L2(Ωb))3 ≤ c, ‖Dx2
mb

n‖(L2(Ωb))3 ≤ c, ‖Dx3
mb

n‖(L2(Ωb))3 ≤ ch2
n,

for every n ∈ N. Then, taking into account that |mn| = 1 a.e. in Ωa
⋃

Ωb, there exist an in-
creasing sequence of positive integer numbers {ni}i∈N, µ̂ = (µ̂a, µ̂b) ∈ M, ζa ∈ (L2(Ωa,R3))

2

17



and ζb ∈ L2(Ωb,R3) such that

ma
ni

⇀ µ̂a weakly in H1(Ωa,R3), mb
ni

⇀ µ̂b weakly in H1(Ωb,R3), (3.40)




(
1

hni

Dx1
ma

ni
,
1

hni

Dx2
ma

ni

)
⇀ ζa weakly in

(
L2(Ωa,R3)

)2
,

1

h2
ni

Dx3
mb

ni
⇀ ζb weakly in L2(Ωb,R3),

(3.41)

as i diverges. Consequently, by virtue of proposition 3.2, limits in (3.21) hold true and it
results that

lim
i
Emag

ni
(mni

) =
1

2

(
α(Θ)

∫ 1

0

|µ̂a
1|2dx3 + β(Θ)

∫ 1

0

|µ̂a
2|2dx3+

γ(Θ)

∫ 1

0

µ̂a
1µ̂

a
2dx3 +

∫

Θ

|µ̂b
3|2dx1dx2

)
,

(3.42)

where α(Θ), β(Θ) and γ(Θ) are defined by (2.5) with S = Θ.
Now, the goal is to identify µ̂, ζa, ζb, to obtain strong convergences in (3.40) and in

(3.41), and to prove convergence (3.24). To this aim, for (µa, µb) ∈ Mreg = {(µa, µb) ∈
C1([0, 1], S2) × C1(Θ, S2) : µa(0) = µb(0)} let, for every n ∈ N, vn = (van, v

b
n) ∈ Mn be the

couple of functions defined in (2.37) of [16] with w = µa and ζ = µb. Then, in [16] it is
proved that

lim
n

[∫

Ωa

(
λ

∣∣∣∣
(

1

hn

Dx1
van|

1

hn

Dx2
van|Dx3

van

)∣∣∣∣
2

− 2fa
nv

a
n

)
dx+

∫

Ωb

(
λ

∣∣∣∣
(
Dx1

vbn|Dx2
vbn|

1

h2
n

Dx3
vbn

)∣∣∣∣
2

− 2f b
nv

b
n

)
dx

]
=

|Θ|
∫ 1

0

(
λ

∣∣∣∣
dµa

dx3

∣∣∣∣
2

− 2F aµa

)
dx3 +

∫

Θ

(
λ
∣∣Dµb

∣∣2 − 2F bµb
)
dx1dx2.

(3.43)

Moreover, it is easy to see that

van → µa strongly in L2(Ωa,R3), vbn → µb strongly in L2(Ωb,R3), (3.44)

as n diverges. Then, it follows from (3.43), (3.44) and proposition 3.2 that

lim
n

En(vn) = E(µa, µb)

from which, using l.s.c. arguments, (3.13), (3.40), (3.41) and (3.42), one obtains that




λ

∫

Ωa

|ζa|2dx+ λ

∫

Ωb

|ζb|2dx+ E(µ̂a, µ̂b) ≤ lim inf
i

Eni
(mni

) ≤

lim sup
i

Eni
(mni

) ≤ lim
i
Eni

(vni
) = E(µa, µb).

(3.45)
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Since (3.45) holds true for every (µa, µb) ∈ Mreg and Mreg is dense in M (see [16]), one
has that (3.45) holds also true for every (µa, µb) ∈ M. Consequently, ζa = 0, ζb = 0, (µ̂a, µ̂b)
solves (3.22) and limit (3.24) holds true. Finally, combining (3.24) with (3.13), (3.40), (3.41)
and (3.42) one obtains that convergences in (3.40) and in (3.41) are strong.

4 Wire - wire

This section is devoted to study the asymptotic behavior, as n diverges, of problem (1.1)
in the second case, that is the case wire - wire. Specifically, for every n ∈ N, let Ωa

n =
]−hn, 0[

2×]0, 1[, Ωb,l
n =]0, 1[×]−hn, 0[

2 and Ωb,r
n =]−hn, 0]

3. Then, we study the asymptotic
behavior, as n diverges, of problem (3.4) with Ωn = Ωa

n ∪ Ωb,l
n ∪ Ωb,r

n (see Fig. 2).

4.1 The rescaled problem

By setting 



R
3
a = {(x1, x2, x3) ∈ R

3 : x3 > 0},

R
3
b,l = {(x1, x2, x3) ∈ R

3 : x3 < 0, x1 > 0},

R
3
b,r = {(x1, x2, x3) ∈ R

3 : x3 < 0, x1 < 0},
for every n ∈ N, problem (3.4) is reformulated on a fixed domain through the following
rescaling

Tn : (x1, x2, x3) ∈ R
3 → Tn(x1, x2, x3) =





(hnx1, hnx2, x3), if (x1, x2, x3) ∈ R
3
a,

(x1, hnx2, hnx3), if (x1, x2, x3) ∈ R
3
b,l,

(hnx1, hnx2, hnx3), if (x1, x2, x3) ∈ R
3
b,r.

(4.1)

Namely, setting

Ωa =]− 1, 0[2×]0, 1[, Ωb,l =]0, 1[×]− 1, 0[2, Ωb,r =]− 1, 0[3,

and

Ba
n =

]
− 2

hn

,
2

hn

[2
×]0, 2[, Bb,l

n =]0, 2[×
]
− 2

hn

, 0

[2
, Bb,r

n =

]
− 2

hn

, 0

[3
, n ∈ N,
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the space U defined in (3.1) is rescaled in the following

Un =
{

u = (ua, ub,l, ub,r) ∈ L1
loc(R

3
a)× L1

loc(R
3
b,l)× L1

loc(R
3
b,r) :

(ua
|Ba

n

, ub,l

|
B
b,l
n

, ub,r

|
B
b,r
n

) ∈ L2(Ba
n)× L2(Bb,l

n )× L2(Bb,r
n ),

(Dua, Dub,l, Dub,r) ∈ (L2(R3
a))

3 × (L2(R3
b,l))

3 × (L2(R3
b,r))

3,

∫

Ba
n

uadx+

∫

B
b,l
n

ub,ldx+ hn

∫

B
b,r
n

ub,rdx = 0,

ua(x1, x2, 0) = ub,l(hnx1, x2, 0), for (x1, x2) a.e. in ]0,+∞[×R,

ua(x1, x2, 0) = ub,r(x1, x2, 0), for (x1, x2) a.e. in ]−∞, 0[×R,

ub,l(0, x2, x3) = ub,r(0, x2, x3), for (x2, x3) a.e. in R×]−∞, 0[
}
.

(4.2)

Then, for every m = (ma, mb,l, mb,r) ∈ L2(Ωa,R3)×L2(Ωb,l,R3)×L2(Ωb,r,R3), the following
equation





um,n = (ua
m,n, u

b,l
m,n, u

b,r
m,n) ∈ Un,

∫

R3
a

(
1

hn

Dx1
ua
m,n,

1

hn

Dx2
ua
m,n, Dx3

ua
m,n

)(
1

hn

Dx1
ua,

1

hn

Dx2
ua, Dx3

ua

)
dx+

∫

R3

b,l

(
Dx1

ub,l
m,n,

1

hn

Dx2
ub,l
m,n,

1

hn

Dx3
ub,l
m,n

)(
Dx1

ub,l,
1

hn

Dx2
ub,l,

1

hn

Dx3
ub,l

)
dx+

1

hn

∫

R3

b,r

(
Dx1

ub,r
m,n, Dx2

ub,r
m,n, Dx3

ub,r
m,n

) (
Dx1

ub,r, Dx2
ub,r, Dx3

ub,r
)
dx =

∫

Ωa

(
1

hn

Dx1
ua,

1

hn

Dx2
ua, Dx3

ua

)
madx+

∫

Ωb,l

(
Dx1

ub,l,
1

hn

Dx2
ub,l,

1

hn

Dx3
ub,l

)
mb,ldx+

∫

Ωb,r

(
Dx1

ub,r, Dx2
ub,r, Dx3

ub,r
)
mb,rdx, ∀u = (ua, ub,l, ub,r) ∈ Un,

(4.3)

which rescales equation (3.2), admits a unique solution. We note that um,n = (ua
m,n, u

b,l
m,n, u

b,r
m,n)

belongs to H1(R3
a)×H1(R3

b,l)×H1(R3
b,r) up to an additive constant.

For every n ∈ N, H1(Ωn, S
2), Fn ∈ L2(Ωn) and the functional involved in problem (3.4)
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with Ωn = Ωa
n ∪ Ωb,l

n ∪ Ωb,r
n and renormalized by h2

n are rescaled in

Mn =
{

m = (ma, mb,l, mb,r) ∈ H1(Ωa, S2)×H1(Ωb,l, S2)×H1(Ωb,r, S2) :

ma(x1, x2, 0) = mb,r(x1, x2, 0), for (x1, x2) a.e. in ]− 1, 0[2,

mb,l(0, x2, x3) = mb,r(0, x2, x3), for (x2, x3) a.e. in ]− 1, 0[2
}
,

(4.4)

fn : x ∈ Ωa ∪ Ωb,l ∪ Ωb,r −→

fn(x) =





fa
n(x) = Fn(hnx1, hnx2, x3), for x a.e. in Ωa,

f b,l
n (x) = Fn(x1, hnx2, hnx3), for x a.e. in Ωb,l,

f b,r
n (x) = Fn(hnx1, hnx2, hnx3), for x a.e. in Ωb,r,

(4.5)

and

En : m = (ma, mb,l, mb,r) ∈ Mn −→

∫

Ωa

(
λ

∣∣∣∣
(

1

hn

Dx1
ma| 1

hn

Dx2
ma|Dx3

ma

)∣∣∣∣
2

+ ϕ(ma)− 2fa
nm

a

)
dx+

1

2

∫

Ωa

((
1

hn

Dx1
ua
m,n,

1

hn

Dx2
ua
m,n, Dx3

ua
m,n

)
ma

)
dx+

∫

Ωb,l

(
λ

∣∣∣∣
(
Dx1

mb,l| 1
hn

Dx2
mb,l| 1

hn

Dx3
mb,l

)∣∣∣∣
2

+ ϕ(mb,l)− 2f b,l
n mb,l

)
dx+

1

2

∫

Ωb,l

((
Dx1

ub,l
m,n,

1

hn

Dx2
ub,l
m,n,

1

hn

Dx3
ub,l
m,n

)
mb,l

)
dx+

hn

∫

Ωb,r

(
λ

∣∣∣∣
(

1

hn

Dx1
mb,r| 1

hn

Dx2
mb,r| 1

hn

Dx3
mb,r

)∣∣∣∣
2

+ ϕ(mb,r)− 2f b,r
n mb,r

)
dx+

1

2

∫

Ωb,r

((
Dx1

ub,r
m,n, Dx2

ub,r
m,n, Dx3

ub,r
m,n

)
mb,r

)
dx,

(4.6)

respectively. Then, the function defined by




Mn(hnx1, hnx2, x3), for x a.e. in Ωa,

Mn(x1, hnx2, hnx3), for x a.e. in Ωb,l,

Mn(hnx1, hnx2, hnx3), for x a.e. in Ωb,r,
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with Mn solution of problem (3.4) with Ωn = Ωa
n ∪Ωb,l

n ∪Ωb,r
n , is a minimizer of the following

problem:
min {En(m) : m ∈ Mn} . (4.7)

Actually, the goal of this section becomes to study the asymptotic behavior, as n diverges,
of problem (4.7). To this aim, it will be assumed that





fa
n ⇀ fa weakly in L2(Ωa,R3),

f b,l
n ⇀ f b,l weakly in L2(Ωb,l,R3),

f b,r
n ⇀ f b,r weakly in L2(Ωb,r,R3).

(4.8)

4.2 The main result

Let

M =
{
µ = (µa, µb,l) ∈ H1(Ωa, S2)×H1(Ωb,l, S2) : µa is independent of (x1, x2),

µb is independent of (x2, x3), µa(0) = µb,l(0)
}
≃

{
µ = (µa, µb,l) ∈ H1(]0, 1[, S2)×H1(]0, 1[, S2) : µa(0) = µb,l(0)

}
,

(4.9)





F a : x3 ∈]0, 1[−→
∫ 0

−1

∫ 0

−1

fa(x1, x2, x3)dx1dx2,

F b,l : x1 ∈]0, 1[−→
∫ 0

−1

∫ 0

−1

f b,l(x1, x2, x3)dx2dx3,

(4.10)

and

E : µ = (µa, µb,l) = ((µa
1, µ

a
2, µ

a
3), (µ

b,l
1 , µb,l

2 , µb,l
3 )) ∈ M −→

∫ 1

0

(
λ

∣∣∣∣
dµa

dx3

∣∣∣∣
2

+ ϕ(µa)− 2F aµa

)
dx3+

1

2

(
α(]− 1, 0[2)

∫ 1

0

|µa
1|2dx3 + β(]− 1, 0[2)

∫ 1

0

|µa
2|2dx3 + γ(]− 1, 0[2)

∫ 1

0

µa
1µ

a
2dx3

)
+

∫ 1

0

(
λ

∣∣∣∣
dµb,l

dx1

∣∣∣∣
2

+ ϕ(µb,l)− 2F b,lµb,l

)
dx1+

1

2

(
α(]− 1, 0[2)

∫ 1

0

|µb,l
2 |2dx1 + β(]− 1, 0[2)

∫ 1

0

|µb,l
3 |2dx1 + γ(]− 1, 0[2)

∫ 1

0

µb,l
2 µb,l

3 dx1

)

(4.11)

22



where α(]− 1, 0[2), β(]− 1, 0[2) and γ(]− 1, 0[2) are defined by (2.5) with S =]− 1, 0[2.
This section is devoted to prove the following main result

Theorem 4.1. Assume (4.8). For every n ∈ N, let mn = (ma
n, m

b,l
n , mb,r

n ) be a solu-
tion of problem (4.7) and un = (ua

n, u
b,l
n , ub,r

n ) be the unique solution of (4.3) correspond-
ing to mn. Moreover, let M and E be defined by (4.9) and (4.11), respectively. Then,
there exist an increasing sequence of positive integer numbers {ni}i∈N and µ̂ = (µ̂a, µ̂b,l) =
((µ̂a

1, µ̂
a
2, µ̂

a
3), (µ̂

b,l
1 , µ̂b,l

2 , µ̂b,l
3 )) ∈ M, depending on the selected subsequence, such that





ma
ni

→ µ̂a stongly in H1(Ωa, S2),

mb,l
ni

→ µ̂b,l strongly in H1(Ωb,l, S2),

mb,r
ni

→ µ̂a(0) = µ̂b,l(0) strongly in H1(Ωb,r, S2),

(4.12)





1

hn

Dx1
ma

n → 0,
1

hn

Dx2
ma

n → 0 stongly in L2(Ωa,R3),

1

hn

Dx2
mb,l

n → 0,
1

hn

Dx3
mb,l

n → 0 stongly in L2(Ωb,l,R3),

1√
hn

Dmb,r
n → 0 stongly in

(
L2(Ωb,r,R3)

)3
,

(4.13)





1

hni

Dx1
ua
ni

⇀ ξa1 ,
1

hni

Dx2
ua
ni

⇀ ξa2 , Dx3
ua
n ⇀ 0 weakly in L2(R3

a),

Dx1
ub,l
n ⇀ 0,

1

hni

Dx2
ub,l
ni

⇀ ξb,l2 ,
1

hni

Dx3
ub,l
ni

⇀ ξb,l3 weakly in L2(R3
b,l),

Dub,r
n → 0 strongly in

(
L2(R3

b,r)
)3

,

(4.14)

as n and i diverge, where µ̂ is a solution of the following problem:

E(µ̂) = min {E(µ) : µ ∈ M} , (4.15)

and

(ξa1 , ξ
a
2)(x1, x2, x3) =





(0, 0), a.e. in R
2×]1,+∞[,

µa
1(x3)Dp(x1, x2) + µa

3(x3)Dq(x1, x2), a.e. in R
2×]0, 1[,

(4.16)

(ξb,l2 , ξb,l3 )(x1, x2, x3) =





(0, 0), a.e. in ]1,+∞[×R×]−∞, 0[,

µb,l
2 (x1)Dp(x2, x3) + µb,l

3 (x1)Dq(x2, x3), a.e. in ]0, 1[×R×]−∞, 0[,
(4.17)

with p (resp. q) the unique solution of (2.2) (resp. (2.3)). Moreover, the convergence of the
energies holds true, i.e.

lim
n

En(mn) = E(µ̂). (4.18)
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4.3 A convergence result for the magnetostatic energy

Proposition 4.2. Let {mn = (ma
n, m

b,l
n , mb,r

n )}n∈N ⊂ L2(Ωa, S2)×L2(Ωb,l, S2)×L2(Ωb,r, S2),
and let µa = (µa

1, µ
a
2, µ

a
3) ∈ L2(Ωa, S2) be independent of (x1, x2) and µb,l = (µb,l

1 , µb,l
2 , µb,l

3 ) ∈
L2(Ωb,l, S2) be independent of (x2, x3) such that





ma
n → µa strongly in L2(Ωa,R3),

mb,l
n → µb,l strongly in L2(Ωb,l,R3),

(4.19)

as n diverges. Moreover, for every n ∈ N let un = (ua
n, u

b,l
n , ub,r

n ) be the unique solution of
(4.3) corresponding to mn. Then, it results that





1

hn

Dx1
ua
n ⇀ ξa1 ,

1

hn

Dx2
ua
n ⇀ ξa2 , Dx3

ua
n ⇀ 0 weakly in L2(R3

a),

Dx1
ub,l
n ⇀ 0,

1

hn

Dx2
ub,l
n ⇀ ξb,l2 ,

1

hn

Dx3
ub,l
n ⇀ ξb,l3 weakly in L2(R3

b,l),

Dub,r
n → 0 strongly in

(
L2(R3

b,r)
)3

,

(4.20)

as n diverges, where

(ξa1 , ξ
a
2)(x1, x2, x3) =





(0, 0), a.e. in R
2×]1,+∞[,

µa
1(x3)Dp(x1, x2) + µa

3(x3)Dq(x1, x2), a.e. in R
2×]0, 1[,

(4.21)

(ξb,l2 , ξb,l3 )(x1, x2, x3) =





(0, 0), a.e. in ]1,+∞[×R×]−∞, 0[,

µb,l
2 (x1)Dp(x2, x3) + µb,l

3 (x1)Dq(x2, x3), a.e. in ]0, 1[×R×]−∞, 0[,
(4.22)

with p (resp. q) the unique solution of (2.2) (resp. (2.3)). Furthermore, one has that

lim
n

[∫

Ωa

(
1

hn

Dx1
ua
n,

1

hn

Dx2
ua
n, Dx3

ua
n

)
ma

ndx+

∫

Ωb,l

(
Dx1

ub,l
n ,

1

hn

Dx2
ub,l
n ,

1

hn

Dx3
ub,l
n

)
mb,l

n dx+

∫

Ωb,r

(
Dx1

ub,r
n , Dx2

ub,r
n , Dx3

ub,r
n

)
mb,r

n dx

]
=

α(]− 1, 0[2)

∫ 1

0

|µa
1|2dx3 + β(]− 1, 0[2)

∫ 1

0

|µa
2|2dx3 + γ(]− 1, 0[2)

∫ 1

0

µa
1µ

a
2dx3+

α(]− 1, 0[2)

∫ 1

0

|µb,l
2 |2dx1 + β(]− 1, 0[2)

∫ 1

0

|µb,l
3 |2dx1 + γ(]− 1, 0[2)

∫ 1

0

µb,l
2 µb,l

3 dx1,

(4.23)

where α(]− 1, 0[2), β(]− 1, 0[2) and γ(]− 1, 0[2) are defined by (2.5) with S =]− 1, 0[2.
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Proof. By choosing u = un as test function in (4.3) and taking into account that {(ma
n, m

b,l
n , mb,r

n )}n∈N ⊂
L2(Ωa, S2)× L2(Ωb,l, S2)× L2(Ωb,r, S2), there exists c ∈]0,+∞[ such that





∥∥∥∥
(

1

hn

Dx1
ua
n,

1

hn

Dx2
ua
n, Dx3

ua
n

)∥∥∥∥
(L2(R3

a))
9

≤ c,

∥∥∥∥
(
Dx1

ub,l
n ,

1

hn

Dx2
ub,l
n ,

1

hn

Dx3
ub,l
n

)∥∥∥∥
(L2(R3

b,l
))9

≤ c,

1√
hn

∥∥(Dx1
ub,r
n , Dx2

ub,r
n , Dx3

ub,r
n

)∥∥
(L2(R3

b,r
))9

≤ c,

(4.24)

for every n ∈ N.
The last estimate in (4.24) gives the last limit in (4.20).
By arguing as in the first part of the proof of proposition 5.1 in [17], from the first two

estimates in (4.24) one derives the third and the fourth limit in (4.20).
By arguing as in the first two steps of the proof of proposition 3.2, from the first limit in

(4.19) and the first estimate in (4.24) one obtains the first two limits in (4.20) with (ξa1 , ξ
a
2)

defined in (4.21). Finally, using the first limit in (4.19), the first three limits in (4.20) and
also the last one, taking into account that {(mb,r

n )}n∈N ⊂ L2(Ωb,r, S2), and using equation
(3.34) with test function µa

1p+ µa
2q, one obtains that





lim
n

∫

Ωa

(
1

hn

Dx1
ua
n,

1

hn

Dx2
ua
n, Dx3

ua
n

)
ma

ndx =

α(]− 1, 0[2)

∫ 1

0

|µa
1|2dx3 + β(]− 1, 0[2)

∫ 1

0

|µa
2|2dx3 + γ(]− 1, 0[2)

∫ 1

0

µa
1µ

a
2dx3,

lim
n

∫

Ωb,r

(
Dx1

ub,r
n , Dx2

ub,r
n , Dx3

ub,r
n

)
mb,r

n dx = 0.

(4.25)

To prove the fifth and the sixth limit in (4.20), we introduce other rescalings. Specifically,
by setting 




R
3
a,r = {(x1, x2, x3) ∈ R

3 : x3 > 0, x1 < 0},

R
3
l = {(x1, x2, x3) ∈ R

3 : x1 > 0},
for every n ∈ N, problem (3.2) will be reformulated on a fixed domain through the following
rescaling:

Tn : (x1, x2, x3) ∈ R
3 → Tn(x1, x2, x3) =





(hnx1, hnx2, x3), if (x1, x2, x3) ∈ R
3
a,r,

(x1, hnx2, hnx3), if (x1, x2, x3) ∈ R
3
l ,

(hnx1, hnx2, hnx3), if (x1, x2, x3) ∈ R
3
b,r

(4.26)
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(note that Tn|R3

b,r
= Tn|R3

b,r
, and Tn(Ω

a) = Tn(Ω
a) = Ωa

n, Tn(Ω
b) = Tn(Ω

b) = Ωb,l
n ). Namely,

setting

Ba,r
n =

]
− 2

hn

, 0

[2
×]0, 2[, Bl

n =]0, 2[×
]
− 2

hn

,
2

hn

[2
, Bb,r

n =

]
− 2

hn

, 0

[3
, n ∈ N,

space U defined in (3.1) is rescaled in the following

Vn =
{

v = (va,r, vl, vb,r) ∈ L1
loc(R

3
a,r)× L1

loc(R
3
l )× L1

loc(R
3
b,r) :

(va,r|
B
a,r
n

, vl|
Bl
n

, vb,r|
B
b,r
n

) ∈ L2(Ba,r
n )× L2(Bl

n)× L2(Bb,r
n ),

(Dva,r, Dvl, Dvb,r) ∈ (L2(R3
a,r))

3 × (L2(R3
l ))

3 × (L2(R3
b,r))

3,

∫

B
a,r
n

va,rdx+

∫

Bl
n

vldx+ hn

∫

B
b,r
n

vb,rdx = 0,

vl(0, x2, x3) = va,r(0, x2, hnx3), for (x2, x3) a.e. in R×]0,+∞[,

vl(0, x2, x3) = vb,r(0, x2, x3), for (x2, x3) a.e. in R×]−∞, 0[,

va,r(x1, x2, 0) = vb,r(x1, x2, 0), for (x1, x2) a.e. in ]−∞, 0[×R
}
.

(4.27)

Then, for every m = (ma, mb,l, mb,r) ∈ L2(Ωa,R3)×L2(Ωb,l,R3)×L2(Ωb,r,R3), the following
equation:





vm,n = (va,rm,n, v
l
m,n, v

b,r
m,n) ∈ Vn,

∫

R3
a,r

(
1

hn

Dx1
va,rm,n,

1

hn

Dx2
va,rm,n, Dx3

va,rm,n

)(
1

hn

Dx1
va,r,

1

hn

Dx2
va,r, Dx3

va,r
)
dx+

∫

R3

l

(
Dx1

vlm,n,
1

hn

Dx2
vlm,n,

1

hn

Dx3
vlm,n

)(
Dx1

vl,
1

hn

Dx2
vl,

1

hn

Dx3
vl
)
dx+

1

hn

∫

R3

b,r

(
Dx1

vb,rm,n, Dx2
vb,rm,n, Dx3

vb,rm,n

) (
Dx1

vb,r, Dx2
vb,r, Dx3

vb,r
)
dx =

∫

Ωa

(
1

hn

Dx1
va,r,

1

hn

Dx2
va,r, Dx3

va,r
)
madx+

∫

Ωb,l

(
Dx1

vl,
1

hn

Dx2
vl,

1

hn

Dx3
vl
)
mb,ldx+

∫

Ωb,r

(
Dx1

vb,r, Dx2
vb,r, Dx3

vb,r
)
mb,rdx, ∀v = (va,r, vl, vb,r) ∈ Vn,

(4.28)
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which rescales equation (3.2) by rescaling (4.26), admits a unique solution.
For every n ∈ N, let vn = (va,rn , vln, v

b,r
n ) be the unique solution of (4.28) corresponding

to mn. Arguing as in the first part of this proof, for a symmetric argument, one can easily
prove that

Dx1
vln ⇀ 0,

1

hn

Dx2
vln ⇀ ξl2,

1

hn

Dx3
vln ⇀ ξl3 weakly in L2(R3

l ), (4.29)

as n diverges, where

(ξl2, ξ
l
3)(x1, x2, x3) =





(0, 0), a.e. in ]1,+∞[×R
2,

µb
2(x1)Dp(x2, x3) + µb

3(x1)Dq(x2, x3), a.e. in ]0, 1[×R
2,

with p (resp. q) the unique solution of (2.2) (resp. (2.3)). Furthermore, one has that

lim
n

∫

Ωb

(
Dx1

vln,
1

hn

Dx2
vln,

1

hn

Dx3
vln,

)
mb

ndx =

α(]− 1, 0[2)

∫ 1

0

|µb
2|2dx1 + β(]− 1, 0[2)

∫ 1

0

|µb
3|2dx1 + γ(]− 1, 0[2)

∫ 1

0

µb
2µ

b
3dx1,

(4.30)

where α(]− 1, 0[2), β(]− 1, 0[2) and γ(]− 1, 0[2) are defined by (2.5) with S =]− 1, 0[2.
Now, to conclude it is enough to note that

T −1
n (Tn(x)) = x, ∀x ∈ R

3 \ {(x1, x2, x3) ∈ R
3 : x1 ≥ 0, x3 ≥ 0}, ∀n ∈ N,

vn
(
T −1
n (Tn(x))

)
= un(x), ∀x ∈ R

3, ∀n ∈ N.

Consequently, it results that

vn(x) = un(x), ∀x ∈ R
3 \ {(x1, x2, x3) ∈ R

3 : x1 ≥ 0, x3 ≥ 0}, ∀n ∈ N. (4.31)

Then, combining (4.29) and (4.30) with (4.31), one obtains the fifth and the sixth limit in
(4.20) and

lim
n

∫

Ωb

(
Dx1

ul
n,

1

hn

Dx2
ul
n,

1

hn

Dx3
ul
n

)
mb

ndx =

α(]− 1, 0[2)

∫ 1

0

|µb
2|2dx1 + β(]− 1, 0[2)

∫ 1

0

|µb
3|2dx1 + γ(]− 1, 0[2)

∫ 1

0

µb
2µ

b
3dx1.

(4.32)

Finally, combining (4.25) with (4.32), also limit (4.23) holds true.

4.4 Proof of theorem 4.1

Proof. By choosing m = ((0, 1, 0), (0, 1, 0), (0, 1, 0)) as test function in (4.7), taking into
account (4.8) and that |mn| = 1 a.e. in Ωa

⋃
Ωb,l

⋃
Ωb,r, using proposition 4.2 and arguing
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as in the proof of theorem 3.1, it is easy to prove the existence of c ∈]0,+∞[ such that





‖Dx1
ma

n‖(L2(Ωa))3 ≤ chn, ‖Dx2
ma

n‖(L2(Ωa))3 ≤ chn, ‖Dx3
ma

n‖(L2(Ωa))3 ≤ c,

‖Dx1
mb,l

n ‖(L2(Ωb,l))3 ≤ c, ‖Dx2
mb,l

n ‖(L2(Ωb,l))3 ≤ hnc, ‖Dx3
mb,l

n ‖(L2(Ωb,l))3 ≤ chn,

‖Dmb,r
n ‖(L2(Ωb,l))9 ≤ c

√
hn,

for every n ∈ N. Then, taking into account again that |mn| = 1 a.e. in Ωa
⋃

Ωb,l
⋃
Ωb,r, there

exist an increasing sequence of positive integer numbers {ni}i∈N, µ̂a ∈ H1(Ωa, S2) indepen-
dent of (x1, x2), µ̂

b,l ∈ H1(Ωb,l, S2) independent of (x2, x3) and c ∈ S2, ζa ∈ (L2(Ωa,R3))
2
,

ζb,l ∈
(
L2(Ωb,l,R3)

)2
, ζb,r ∈

(
L2(Ωb,r,R3)

)3
such that





ma
ni

⇀ µ̂a weakly in H1(Ωa,R3),

mb,l
ni

⇀ µ̂b,l weakly in H1(Ωb,l,R3),

mb,r
ni

⇀ c weakly in H1(Ωb,r,R3),

(4.33)





(
1

hni

Dx1
ma

ni
,
1

hni

Dx2
ma

ni

)
⇀ ζa weakly in

(
L2(Ωa,R3)

)2
,

(
1

hni

Dx2
mb,l

ni
,
1

hni

Dx3
mb,l

ni

)
⇀ ζb,l weakly in

(
L2(Ωb,l,R3)

)2
,

1√
hni

Dmb,r ⇀ ζb,r weakly in
(
L2(Ωb,r,R3)

)3
,

(4.34)

as i diverges. Consequently, since one has that





ma
n(x1, x2, 0) = mb,r

n (x1, x2, 0), for (x1, x2) a.e. in ]− 1, 0[2,

mb,l
n (0, x2, x3) = mb,r

n (0, x2, x3), for (x2, x3) a.e. in ]− 1, 0[2,
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for every n ∈ N, it follows that µ̂a(0) = c = µ̂b,l(0), that is µ̂ = (µ̂a, µ̂b,l) ∈ M. Moreover, by
virtue of proposition 4.2, limits in (4.14) hold true and it results that

lim
i

[∫

Ωa

(
1

hni

Dx1
ua
ni
,
1

hni

Dx2
ua
ni
, Dx3

ua
ni

)
ma

ni
dx+

∫

Ωb,l

(
Dx1

ub,l
ni
,
1

hni

Dx2
ub,l
ni
,
1

hni

Dx3
ub,l
ni

)
mb,l

ni
dx+

∫

Ωb,r

(
Dx1

ub,r
ni
, Dx2

ub,r
ni
, Dx3

ub,r
ni

)
mb,r

ni
dx

]
=

α(]− 1, 0[2)

∫ 1

0

|µa
1|2dx3 + β(]− 1, 0[2)

∫ 1

0

|µa
2|2dx3 + γ(]− 1, 0[2)

∫ 1

0

µa
1µ

a
2dx3+

α(]− 1, 0[2)

∫ 1

0

|µb,l
2 |2dx1 + β(]− 1, 0[2)

∫ 1

0

|µb,l
3 |2dx1 + γ(]− 1, 0[2)

∫ 1

0

µb,l
2 µb,l

3 dx1,

(4.35)

where α(]− 1, 0[2), β(]− 1, 0[2) and γ(]− 1, 0[2) are defined by (2.5) with S =]− 1, 0[2.
Now, the goal is to identify µ̂, ζa, ζb,l, ζb,r, to obtain strong convergences in (4.33) and

in (4.34), and to prove limit in (4.18). To this aim, for (µ̂a, µ̂b,l) ∈ M, let us set

v =





µ̂a, in Ωa,

µ̂b,l, in Ωb,l,

µ̂a(0) = µ̂b,l(0), in Ωb,r.

Obviously, v ∈ Mn, for every n ∈ N . Then, by virtue of l.s.c. arguments, (4.8), (4.33),
(4.34) and (4.35) and proposition 4.2, it results that

λ

∫

Ωa

|ζa|2dx+ λ

∫

Ωb,l

|ζb,l|2dx+ λ

∫

Ωb,r

|ζb,r|2dx+ E(µ̂a, µ̂b) ≤ lim inf
i

Eni
(mni

) ≤

lim sup
i

Eni
(mni

) ≤ lim
i
Eni

(v) = E(µ̂a, µ̂b), ∀(µ̂a, µ̂b,l) ∈ M.

(4.36)

Consequently, ζa = 0, ζb,l = 0, ζb,r = 0, (µ̂a, µ̂b) solves (4.15) and limit (4.18) holds true.
Finally, combining (4.18) with (4.8), (4.33), (4.34) and (4.35) one obtains that limits in
(4.33) and in (4.34) are strong.
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