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SUMMARY

Cardiac electrophysiology simulations are numerically challenging due to the propagation of a steep
electrochemical wave front and thus require discretizations with small mesh sizes to obtain accurate results.
In this work, we present an approach based on the Hybridizable Discontinuous Galerkin method (HDG),
which allows an efficient implementation of high-order discretizations into a computational framework.
In particular using the advantage of the discontinuous function space, we present an efficient p-adaptive
strategy for accurately tracking the wave front. HDG allows to reduce the overall degrees of freedom
in the final linear system to those only on the element interfaces. Additionally, we propose a rule for a
suitable integration accuracy for the ionic current term depending on the polynomial order and the cell
model to handle high-order polynomials. Our results show that for the same number of degrees of freedom
coarse high-order elements provide more accurate results than fine low-order elements. Introducing p-
adaptivity further reduces computational costs while maintaining accuracy by restricting the use of high-
order elements to resolve the wave front. For a patient-specific simulation of a cardiac cycle p-adaptivity
reduces the average number of degrees of freedom by 95% compared to the non-adaptive model. In addition
to reducing computational costs, using coarse meshes with our p-adaptive high-order HDG method also
simplifies practical aspects of mesh generation and postprocessing. Copyright © 2017 John Wiley & Sons,
Ltd.

Received . . .
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1. INTRODUCTION

Biophysical and computational modeling of the heart has been proposed and actively pursued as a
tool for accelerating cardiovascular research and translation to clinic to personalize the care is very
promising [1]. One of the challenges modelers have to face is the high cost of the computations, in
particular when moving towards whole heart modeling and coupling different physics and scales.
To develop methods that reduce the computing time while keeping numerical accuracy is essential
for speeding-up fundamental research but most importantly the translation of modeling into clinical
practice.
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2 J. M. HOERMANN ET AL.

Cardiac electrophysiology simulations are classically based on monodomain or bidomain
reaction-diffusion equations for the transmembrane electrical potential, which are coupled to a
model for the gating dynamics of the ionic channels on the cell membrane. Due to the fast upstroke
of the action potential, which is caused by voltage-dependent sodium channels, a numerically robust
calculation of the propagation of the wave across the tissue is well known to be computationally
challenging. This rapid increase of the transmembrane potential in one cell over a few milliseconds
results also in a steep wave front in space [2], requiring high resolution temporal and spatial
discretizations [3].

Galerkin methods are popular in cardiac electrophysiology due to their simple applicability to
complex geometries and higher-order discretizations [4, 5, 6, 7, 8, 9, 10, 11, 12]. Attempts have
been made to improve the performance of the numerical method by using h-adaptivity in space
[13, 14, 15], adaptivity in time [6, 16, 17] and in both space and time [18, 19, 20, 21, 22]. Adaptivity
in space based on low order elements requires remeshing during the calculation, which involves a
considerable computational effort. Furthermore, this approach has to couple the numerical solver
with a mesh generator. Therefore, studies about efficient simulations with high-order elements and
high-order p-adaptive elements were performed for continuous Galerkin (CG) in [23, 24]. High-
order discretizations have been shown to be more efficient than low-order ones for a variety of
contexts, i.e., they achieve better accuracy with fewer degrees of freedom and less computational
cost [24, 25]. However, the adaption of the polynomial degree in CG faces additional challenges,
e.g. for preserving continuity between the elements [26].

To the authors’ best knowledge, discontinuous Galerkin (DG) approaches have not received any
attention yet for the electrophysiology problem. The discontinuous setting allows a straightforward
implementation of global or local high-order discretizations and/or local mesh refinement.

The hybridizable discontinuous Galerkin (HDG) method [27] is a special case of the DG family
of methods that allows a reduction of the degrees of freedom that appear in the final linear system
by static condensation on the element to those defined on the faces between the elements. The
goal of this work is to present a suitable HDG formulation for cardiac electrophysiology, study the
numerical performance of HDG in this context and to compare it against standard CG approaches.

The remainder of the paper is organized as follows. In Section 2 we summarize the
electrophysiology model problem and recall the CG and HDG discretization approaches. We then
discuss the strategies used for the calculation of the ionic current term with focus on high polynomial
degrees of the function spaces. In Section 3 we detail the setups of the numerical experiments and
the cell model we use, and exemplify the ionic current integration rule for a specific cell model.
We also determine a practical choice for the stabilization parameter in HDG. The numerical results
comprise an academic geometry for benchmarking purposes and a simulation on a patient-specific
heart, where both CG and (p-adaptive) HDG methods are assessed.

2. METHODS

2.1. Electrophysiology equations

The classical monodomain model is given in the domain Ω ⊂ R3 in the following way: Find the
transmembrane potential u : Ω× t→ R and the gating variables w : Ω× t→ Rm such that





χ(Cm∂tu− Iion(u,w)) = ∇ · (D∇u) in Ω× (0, T ],
∂tw − g(u,w) = 0 in Ω× (0, T ],

n · (D∇u) = 0 on ∂Ω× (0, T ],
u(x, 0) = u0(x) in Ω,
w(x, 0) = w0(x) in Ω.

(1)

The physical (given) constants are: the ratio of membrane area per tissue volume χ, the local
membrane capacitance Cm, the electrical conductivity tensor D, the initial conditions u0 and w0,
and the outward pointing unit normal vector n to ∂Ω. The given non-linear functions Iion : Rm+1 →

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
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HDG METHODS OF CARDIAC ELECTROPHYSIOLOGY 3

R and g : Rm+1 → Rm describe the total ionic current flow through the membrane of the myocyte
and the kinetics of the gating variables as defined by the cell model, respectively.

2.2. Time semidiscretization

For the sake of clarity of the presentation, we first introduce the time marching scheme used. It is
important to remark that the choice is independent on the spatial discretization. We adopt a semi-
implicit backward Euler approach: the diffusion term is discretized implicitly in time, while the
reaction term is evaluated explicitely [28, 29]. Assuming uniform time intervals t0, t1, . . . with
dt = tn − tn−1 ∀n > 0, the time semidiscrete problem reads: Given u0,w0, find the transmembrane
potential un : Ω→ R and the gating variables wn : Ω→ Rm for n > 0 such that





χ(Cm
un − un−1

dt
− Iion(un−1,wn−1)) = ∇ · (D∇un) in Ω,

wn −wn−1

dt
− g(un,wn) = 0 in Ω,

n · (D∇un) = 0 on ∂Ω

(2)

Note that this scheme allows important gains in computational efficiency: the problem for un is
linear and hence system matrices and preconditioners are assembled only once at the beginning of
the computation. CFL-like restrictions on the time stepping, which arise from spatial derivatives
and are thus mesh-dependent, are avoided due to the implicit treatment of the diffusion terms. The
latter can be of particular interest when dealing with spatial adaptivity as it is done in this work.
Finally, note that since the cell model used in this work is linear in the gating variables, and hence
only linear problems have to be solved in the implicit parts.

2.3. Continuous Galerkin approximation

In this section we describe the spatial discretization of Equation (2) by a Continuous Galerkin
approximation.

Let us assume a domain Ω and a triangulation Th of this domain with elements of characteristic
size h. We will denote each of these elements as K. Let us recall the standard function spaces V ph
of piecewise continuous polynomials of degree p:

V ph = {v ∈ H1(Ω) : v|K∈ Pp(K) for element K ∈ Th}

where H1(Ω) denotes the Sobolev space W 1,2(Ω) and Pp(K) the set of polynomials of maximal
degree p on a domain K. The fully discretized problem read then as: Find unh ∈ V ph such that

Cm

∫

Th

unh − un−1h

dt
ϕh dx +

1

χ

∫

Th
D∇unh · ∇ϕh dx =

∑

K

Ĩn−1K (un−1h , ϕh) (3)

for all ϕh ∈ V ph , and with IK given, resulting from the approximation of the integral

Ĩn−1K (v, φ) ≈ In−1K (v, φ) :=

∫

K

Iion(v,wn−1)φdx, v, φ : Ω→ R. (4)

In literature there exist different methods to compute this approximation, which result in different
spatial discretizations of the gating variables wn. Since these can indeed be applied to any type of
Galerkin scheme, our specific choice is detailed in Section 2.5.

2.4. Hybridizable Discontinuous Galerkin approximation

The derivation of the HDG approximation is based on the work of Nguyen et al. [30] for the linear
convection-diffusion equation. We will briefly introduce its derivation, starting from the strong form

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
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4 J. M. HOERMANN ET AL.

of the mixed formulation for the diffusion term of Equation (2), i.e.,




Cm
un − un−1

dt
− 1

χ
∇ · qn = Iion(un−1,wn−1)

qn −D∇un = 0
(5)

and its weak form on the element K




Cm

∫

K

un − un−1
dt

ϕdx +
1

χ

∫

K

qn · ∇ϕdx− 1

χ

∫

∂K

n · q̂nϕdx = In−1K (un−1, ϕ),
∫

K

D−1qn ·ψ dx +

∫

K

u∇ ·ψ dx−
∫

∂K

λnn ·ψ dx = 0,

(6)

for all ϕ ∈ L2(K),ψ ∈ [L2(K)]d. Here, λn ∈ L2(e) is the single-valued trace of un over the
face e ∈ Eh. Eh is the set of all interior and boundary faces, where an interior face is defined as
e = ∂K1 ∩ ∂K2 between two elements K1 and K2 and a boundary face is defined as e = ∂K ∩ ∂Ω
for an element K. The vector q̂n is the trace on ∂K of qn, which is defined in the HDG method by:

q̂n = qn − τ(un − λn)n on ∂K, (7)

with the stabilization parameter τ > 0.
Finally, we close the system by enforcing the jump across of the trace of the flux q̂ along each

edge e to be zero, i.e.,

[[q̂n]] = 0, on all e ∈ Eh. (8)

For the spatial discretization, we define the finite element spaces of piecewise discontinuous
polynomials on the element’s volume

W p
h = {v ∈ L2(Ω) : v|K∈ Pp(K) for element K ∈ Th}

and on the elements edges

Mp
h = {µ ∈ L2(Eh) : µ|e∈ Pp(e) for face e ∈ Eh}.

With these new definitions we can now formulate the fully discretized system of equations
corresponding to the HDG method: Find (unh,q

n
h, λ

n
h) ∈W p

h × [W p
h ]d ×Mp

h such that:




∑

K

(∫

K

Cm
unh − un−1h

dt
ϕh dx +

1

χ

∫

K

qnh∇ϕh dx− 1

χ

∫

∂K

qnh · nϕh − τ(unh − λnh)ϕh dx

)

=
∑

K

Ĩn−1K (un−1h , ϕh)

∑

K

(∫

K

D−1qnh ·ψh dx +

∫

K

unh∇ ·ψh dx−
∫

∂K

λnhn ·ψh dx

)
= 0

∑

K

(∫

∂K

qnh · nµh dx−
∫

∂K

τ(unh − λnh)µh dx

)
= 0

(9)

for all (vh,ψh, µh) ∈W p
h × [W p

h ]d ×Mp
h .

One of the advantages of HDG methods is that the size of the final linear system can be
considerably reduced using its structure. First, let us rewrite the system of equations as follows





m(unh, ϕh)/dt− b(ϕh,qnh) + a(unh, ϕh)− c(λnh, ϕh) = fn−1(ϕh)
d(qnh,ψh) + b(unh,ψh)− e(λnh,ψh) = 0
e(µh,q

n
h)− c(µh, unh) + h(λnh, µh) = 0

(10)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
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HDG METHODS OF CARDIAC ELECTROPHYSIOLOGY 5

with the integral forms given by

m(u, ϕ) =
∑

K

∫
K
Cmχuϕdx, d(q,ψ) =

∑
K

∫
K
D−1q ·ψ dx,

a(u, ϕ) =
∑

K

∫
∂K

τuϕ dx, e(λ,ψ) =
∑

K

∫
∂K

λψ · ndx,

b(u,ψ) =
∑

K

∫
K
u∇ ·ψ dx, fn−1(ϕ) = m(un−1h , ϕ)/dt+ χ

∑
K Ĩ

n−1
K

(
un−1h , ϕ

)
,

c(λ, ϕ) =
∑

K

∫
∂K

ϕτλ dx, h(λ, µ) =
∑

K

∫
∂K

τλµ dx,

(11)

for all (q, u, λ) and (ϕ,ψ, µ) in (V ph ×W
p
h ×M

p
h).

Denoting the vectors of degrees of freedom Un, Qn,Λn associated to unh,q
n
h, λ

n
h, respectively, we

can write the resulting system in matrix form as:


M/dtUn

0
0


+




A B −C
−BT D −E
−CT ET H





Un

Qn

Λn


 =



Fn−1

0
0


 (12)

Since the matrices A,B,D do no couple between different elements, we can use static condensation
(Schur complements) on the element level to reduce the global system size [27]. For that purpose, we
eliminate the interior variables Un and Qn in an element-by-element fashion, so that the remaining
degrees of freedom are those of the trace variable Λn on the faces of Eh.

2.5. Ionic current approximation

As stated above, there exist several methods to approximate the element integral of the nonlinear
ionic current term Iion in Galerkin formulations for cardiac electrophysiology

ĨK(uh, ϕh) ≈
∫

K

Iion(uh,w)ϕh dx

with both uh and ϕh given through spatial polynomial functions of degree p, see e.g. [7, 9, 10] and
references therein.

In this work, we adopt a numerical approximation of IK by defining one gating variable at each
quadrature point x` within the element K, namely

ĨK(uh, ϕh) =

bK∑

`=1

α`Iion(uh(x`),w`)ϕh(x`) (13)

with α` the quadrature weights and bK the number of integration points on the element K.
This strategy allows to represent the ionic term at a higher degree compared with the ionic current

interpolation (see e.g. [10]), where the ionic current is discretized using the same space as for the
potential. Note that in both the HDG and CG cases the number of quadrature points to build the
term ĨK are the same, for a given polynomial order p.

In this work, the number of quadrature points bK is chosen depending on the polynomial degree
p of the finite element spaces on element K. Concretely, assuming that Iion has the potential u
involving polynomial expressions in u of degree up to kion, we propose to choose the quadrature
order to integrate exactly polynomials of degree p(kion + 1), since the integral in the weak form
comprises not only Iion(u) but also the test function. For the integration rule we do not take into
account the additional non-polynomial terms in the model, e.g. the Heaviside function. Note that
for high-order curved geometry descriptions there could still be a small integration error, but it is
expected to be of higher order than the discretization error. For the numerical examples we use
hexahedral and tetrahedral elements with appropriate intergration rules. An example will be shown
in Section 3.2. Note that keeping track of w` and Iion in quadrature points can be interpreted as a
polynomial approximation of at least degree d((kion + 1)p+ 1)/2e − 1 in the discontinuous setting
by Lagrange polynomials through the integration points.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
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6 J. M. HOERMANN ET AL.

We want to remark that other ionic current approximations could also be used, e.g. where the
gating variables are stored at the degrees of freedom of the finite element approximation of the
potential. However, additionally investigating the effect of the type of ionic current approximation
is out of the scope of this article.

2.6. p-adaptivity for HDG

The HDG method allows for a straightforward adaptation of the degree of the polynomial basis
functions since different polynomial degrees between neighboring elements can be independently
chosen. A key ingredient is to apply a proper error indicator for selecting the local polynomial order.
In this work we choose a simplified version of the error indicator presented in [23] based on the jump
of the gradient of the potential across the face γ. Therefore, on each element K the error indicator
is defined via the numerical gradient on the faces q̂ as

enK =
∑

γ∈∂K
‖q̂nγ · n‖2L2(γ)

1

Aγ
(14)

with Aγ the surface area of the face. Then the new degree on the element is calculated via

pnK = pn−1K + d 1

ω
ln

(
en−1K

etol

)
e (15)

for a constant ω = 1.66 according to [23], which is estimated from convergence rates of high-order
CG elements, and a given error tolerance etol. This value did lead to satisfactory results, that also
were quite insensitive to slight variations.

The adaption of the polynomial degree is calculated for each element independently, while the
polynomial degree of the face is defined by the higher of the two polynomial degrees of the elements
sharing this face.

3. NUMERICAL EXPERIMENTS

3.1. Academic problem setup

In our test we use a modified version of the problem setup from [3]. The geometry corresponds to a
myocardial tissue cuboid of size 12 mm× 4 mm× 2 mm, see Figure 1a. To start the propagation of
the electrochemical wave we use the initial condition

u(x, 0) = 0.5(1− tanh(1000(x− 2))), (16)

shown in Figure 1b.
Given that our study focuses on the investigation of different spatial approximations of the

problem, we restrict the cardiac electrophysiology problem to the model of Bueno-Orovio et al.
[31], which is able to reproduce important physiological properties, e.g. action potential curves and
upstroke velocities, with only three gating variables and three ionic currents. The model is given as

∂tu = ∇ · (σ∇v)− Iion(u,w),
∂tw1 = (1−H(u− θw1))(w1,∞ − w1)/τ−w1

−H(u− θw1)w1/τ
+
w1

,
∂tw2 = (1−H(u− θw2))(w2,∞ − w2)/τ−w2

−H(u− θw2)w2/τ
+
w2

,
∂tw3 = (1 + tanh(kw3

(u− uw3
)))/2− w3)/τw3

,

(17)

with H(·) the Heaviside function and with the computation of the ionic current Iion as

Iion(u,w) = Ifi + Iso + Isi,
Ifi = −w1H(u− θw1

)(u− θw1
)(uu − u)/τfi,

Iso = (u− u0)(1−H(u− θw2
))/τ0 +H(u− θw2

)τso,
Isi = −H(u− θw2)w2w3/τsi.

(18)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
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x
z

y

(a) (b)

Figure 1. Myocardial tissue slab. (a) Rectangular domain (12 mm ⇥ 4 mm ⇥ 2 mm). Between the two red
points P1 and P2 (x1 = 6 mm, y1 = 2 mm, z1 = 2 mm and x2 = 10 mm, y2 = 2 mm, z2 = 2 mm) the time

difference in the activation is measured. (b) Initial condition

uo uu ✓v ✓w ✓�v ✓o ⌧�v1

0 1.55 0.3 0.13 0.006 0.006 60
⌧�v2 ⌧+

v ⌧�w1 ⌧�w1 K�
w uw� ⌧+

w

1150 1.4506 60 15 65 0.03 200
⌧fi ⌧o1 ⌧o2 ⌧so1 ⌧so2 kso uso

0.11 400 6 30.0181 0.9957 2.0458 0.65
⌧s1 ⌧s2 ks us ⌧si ⌧w1 w⇤

1
2.7342 16 2.0994 0.9087 1.8875 0.07 0.94

Table I. Epicardial model parameter values

upstroke velocities, with only three gating variables and three ionic currents. The model is given as

@tu = r · (�rv) � Iion(u,w),
@tw1 = (1 � H(u � ✓w1

))(w1,1 � w1)/⌧
�
w1

� H(u � ✓w1
)w1/⌧

+
w1

,
@tw2 = (1 � H(u � ✓w2))(w2,1 � w2)/⌧

�
w2

� H(u � ✓w2)w2/⌧
+
w2

,
@tw3 = (1 + tanh(kw3(u � uw3)))/2 � w3)/⌧w3 ,

(15)

with H(·) the Heaviside function and with the computation of the ionic current Iion as

Iion(u,w) = Ifi + Iso + Isi,
Ifi = �w1H(u � ✓w1

)(u � ✓w1
)(uu � u)/⌧fi,

Iso = (u � u0)(1 � H(u � ✓w2))/⌧0 + H(u � ✓w2)⌧so,
Isi = �H(u � ✓w2)w2w3/⌧si.

(16)

and with the definitions of the functions

⌧�v = (1 � H(u � ✓�v ))⌧�v1
+ H(u � ✓�v )⌧�v2

,
⌧�w = ⌧�w1

+ (⌧�w2
� ⌧�w1

)(1 � tanh(k�
w (u � u�

w)))/2,
⌧so = ⌧so1 + (⌧so2 � ⌧so1)(1 � tanh(kso(u � uso)))/2,
⌧s = (1 � H(u � ✓w))⌧s1 + H(u � ✓w)⌧s2,
⌧s = (1 � H(u � ✓o))⌧o1

+ H(u � ✓o)⌧o2,
w1 = (1 � H(u � ✓o))(1 � u/⌧w1 + H(u � ✓o)w

⇤
1,

v1 =

(
1 u < ✓�v
0 u > ✓�v

.

The parameter values, which can be adapted to model different cell types, can be found in the
original work [30]. In the present study we choose the epicardial parameter values (see Table I). If

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
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Figure 1. Myocardial tissue slab. (a) Rectangular domain (12 mm × 4 mm × 2 mm). The time difference in
activation is measured between the two red points P1 and P2 (x1 = 6 mm, y1 = 2 mm, z1 = 2 mm and

x2 = 10 mm, y2 = 2 mm, z2 = 2 mm). (b) Initial condition.

uo uu θv θw θ−v θo τ−v1
0 1.55 0.3 0.13 0.006 0.006 60
τ−v2 τ+v τ−w1 τ−w1 K−w uw− τ+w

1150 1.4506 60 15 65 0.03 200
τfi τo1 τo2 τso1 τso2 kso uso

0.11 400 6 30.0181 0.9957 2.0458 0.65
τs1 τs2 ks us τsi τw∞ w∗∞

2.7342 16 2.0994 0.9087 1.8875 0.07 0.94
Table I. Epicardial model parameter values.

and with the definitions of the functions

τ−v = (1−H(u− θ−v ))τ−v1 +H(u− θ−v )τ−v2 ,
τ−w = τ−w1

+ (τ−w2
− τ−w1

)(1− tanh(k−w (u− u−w)))/2,
τso = τso1 + (τso2 − τso1)(1− tanh(kso(u− uso)))/2,
τs = (1−H(u− θw))τs1 +H(u− θw)τs2,
τs = (1−H(u− θo))τo1 +H(u− θo)τo2,

w∞ = (1−H(u− θo))(1− u/τw∞ +H(u− θo)w∗∞,

v∞ =

{
1 u < θ−v
0 u > θ−v

.

The parameter values, which can be adapted to model different cell types, can be found in the
original work [31]. In the present study we choose the epicardial parameter values (see Table I).
If not indicated otherwise, the diffusion coefficient is chosen as σ = 0.1 mm2/ms. The time step is
chosen as ∆t = 0.1 ms, and different mesh sizes are used as indicated for each experiment.

To compare the results we calculate the conduction velocity cv in all simulations by measuring
the activation times (acttime(·)) of point P1(6, 2, 2) and point P2(10, 2, 2) (see Figure 1a) and
with the distance between the two points to obtain the conduction velocity via cv = ‖P2 −
P1‖/(acttime(P2)− acttime(P1)). We define the activation time as the time when the voltage is
larger than 1.7 mV, which is equivalent to the value of 1 for the dimensionless variable u in the
chosen cellular model. The converged conduction velocity amounts to around 0.73 mm ms−1.

3.2. Choice of the ionic current integration formula

Here we briefly describe the application of the rule defined in Section 2.5 to the ionic model [31].
We identify the maximal polynomial degree of u in the model as kion = 2 through Ifi. Therefore,
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we choose the number of quadrature points bK such that polynomials of degree d

d = (kion + 1)p = 3p (19)

are exactly integrated.
We need a definition of an integration rule for the ionic current term that varies with the

polynomial order. This necessity is visualized in Figure 2 for σ = 0.1 mm ms−2 and τ = 1 mm ms−1

and h = 1 mm. We observe, in general, two types of issues arising when a fixed number of
integration points is chosen. The first issue is a propagation block, which means that no propagation
takes place. This could happen if the ionic flow from the neighboring element is not sufficient to
reach the threshold for the self depolarization in an element. It occurs in our examples when the
polynomial degree is increased above a certain value, see e.g. the case bK = 1, 8, 27 in Figure 2a.
For one integration point (bK = 1) only at polynomial degrees zero and one the propagation takes
place. For bK = 8 propagation takes place until degree three and for bK = 27 no propagation occurs
for degree six, eight, nine, twelve and thirteen. The second issue is observed with bK = 27 where
the interaction between different computational errors, for example the insufficient integration of
the ionic current term and coarse meshes, could leads to a propagation for some polynomial degrees
(6,10 and 11) but with wrong results. This is the second issue. In the above mentioned cases for
bK = 27 and every time for bK = 64 for high polynomial degrees a propagation takes place but
the computed conduction velocity is wrong, since the error in the computation of the ionic current
dominates. This can be seen in the oscillating behavior of the computed conduction velocity for
increasing polynomial degree (see Figure 2a).

Note that considerably increasing the number of integration points (e.g. bK = 8000) leads to a
smooth convergence curve with respect to an increase of the polynomial order. However, using too
many integration points results in an increased computational cost without a significant gain in the
accuracy of the results. Finally, the adaptation of bK in dependence of the polynomial order as
defined in Equation (19) is able to give convergence at a much lower cost (see Figure 2b). However,
for polynomial degree one for the adapted integration points, the conduction velocity is lower than
expected. This is due to the additional non-polynomial terms in the model in the calculation of the
ionic current term. For low order p = 1, we experimentally determined that using integration exact
to degree 3 is not accurate enough. Thus, we tested a stricter rule for the integration points so that
polynomials of degree d

d = (kion + 2)p = 4p (20)

are exactly integrated. This stricter rule (Equation (20)) solves the problem with low polynomial
degrees but it has almost no influence for the computation with higher polynomial degrees (see
Figure 2b). Hence, to reduce the computational cost for high polynomial degrees we decided to use
the rule from Equation (19) for high order polynomials, but for p = 1 we use the rule defined in
Equation (20) so that in any case at least polynomials of degree 4 are exactly integrated, i.e.

d =

{
3p , p > 1

4p , p ≤ 1
. (21)

3.3. Choice of the stabilization parameter

In this section we study the influence of the HDG stabilization parameter τ on the solution quality.
First, from Equation (7) we can observe that a large stabilization parameter τ →∞ forces the
solution uh to be continuous, therefore reproducing the CG solution. This is verified in Figure 3,
where the solutions are almost identical and thus the curves are the same.

Figure 4 presents results for different electrical conductivities σ in a wide range of values of
physiological interest [2, 32]. Firstly, we can see that with increasing polynomial order p the
influence of the stabilization parameter decreases. In Figure 4a only h = 0.5 mm is plotted since
propagation for h = 2 mm takes place only for larger polynomial degrees. In all plots in Figure
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Figure 2. Conduction velocity plotted over the polynomial degree p for different number of integration points
bK . (a) Comparison between different constant numbers of integration points. (b) Comparison between

adapted number of integration points and a large constant number

3.3. Choice of the stabilization parameter

In this section we study the influence of the HDG stabilization parameter ⌧ on the solution quality.
First, from Equation (5) we can observe that a large stabilization parameter ⌧ � 1 forces the solution
uh to be continuous, therefore reproducing the CG solution. This is verified in Figure 3, where the
solutions are almost identical and thus the curves are the same.

Figure 4 presents results for different electrical conductivities � in a wide range of values of
physiological interest [1, 31]. Firstly, we can see that with increasing polynomial order p the
influence of the stabilization parameter decreases. In Figure 4a only h = 0.5 mm is plotted since
propagation for h = 2mm takes place only for larger polynomial degrees. In all plots in Figure
4 it is visible that for larger ⌧ , the conduction velocity is overestimated and for smaller ⌧ it
is underestimated. A small ⌧ could also lead to the case that no propagation takes place. This
propagation block can be seen in the plots, when no value for the conduction velocity is plotted.
Decreasing the element size also leads to a decrease of the influence of the stabilization parameter.
Nevertheless, over- and underestimation is still visible for high and low stabilization parameters,
respectively.

In Figure 5 the results for a more detailed range of ⌧ = 0.1 to 1 mm/ms (5a) and ⌧ = 1 to
10 mm/ms (5b) are plotted. We conclude that a reasonable value for the stabilization parameter ⌧
for a wide range of physiological diffusivities and element sizes is ⌧ = 1 mm/ms using the minimal
cell model [30]. For other cell models the behavior of the stabilization parameter can be easily tested
in a similar fashion. Note that one should not use too low polynomial degrees to ensure only a small
dependence on ⌧ .

3.4. Time discretization

The main focus of this paper is on spatial discretization methods, which is why we did not go
into detail on temporal discretization. Nevertheless, for the sake of completeness we also briefly
present the results of a time step refinement for a polynomial order of p = 2. In Figure 6 one
can see the conduction velocity for different combinations of spatial and temporal refinement. For
temporal refinement we consider time steps of �t = 10�1, 10�2, 10�3 and 10�4 ms and for spatial
refinement element size of h = 2, 1, 0.5, 0.25 and 0.125 mm. With a time step of �t = 0.1 ms the
solution is not yet fully converged in terms of temporal errors. However, decreasing the time step
does not change the convergence behavior of the general solution. Thus, analyzing different spatial
discretization methods can be done on a coarser time step, without missing important characteristics
of the solution. Figure 6 shows that with the semi-implicit time discretization, the conduction
velocity is overestimated for a coarse element size, while for a large time step it is underestimated.
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Figure 2. Conduction velocity plotted over the polynomial degree p for varying number of integration points
bK . (a) Comparison between different constant numbers of integration points. (b) Comparison between

adapted number of integration points and a large constant number.
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Figure 3. Conduction velocity (cv) plotted over the element size h for σ = 0.1 mm2/ms. The HDG solution
for large τ is the same as the CG solution.

4 it is visible that for larger τ , the conduction velocity is overestimated and for smaller τ it
is underestimated. A small τ could also lead to the case that no propagation takes place. This
propagation block can be seen in the plots, when no value for the conduction velocity is plotted.
Decreasing the element size also leads to a decrease of the influence of the stabilization parameter.
Nevertheless, over- and underestimation is still visible for high and low stabilization parameters,
respectively.

In Figure 5 the results for a more detailed range of τ = 0.1 to 1 mm/ms (5a) and τ = 1 to
10 mm/ms (5b) are plotted. We conclude that a reasonable value for the stabilization parameter τ for
a wide range of physiological diffusivities and element sizes is τ = 1 mm/ms using the minimal cell
model [31]. For other cell models the behavior of the stabilization parameter can be easily tested in
a similar fashion. Note that one should not use too low polynomial degrees to ensure only a small
dependence on τ .

3.4. Time discretization

For the sake of completeness, we briefly present the results of a time step refinement for
a polynomial order of p = 2. In Figure 6 one can see the conduction velocity for different
combinations of spatial and temporal refinement. For temporal refinement we consider time steps of
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Figure 3. Conduction velocity (cv) plotted over the element size h for � = 0.1 mm2/ms. The HDG solution
for large ⌧ is the same as the CG solution
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Figure 4. Conduction velocities for different HDG stabilization parameters ⌧ and diffusion coefficients �.

3.5. Convergence and efficiency analysis with h and p refinement

Next we analyze the change in conduction velocity when decreasing element size and increasing
polynomial order for the HDG method for both tetrahedral and hexahedral meshes. Additionally,
we compare the HDG discretization method with CG discretizations in more detail. For the HDG
method we use a stabilization parameter ⌧ = 1mm ms�1 (see Section 3.3). For both methods, HDG
and CG, the rule for the integration points for the ionic current is adapted to the polynomial degree
as defined in Sections 2.4 and 3.2.
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Figure 4. Conduction velocities for varying HDG stabilization parameters τ and diffusion coefficients σ.
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Figure 5. Detailed analysis of the influence of the stabilization parameter ⌧ for � = 0.1.
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Figure 6. Conduction velocity plotted over the element size h and the time step �t for a polynomial order
of p = 2. The range from the element size is h = 2, 1, 0.5, 0.25 and 0.125 mm and the time steps are �t =

10�1, 10�2, 10�3 and 10�4 ms

To compare the results we record the number of degrees of freedom (ndof) and the number of
non-zeros in the system matrix (nnz), since they can be seen as the key factors for the calculation
time [25]. For the CG method, we consider these quantities directly from the discrete system for
the potential uh. In HDG we do it for the condensed system involving only the trace variables ⇤h.
We want to point out that for low order, HDG has more degrees of freedom than CG while for high
order, HDG has less degrees of freedom than CG, i.e., the ndof for HDG increases more slowly with
increasing order [25].

First, we compare the HDG and CG methods for hexahedral meshes. Both methods appear to
deliver similar results in terms of precision versus ndof and nnz (see Figure 7). It is also evident that
both ways, i.e., to increase the degree or to reduce the mesh size, are valid to better approximate the
conduction velocity.

Additionally, our results suggest that to achieve a converged conduction velocity for HDG and
CG and independent of the mesh type, approximately the same number of degrees of freedom and
non-zero entries in the system matrix are needed, except for a polynomial order p = 0 in HDG. For
the ndof this can be seen in Figure 7a where the polynomial order is kept fixed and the element size
is decreasing, and more clearly in Figure 7c, where the element size is kept fixed and polynomial
order is increasing, and similarly for the nnz in Figure 7b and Figure 7d.

As mentioned above, increasing the polynomial order or reducing the element size leads to
convergence. However, the HDG method becomes increasingly competitive as the polynomial
degree is increased. That means, for the same number of degrees of freedom, if the result is
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Figure 5. Detailed analysis of the influence of the stabilization parameter τ for σ = 0.1.

∆t = 10−1, 10−2, 10−3 and 10−4 ms and for spatial refinement element sizes of h = 2, 1, 0.5, 0.25
and 0.125 mm. With a time step of ∆t = 0.1 ms the solution is not yet fully converged in terms of
temporal errors. However, decreasing the time step does not change the convergence behavior of the
general solution. Thus, analyzing different spatial discretization methods can be done on a coarser
time step, without missing important characteristics of the solution. Figure 6 shows that with the
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Figure 6. Conduction velocity plotted over the element size h and the time step ∆t for a polynomial order
of p = 2. The range from the element size is h = 2, 1, 0.5, 0.25 and 0.125 mm and the time steps are ∆t =

10−1, 10−2, 10−3 and 10−4 ms.

semi-implicit time discretization, the conduction velocity is overestimated for a coarse mesh size,
while for a large time step it is underestimated.

3.5. Convergence and efficiency analysis with h and p refinement

Next we analyze the change in conduction velocity when decreasing the element size and increasing
polynomial order for the HDG method for both tetrahedral and hexahedral meshes. Additionally,
we compare the HDG discretization method with CG discretizations in more detail. For the HDG
method we use a stabilization parameter τ = 1 mm ms−1 (see Section 3.3). For both methods, HDG
and CG, the rule for the integration points for the ionic current is adapted to the polynomial degree
as defined in Sections 2.5 and 3.2.

To compare the results we record the number of degrees of freedom (ndof) and the number of
non-zeros in the system matrix (nnz), since they can be seen as the key factors for the calculation
time [26]. For the CG method, we consider these quantities directly from the discrete system for the
potential uh. In HDG we do it for the condensed system involving only the trace variables Λh. We
want to point out that for low order, the linear systems for HDG have more unknowns than for CG
while for high order, HDG has less unknowns than CG, i.e., the unknowns for HDG increases more
slowly with increasing order [26].

First, we compare the HDG and CG methods for hexahedral meshes. Both methods appear to
deliver similar results in terms of precision versus ndof and nnz (see Figure 7). It is also evident that
both ways, i.e., to increase the degree or to reduce the mesh size, are valid to better approximate the
conduction velocity.

Additionally, our results suggest that to achieve a converged conduction velocity for HDG and
CG and independent of the mesh type, approximately the same number of degrees of freedom and
non-zero entries in the system matrix are needed, except for a polynomial order p = 0 in HDG. For
the ndof this can be seen in Figure 7a where the polynomial order is kept fixed and the element size
is decreasing, and more clearly in Figure 7c, where the element size is kept fixed and polynomial
order is increasing, and similarly for the nnz in Figure 7b and Figure 7d.

For the same number of degrees of freedom, if the result is approximated with high-order
elements instead of small sized lower order elements, the obtained conduction velocity is closer
to the exact solution (see Figure 8a). In terms of number of nnz, increasing the polynomial order or
decreasing the element size leads to the same result (see Figure 8b). Thus, the HDG method becomes
increasingly competitive as the polynomial degree is increased. For h = 0.5 the conduction velocity
increases slightly at one point, although the conduction velocity should decrease due to the general
convergence behavior. The slight increase could happen since we measure only a scalar value to
look for the convergence of the solution. A coarse time step, a coarse mesh and the averaging of the

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
Prepared using cnmauth.cls DOI: 10.1002/cnm



12 J. M. HOERMANN ET AL.
HDG METHODS OF CARDIAC ELECTROPHYSIOLOGY 11

10 1 10 2 10 3 10 4 10 5 10 6 10 7
ndof

1

1.5

2

2.5

cv
[m

m
/
m

s]

hdg p=0
hdg p=1
hdg p=2
hdg p=5
cg p=1
cg p=2
cv exact

(a) number of degrees of freedom (ndof) via h-
refinement

10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9
nnz

1

1.5

2

2.5

cv
[m

m
/
m

s]

hdg p=0
hdg p=1
hdg p=2
hdg p=5
cg p=1
cg p=2
cv exact

(b) number of non-zeros in system matrix (nnz) via
h-refinement

10 2 10 3 10 4 10 5 10 6 10 7
ndof

0.6

0.8

1

1.2

1.4

1.6

cv
[m

m
/
m

s]

hdg h=1
hdg h=0.5
hdg h=0.125
cg h=1
cg h=0.5
cg h=0.125
cv exact

(c) number of degrees of freedom (ndof) via p-
refinement

10 3 10 4 10 5 10 6 10 7 10 8 10 9
nnz

0.6

0.8

1

1.2

1.4

1.6

cv
[m

m
/
m

s]

hdg h=1
hdg h=0.5
hdg h=0.125
cg h=1
cg h=0.5
cg h=0.125
cv exact

(d) number of non-zeros in system matrix (nnz) via
p-refinement

Figure 7. Conduction velocity plotted over ndof and nnz. (a) and (b) show the conduction velocity for the
element sizes h = 2, 1, 0.5, 0.25 and 0.125 mm. (c) and (d) show the conduction velocity for polynomial

order p = 0, 1, 2, 3, 4 and 5 for HDG and p = 1 and 2 for CG.

approximated with high-order elements instead of small sized elements, the obtained conduction
velocity is more accurate (see Figure 8a). In terms of number of nnz, increasing the polynomial
order or decreasing the element size, leads to the same result (see Figure 8b). Additionally, for
h = 1and for h = 0.5 the conduction velocity increases slightly at one point, although due to
convergence behavior the conduction velocity should decrease. The slight increase could happen
since we measure only a scalar value to look for the convergence of the solution. A coarse time
step, a coarse mesh and the averaging of the values around the measuring point could lead to small
rounding errors, which cause a slight change in the computed conduction velocity. However, the
convergence behavior of the overall problem does not change.

In Figure 9, we compare tetrahedral with hexahedral meshes. Note that for a fixed h, tetrahedral
meshes have a larger number of elements than hexahedral meshes. Although for a fixed h in CG
both mesh discretizations, hexahedral and tetrahedral, deliver the same ndof in the structured mesh,
in HDG (and particularly high order) the tetrahedral mesh involves a considerably larger number of
degrees of freedom. However, we can clearly appreciate that we roughly require the same number of
degrees of freedom and nnz with tetrahedral and hexahedral meshes for achieving similar precision,
i.e., the precision is only depending on the ndof and is independent form the element type.
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Figure 7. Conduction velocity plotted over ndof and nnz. (a) and (b) show the conduction velocity for the
element sizes h = 2, 1, 0.5, 0.25 and 0.125 mm. (c) and (d) show the conduction velocity for polynomial

order p = 0, 1, 2, 3, 4 and 5 for HDG and p = 1 and 2 for CG.

values around the measuring point could lead to small rounding errors, which cause a slight change
in the computed conduction velocity. However, the convergence behavior of the overall problem
does not change.

In Figure 9, we compare tetrahedral with hexahedral meshes. Note that for a fixed h, tetrahedral
meshes involve a larger number of elements than hexahedral meshes. Although for a fixed h in CG
both mesh discretizations, hexahedral and tetrahedral, deliver the same ndof in the structured mesh,
in HDG (and particularly high order) the tetrahedral mesh involves a considerably larger number of
degrees of freedom. However, we can clearly appreciate that we roughly require the same number of
degrees of freedom and nnz with tetrahedral and hexahedral meshes for achieving similar precision,
i.e., the precision is only depending on the ndof and is independent of the element type. Note that for
high-order tetrahedral elements we use optimized nodal sets, the so-called warp and blend points,
to avoid ill-conditioned interpolation and negative impact on linear solvers [33].

3.6. Results for p-adaptivity

The previous results show that increasing the polynomial order in HDG is a very efficient way to
improve accuracy. In order to take advantage of the latter fact and move towards more efficient codes
for computing wave propagation, as it has been postulated in previous works, it is natural to think
about increasing the resolution at the wave front only. The option of doing this in a very convenient

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
Prepared using cnmauth.cls DOI: 10.1002/cnm



HDG METHODS OF CARDIAC ELECTROPHYSIOLOGY 13
12 J. M. HOERMANN ET AL.

10 2 10 3 10 4 10 5 10 6
ndof

0.8

1

1.2

1.4

1.6

cv
[m

m
/
m

s]

hdg h=2
hdg h=1
hdg h=0.5
hdg h=0.25
cv exact

(a) number of degrees of freedom (ndof)

10 3 10 4 10 5 10 6 10 7 10 8 10 9
nnz

0.8

1

1.2

1.4

1.6

cv
[m

m
/
m

s]

hdg h=2
hdg h=1
hdg h=0.5
hdg h=0.25
cv exact

(b) number of non-zeros in system matrix (nnz)

Figure 8. This is a closeup of the results for HDG from Figures 7c and 7d. The conduction velocity for
polynomial order p = 1, 2, 3, 4, 5 and 6 is plotted.
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Figure 9. Comparison between hexahedral (hex) and tetrahedral (tet) elements. The conduction velocity is
plotted for element sizes of h = 2, 1, 0.5, 0.25 and 0.125 mm. The difference between different element

types is relatively small

3.6. Results for p-adaptivity

The previous results show that increasing the polynomial order in HDG is a very efficient way
to improve accuracy. In order take advantage of the latter fact and move towards more efficient
codes for computing wave propagation, as it has been postulated in previous works, it is natural to
think about increasing the resolution at the wave front only. And the option of doing this in a very
convenient way, is exactly our main motivation for using HDG. Therefore, we want now to show
the results of HDG using a p-adaptive approach.

We start the simulation with element order of p = 0 everywhere, define a maximal polynomial
order pmax, and apply the adaptivity strategy specified in Section 2.5. Figure 10 shows the result of a
p-adaptive simulation for element size h = 0.5 mm and pmax = 10. As expected, the method selects
a high polynomial degree at the position of the steep electrochemical wave front, and after some
time, when the wave has passed, the polynomial degree decreases again.

We now present in more detail the results for different values of h, pmax and etol in Table II, by
comparing the error between computed conduction velocity and the exact one. The table shows the
error of the constant polynomial degree, p = pmax everywhere, and the adaptive polynomial degree
until degree pmax. To see the influence of the error tolerance we calculated the error indicator without
normalizing for three different element sizes h = 2, 1 and 0.5 mm, i.e., we use A� = 1 in Equation
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Figure 9. Comparison between hexahedral (hex) and tetrahedral (tet) elements. The conduction velocity is
plotted for element sizes of h = 2, 1, 0.5, 0.25 and 0.125 mm. The difference between different element

types is relatively small

3.6. Results for p-adaptivity

The previous results show that increasing the polynomial order in HDG is a very efficient way
to improve accuracy. In order take advantage of the latter fact and move towards more efficient
codes for computing wave propagation, as it has been postulated in previous works, it is natural to
think about increasing the resolution at the wave front only. And the option of doing this in a very
convenient way, is exactly our main motivation for using HDG. Therefore, we want now to show
the results of HDG using a p-adaptive approach.

We start the simulation with element order of p = 0 everywhere, define a maximal polynomial
order pmax, and apply the adaptivity strategy specified in Section 2.5. Figure 10 shows the result of a
p-adaptive simulation for element size h = 0.5 mm and pmax = 10. As expected, the method selects
a high polynomial degree at the position of the steep electrochemical wave front, and after some
time, when the wave has passed, the polynomial degree decreases again.

We now present in more detail the results for different values of h, pmax and etol in Table II, by
comparing the error between computed conduction velocity and the exact one. The table shows the
error of the constant polynomial degree, p = pmax everywhere, and the adaptive polynomial degree
until degree pmax. To see the influence of the error tolerance we calculated the error indicator without
normalizing for three different element sizes h = 2, 1 and 0.5 mm, i.e., we use A� = 1 in Equation
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relatively small.

way is our main motivation for using HDG. Therefore, we now show the results of HDG using a
p-adaptive approach.

We start the simulation with element order of p = 0 everywhere, define a maximal polynomial
order pmax, and apply the adaptivity strategy specified in Section 2.6. Figure 10 shows the result of a
p-adaptive simulation for element size h = 0.5 mm and pmax = 10. As expected, the method selects
a high polynomial degree at the position of the steep electrochemical wave front, and after some
time, when the wave has passed, the polynomial degree decreases again.

We present the results for different values of h, pmax and etol in more detail in Table II, by
comparing the error between computed conduction velocity and the exact one. The table shows the
error of the constant polynomial degree, p = pmax everywhere, and the adaptive polynomial degree
until degree pmax. Note that the adaptive simulations always utilize the highest polynomial degree.
To see the influence of the error tolerance we calculated the error indicator without normalizing for
three different element sizes h = 2, 1 and 0.5 mm, i.e., we use Aγ = 1 in Equation (14). The tested
error tolerances are etol = 10−2, 10−4 and 10−8 (see Table II). From Table II we can see that the
error decreases with increasing polynomial degree for the p-constant method a large tolerance. This

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2017)
Prepared using cnmauth.cls DOI: 10.1002/cnm



14 J. M. HOERMANN ET AL.

is not the case for the p-adaptive method with an error tolerance of etol = 10−2, i.e. p-adaptivity
with a large error tolerance is not able to reproduce the p-constant solution. Only for small element
sizes and small polynomial degrees the method is able to approximate the result of the p-constant
method. Decreasing the error tolerance leads to a better approximation of the p-constant result as it
can be seen in Table II for etol = 10−4 and etol = 10−8. However, a smaller error tolerance increases
the number of high-order elements (Figure 11). For a coarse tolerance (e.g. etol = 10−2) the number
of elements with high order over time is small and it also decreases rapidly again. Decreasing the
tolerance increases the number of high-order elements and over time the decrease of the number
of high-order element is slower (Figure 11). A further decrease of the tolerance etol = 10−8 results
in a large number of high-order elements without returning to low order once the wave front has
passed. The elements remain at high order until the action potential is returned to resting potential
(Figure 11). This results almost in a constant polynomial degree over time. Thus, the smaller the
error tolerance the more the constant method is approached.

Comparing different error tolerances for different element sizes shows large differences if the
error indicator is not normalized (Figure 12). For an error tolerance of etol = 10−4 the element
order does not decrease in the simulation with element size h = 2 mm. Using a normalized error
indicator calculation as stated in Equation (14) and an error tolerance of etol = 10−4 we can see
that in all cases the polynomial degrees return to low order (Figure 12) and also the difference
between constant and adaptive method is small (Table II). Figure 13 shows the distribution of the
polynomial degrees at different times for a calculation with a normalized error indicator for a mesh
with h = 0.5 mm element size. Slight differences in the polynomial order along the width of the
geometry are due rounding errors. This asymmetry in the polynomial order distribution arises only
after many time steps due to accumulated effects of an interger decision (which degree) from a
continuous field that is almost the same (subject to roundoff). The polynomial degree increases
when the electrochemical wave arrives and after around 10 ms the polynomial degree decreases
again. Thus, our results verify that the error indicator calculation according to Equation (14) is a
good option for localizing high degrees to the elements close to the wave front.
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order once the wave front has passed. The elements remain at high order until the action potential
is returned to resting potential (Figure 11). This results almost in a constant polynomial degree over
time. Thus, the smaller the error tolerance the more the constant method is approached.

Comparing different error tolerances for different element sizes shows large differences if the
error indicator is not normalized (Figure 12). For an error tolerance of etol = 10�4 the element
order does not decrease in the simulation with element size h = 2mm. Using a normalized error
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that in all cases the polynomial degrees return to low order (Figure 12) and also the difference
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polynomial degrees at different times for a calculation with a normalized error indicator for a mesh
with h = 0.5 mm element size. Slight differences in the polynomial order along the width of the
geometry are due rounding errors. The polynomial degree increases when the electrochemical wave
arrives and after around 10 ms the polynomial degree decreases again. Thus, our results verify that
the error indicator calculation according to Equation (12) is a good option for localizing high degrees
to the elements close to the wave front.
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Figure 10. Polynomial degree and action potential at time 6 ms. The element size is 0.5 mm and the tolerance
was chosen as etol = 10�4 (a) Distribution of the adaptively chosen polynomial degree. (b) Action potential

of the upper surface. At the steep electrochemical wave front the polynomial degree is high.

3.7. Example with patient-specific biventricular geometry

To show the applicability of our method to real heart simulations, we use our p-adaptive HDG
implementation to solve the electrophysiological propagation problem for a real human ventricle
geometry. For this purpose we segmented the left and right ventricle from magnetic resonance
images of a healthy 33 year old female volunteer (image data from King’s College London). To
investigate different levels of mesh refinement we use tetrahedral elements with a maximal element
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Figure 10. Polynomial degree and action potential at time 6 ms. The element size is 0.5 mm and the tolerance
was chosen as etol = 10−4. (a) Distribution of the adaptively chosen polynomial degree. (b) Action potential

of the upper surface. At the steep electrochemical wave front the polynomial degree is high.

3.7. Computations on a real biventricular geometry

To show the applicability of our method to real cardiac electrophysiology simulations, we use
our p-adaptive HDG implementation to solve the electrophysiological propagation problem for a
real human ventricle geometry. For this purpose we segmented the left and right ventricle from
magnetic resonance images acquired in a healthy 33 year old female volunteer, with a dual-phase
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Figure 11. Number of elements with polynomial order of p = 0 and p = 10 during a p-adaptive simulation
plotted over time. The element size is h = 0.5 mm.
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Figure 12. Number of elements with polynomial order of p = 10 during a p-adaptive simulation plotted over
time for different element sizes h =2, 1 and 0.5 mm until a time of 50 ms.

(a) time 10 ms (b) time 17 ms

Figure 13. Polynomial degree distribution for two different time steps for a mesh with element size of 0.5 mm
and a normalized error indicator.

size of 2 mm, 1 mm and 0.5 mm, which results in three meshes with 59 801, 393 302 and 2 904 351
number of elements, respectively. On real heart geometries mesh refinement leads inevitably to a
slight change of the geometry. Hence, we examined if the differences in the geometry are strongly
influencing the results or if a coarser mesh with high-order elements is able to reproduce the same
activation propagation.

We initiate the propagation of the electrical wave with a stimulus current on the apex. The
maximal polynomial degree is set to five and at the beginning all polynomial degrees are set to
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Figure 12. Number of elements with polynomial order of p = 10 during a p-adaptive simulation plotted over
time for different element sizes h =2, 1 and 0.5 mm until a time of 50 ms.

(a) time 10 ms (b) time 17 ms

Figure 13. Polynomial degree distribution for two different time steps for a mesh with element size of 0.5 mm
and a normalized error indicator.

size of 2 mm, 1 mm and 0.5 mm, which results in three meshes with 59 801, 393 302 and 2 904 351
number of elements, respectively. On real heart geometries mesh refinement leads inevitably to a
slight change of the geometry. Hence, we examined if the differences in the geometry are strongly
influencing the results or if a coarser mesh with high-order elements is able to reproduce the same
activation propagation.

We initiate the propagation of the electrical wave with a stimulus current on the apex. The
maximal polynomial degree is set to five and at the beginning all polynomial degrees are set to
zero. For computational reasons we use the integration rule defined in Equation (17) in this example
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Figure 13. Polynomial degree distribution for two different time steps for a mesh with element size of 0.5 mm
and a normalized error indicator.

whole-heart 3D b-SSFP sequence [34] on a 1.5 T Philips Achieva MRI scanner, acquisition matrix
212x209x200, acquired voxel size 2 mm× 2 mm× 2 mm, repetition time 4.5 ms, echo time 2.2 ms,
echo train length 26 and flip angle 90o. The diastasis was used to generate the computational mesh.

To investigate different levels of mesh refinement we use tetrahedral elements with a maximal
element size of 2 mm, 1 mm and 0.5 mm, which results in three meshes with 59 801, 393 302 and
2 904 351 number of elements, respectively. On real heart geometries mesh refinements inevitably
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p-const p-adaptive
etol 10−2 10−4 10−8 10−4 normalized
pmax error=|cv-cvexact| /cvexact

2 48.5 % 52.62 % 48.5 % 44.37 % 44.37 %
4 25.12 % 62.25 % 22.37 % 25.12 % 34.75 %

h = 2 mm 5 14.12 % 89.75 % 16.87 % 14.12 % 27.87 %
7 10 % 103.5 % 22.37 % 10 % 10 %
10 3.12 % 44.37 % 37.5 % 3.12 % 3.12 %
2 19.62 % 19.62 % 19.62 % 16.87 % 19.62 %
4 5.87 % 1.75 % 5.87 % 5.87 % 5.87 %

h = 1 mm 5 1.75 % 2.38 % 1.75 % 3.12 % 1.75 %
7 1.75 % 7.88 % 0.37 % 1.75 % 0.37 %
10 0.37 % 7.88 % 0.37 % 0.37 % 0.37 %
2 3.12 % 2.38 % 3.12 % 3.12 % 3.12 %
4 1.75 % 1.75 % 0.37 % 0.37 % 0.37 %

h = 0.5 mm 5 1.75 % 14.12 % 0.37 % 0.37 % 0.37 %
7 0.37 % 41.62 % 0.37 % 0.37 % 0.37 %
10 0.37 % 62.25 % 2.38 % 0.37 % 0.37 %

Table II. Comparison of the relative error to the exact conduction velocity of standard HDG method with the
p-adaptive method for different polynomial degrees and different error tolerances etol. pmax is the maximal

polynomial order allowed, h is the element size and cv is the conduction velocity.

lead to slight changes of the geometry. Hence, we examine whether the difference in the geometry
strongly influences the results, or coarser meshes with high-order elements are able to reproduce the
activation propagation accurately.

We initiate the propagation of the electrical wave with a stimulus current on the apex. The
maximal polynomial degree is set to five and at the beginning all polynomial degrees are set to zero.
For computational reasons we use the integration rule defined in Equation (19) in this example for all
polynomial degrees. The coarsest mesh shows a slightly faster activation than the finer ones, while
only very small differences in the activation are visible between the two finer meshes (see Figure
14). The activation time of a sample point in the middle of the posterior wall at the junction between
left and right ventricle has been captured for the different levels of refinement. The activation time of
the sample point for the coarsest mesh is measured as about 40.7 ms, for the finer one about 45.4 ms
and for the finest mesh about 46.3 ms.

When using non-adaptive HDG elements for the example with a maximal element size of 1 mm
one would have to use 17 739 225 ndof during all time steps. In comparison, with the p-adaptive
HDG method we have between 844 725 minimal and 2 275 660 maximal ndof. The ndof averaged
over the whole simulation depends on a particular case, of course, i.e. the geometry, the simulation
time and the activation sequence influence the ndof over time. In our case, for an element size of
1 mm we show the average ndof until, e.g., the end of the activation or the end of the heart cycle.
The averaged ndof can be seen in Table III. It decreases when simulating a larger part of the cardiac
cycle, since the high polynomial degrees are used only at around the wave front. The decrease of the
ndof is very useful, in particular when the calculated activation is coupled to mechanical simulation.
In this case the activation takes place only in a short period of time, while the overall simulation is
much longer.

The electrophysiological model can also be coupled to a mechanical model to calculate
electromechanics in the heart. The mechanical simulation is solved using continuous finite elements,
while for the electrophysiological simulation we use p-adaptive HDG discretization, but both
meshes are the same. We couple the mechanical simulation through the action potential, which
is stored for each element at the integration points. For more details about the coupling and the
mechanical simulation we refer to our work described in [35]. In Figure 15 the activation time and
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specified simulation end time averaged ndof over time
end of activation 150 ms 1 709 905
end of systole 300 ms 1 278 179
diastasis 500 ms 1 107 227
end of heart cycle 1000 ms 988 151

Table III. Ndof averaged from start until given time, for the example with 1 mm maximal element size.

the displacement at peak systole are shown for the ventricular geometry with a maximal element
size of 1 mm.

4. CONCLUSION

In this paper we proposed and analyzed the use of an adaptive high-order Hybridizable
Discontinuous Galerkin (HDG) method for efficiently calculating the electric propagation in human
hearts. As compared to classical DG methods an HDG discretization reduces the degrees of freedom
through static condensation on the element level, so that only the degrees of freedom defined on
the faces between the elements show up in the global system of equations. An advantage of the
HDG method (as well as for other DG methods) is the simple usage of spatially varying high-
order elements, due to the discontinuity between the elements that is captured through numerical
fluxes. An approach with high-order elements in turn additionally needs a good approximation of
the integral of the ionic current term. In this paper we have defined a rule for a suitable integration
accuracy depending on the polynomial order and the cell model selected by the requirement to
exactly integrate the leading current term. Furthermore we have defined and explained a practical
choice of the stabilization parameter for the HDG discretization for the electrophysiological
problem. Comparing CG and HDG methods, we have seen a similar performance for low-order
elements, but an increase in efficiency for high-order elements.

The electrophysiology calculation is determined by a steep electrochemical wave front which
travels through cardiac tissue. We proposed a simplification of an error indicator previously reported
to localize it and to define an error indicator, which can be used to suggest the appropriate order of
the element and in this way realize a p-adaptive HDG approach for cardiac electrophysiology. In
summary, HDG shows great potential to efficiently solve large scale electrophysiological problems
for complex geometries using coarse meshes and p-adaptive high-order elements, which can be
additionally coupled with cardiac mechanical simulations.
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