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An analytical framework to derive the 
expected precision of genomic selection
Jean‑Michel Elsen* 

Abstract 

Background: Formulae to predict the precision or accuracy of genomic estimated breeding values (GEBV) are 
important when modelling selection schemes. Simple versions of such formulae have been proposed in the past, 
based on a number of simplifying hypotheses, including absence of linkage disequilibrium and linkage between loci, 
a population made up of unrelated individuals, and that all genetic variability of the trait is explained by the geno‑
typed loci. These formulae were based on approximations that were not always clear. The objective of this paper is to 
offer a unique framework to derive equations that predict the precision of GEBV from the size of the reference popula‑
tion and the heritability of and number of QTL controlling the quantitative trait.

Results: The exact formulation of the precision of GEBV involves the expectation of the inverse of a linear function 
of the genomic matrix, which cannot be calculated from simple algebra but can be approximated using a Taylor 
polynomial expansion. First order approximations performed better than the initial prediction equations published 
in the literature. Second order approximations produced almost perfect estimates of precision when compared to 
results obtained when simulating situations that agreed with the assumptions that were required to derive the preci‑
sion equations. Using this proposed framework, we present several generalizations, including multi‑trait genomic 
evaluation.

Conclusions: Although further improvements are needed to account for the complexity of practical situations, the 
equations proposed here can be used to derive the precision of GEBV when comparing breeding schemes a priori.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
After the seminal work of Meuwissen et  al. [1], who 
provided statistical methods to exploit linkage disequi-
librium (LD) between genotyped marker loci and quan-
titative trait loci (QTL) in animal and plant breeding, 
as previously proposed by Lande and Thompson [2], 
genomic selection was launched, which has since revo-
lutionised both research in quantitative and applied 
genetics and practical breeding plans. The benefits of 
this technology are considerable in dairy cattle (e.g. [3–
8]) and dairy cattle breeders very rapidly changed their 
schemes in order to adopt genomic selection methods. 
Thus, it became possible to improve the reliability of esti-
mated breeding values (EBV) at a young age, avoid costly 
and lengthy progeny tests, and limit the detrimental 

evolution of inbreeding. However, the application of 
genomic selection was not so clear in other breeding 
sectors, for various reasons: the high relative costs of 
genotyping (compared to the value of reproducers), the 
limited size of the (reference) populations required to 
calibrate the effects of single nucleotide polymorphisms 
(SNPs), and the fact that basic schemes were already 
organised with short generation intervals (e.g. [9–13]).

Mathematical models to describe and evaluate breeding 
plans can be useful to decide whether a breeding scheme 
based on genomic evaluations should be implemented or 
not e.g. [14]. These models are often based on stochastic 
simulations, in which the characteristics of single indi-
viduals (their genotypes at a number of SNPs, including 
QTL located across the genome, and their phenotypes 
for traits influenced by QTL) are generated, in order to 
produce data files that can be used as in “real life” (e.g. 
[15, 16]). Alternatively, models that describe populations 
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at a higher level (generations, cohorts, classes of repro-
ducers defined by their role in the scheme) offer a more 
rapid and flexible alternative to evaluate alternate breed-
ing programs. In such approaches, deterministic equa-
tions link population characteristics such as heritability, 
mean LD, replacement rates, and the number of geno-
typed individuals to expected genetic progress by unit 
of time. Some of the most important equations in these 
models are the formulae that predict the precision of 
genomic EBV (GEBV). Analyses of simulations and real 
data have clearly demonstrated that the precision of 
GEBV depends on the structure of the reference popula-
tion and the characteristics of the marker set used. The 
size of this reference population, its diversity, the genetic 
distance between the reference population and the group 
of selection candidates genotyped, the number of mark-
ers, and the degree or strength of LD are the main factors 
that influence this precision [17–29].

A very simple formula to obtain the precision of GEBV 
was given by Daetwyler et al. [17], based on a number of 
simplifying hypotheses that included: absence of LD and 
linkage between loci, a population made up of unrelated 
individuals, and all genetic variation of the trait is explained 
by the genotyped loci. Under this approach, the regres-
sion of phenotypes on SNP genotypes was performed 
one locus at a time. This equation has been widely used 
and cited more than 100 times in the literature. Adjust-
ments have since been proposed to deal with the distribu-
tion of marker allele frequencies [20], include dependence 
between marker loci through the definition of an effective 
number of independent loci [30], include the proportion of 
genetic variance explained by markers [22], and account for 
a smaller error variance when multiple marker loci are con-
sidered simultaneously [8]. Brard and Ricard [31] reviewed 
and challenged these formulae, using the results reported 
in 13 publications based on real data. They showed that 
the size of the reference population and the number of 
independent segments had a considerable impact on preci-
sion, and that the different formulae produced very differ-
ent results. Other situations were explored by Hayes et al. 
[21] by considering dependence between the reference and 
candidate populations, by Wientjes et al. [32], who studied 
multi-population scenarios, and by Elsen [33], who sug-
gested opportunities for the more systematic exploration of 
dependence between SNPs and between individuals.

In the present paper, using the simple situation that 
was initially studied by Daetwyler et  al. [17], we propose 
a framework to derive equations that predict the preci-
sion of GEBV based on the size of the reference popula-
tion, and the heritability of and number of QTL controlling 
the quantitative trait. We are interested in the expectation 
of the precision of GEBV, before implementing possible 
genotyping and selection schemes, as a tool for optimizing 

resources. With this prior approach, the variability summa-
rized when computing the expectation of GEBV precision 
comes from marker locus polymorphisms as well as from 
QTL and environmental random effects. After demonstrat-
ing the performance of the solutions obtained, we explore 
extensions to more complex situations. Ten equations are 
successively proposed: (1) a general formulation of the 
expectation of the precision of GEBV; (2) the Daetwyler 
et al. [17] equation that assumes that the error variance is 
not modified after correction for SNP effects; (3) the Daet-
wyler et al. [17] equation that accounts for the correspond-
ing reduction error variance; (4) an approximation of Eq. 
(1) based on a Taylor series expansion; (5) and (9) appli-
cations of Eq. (4) to the first order, assuming that all SNPs 
contribute equally to the genetic variance (Eq.  5) or that 
their effects share the same prior variance (Eq.  9); (6) an 
extension of Eq. (5) to the second order; (7) and (8) appli-
cations of Eq. (6) when assuming that distribution of allele 
frequencies is uniform (Eq. 7) or U-shaped (Eq. 8); (10) an 
extension to the multivariate situation.

Methods
Proposed framework
Notations and hypotheses
A list of abbreviations is in Table  1. Genomic predic-
tions are based on a set of M biallelic SNPs, with alleles 
Ak and Bk at locus k, the frequency of allele Bk being fk. 
All SNPs are assumed to be in linkage equilibrium. The 
reference population, which is considered to be a random 
subset of a larger population, is made up of N unrelated 
individuals, which are genotyped and phenotyped. We 
are interested in the precision of the GEBV of a selec-
tion candidate that is not related to individuals in the 
reference population, but belongs to a selection popula-
tion that is another subset of the larger population. The 
GEBV is derived as a SNP best linear unbiased prediction 
(BLUP) based on SNP genotypes.

The random elements of the prediction model 
y = Xβ+ e are as follows:
y is a vector of phenotypes recorded in the reference 

population, assumed to be centred at zero. β is a vector of 
SNP effects and is randomly distributed with a mean of 

0 and covariance matrix v(β) =




σ 2
β1

· · · 0

...
. . .

...

0 · · · σ 2
βM


 = B . 

Note that based on this matrix, the βk effects are sup-
posed to be uncorrelated.
X is the genotype matrix defined by Xik = nik − 2fk , 

where nik ∊  {0,  1,  2} is the number of Bk alleles carried 
by individual i at locus k. We assume that allele frequen-
cies fk are known. The expectation of Xik is null, and its 
variance is σ 2

k = 2fk
(
1− fk

)
. Under linkage equilibrium 



Page 3 of 11Elsen  Genet Sel Evol  (2017) 49:95 

between SNPs, the expectation of matrix X′X is 

N




σ 2
1 · · · 0
...

. . .
...

0 · · · σ 2
M


 = NF.

All genetic variability is assumed to be explained by the SNPs.
e is a vector of residuals with a mean of 0 and covari-

ance matrix v(e) =




σ 2
e · · · 0
...

. . .
...

0 · · · σ 2
e


 = σ 2

e IN = R.

g = wβ is the true genomic breeding value of the candi-
date to be predicted, with w the vector of SNP genotypes, 
defined as the rows in X. The variance of w is v(w) = F. 
Assuming all genetic variability is explained by the SNPs, 
we have v

(
g
)
= E

[
wBw′

]
= E

[
XBX′

]
ii
∀i.

ĝ = wβ̂ is the GEBV of the candidate, where 
β̂ = (X′R−1X + B−1)−1X′R−1y is the BLUP of the SNP 
effects.

For a given set of genotypes X, variance 
v(β̂|X) = B−

(
X′R−1X + B−1

)−1. Defining matrix 

� =




�1 · · · 0
...

. . .
...

0 · · · �M


, with �k = σ 2

e /σ
2
βk

, this variance is 

also v(β̂|X ) = B− σ2e
(
X′X +�

)−1.

Expected precision of GEBV
Four sources of variation underlie the correlation between 
genomic breeding values (g) and their prediction (ĝ): the 
SNP genotypes (X and w), their effects (β), and the envi-
ronmental effects (e). Quite often, we are interested in 
the precision of GEBV, given the population genotypes 
(X and w), and the randomness arising from the vari-

ability of β and e, i.e. r2(X,w) =
v(ĝ |X,w)
v(g |X,w)

, which is a func-

tion of matrices X and w. A priori, before genotyping, for 
instance when different SNP chip densities or reference 
population sizes are compared, the criterion of interest is 
r2 =

v(ĝ)
v(g)

. This is the situation explored in this paper.
The denominator in the previous equa-

tion for the precision of the GEBV is the 
genetic variance in the selection population: 
v
(
g
)
= Ew

[
wBw′

]
= tr[v[w]B] = tr[FB] =

∑
k σ

2
k σ

2
βk
. 

The variances of SNP effects are not known but must be 
estimated (e.g. [1]). In our a priori estimation of the pre-
cision of the GEBV, simplifying assumptions are needed. 
Following VanRaden [19], all variances of SNP effects 
are assumed to be equal to σ 2

β and, thus, σ 2
g = σ 2

β

∑
k σ

2
k . 

Alternatively, following Wientjes et al. [32], all SNPs con-
tribute equally to σ 2

e = σ 2
g , i.e. σ 2

k σ
2
βk

= σ 2
g /M. This is the 

situation considered in the present paper. The ratio σe2/σg2 
will be denoted by λ.

Table 1 List of abbreviations used in alphabetical order

Abbreviation Full meaning

a Vector of economic weights in γ

α Lower bound of the distribution of minor allele 
frequencies

Ak and Bk Alleles at SNP k

βk Effect of SNP k

β̂k Prediction of the effect of SNP k

βj Vector of SNP effects for trait j

β Vector of SNP effects

B Covariance matrix v(β)

β̃ Estimates of fixed effects

γ Selection objective

γ̂ BLUP of γ

D Expectation of X′X+�

δk kth diagonal term of D

E Deviation of X′X+� from D

e Vector of residuals

fmin Minimum minor allele frequency

fk Frequency of allele Bk
F Matrix of SNP genotypes

g Genetic value of the candidate

ĝ GEBV of the candidate

g Vector of genetic values

ĝ BLUP of g

h20 Heritability

� Diagonal matrix with elements �k
�

Ratio σ
2
e /σ

2
gk

�k Ratio σ
2
e /σ

2
βk

Me Effective number of loci

M Number of SNPs

Ne Effective population size

N Size of the reference population

P Working matrix (D−1ED−1E)

R Covariance matrix v(e)

r̃2 Estimate of the precision of GEBV based on [17]

r̂2 Approximation of r2 proposed here

r2(X,w) Expected precision of GEBV, given X  and w

r2 Marginal expected precision of GEBV

σ 2
βk

Variance of the effects βk

σ 2
k

Variance of the number of Bk alleles

σ 2
g

Genetic variance

σ 2
e

Environmental variance

σ 2
Y

Phenotypic variance

w Vector of SNP genotypes

X Genotype matrix

y Vector of the phenotypes of the reference population
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The numerator of the equation for preci-

sion is v
(
ĝ
)
= EX ,w

[
wv

(
β̂|X,w

)
w′

]
 since: (1) 

v
(
ĝ
)
= EX ,w

[
v
(
ĝ |X,w

)]
+ vX ,w

[
E
(
ĝ |X,w

)]
 and (2) 

E
(
ĝ |X,w

)
= wE

(
β̂|X

)
= 0.

Since β̂ and X are independent from w and E[w] = 0

:v
(
ĝ
)
= Ew

[
wEX

[
v
(
β̂|X

)]
w′

]
= tr

[
v[w]EX

[
v
(
β̂|X

)]]
.

Finally r2 =
tr[FB]−σ 2

e tr
[
FEX

[
(X′X+�)

−1
]]

σ 2
g

,

Approximation of the precision of GEBV proposed 
by Daetwyler et al. [17]

In their derivation of the precision of GEBV, Daet-
wyler et  al. [17] considered marker effects as both 

random and fixed effects. With our notations, they 

used β̃ =
(
X′R

−1
X
)−1

X′R
−1

y =
(
X′X

)−1
X′y 

as a fixed effect estimator of β. In this con-

text, var
(
β̃− β

)
= var

(
β̃
)
=

(
X′X

)−1
σ 2
e . How-

ever, when considering β as a random effect, they 

used cov
(
β, β̃− β

)
= 0, giving cov

(
g̃ , g

)
= v

(
g
)
, 

and found r2 =
v(g)
v(g̃)

, i.e. the inverse of the clas-

sical r2 =
v(ĝ)
v(g)

. Assuming that SNPs are in link-
age equilibrium, have uncorrelated effects, and 
independence between SNP effects and genotypes 

(cov
(
wj,βj

)
= 0), the variance v

(
g̃
)
= v

(
w
(
β+ β̃− β

))
 

is 
∑

j var
(
wj

)
v
(
βj
)
+

∑
j var

(
wj

)
v
(
β̃j − βj

)
 . 

When the reference population size is suffi-

ciently large, then 
(
X′X

)−1
≈ E

[(
X′X

)−1
]
, giving 

v
(
g̃
)
= σ 2

g +
∑

j var
(
wj

)
σ 2
e

/
Nvar

(
xij
)
.

Initially, Daetwyler et  al. [17] assumed inconsistently 
that both σ 2

p = 1 (“assuming the phenotypic variance is 
1“) giving σ 2

g = h10 and σ 2
e = 1 (“for the present, we shall 

conservatively take σ 2
e = 1”). Since the candidate and 

reference individuals belong to the same population, 
var

(
wj

)
= var

(
xij
)
 and v

(
g̃
)
= h20 +M/N , which gives:

(1)i.e. r2 = 1− � tr
[
F EX

[(
X′X +�

)−1
]]
.

(2)r̃2(1) =
Nh20

Nh20 +M
.

A correction was proposed to relax the approximation 
σ 2
e = 1, which resulted in an upward correction of r̃2. The 

idea was to replace σ 2
e = 1 by σ 2

e = 1− h20 + h20(1− r2), 
giving a quadratic equation in r2 and

An alternative derivation of Eq.  (2) was proposed by 
Wientjes et  al. [32]. The main idea was that, assuming 
all SNPs are independent, their effects can be estimated 
in single random effect models, with y = Xkβk + ek 

for locus k, giving β̂k =

(
X′

kXk +
σ 2
ek

σ 2
βk

)−1

X′
ky. They 

assumed that (1) the reference population was large 
(X′

kXk ≈ Nσ 2
k ), (2) the SNPs contributed equally 

to the genetic variance (σ 2
k σ

2
βk

= σ 2
g /M), and (3) the 

individual contribution of each SNP was very small 
(σ 2

ek
= σ 2

Y − σ 2
g /M

∼= σ 2
Y). Applying these assump-

tions, the BLUP of βk is β̂k =
X′

ky

σ 2
k

(
N+Mσ 2

Y /σ
2
g

), with vari-

ance v
(
β̂k

)
=

Nσ 2
βk

N+M/h20
, and the precision of GEBV is 

r2 =
v(ĝ)
v(g)

=
wv

(
β̂
)
w′

wv(β)w′ =

N

N+M/h20

∑
k w

2
kσ

2
βk∑

k w
2
kσ

2
βk

=
Nh20

Nh20+M
.

Another approach to calculate the precision of GEBV
In the following, we do not assume that σY2  =  σe2 or 
σ 2
Y = σ 2

ek
, and a unique multi QTL random model 

(y = Xβ+ e) is used to describe relationships between 
phenotype and genotype. As in Wientjes et  al. [32], we 
assume that σ 2

k σ
2
βk

= σ 2
g /M. In Eq. (1), the expectation of 

the inverse of matrix X′X +� appears. This matrix can 
be broken down into diagonal 

(
D = E

[
X′X

]
+�

)
 and 

non-diagonal elements 
(
E = X′X − E

[
X′X

])
. As in God-

dard et al. [22] and Elsen [33], a Taylor series expansion 
for matrix E is used to find approximations:

Because D−1 is not random and EX [E] = 0 , 
the second order approximation is 
EX

[(
X′X +�

)−1
]
= D−1 + EX

[
D−1ED−1E

]
D−1 and 

the precision of GEBV can be approximated by:

(3)r̃2(2) =
M + Nh20 ±

√(
M + Nh20

)2
− 4NMh40

2Mh20
.

(
X′X +�

)−1
= (E+D)−1 = D−1

(
I+ ED−1

)−1

= D−1
(
I− ED−1 + ED−1ED−1 · · ·

)
.

(4)
r̂2(2)

∼= 1− �

(
tr
[
FD−1

]
+ tr

[
FEX

[
D−1ED−1E

]
D−1

])
.
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First order approximation
Matrix D−1 is diagonal with terms 1

δk
= 1

E[X′X]kk+�k
. In the 

first order, r̂2(1) ∼= 1−
σ 2
e

σ 2
g

(∑
k
σ 2
k
δk

)
. Assuming as above 

that δk = Nσ 2
k +

σ 2
e

σ 2
βk

= σ 2
k (N +M�), we find:

This equation differs from formula (2) of Daetwyler 
et al. [17] by a factor (1 − h0

2).

Second order approximation
When the size of the reference population is limited, ele-
ments of matrix X′X differ from their expectations: non-
zero non-diagonal terms are present even if the SNPs 
are in linkage equilibrium and diagonal elements diverge 
from the genetic variances. The second order approxi-
mation of Eq.  (4) partly captures these deviations. In 
Eq.  (4), matrices F and D−1 are both diagonal. Thus, we 
only need the diagonal of matrix P = D−1ED−1E when 
computing the traces. Additional file 1 shows that terms 

EX[Pkk] simplify to Nσ 2
k

δk

{
1−2σ 2

k
δk

+
∑

t
σ 2
t
δt

}
. A second 

order approximation of the precision of GEBV is thus 

r̂2(2)
∼= 1− �

(∑
k
σ 2
k
δk

(
1+

Nσ 2
k

δk

{
1−2σ 2

k
δk

+
∑

t
σ 2
t
δt

}))
, 

which, using δk = σk2(N + Mλ),  simplifies to:

This expression includes genetic variances σ 2
k  , which in 

practice can be estimated from the genomic data available. 
A priori, when these variances are not available, we can 
approximate the last term by using E

⌊
1
σ 2
k

⌋
= E

⌊
1

2fk(1−fk)

⌋
.  

A general situation is a uniform distribution of the fre-
quencies between fmin, the minimum minor allele fre-
quency of genotyped SNPs (MAF), and 1 −  fmin (i.e. a 
probability density function f

(
fk
)
= 1

1−2fmin
), which 

results in E 1

σ 2

k

=
∫ 1−fmin

fmin

1

1−2fmin

1

2

[
1

fk
+ 1

1−fk

]
dfk =  

1
2(1−2fmin)

[
log

(
1−fmin

fmin

)
− log

(
fmin

1−fmin

)]
=

log
(
1−fmin
fmin

)

1−2fmin
 . 

A practical approximation of the expected precision of 
GEBV is thus:

(5)
r̂2(1)

∼= 1− �
M

N +M�
,

r̂2(1) =
N

N +M�
=

Nh20
Nh20 +M

(
1− h20

) .

(6)

r̂2(2)
∼=

N

N +M�
− �

NM

(N +M�)3

(
M − 2+

1

M

∑

k

1

σ 2
k

)
.

Numerical comparison of estimates of the precision 
of GEBV
Equations (1), (2), (3), (5) and (7) were evaluated by simu-
lating data corresponding to the hypotheses that under-
lie their development: unrelated reference and candidate 
individuals, SNPs in linkage equilibrium, GEBV from a 
SNP-based BLUP model, and all causal SNPs are included 
in the SNP panel. Heritability ranged from 0.1 to 0.7, gen-
otypes were available for 500 or 1000 SNPs and the size 
of the reference population ranged from 1000 to 10,000. 
The minimum MAF (fmin) was 0.025, 0.05, 0.075 or 0.10. 
One hundred replicates were simulated for each scenario, 
with allele frequencies generated for each. Computations 
were made in FORTRAN with the help of the Nag library 
[34].

The results obtained when M =  500, fmin =  0.05 and 
h0

2 =  0.3 are in Fig.  1. Table  2 shows the effects of her-
itability and fmin on the results. They showed consist-
ently that (i) the prediction proposed by Daetwyler et al. 
[17] is closer to the “true” precision given by Eq.  (1) 
when the size of the reference population is limited, (ii) 
the first order approximation proposed in the present 
paper (Eq. (5)) improves when the size of this population 
increases, i.e. when the assumptions that underlie these 
equations are more realistic, and (iii) the second order 
approximations of Eqs. (3) and (7) were nearly perfect in 
all cases, with a slight advantage for those of Daetwyler 
et al. [17] in most cases. 

Extensions
The framework that we propose is flexible to accommo-
date alternative situations without major problems, as 
illustrated in the following.

Distribution of allelic frequencies
In our a priori approach leading to Eq. (7), a uniform dis-
tribution of frequencies f

(
fk
)
= 1

1−2fmin
 was assumed, 

corresponding to E
⌊

1
σ 2
k

⌋
=

log
(
1−fmin
fmin

)

1−2fmin
. Following Hayes 

et  al. [21], a U-shaped distribution could be assumed, 
with f

(
fk
)
= C/2fk

(
1− fk

)
. The C constant must be 

estimated from the constraint 
∫ 1−α

α
f
(
fk
)
dfk = 1 , where 

α and 1  −  α are the bounds of the fk domain. Hayes 
et  al. [21] argued that α  =  1/2Ne, with Ne being the 
effective size of the reference population, leading to 

(7)

r̂2(2)
∼=

N

N +M�
− �

NM

(N +M�)
3


M − 2+

log
�
1−fmin

fmin

�

1− 2fmin


.
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C = 1/ log (2Ne). Alternatively, we could set α = fmin and 

E

⌊
1
σ 2
k

⌋
= 1+

1−2fmin

2fmin(1−fmin) log
(
1−fmin
fmin

). Figure  2 shows the 

values of these expectations for different minimum MAF. 
When the minimum MAF is higher than 5%, this cor-
rection factor E

⌊
1
σ 2
k

⌋
 is almost 2 and, in most cases, the 

expected precision of GEBV is close to:

(8)
r̂2(2)

∼=
N

N +M�
− �

(
M

N

)2( N

N +M�

)3

.

Goddard [20] also derived the precision of GEBV in 
this case of a U-shaped distribution of allele frequen-
cies. In his formulation (formula (8) of his paper), the 
expectation of the precision of GEBV depends on the 
ratio � = 1−h2

h2
Me

log (2Ne)
, where Me is the effective number 

of SNPs genotyped. Replacing log (2Ne) by −log
(
fmin

)
, as 

above, and assuming all SNPs are unlinked, resulting in 
Me = M, we compared the two approaches by using sim-
ulated data, as explained in the previous section. Results 
in Table 3 suggest that, in most cases, Goddard’s formula 
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Fig. 1 Expected precision of GEBV as predicted by Eqs. (1), (2), (3), (5) and (7), when 500 SNPs are genotyped, minimum minor allele frequency is 
0.05, and heritability is 0.3

Table 2 Expected precision of GEBV as predicted by Eq. 1 (true precision), Daetwyler’s formula 2 and 3, Eqs. 5 and 7 
when 500 SNPs are genotyped in a reference population of size 5000, depending on minimum minor allele frequency 
(MAF) and heritability

MAF h
2

0
True Eq. (1) Daetwyler formula (2) Daetwyler formula (3) Elsen Eq. (5) Elsen Eq. (7)

0.05 0.1 0.514 0.500 0.513 0.526 0.513

0.05 0.3 0.798 0.750 0.798 0.811 0.798

0.05 0.5 0.901 0.833 0.901 0.909 0.902

0.05 0.7 0.955 0.875 0.955 0.959 0.955

0.025 0.1 0.513 0.500 0.513 0.526 0.513

0.025 0.3 0.797 0.750 0.798 0.811 0.798

0.025 0.5 0.901 0.833 0.901 0.909 0.902

0.025 0.7 0.955 0.875 0.955 0.959 0.955
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underestimates the precision, while the two other for-
mulations are close to the expected value obtained from 
simulation.

Distribution of SNP effects
In previous developments, it was assumed that each SNP 
had its own distribution of effects with a variance of σ 2

βk
 . 

This was the condition assumed by Meuwissen et al. [1] 
when defining BayesA and BayesB Markov chain Monte 
Carlo approaches to genomic evaluation. This was jus-
tified in practice because the authors did not work at a 
single locus level but considered haplotypes of markers 
around each tested position, while theoretical justifica-
tions were given in the Bayesian LASSO context by Park 
and Cassela [35]. Alternatively, Meuwissen et al. [1] con-
sidered a unique variance σ 2

β under the GBLUP approach, 
which is also the case for the fitted SNPs in model BayesC 
π [36]. The assumption of an equal contribution of each 
SNP to the genetic variance is no longer valid and vari-
ance σβ2 is linked to genetic variance by σ 2

g =
(∑

k σ
2
k

)
σ 2
β.

In this case, approximations of Eq. (1) for the expected 
precision of GEBV can be obtained using the same 
approach as before, using a matrix Taylor series expan-
sion. As shown in Additional file 2, the first order approx-
imation is given by:

(9)

r̂2(9) = 1−
�M

N


1+

1

1− 2fmin

�̂β

N

�
1+

2�̂β
N

log


2fmin − 1+

�
1+

2�̂β
N

1− 2fmin +

�
1+

2�̂β
N




,

Fig. 2 Expectation of the inverse of variance of allele frequencies as a function of minimum allele frequencies (MAF), assuming a uniform or 
U‑shaped distribution of allele frequencies

Table 3 Expected precision of GEBV when the distribution 
of allele frequencies is U-shaped, as predicted by Eqs. 1 
and 8, by Daetwyler formula (3) and according to Goddard 
[20], when 500 SNPs are genotyped in a reference popula-
tion of size 5000, depending on minimum minor allele fre-
quency (MAF) and heritability

MAF h
2

0
True 
Eq. (1)

Elsen 
Eq. (8)

Daetwyler 
formula (3)

Goddard [20]

0.05 0.1 0.513 0.513 0.513 0.491

0.05 0.3 0.798 0.798 0.798 0.759

0.05 0.5 0.901 0.902 0.901 0.867

0.05 0.7 0.955 0.955 0.955 0.930

0.025 0.1 0.513 0.513 0.513 0.537

0.025 0.3 0.798 0.798 0.798 0.791

0.025 0.5 0.901 0.901 0.901 0.886

0.025 0.7 0.955 0.955 0.955 0.941
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where �̂β = M
1−2fmin

1−6f 2min+2f 3min
3 �. An illustration of the 

quality of this approximation is in Fig.  3. The quality of 
the first order approximation of Eq.  (1), which always 
overestimates precision, increased with population size 
and heritability and appeared to be satisfactory when 
N ≥ 5000.

Multivariate prediction
A simple generalisation of the expected precision 
of GEBV can be obtained when retaining the previ-
ous assumption. A total of nc traits are recorded in 
the reference population and this information is used 
to predict the global genetic value of the candidate: 
γ =

∑
j ajgj = ag, where a is a vector of nc economic 

weights and g the column vector of nc genetic values, i.e. 
gj = wβ j. Vector βj is a vector of the M SNP effects on 
trait j (β ′

j =
(
βj1, . . . ,βjM

)
). We assume that the vector 

of genotypes (w) is the same for all traits. All previous 
assumptions are retained: all SNPs have an effect on all 
traits, all SNPs have an equal contribution to genetic var-
iance for each trait, and individuals are unrelated. SNP 
effects are distributed with specific prior variances of σ 2

βjk
 , 

with zero correlations between SNPs. It is also assumed 
that the effects of SNP k on traits j and j′ are correlated, 
with a covariance of σ 2

βjj′k
.

The objective is to predict precision r2 = cov(γ ,γ̂ )
2

v(γ )v(γ̂ )
, 

where γ̂ = aĝ, with ĝ being the vector of GEBV. Thus, we 
need the variance v

(
ĝ
)
 of these GEBV, a nc × nc matrix. 

As detailed in Additional file 3, this variance is estimated 
at the first order using:

which is an obvious generalisation of the equivalent 
equation in the single-trait situation, which led to Eq. (5).

Discussion
Using classical statistical theory, the expected precision 
of GEBV based on marker-based BLUP was derived sim-
ply. Numerical approximations, based on a matrix Taylor 
series expansion, were produced for simple situations. 
From simulations that were consistent with the assump-
tions corresponding to these situations, these approxi-
mations performed similarly to and often better than 
the formulae for precision of GEBV that were previously 
published. However, the framework developed here is 
simpler and enables direct generalisations.

The first order approximation proposed here (Eq.  5) 
differs from formula (2) of Daetwyler et  al. [17] by a 
(1 −  h0

2) term. Those approximations differ by the way 

(10)v̂(ĝ) = Nv(g)(Nv(g)+Mv(e))−1v(g),
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Fig. 3 Expected precision of GEBV as predicted by Eqs. (1), (2) and (9) when 500 SNPs are genotyped and minimum minor allele frequency is 0.05. 
Case of a single prior variance of SNP effects and three levels of heritability (h2 = 0.3, 0.5 and 0.7)



Page 9 of 11Elsen  Genet Sel Evol  (2017) 49:95 

the error term variance is defined when a single SNP 
effect is estimated. In Eq.  (2), it was assumed that this 
error term variance is the total phenotypic variance, 
because when estimating a unique SNP effect, all other 
SNP effects participate to the error term. Too much error 
is assumed with this approximation and the precision is 
under evaluated. Equation (5) behaves as if all other SNP 
effects were perfectly estimated, limiting the error term 
to the only non-genetic part. This gives an overestimation 
of the GEBV precision. The second order approximations 
try to correct for these under- or overestimations: Eq. (3) 
replaces the 1 − h0

2 term of Eq.  (5) by 1 −  r2h0
2, which 

corrects for the non-perfect estimation of other SNPs 
effects. Equation (7) accounts for the lack of orthogonal-
ity between the SNPs.

Asymptotic behaviours of first order approximations 
are not the same: when all the observed variability has 
an (additive) genetic origin, i.e. when h0

2 = 1, formula (2) 
simplifies to N

N+M, while our Eq.  (5) predicts a perfect 
precision of GEBV. This discrepancy disappears when 
correcting Eq.  (2) for non-perfect estimation of other 
SNPS (Eq. 3). With this correction Eq. 3 predicts a per-
fect precision of GEBV when h0

2 =  1. In spite of being 
algebraically very different, the second order approxima-
tions underlying the Eqs. (3) and (7) worked very simi-
larly and produced results that were very close to those 
observed from simulations.

The hypotheses that underlie the equations derived 
here are strong and efforts should be made to overcome 
these constraints. First, it was assumed that all genetic 
variability is explained by the SNPs included in the evalu-
ation. Although this is increasingly true as the size of 
SNP chips grows towards a full knowledge of genomes 
by resequencing and imputation, other polymorphisms, 
including copy number variations (CNV), may play a role 
and the genotype information obtained is still far from 
sufficient to fully explain genetic variability. It has been 
suggested [8, 22] that the proportion b of the genetic 
variance explained by the markers should be taken into 
account through a reduction in the heritability (from h2 
to bh2) in the equations used and, using path coefficient 
theory, through a regression of precision of GEBV by b 
(from r2 to br2). This is easily implemented in the equa-
tions provided in this paper.

A second central hypothesis was independence 
between SNPs. With the current sizes of SNP chips, 
which will be even larger in the future, close SNPs are 
in LD and cannot be considered to be independent. This 
dependence means that non diagonal terms of E

[
X′X

]
 are 

non-null, with E
[
X′X

]
kl
= 2N�kl, where �kl is the LD 

between SNPs k and l. Equations can be derived for this 
situation, based on principles similar to the theory given 
here, but they are cumbersome, e.g. [33]. The concept of 

effective independent chromosomal segments has been 
discussed [17] and formalised [20] as an alternative to the 
true number of markers. The idea is that the precision 
of the genomic prediction model “depends on the varia-
tion in the realised relationship between pairs of animals” 
[20]. Then, the effective number of loci is defined as the 
“number of independent loci that gives the same variance 
of realised relationships as obtained in the more realistic 
situation” [20]. Solutions have also been proposed to esti-
mate the effective number of loci, from population genet-
ics considerations [20, 21, 37] or from real data (e.g. [32]).

A third assumption was the absence of relationships 
between individuals in the reference population and 
between candidates in the reference population. A for-
malisation of situations where individuals are related was 
proposed [33] but only for the first order approximations 
of precision. Although relationships between reference 
individuals and candidates were accounted for by  using 
this first order approximation, this was not the case for 
the structure of the reference population itself. There-
fore, further efforts are needed, which is particularly 
important since it is clear that (1) genomic predictions of 
breeding values arise only partly from historical LD and 
increase in precision when individuals in the reference 
population and candidates are more closely related [26, 
38–40], and (2) the structure of the reference population 
is a key factor in the precision on GEBV, e.g. [41].

The predicted variances of SNP effects calculated by 
Eq. (10) in the multivariate situation were obtained under 
strong assumptions. First, it was assumed that GEBV are 
computed using a multivariate approach that consid-
ers correlations between the effects of SNPs on different 
traits. However, in practice, GEBV are often computed 
using single-trait algorithms. In our formulation, this is 
equivalent to omitting the off-diagonal terms in matri-
ces Bkk and E when estimating the SNP effects β̂. In this 
case, the variance of those effects, and v

(
ĝ
)
, do not sim-

plify to the equations derived in the case studied. A sec-
ond important assumption was that all SNPs contributed 
equally to genetic covariances, as a direct extension of the 
single trait situation studied. The alternative assumption 
of unique (regardless of the SNPs) variances and covari-
ances (e.g. σ 2

βjk
= σ 2

βj
∀k) is also possible, as described in 

the previous section. Both these assumptions are, how-
ever, questionable, in particular because genetic correla-
tions lower than 1 suggest that only a limited proportion 
of the SNPs (and underlying QTL) affect all traits. Extra 
prior information about the underlying genetic architec-
ture of these correlations would be useful in this regard.

A few other assumptions are used in the current paper, 
including the additivity and i.i.d. of QTL effects, and the 
use of GBLUP. As long as the objective is to model and 
optimise breeding plans, then only relative values will be 
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of interest and we assume that these assumptions are not 
critical for those comparisons.

Conclusions
The objective of this paper was to provide a clear frame-
work to derive predictive equations to estimate the pre-
cision of GEBV. Such equations can generate results in 
a second and thus enable the optimisation of a breeding 
program design through intensive numerical exploration. 
Not the entire complexity of practical breeding programs 
was included in the simple formulae derived here and in 
previously published papers. The purpose was to support 
the a priori comparison of breeding schemes, rather than 
to evaluate actual breeding schemes. The exact formula-
tion of precision involves the expectation of the inverse 
of a linear function of the genomic relationship matrix, 
which cannot be calculated from simple algebra but 
can be approximated by a Taylor series development, as 
was already suggested by Goddard [20]. Second order 
approximations produced nearly perfect estimates of 
this precision, when compared to the results obtained by 
simulating data that are in agreement with the assump-
tions required to obtain the equations to estimate the 
precision of GEBV. We proposed several generalisations 
for the estimates of precision for this initial case, includ-
ing multi-trait evaluation. Other situations can also be 
derived within the framework presented here.
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