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While popular solutions exist for land cover mapping, they become intractable when in a large-scale context (e.g. VHR mapping at the European scale). In this paper, we consider a popular classification scheme, namely combination of Differential Attribute Profiles and Random Forest. We then introduce new developments and optimizations to make it: i) computationally efficient; ii) memory efficient ; iii) accurate at a very large scale; and given its efficiency, iv) able to cope with strong differences in the observed landscapes through fast retraining. We illustrate the relevance of our proposal by reporting computing time obtained on a VHR image.

INTRODUCTION

With the proliferation of Earth Observation sensors, as well as their continuously increasing performances (spatial resolution, revisit time, etc.), remote sensing has entered in the Big Data era. While in this context, dedicated architectures (clouds, HPC) represent a major component and various experiments have been reported, there is still an effort to be made on the algorithms themselves to make them adapted to large-scale, data-and computationally-intensive challenges raised, such as sub-metric land cover mapping at a continental scale, as provided in some Copernicus products. Indeed, Europe with its area of 10 millions of sq.km corresponds to a map of 40 TeraPixels at 50cm (Pleiades resolution) or 100 TeraPixels at 31cm (WorldView-3 resolution).

In the context of land cover mapping, the standard approach is to first characterize each single pixel by some features extracted from the original image, and then apply a supervised classification technique. While various options exists for these two steps, we can still observe some trends in the remote sensing community. As far as feature extraction is concerned, beyond spectral information, multiscale spatial analysis has shown a strong ability to offer a discriminating characterization of various land use/land cover classes, with for instance the popular Differential Attribute Profile [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF] and its many recent extensions (e.g., [START_REF] Pham | Local feature-based attribute profiles for optical remote sensing image classification[END_REF]). Supervised classification, where a model is first trained based on some reference data before been able to predict the class of a new pixel, has been achieved with many methods in remote sensing, the two most popular being Support Vector Machine (SVM) and Random Forest (RF). The latter has the ability to evaluate the relevance of the different dimensions of the feature space and their influence on the classification process. Besides, as a decision tree, it helps the understanding of the classification rules that are

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-13-JS02-0005-01 (Asterix project); and SIRS for providing the use case, data, and funding. used. It is thus a solution commonly adopted in remote sensing [START_REF] Belgiu | Random forest in remote sensing: A review of applications and future directions[END_REF]. Furthermore, when combined with DAP, RF usually achieves better results. Thus, in the sequel of this paper, we will use such a combination "DAP+RF" as a baseline. For the sake of research reproducibility, we rely here solely on open-source solutions. RF implementation is provided by the Shark library1 , while DAP relies on our own implementation in the Triskele library2 acting as a new remote module for the OTB framework 3 . Nevertheless, a significant gain in terms of classification accuracy has been achieved with deep learning [START_REF] Audebert | Semantic segmentation of earth observation data using multi-modal and multiscale deep networks[END_REF][START_REF] Audebert | Joint learning from earth observation and openstreetmap data to get faster better semantic maps[END_REF], and thus deep architectures are gaining increasing interest. However, these solutions still require a high computational cost and a heavy training process, and thus cannot be considered as a relevant solution for large-scale mapping yet.

We propose here an overall process that fits the large-scale requirements, minimizing the computational cost as well as the memory footprint. Furthermore, thanks to this efficiency, we are able to retrain a classifier for each novel scene to be analyzed, leading then to a straightforward approach to ensure robustness to the high variability of the land cover classes observed in the various acquired scenes. Beyond the overall process, we specifically focus on the feature extraction step for which we introduce a novel algorithm for efficient (both in time and space) tree construction that improves our former findings [START_REF] Havel | Efficient tree construction for multiscale image representation and processing[END_REF]. We also extend previous work on computing DAP on derived features such as NDVI [START_REF] Damodaran | Attribute profiles on derived features for urban land cover classification[END_REF], and demonstrate here the relevance of computing DAP on textural features.

OVERALL WORKFLOW

As already stated, large-scale classification brings three complementary issues that are tackled in this paper: i) computational complexity that is addressed through efficient algorithms and reduction of the data to be processed at the different steps; ii) memory cost that is addressed through optimizations allowing to limiting the memory footprint of the overall process; and iii) variability of the land cover class (e.g. spectral signature of the forest might differ between Mediterranean area and Scandinavia). In order to address these challenges, we rely solely on method efficiency. More precisely, we do not consider domain adaptation techniques to adapt the classification model to each novel scene to be mapped. We rather assume that, given a near real time overall process, a user is able to provide some samples, train a classification model from these samples, predict the labels for the unlabeled pixels, visually or quantitatively assess the accuracy of the produced map, and update the samples (and then the model) until the obtained accuracy is satisfying. Let us note that this process actually fits many operational contexts, where the accuracy requirements impose some manual assessment/correction as a postprocessing step. Our workflow is given in Fig. 1 and applied for each new scene to be mapped. To ensure efficiency in a large-scale context, parallelism is mandatory and has been made explicit.

1. add to the original image some additional bands (e.g., NDVI, texture, etc.); each novel band is built in parallel;

2. compute a min-and/or a max-tree per band; subtrees are built in parallel for each tile, and then merged together; for the sake of parallelism, the tiles contain a similar amount of pixels, but there is no restriction regarding their specific shape (see Sec. 3);

3. provide reference samples from existing maps, ground truth data, or visual analysis;

4. characterize samples, based on the two following steps:

(a) characterize each node by some attributes (e.g., area, standard deviation, moment of inertia, etc.); with attributes being incrementally computed from leaves to root, the parallelism occurs over nodes within each tree level;

(b) filter the tree and produce the full DAP feature vector; each feature vector (related to a unique pixel) is computed in parallel;

5. train the classifier on all features and evaluate it;

6. add new samples (step 3), characterize them (step 4) and update the model (step 5) as long as it is necessary; select the subset of relevant features for classification;

7. using the selected set of features, perform land cover mapping, i.e.:

(a) characterize all pixels;

(b) predict the classes using the trained model;

8. achieve a manual post-processing.

Fig. 1. Overall workflow

Classification is achieved with Random Forest (RF). Since RF is able to identify the important features in a classification process, we apply it on the full set of DAP features but only to the samples in steps 4 and 5; while in steps 7 (a) and (b), we consider all pixels but only a subset of the features. This actually leads to significant reduction of both computational and memory costs.

Feature extraction is performed with Attribute Profiles (AP), obtained by applying filters with increasing level on an input image, and efficiently computed from tree-based image representations. The original AP can be replaced by its differential version where differences between the filtered images form the feature vectors. Furthermore, instead of using the original image band, it has been shown recently that AP (or DAP) can be computed on derived features such as NDVI [START_REF] Damodaran | Attribute profiles on derived features for urban land cover classification[END_REF]. We follow this approach here and we propose to compute DAP over original bands, NDVI, as well as some additional bands bringing texture information. More precisely, we consider the L1 norm of the image gradient computed with the Sobel masks. While there exists other popular texture descriptors (such as Haralick features), our choice has been motivated by the very low computational cost of Sobel gradient (i.e. each pixel is only read 4 times). Let us note that the texture can then be computed over any of the input bands, including also the NDVI band. Computing DAP on Sobel information offers an efficient way to characterize the behavior of the edge information at multiple sizes.

TREE CONSTRUCTION

Our proposal assumes that the image features can be extracted very efficiently. The tree construction step is thus a key step in the process. In our previous work [START_REF] Havel | Efficient tree construction for multiscale image representation and processing[END_REF], we have introduced a novel algorithm for tree construction. We have however observed that, while the algorithm was intrinsically multi-threaded, the merging step might be particularly costly at the lowest levels of the tree.

We are introducing here a novel algorithm that avoids this shortcoming. It relies on the counting sort algorithm and modifies the underlying Tarjan's Union-Find algorithm (Alg. 1) to store additional information. We recall that this algorithm aims to build a tree structure. Since the tree construction is not a predictive process, some pixels might be put apart before realizing they form the same set. Merging the related subsets is then costly. In order to minimize such a cost, some nodes are identified as having more weight (higher score or rank) than others, and will be selected when two sets are to be merged. Sibling nodes (waiting for being merged) can also be encountered but the algorithm minimizes the size of siblings that have to be later integrated in the eldest. The tree structure is stored in an array called parents, while the array rank contains scores allowing to choose among the siblings. A fusion step remains mandatory.

In our modified algorithm (Alg. 2, with leader and count used instead of parent and rank in Tarjan's algorithm), we store the number of direct children of a node (set to 1 by default) instead of the socalled rank. When two nodes are linked, either they have the same value and then the one with more children is promoted as leader, or they have different values and then the one with the head value is the parent.

Based on this modified algorithm, we then derive the overall tree construction algorithm (Alg. 3). It relies on a more compact data structure, and involves a new merging strategy. The various optimizations lead to a linear complexity and a memory footprint divided by two. It is a fully parallel algorithm, with only the reindexing step requires one image scan and the merging achieved over the tile edges. Initialization (INITBUILDTREE) consists in setting all cells of the parent array to the maximal value. We will later be able to determine if a cell already knows its parent or not. The main construction algorithm (BUILDTREE) relies on a scheduler that will first divide the image surface in as many parts (called tiles) as available processors nbCores. Each tile is then analyzed in parallel to build the related subtree (BUILDSUBTREE). To do so, edges linking neighboring pixels are sorted in ascending order (given a specific metric, related to the kind of tree: min-tree, max-tree), considering the efficient counting sort algorithm. Each processor then uses these sorted edges to update leader and count using our modified Union-Find algorithm. When linking two pixels (LINKLEADER), it becomes easy to reach the two roots. Only them are impacted by the change of children and juniors. Through this scan, we also update the direct link to the highest parent at each analysis of a branch. A new node r is created during the first link with a leader pixel (CREATECOMP).

Once partial trees have been computed by each processor, a merging step has to be performed. Let us underline that it may lead to a topology change in the tree, rendering this process particularly costly (see [START_REF] Havel | Efficient tree construction for multiscale image representation and processing[END_REF]). We thus optimize it by sorting all edges linking border pixels in a raw (second loop in BUILDTREE). The merging

procedure INITUNIONFIND foreach pixel p ∈ I do parent(p) ← p rank(p) ← 0 function FINDROOT(pixel p) if parent(p) = p then return p parent(p) ← F indRoot(parent(p)) return parent(p) procedure UNION(a, b) pa ← F indRoot(a) pb ← F indRoot(b)
if pa = pb then if rank(pa) < rank(pb) then swap(pa, pb) parent(pb) ← pa rank(pa) ← rank(pa) + 1 Algorithm 1: Original Tarjan's Union-Find algorithm is applied on these edges (MERGEANDCOMPRESS), through a zipping that can lead to a topology change in the tree, thus justifying why we are processing smallest edges first. We then assign a new rank for each node (processing all siblings in a raw while reaching the eldest). We finally scan the set of nodes and set them at the appropriate location.

We finally add reverse links from the parents to the children (LINEARBUILDCHILDREN). We thus follow a strategy similar to the counting sort. We compute a cumulative sum of children counts and use the underlying array to indicate the first available location and set the children in the children array subsequently.

EXPERIMENTS

We report here some experiments conducted in order to assess the performance of the proposed workflow, including the novel tree construction algorithm. The underlying architecture is a computation node with 2 sockets L5640 2.27 GHz, 24 dual-cores and 40 GB of RAM. The input data mostly consist of pansharpened VHR optical images coming with a 16-bit resolution.

We consider here an excerpt of a WorldView-3 color (RGB) image, of size 9, 250 × 10, 408, i.e. ca. 100 millions of pixels. We append to the original spectral bands some derived features, NDVI and some Sobel indices. Then, a min-tree and/or a max-tree is built from each selected band before computing DAP using some predefined thresholds. The feature extraction scheme leads to a feature vector of typical length varying from a few tens to more than one hundered (e.g., computing both a min-and max-tree on the 3 original bands as well as 2 derived bands, and considering 12 thresholds with a single attribute, leads to 120 features per pixel).

In this example, we have added NDVI as an additional band, as well as the Sobel gradient from NDVI band. We have then computed a max-tree only on the NDVI and Sobel bands. The number of thresholds has been limited to 4, thus leading for each pixel to a feature vector of 13 (4 attribute values for each tree and the 5 input bands: RGB, NDVI and Sobel on NDVI). As such, the memory footprint of the features has been reduced by a factor of 9, from 21.5 GB to 2.3 GB storage. As far as the CPU time is concerned, we refer the reader to Tab. [START_REF] Audebert | Semantic segmentation of earth observation data using multi-modal and multiscale deep networks[END_REF]. We can see that the tree construction step is less than 10 seconds per tree (or per band), and the overall training samples) until reaching a satisfying classification model. Finally, the prediction is done in about 1.5 minute. When including the other steps not given here for the sake of concision (e.g., I/O and memory ops), the land cover map is produced in less than 3 minutes. Let us note that with a standard, single-threaded implementation of the tree-related algorithms, the CPU time would have grown from about 20 seconds to possibly more than 15 minutes (i.e. more than 40x).

Step

Total # Min Max Tree construction 17.2" 2 8.4" 8.8" Feature embedding 2.4" 2 1.2" 1.2" Tree filtering 1.9" 2 0.9" 1.0" Training 4.7" 1 --Prediction 1'30.9" 1 --Total 2'21.0" ---Table 1. CPU cost evaluation: total time of each step, number of processes, and min/max CPU times (-when not applicable).

CONCLUSION

In this paper, we have addressed the land cover mapping problem at very large scale (e.g., paneuropean). To do so, we have considered as a baseline the popular scheme consisting of DAP feature extraction followed by classification using Random Forest. We have then focused on the feature extraction scheme and introduce novel algorithms to lower both the memory footprint and the computational cost, making the proposed implementation compatible with multi-threaded environments. The overall processing chain has been validated by SIRS in an operational context, namely through the mapping of Small woody features (SWF) for EEA39, and is part of the Triskele library, a remote module of the Orfeo ToolBox (OTB) CNES Open Source suite. Let us note that the proposed algorithm aims to be run on a server side, while client access to tree basedstructures has been proven to be an effective solution [START_REF] Merciol | Interoperability of multiscale visual representations for satellite image big data[END_REF]. Future work will include integrating recent DAP extensions (e.g. [START_REF] Pham | Local feature-based attribute profiles for optical remote sensing image classification[END_REF]) in order to improve the classification accuracy, as well as further investigating computation/memory cost optimization, and experimentally comparing the proposed implementation with existing ones [START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF][START_REF] Kazemier | Connected morphological attribute filters on distributed memory parallel machines[END_REF].
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