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Quasi-flat zones for angular data simplification

Erchan Aptoula1, Minh-Tan Pham2, and Sébastien Lefèvre2

1 Institute of Information Technologies - Gebze Technical University, 41400, Kocaeli, Turkey
2 IRISA - Université Bretagne Sud, UMR 6074, 56000 Vannes, France

Abstract. Quasi-flat zones are based on the constrained connectivity paradigm
and they have proved to be effective tools in the context of image simplification
and super-pixel creation. When stacked, they form successive levels of the α-
or ω-tree powerful representations. In this paper we elaborate on their extension
to angular data, whose periodicity prevents the direct application of grayscale
quasi-flat zone definitions. Specifically we study two approaches in this regard,
respectively based on reference angles and angular distance computations. The
proposed methods are tested both qualitatively and quantitatively on a variety of
angular data, such as hue images, texture orientation fields and optical flow im-
ages. The results indicate that quasi-flat zones constitute an effective means of
simplifying angular data, and support future work on angular tree-based repre-
sentations.

Keywords: quasi-flat zones, image partition, image segmentation, connectivity,
orientation field, hue, optical flow

1 Introduction

Although flat zones [1], i.e. connected image regions of constant pixel intensity, repre-
sent semantically homogeneous image areas and are thus invaluable for segmentation
purposes, they almost always produce oversegmented or too fine image partitions. That
is why, there have been multiple attempts at relaxing the pixel connectivity criterion
from as early as the 1970s, thus leading to a variety of solutions such as jump connec-
tions [2] and quasi-flat zones [3], capable of hierarchical image partitioning and mul-
tiscale image representation [4]. Given their potential in terms of image simplification
and super-pixel creation, quasi-flat zones in particular have been studied extensively
and multiple definitions have been elaborated with varying degrees of flexibility and
efficiency [5–8]. Specifically, Soille [7] has provided a solution based on both local and
global pixel intensity variation criteria leading to unique image partitions. Angulo and
Serra have explored the application of quasi-flat zones in color image segmentation [9],
while Aptoula et al. [8] focused on color image simplification. Crespo et al. [10] and
Weber et al. [11] have investigated the use of quasi-flat zones in the context of region
merging and interactive video segmentation, respectively.

In the light of the success of quasi-flat zones with the simplification and segmenta-
tion of grayscale and color images, here we focus on their definition for angular data.
In particular, angular images can be encountered in the image processing community
in various forms, such as the hue channel of color images in polar color spaces [12],



oriented textures [13] as well as optical flow datasets [14]. However, the periodicity of
angular values most often prevents the direct application of graylevel solutions and in-
stead demands custom definitions. That is why, in this paper we concentrate specifically
on the definition of quasi-flat zones for angular data. As a matter of fact, we investigate
two approaches, respectively based on angular distances and reference angles. Besides
elaborating on their theoretical and practical properties, we also put them to qualitative
and quantitative test with the hue channels from the Berkeley dataset, texture orientation
fields from Outex database, as well as with optical flow images.

The rest of the paper is organized as follows. Section 2 provides background in-
formation on quasi-flat zones, while Section 3 explains the proposed quasi-flat zone
definitions for angular data. Experiment results are provided in Section 4, and Section
5 is devoted to concluding remarks.

2 Background

Let f : E → T be a digital image, where E is its definition domain, the discrete
coordinate grid (usually N2 for 2D images) and T the set of possible pixel values (for
instance a subset of R or Z). A path π(p, q) between two pixels p, q ∈ E in this case,
is a sequence of n > 1 pixels (p = p1, . . . , pn = q) such that any two successive pixels
of the said sequence are adjacent (for instance w.r.t. 4- or 8- adjacency). Moreover,
any two pixels are said to be connected if there exists a path between them; while the
connected component associated with a pixel p is the set of pixels C(p) containing p
and all those connected to p. Once one starts taking into account the intensity f(p) ∈ T
associated with each pixel p, various custom connectivity relations can be defined, based
for instance on pixel-wise intensity dissimilarity (or based on any other pixel attribute,
e.g. color purity, texture orientation etc.):

∀p, q ∈ E, d(p, q) = ‖f(p)− f(q)‖ (2.1)
where ‖ · ‖ is a norm. In this case, a couple of pixels p, q are said to be α-connected if
there exists a path π(p, q) between them where the maximal dissimilarity between any
couple of successive pixels on the said path is below a certain threshold α, thus leading
to the definition of α-connected components:

Cα(p) = {p} ∪ {q | d̂(p, q) ≤ α} (2.2)

d̂(p, q) =
∧
π∈Π

 ∨
i∈[1,...,Nπ−1]

{
d(pi, pi+1)

∣∣ 〈pi, pi+1〉 ∈ Π
} (2.3)

with Π being the set of all possible paths between p and q and Nπ the length of path
π. Note that flat zones are a particular case of Cα where α = 0. Moreover, a crucial
property of α-connected components concerns their hierarchy w.r.t. the value of α:

∀α′ ≤ α, Cα
′
(p) ⊆ Cα(p) (2.4)

in other words, for increasing values of α, the α-connected component associated with
a pixel p is guaranteed to contain the previous ones, leading to the so-called α-tree rep-
resentations [15]. This principle has formed the basis of several extensions. As a matter
of fact, early examples employing Eq. (2.2) go as back as the late 70s [5, 6], followed
by various significant extensions and modifications, aiming to remedy inconveniences



such as the chaining effect and the non-uniqueness of the resulting image partitions.
Both of these inconveniences have been resolved by Soille’s [7] Cα,ω quasi-flat zones
(Fig. 1), where besides α, the so-called local variation criterion, an additional global
variation criterion ω is employed:

Cα,ω(p) = max{Cα
′
(p) | α′ ≤ α and R(Cα

′
(p)) ≤ ω} (2.5)

where R(Cα) is the maximal dissimilarity between the intensities (or some other al-
ternative attribute) of any two pixels of Cα. Consequently, Cα,ω of a pixel p is the
widest Cα

′
(i.e. built with the highest α′ ≤ α thanks to property (2.4)) where the max-

imal inter-pixel dissimilarity is less than or equal to ω. Examples of Cα,ω are shown
in Fig. 1. Furthermore, a framework unifying the various quasi-flat zones definitions
under the concept of logical predicates has also been proposed by Soille in [16] .

Considering its positive theoretical and practical properties, in the rest of the paper
we concentrate exclusively on Cα,ω in order to realize its extension to angular images.

α = ω = 30 α = ω = 60 α = ω = 90 α = ω = 120
13573 qfz 8344 qfz 5302 qfz 4151 qfz

Fig. 1: Examples of Cα,ω on 256× 256 Lenna (8-bit) for various local and global criteria.

3 Angular quasi-flat zones

The constant diversification of image acquisition means has led to various distinct pixel
data types, ranging from scalars (e.g. grayscale images), to vectors (e.g. color, multi-
spectral, hyperspectral images) and even tensors (e.g. diffusion tensor MRI images).
Angular images in particular or in other words images where each pixel p represents
an angle f(p) ∈ [0, 2π], are often encountered in practice as auxiliary sources of infor-
mation (Fig. 2). For instance, in the case of color images, polar (or phenomenal) color
spaces such as HSV, HLS and their derivatives, describe color in terms of luminance,
saturation and hue triplets; the last component is indeed an angular value (Fig. 2a).
Other sources of angular content include oriented textures (Fig. 2b), where pixel values
represent the local orientation and optical flow images, where each pixel is character-
ized by a flow vector possessing both a magnitude and an orientation (Fig. 2c).

Although they constitute a rich source of information, the processing of angular
images on the other hand is a not a straightforward issue. More precisely, the inher-
ent periodicity of angular data leads to a discontinuity at the origin which very often
prevents the direct application of image analysis techniques, that otherwise work per-
fectly with standard grayscale images, thus rendering it imperative to develop custom
solutions adapted to this type of data.



(a) (b) (c) (d)

Fig. 2: Examples of angular images: (a) Lenna color image and (colored) hue channel, (b) wood
texture and orientation field, (c) 2 successive frames and the related optical flow orientation, and
(d) the color coding used to represent angular data.

Quasi-flat zones are no exception to this situation. Since any two pixels of similar
angular value f(p) = 2π − ε and f(q) = 2π + ε located at opposing sides of the
origin are bound to be placed in distinct α-connected components, thus leading to severe
discontinuities. This can be observed in Fig. 3 with the Lenna image, which possesses a
mostly reddish hue content (Fig. 3b). Hence, applying Cα,ω directly on its hue channel
leads to visually very poor quasi-flat zone results, see Fig. 3c and Fig. 3d.

(a) Lenna (b) Hue (c) α = ω = 70 (d) Close-up
1803 qfz

Fig. 3: Example of applying Cα,ω directly on the hue channel of a color image, followed by
setting each quasi-flat zone to its mean hue.

Given these inconveniences we present in this section two different approaches of
computing quasi-flat zones for angular images, that avoid effectively the aforemen-
tioned discontinuity problem.

3.1 Angular distance based approach

In order to adapt Cα,ω to angular data, both theoretical and practical issues need to
be resolved. Let us focus first on the theoretical requirements of this extension. Plus,
considering that we now deal with angular images of the type f : E → [0, 2π], both
the local α and global ω variation criteria represent arc lengths. If one studies carefully
Eq. (2.5) of Cα,ω , two data dependent parts can be observed that need to be adapted to
processing angular data: i) the computation of Cα by means of Eq. (2.2), that requires



the calculation of the dissimilarity dθ of two angular pixels and its comparison against
α; ii) and the computation of the maximal dissimilarity R(Cα) between all pixels of
Cα, which once again requires dθ, and its comparison against ω. These are in fact
the same requirement: being able to calculate the dissimilarity of any two angles and
compare the resulting distance against a predefined distance such as α and ω. However,
since the dθ : [0, 2π]2 → [0, π] of any two angles is in fact handled as an arc length, its
comparison against α and ω is trivial; which leaves as sole requirement the definition
of dθ. To this end we adopt the solution in Refs. [12, 13], where angular distances have
been employed as means for establishing a lattice structure on the hue circle of color
images:

∀ h, h′ ∈ [0, 2π], dθ(h, h
′) =

{
|h− h′| if |h− h′| < π
2π − |h− h′| if |h− h′| ≥ π (3.1)

Consequently, we can proceed to define α-connected components for angular data (Cαθ )
merely by replacing the distance expression of Cα with its angular counterpart:

Cαθ (p) = {p} ∪ {q | d̂θ(p, q) ≤ α} (3.2)
Thus, we reach the angular Cα,ωθ :

Cα,ωθ (p) = max{Cα
′

θ (p) | α′ ≤ α and Rθ(Cα
′

θ (p)) ≤ ω} (3.3)
where Rθ represents the maximal distance dθ between any two pixels contained in Cαθ .
Nevertheless, although Cα,ωθ is theoretically sound, there are additionally two practical
issues that require consideration: i) The amount α − α′ by which α is going to be
decreased each time the global variation criterion is not satisfied, ii) and the computation
efficiency of Rθ. To explain, when dealing with grayscale images, if the α ∈ [0, 255]
argument ofCα,ω leads to an α-connected componentCα that does not verify the global
variation criterion ω, it is the immediately smaller value α′ = α − 1 that is employed
in its place. With real values however, representing either angular or some other form
of data, it is no longer possible to simply select the next smaller value3. Consequently,
when the initial α value in Eq. (3.3) leads to an α-connected component Cαθ that does
not verify the global variation criterion ω, a fixed decrementation step β � α becomes
necessary. Thus, if α fails to verify the global criterion, we try next α′ = α − β.
Naturally, a large β value will result in faster quasi-flat zone computations, since less
attempts will be made in order to determine the α′ value that verifies the global criterion,
while on the other hand the said α′ value will be a poorer approximation w.r.t. using
a smaller β value. A more effective solution for this problem could be to set α′ to the
smallest dissimilarity dθ,min between the pixels of Cαθ , since the α′ values such that
dθ,min ≤ α′ < α will not modify the content of Cαθ and thus have no effect on the
global variation criterion.

The second practical issue concerns the computation of Rθ(Cαθ ). To explain, when
dealing with standard grayscale images, the calculation of R(Cα) is realized with a
linear complexity w.r.t. the number of pixels in Cα. Each time a pixel is added into Cα,
it suffices to compare it only against the pre-calculated maximum and minimum values,
i.e. an operation of constant complexity. However, when it comes to angular images this
strategy is no longer applicable, since the new maximal angular distance might be in fact

3 Let us observe however that this issue can be overcome with algorithms specifically designed
to build tree-based representations for high-depth data.



between any angle couple and not necessarily between an angle and one of the previous
extrema (Fig. 4). The naive approach of calculating Rθ(Cαθ ) would consist in cross-
comparing all pixels of Cαθ every time a new pixel is added, which implies a complexity
O(n3) in terms of pixels within Cαθ and is practically unacceptable. An improvement
would be to preserve the maximal dissimilarity of Cαθ (a trivial computation for 1 and
2 pixels) and each time a new pixel q arrives into Cαθ , one would need to compare only
q against the pixels of Cαθ and update the maximal dissimilarity if q possesses a greater
distance to Cαθ , thus reducing complexity to O(n2).

p1 p2

p4

p3 p2p1 p3

Fig. 4: The most distant angles are illustrated in red & blue. On the right, it is shown that the most
distant couple does not have to contain one of the previous extrema p1 and p3.

Further acceleration can be achieved if we search for the most distant pixel to q
within Cαθ with a binary search. However, in order to avoid the discontinuity at the
origin, which prevents the classic application of the binary search algorithm, one can
divide the interval [0, 2π] into two bins [0, π] and ]π, 2π] and place all pixels of Cαθ into
their respective bins, where in each bin they are kept within a sorted data structure. A
scalar sort is feasible since the individual bins will not contain the discontinuity at the
origin. Next, each time a new pixel q arrives into Cαθ , we locate the pixel of maximal
distance to q with a binary search within the opposing bin to that of q. If the opposing
is empty, it suffices to compare against the extreme pixels (that are known thanks to the
sorted data structure) of the remaining bin. Of course this is by no means an optimal
solution. Besides, as this is the first paper on angular quasi-flat zones, it focuses rather
on their feasibility, with computation efficiency being a future work topic.

Fig. 5 shows the quasi-flat zone results obtained for Lenna using various local and
global variation criteria. Differences w.r.t. a mere grayscale application (Fig. 3) are
emphasized at hue discontinuity regions.

(a) Lenna (b) α = ω = 0.36 (c) Close-up
1896 qfz

Fig. 5: Example of applying Cα,ωθ (with β = 10−4) on Lenna’s hue channel by setting each
quasi-flat zone to its mean hue. Spatial inconsistencies from Fig. 3d have been removed.



3.2 Reference angle based approach

A relatively simpler and more efficient way of computing quasi-flat zones from angular
data is to first convert the input into a grayscale image and then apply the efficient
algorithm ofCα,ω from Eq. (2.5), as already done with color images [8]. The conversion
process can be realized using the angular distance of Eq. (3.1). More precisely, we
associate each angular pixel value f(q) ∈ [0, 2π] with its distance dθ(θref , f(q)) to a
reference angle θref ∈ [0, 2π], which leads to a grayscale image of distances. Distance
images of Lenna for various reference hues are shown in Fig. 6.

Lenna θref = 0.0 θref = 0.2 θref = 0.4

Fig. 6: Angular distance images of Lenna’s hue channel for various reference values.

Once the grayscale distance image is obtained, the computation of quasi-flat zones
by means of Cα,ω is straightforward. Fig. 7 shows the quasi-flat zones obtained for
θref = 0.0. As the results appear visually very similar, if not identical to the previ-
ously presented angular distance based approach, one is tempted to adopt the reference
based approach for simplicity’s sake. Yet, there are serious differences between the two
methods. For instance, this one requires not only a reference angle value, but if we are
to employ the efficient implementations of Cα,ω then it also subquantizes the resulting
pixel values into a range of integers as well, instead of dealing with real-valued angles.

(a) Lenna (b) α = ω = 70 (c) Close-up
3362 qfz

Fig. 7: Example of applying Cα,ω on the distance image of Lenna’s hue channel using θref =
0.0, followed by setting each quasi-flat zone to its mean hue.

Moreover, how can one choose the reference angle? A similar question is encoun-
tered during the morphological processing of hue and has been explored in details in
[12]. Multiple strategies are available. Since setting it at some arbitrary value can be
deemed as a last resort, an alternative is to employ as reference the most dominant
angle of the input image, or even better, if multiple dominant angles are present, take
them all into account. This is however a direction for future research and we will not
focus on it here. In short, concerning the reference angle based approach, the following



questions arise: What is the effect of the reference angle choice on the quality of the re-
sulting image partitions? Does the performance of the proposed two approaches depend
on data type (e.g. hue, orientation field, etc.)? And of course, which one is better suited
for image simplification? We now proceed to a series of experiments that will help us
answering these questions.

4 Experiments

We present here a series of experiments conducted with the main goal of comparing
the proposed angular quasi-flat zone approaches against each other and more precisely
in order to answer the questions raised at the end of the previous section. As stated in
[7], image simplification and super-pixel creation constitute the main applications of
quasi-flat zones; that is why they have been chosen for both qualitative and quantitative
performance comparison. In particular, we employ three datasets of angular content; for
qualitative comparison we use the orientation of the optical flow images made available
by Baker et al. [14] and for quantitative image simplification evaluation we use the hue
channel of the color images from the Berkeley Segmentation Dataset [17] as well as the
orientation fields of the texture segmentation suite Outex-SS-00000 [18].

4.1 Orientation of optical flow

The dataset provided in [14] contains the optical flow ground truth of eight images, out
of which we picked three for qualitative comparison purposes. We first computed the
orientation images of the provided ground-truth and then both angular distance (AQFZ)
and reference (RQFZ) based approaches have been computed with distinct α and ω
arguments, so as the final results possess comparable quasi-flat zone numbers. We set
β = 10−4 for AQFZ and θref = 0.0 for RQFZ. The colored results are shown in Fig. 8,
as well as zoomed versions to highlight differences between the two methods occuring
at a finer scale.

Grove 2 AQFZ (557 qfz) RQFZ (539 qfz) Rubber Whale AQFZ (37546 qfz) RQFZ (35838 qfz)

Fig. 8: Colored results (w.r.t. color coding in Fig. 2) of computing angular distance (AQFZ) and
reference (RQFZ) based quasi-flat zones from the orientation of optical flow data (top line), and
related close-ups (bottom line).

Based on Fig. 8, both AQFZ and RQFZ appear at first to provide results of similar
visual quality. However, upon a closer inspection of Grove 2 image, it becomes evident
that for a comparable number of quasi-flat zones, RQFZ has a less reliable behavior than



AQFZ, since it leads to serious under-segmentation. On the hand, we observe RQFZ to
preserve a higher level of detail for Rubber Whale image at Fig. 8. As far as AQFZ
is concerned, its results appear to be overall spatially and spectrally consistent. We
consider the next datasets for a more healthy comparison.

4.2 Hue channels

Following the preliminary qualitative evaluation with the orientation of optical flow
images, we now focus on a quantitative evaluation of AQFZ and RQFZ through the
segmentation of the hue channel of the images contained in the Berkeley dataset [17].
In detail, it contains 300 color images of size 481× 321 pixels and 3269 reference seg-
mentations, realized by 28 distinct experts. The relatively high number of reference seg-
mentation maps per image enables a more objective comparison of our results against
real-world practical requirements.

Moreover, in order to evaluate the image partitions produced by either method, two
criteria will be employed: the over-segmentation ratio (OSR) [19] and maximal preci-
sion (MP ) [20]. The former is defined as:

OSR =
number of quasi-flat zones

number of reference regions
(4.1)

This ratio expresses directly the degree of over-segmentation. In fact, in a way it pro-
vides us with the merging degree required for achieving the closest possible segmenta-
tion to the reference.

MP or maximal precision on the other hand, focuses on pixel-based distances be-
tween the reference segmentation and the quasi-flat zones. More precisely, each quasi-
flat zone is associated with the reference region it shares the highest number of pixels.
Consequently, one can compute for each quasi-flat zone the degree with which it over-
laps with the desired reference region. Thus, one can calculate a confusion matrix C,
where Cij represents the number of pixels affected to reference region i, while in fact
those pixels belong to reference region j. Formally:

MP =
Σnumber of reference regions
i=1 Cii

number of pixels
(4.2)

For instance MP = 0.8 means that we have achieved 80% pixel-based accuracy
w.r.t. the ground-truth. Hence, by using both MP and OSR one can effectively eval-
uate a segmentation result, with the ultimate goal being the minimization of OSR
and the maximization of MP . In order to achieve this goal, we computed both AQFZ
(β = 10−4) and RQFZ for all the available images, using a wide interval of values for
both α and ω and computed both MP and OSR for all reference segmentation maps,
that were then averaged. As far as the reference angle value of RQFZ is concerned,
three distinct hues have been employed (red, yellow and green). The resulting plot is
shown in Fig. 9a.

Judging from the results, one can assert the overall superiority of AQFZ with respect
to RQFZ, both in terms ofMP andOSR. This difference can be theoretically explained
by the fact that AQFZ deals with the actual real-valued angles, thus having access to a
higher resolution of α′ values when searching for the greatest α′ ≤ α that verifies the
global variation criterion. While RQFZ on the other hand, transforms its input first into



(a) Berkeley dataset (b) Outex-SS-00000

Fig. 9: OSR-MP plot for the QFZ results of the Berkeley and Outex-SS-00000 dataset. The
reference angle in use is indicated between parentheses.

grayscale distance images and thus loses precision prior to realizing grayscale quasi-flat
zone computations. Moreover, according to Fig. 9a one can also observe that the choice
of reference angle has indeed a non-negligible effect on segmentation performance. The
choice of an optimal reference angle however is beyond the scope of this paper.

Furthermore, despite its shortcomings RQFZ has a distinct advantage over AQFZ
in terms of execution speed. The average computation time of AQFZ and RQFZ across
all images of the Berkeley dataset is 5552 ms and 400 ms, respectively. Experiments
were carried out on a 2.3GHz system with 3GB of memory. Apparently, the relative
superiority of AQFZ comes at a very steep computational cost. All the same, as these
are the first results on angular quasi-flat zone computation, we are confident that AQFZ
can be rendered more efficient, especially if embedded within a tree framework.

4.3 Texture orientation fields

As a further source of angular images we have used additionally the orientation field
of textures. In particular, the Outex-SS-00000 [18] supervised segmentation test suite
contains 100 images, such as the one shown in Fig. 10a, each composed of five distinct
textures acquired at various illumination and rotation conditions. Given this grayscale
data, for each texture we computed its orientation field according to [21], and subse-
quently AQFZ and RQFZ similarly as previous experiment. The ground-truth of the
segmentation suite being available, the MP and OSR plot that has been obtained is
shown in Fig. 9b.

Although the differences are not as emphasized as in the case of hue images, the
relative performances are reproduced. Namely, AQFZ is once again superior to RQFZ
especially in terms of MP regardless of RQFZ’s reference angle, while RQFZ appears
once more to be sensitive to the choice of reference angle. The reproduction of the
relative performances with two distinct datasets and additionally with distinct image
types (hues and orientation fields) constitute a strong indication in favor of AQFZ, even
though computationally speaking it is significantly disadvantaged w.r.t. RQFZ.



(a) Image 35 of OutexSS (b) Orientation field (colored) (c) Color coding

Fig. 10: A texture example of OutexSS and its orientation field.

5 Conclusion

In this paper, we have adapted the existing definitions of quasi-flat zones to angular
data. Both theoretical and practical issues have been addressed. Two distinct approaches
have been introduced: angular distance based and reference angle based methods. The
former relies on arc lengths for local and global variation comparisons while the latter
is based on converting the angular images into grayscale. Following the experimental
study using three angular image types, it has been shown that the strong potential of
quasi-flat zones as image simplification tools, encompasses angular data as well.

Nevertheless, although the proposed methods can both resolve the discontinuity
issues arising when using directly the grayscale methods on angular data, they have
significant differences. In detail, the angular distance based approach has been observed
to outperform its counterpart with respect to both segmentation criteria that have been
employed, while its computational cost and implementation complexity remain much
higher. The reference angle based approach on the other hand is simple to implement
and efficient, yet it requires setting a reference angle, which is unclear how to realize
optimally at this point.

Having established the groundwork for computing quasi-flat zones from angular
images, future work will continue on three directions. First and foremost, the angular
distance based approach has a serious efficiency problem, which we believe can be
resolved with more advanced data structures. Moreover, although the reference angle
based method is a fast and relatively effective solution, the need for a reference angle is
another issue that needs attention. And last, given the work on color (vectorial) quasi-
flat zones, the combination of both orientation and magnitude of optical flow pixels
during quasi-flat zone computation is another direction worth exploring.

Let us also observe that having brought some first definitions of constrained con-
nectivity on angular data, we can now process such data using multiscale tree based
representations, i.e. hierarchies of partitions such as α-tree and ω-tree (but also binary
partition tree). The availability of efficient algorithms to build such representations from
scalar values [22] will certainly ease tackling computational issues raised in this pre-
liminary study, and demonstrate the potential of multiscale representations for angular
data.
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