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Abstract. Morphological attribute profiles are among the most promi-
nent spatial-spectral pixel description tools. They can be calculated ef-
ficiently from tree based representations of an image. Although widely
and successfully used with various inclusion trees (i.e., component trees
and tree of shape), in this paper, we investigate their implementation
through partitioning trees, and specifically α- and (ω)-trees. Our prelim-
inary findings show that they are capable of comparable results to the
state-of-the-art, while possessing additional properties rendering them
suitable for the analysis of multivariate images.

Keywords: attribute profiles, partitioning trees, α-tree, (ω)-tree, hy-
perspectral images

1 Introduction

Mathematical Morphology has offered effective ways to perform spatial analy-
sis in many application domains of digital image processing. In the context of
Earth Observation through satellite or airborne remote sensing, morphological
tools have been popular the last decades, especially due to their intrinsic ability
to model spatial information within a multiscale framework. Following (Differ-
ential) Morphological Profiles (DMP) in the early 2000s [1], Attribute Profiles
(AP) [2] and more recently Self-Dual Attribute Profile (SDAP) [3] are recognized
as an efficient solution to provide multilevel spatial-spectral description of image
pixels. Such a description can then be used as a pixelwise feature in a subsequent
image interpretation task such as land cover classification.

Profiles such as AP or SDAP rely on a tree-based representation of an im-
age (min- and max-tree for AP, Tree of Shapes for SDAP). All these trees are
indeed inclusion trees, which rely on an ordering relation of the image pixels.
When dealing with multivariate images such as multi- or hyperspectral images,
defining such an ordering is not straightforward and neither is the computation
of AP/SDAP from multivariate images [4].



Conversely, partitioning trees have received much less attention in the context
of multiscale characterizations of images. However, such trees are appealing in
this context since they do not require the definition of a vectorial ordering, but
only the selection of an appropriate distance measure. In this paper, we present
some preliminary work aiming to demonstrate the relevance of building attribute
profiles from partitioning trees.

The paper is organized as follows. In Sec. 2, we recall the principles of at-
tribute profiles and the main tree models they rely on. We discuss the different
steps to compute attribute profiles from partitioning trees in Sec. 3, before pro-
viding experimental results in Sec. 4. Finally, Sec. 5 concludes the paper and
gives future research directions.

2 Related Work

In this section, we recall the principles of attribute profiles, attribute filtering
and the different inclusion and partitioning trees.

2.1 Attribute Profiles

APs are multiscale image description tools, constructed similarly to MPs, by
successively applying a morphological operator with progressively increasing fil-
ter parameters (leading to a sequence of increasingly coarser filters). Specifically,
APs rely on morphological attribute filters (AFs); which belong to the class of
connected morphological filters. As such, AF and AP revolve around the core
concept of connectivity, and deal directly with connected components (CCs)
instead of pixels.

More formally, given a grayscale image f : E → Z, E ⊆ Z2, its upper-level
sets are defined as Lt = {f ≥ t} with t ∈ Z (resp. lower-level sets Lt = {f ≤ t}),
i.e. the set of images obtained by thresholding an image at all possible values
of their pixels. The connected components (CC ⊆ E), typically based on 4 or
8-connectivity, composing the upper level sets Lt = {Lt,i} or lower level sets
Lt = {Lt,i} are referred to as peak components. AFs are applied to these peak
components, using a predefined logical predicate Tακ , in general consisting of
comparing the attribute α computed on CC against a threshold κ; e.g. T area300 :
“is the area of CC larger than 300 pixels?”. Depending on the binary outcome
of T area300 (CC), the connected component is either preserved or removed from
the image. An output of the AF is computed by processing all the connected
components present in the input image, thus evaluating the underlying predicate
for all of them.

Subsequently, an AP can be straightforwardly constructed using a sequence
of AFs (often attribute thinnings and thickenings), that are applied to the input
image using a set of ordered logical predicates. More precisely, given a predicate
T and a collection of L thresholds {κi}1≤i≤L let γκi and φκi denote respectively
the attribute thinnings and thickenings employing them. In this case the AP of



a grayscale image f would become:

AP (f) = {φκL(f), φκL−1(f) . . . , φκ1(f), f, γκ1(f), . . . , γκL−1(f), γκL(f)} . (1)

Thus a pixel p of an image f can be characterized using the values it obtains
across this sequential filtering process.

As far as the extension of AP to a multivariate image f : E → Zr, r > 1 is
concerned, the widely (and mostly exclusively) encountered marginal strategy
consists in first reducing the number of spectral dimensions (from r to n, n� r)
through a variety of methods, and then in computing independently the AP of
each resulting image band, that are finally concatenated in order to form the
so-called extended attribute profile (EAP) [5]:

EAP (f) = {AP (band1), AP (band2), . . . , AP (bandn)} . (2)

Here bandi refers to an image component after dimensionality reduction, but
it might equivalently denote an actual spectral band of the input image if no
reduction were performed, still leading to an EAP constructed marginally.

Since their initial introduction by Dalla Mura et al. [2], APs have been inten-
sively studied in various aspects, such as combining them with alternative dimen-
sion reduction methods [6], implementation of multi-dimensional attributes [7],
design of techniques for automatic threshold production [8], multivariate tree
representations [9], histogram based AP representations [10], as well as their
combination with deep learning [11]. For a recent survey on the topic the reader
is referred to [12].

2.2 Trees

The various hierarchical image representations used in contemporary mathe-
matical morphology to manipulate the connected components of images can be
divided into inclusion and partitioning hierarchies. On one hand, the inclusion hi-
erarchies comprise partial partitions of the image with nested supports and their
components are formed by creating, inflating and merging image blocks [13] (ex-
amples can be see in Fig. 1). On the other hand, the hierarchies from the class of
partitioning trees comprise full partitions of the image. The leaves of the hierar-
chy form the finest partition and are iteratively merged until a single root node
is formed (examples given in Fig. 2). However, inclusion trees require a total
order between the pixel values, which limits their power to process multivariate
data. In contrast, partitioning trees usually require only a dissimilarity metric
between neighboring pixels (i.e. a total ordering on the image edges instead of
the image pixels). They are additionally also not extrema-oriented, capturing
information about objects at intermediate gray levels.

The seminal hierarchies min and the max-trees [14], belong to the class
of inclusion trees. They are dual hierarchies structuring the inclusion relations
between the peak components of the lower (resp. upper) level sets of the image,
thus well suited for representing bright (resp. dark) structures in the image. The
peak components of lower level sets Lt,i (resp. upper level sets Lt,i) are nested
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Fig. 1. The three different inclusion trees of a toy image (a). The min-tree is displayed
in (b), while its dual max-tree is shown in (c). The self-dual tree of shapes is shown in
(d). The (gray) levels of the nodes are displayed in the nodes, and the corresponding
regions are shown beside the nodes.

for increasing (resp. decreasing) values of t and form the nodes of the min-
tree (resp. max-tree), thus fully representing a grayscale image. The difference
between a min and a max-tree hierarchy for the same image given in Fig. 1(a)
can be seen in Figs. 1(b) and 1(c).

The Tree of Shapes (ToS) [15] was introduced in order to unify a repre-
sentation of bright and dark image structures, which are treated equivalently
to form a hierarchy based on their contrast with the background. The shapes
which compose the ToS are formed by filling the holes in the peak components
of the image (used to form the min and the max-tree), and do not intersect and
are either nested or disjoint [16, 17]. This makes the hierarchy an inclusion tree
as well, which is additionally self-dual and contrast invariant, while remaining a
full representation of the image. It can be seen on Fig. 1(d).

The α-tree is a partitioning tree and is formed based on the local range of its
components. It comprises α-connected components [18, 19], with α corresponding
to their local range. Flat zones form the 0-CCs (for α = 0) and correspond to the
connected components of maximal size containing pixels at the same graylevel
(Ft = {f = t}) For α > 0, an α-CC is defined as the CC of the maximal size
such that only the neighboring pixels with gray level difference less or equal to
α are considered connected. The α-CCs are nested for increasing values of α,
forming a complete, self-dual hierarchy which can represent dark and bright but
also regions at intermediate image levels. An example of this hierarchy can be
seen on Fig. 2(b) for the image in Fig. 2(a). Due to the locality of the metric
used, gray level variations within regions can be much higher than α, which is
called the chaining effect [19] and is most prominent when the region gray levels
gradually increase and decrease (e.g. α = 2 in Fig. 2(b)).

To deal with this, different constrained hierarchies [19–21] are constructed
from the α-tree, most notably the (ω)-tree [18], constraining the α-CCs by their
global range. The (ω)-CCs are defined as the largest α-CCs in the image with
the global range (i.e. the maximal dissimilarity between any two pixels belonging
to that component) less or equal to some ω. Some of the α-CCs are removed
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Fig. 2. The two different partitioning trees of a toy image (a). The α-tree is displayed
in (b), while the constrained hierarchy (ω)-tree is shown in (c). The α (resp. (ω)) levels
of the nodes are displayed in the nodes and indicated by their height, while the regions
are displayed besides the nodes. It can be seen how the (ω)-tree contains a subset of
the nodes of the α-tree, but arranged through a larger span of levels.

from the hierarchy, but the maximal global range and thus the maximal level
in the tree will typically be higher in the (ω)-tree. The hierarchy remains self-
dual, complete and capable of capturing regions of low, intermediate and high
gray levels, but global range provides better grouping per level than just a local
measure. An example of this can be seen in Fig. 2(c).

3 Proposed Method

Although AFs have been part of the morphological toolbox for almost two
decades, the reasons for their only recent popularity have been mostly com-
putational, in addition to their flexibility. Efficient implementations of AFs have
become possible thanks to a tree based image representation [14].

The max-tree (alternatively min-tree) used to represent the connected com-
ponents of a given grayscale image is a basis for AP calculation. The advantage
of these representations stems from the implementation possibility of attribute
filtering in the form of node or branch removal from the tree representing the
input image. This becomes especially interesting for the computation of AP since
each tree needs to be computed only once and then multiple filtering outputs can
be derived easily from it. Following their calculation using min and max-trees,



the AP have also been calculated on the Tree of Shapes (ToS) [22]. Extending the
idea of using different trees to calculate the AP, we examine the α and (ω)-trees
as a basis for profile calculation.

Filtering a partitioning tree is not as straightforward as filtering an inclusion
tree, since all the children of a single parent need to be processed in the same
manner. To construct APs from these trees, we consider an equivalent definition
of APs through pixels. For some threshold κi, a pixel p would be characterized
by the value it obtains in γκi and φκi . These values can also be interpreted as
the levels of the nodes closest to a leaf in a max-tree (respectively min-tree)
containing the pixel p, and satisfying the logical predicate Tακi

based on the
threshold κi employed by the thinning and thickening. Following this definition,
when using an α-tree, a pixel value at level i of an AP is also determined based
on the lowest node in the tree containing that pixel and satisfying the logical
predicate Tακi

. Similarly to AP calculation for inclusion trees, this process also
allows us to re-use the hierarchy in the calculation of subsequent AP components,
and is elaborated in the remainder of the section.

For the sake of fair comparison with state-of-the-art, we follow here a marginal
strategy as used in EAP and ESDAP. But let us recall that partitioning trees
offer a greater flexibility than inclusion trees to deal with multivariate data such
as hyperspectral images [23]. Exploring various dissimilarity metrics and con-
strained connectivity criteria is however left for future work.

3.1 Filtering a partitioning tree

Filtering a partitioning tree is more restrictive than inclusion trees, since remov-
ing certain nodes would invalidate the hierarchy (e.g. child nodes of any node
need to be either all preserved or all removed, i.e. the same operation needs to be
applied to all the “sibling” nodes). Therefore, the AP is calculated following the
interpretation that the lowest node containing a pixel and satisfying the logical
predicate Tκi

α determines the value of that pixel in the ith component of the AP.
It is possible that a region R ⊆ E satisfying the logical predicate Tκα has both
child nodes which satisfy and which do not satisfy Tκα . Thus, the region R will
determine the value of a subset of pixels belonging to it while the values of the
other pixels will be determined based on the values of the child and descendant
regions. From the implementation point of view, as all the “sibling” regions need
to be processed equally, so the child regions not satisfying the logical predicate
Tκα are “collapsed” into their parents by assigning them the same node repre-
sentation (cf. Sec. 3.2) as their parents, while their children are filtered from the
tree. Similarly to AP calculation of inclusion trees, this enables us reusing the
filtered hierarchy from one component of the AP to the next.

3.2 Node representation

Once a node in the hierarchy is selected to represent a pixel at a certain level
of the AP, the pixel needs to be assigned to a value in the profile based on the
selected node.



With the inclusion trees, such as the min and max-trees used in the original
AP calculation, as well as their extension to the ToS, the choice of representa-
tion is straightforward. This is because the AP calculation on these hierarchies
corresponds precisely to performing an AF repeatedly on the same image. As
a consequence, a node which is selected for representing one of its pixels will
represent all the pixels of the corresponding region. To obtain the pixel values,
an image is reconstructed from the filtered hierarchy. The reconstruction is done
by assigning to every pixel the level node in the hierarchy closest to the leaf
which contains that pixel.

On the other hand, no universal solution exists for node representation with
partitioning trees. While the problem of representation already exists during the
filtering step, in the case of AP calculation the issue is even more complex due to
the fact that a single tree node might not be chosen to represent all of the pixels
belonging to it. We explore in this paper three different node representation
strategies.

Firstly, we attempted min and max representation motivated by the fact
that the original APs are a concatenation between a series of attribute thinnings
and thickenings, that is two complementary series. In order to construct an anti-
extensive (resp. extensive) series, the nodes are represented with the minimal
(resp. maximal) pixel value they contain. While we obtain two complementary
series to form an AP from, both of these series are based on representing the same
nodes and simply changing their representation, thus introducing redundancy to
the profile.

In order to avoid this redundancy, we further experimented with the average
representation, where the results for each threshold value are used in the profile
only once while the nodes are represented by the average pixel value present in
them. This was also inspired by the typical choice of node representation when
the partitioning trees are used for image simplification.

Finally, we considered a strategy based on the level representation of the
nodes. This representation is inspired by considering that the values assigned
to the pixels when calculating an AP from inclusion trees correspond to their
assigned level in the tree. With our choices of partitioning trees, this means we
are assigning the α (resp. (ω)) levels to the nodes from the α-tree (resp. (ω)-
tree) hierarchy. This is motivated by the fact that their levels are actually what
characterizes the nodes of the partitioning trees dictating their structure. Fur-
thermore, an advantage of this approach is that it will always assign a single
scalar value as a node representation, which becomes significant when dealing
with multivariate data (i.e. when the values of the pixels belonging to a single
α-CC or (ω)-CC are not scalar but rather come from multiple image channels).

4 Experiments

The main goal of the experiments presented here is to compare the proposed tree
based image representations against established alternatives, as a basis for com-



(a) Pavia University (b) Ground Truth (c) Training Set

Fig. 3. The Pavia University dataset (false colors) and its corresponding ground truth;
its thematic classes (training set size/ground truth size) are: Asphalt (548/6631),

Trees (524/3064), Bitumen (375/1330), Meadows (540/18649), Metal
sheets (265/1345), Shadows (231/947), Gravel (392/2099), Bare soil
(532/5029) and Self-blocking bricks (514/3682).

puting attribute profiles with the end goal of pixel classification. More precisely,
we compare α and (ω)-trees against max/min trees and the tree of shapes.

The dataset under consideration is an urban area of size 340×610 pixels and
9 thematic classes, acquired using the ROSIS-03 sensor with a 1.3m spatial res-
olution over the city of Pavia, Italy. The ROSIS-03 sensor has 115 data channels
with a spectral coverage ranging from 0.43 to 0.86µm. After the elimination of
12 noisy bands, 103 bands have been left for processing (Fig. 3).

Classification has been realized using a Random Forest classifier composed
of 100 trees. The number of variables involved in the training of the classifier
was set to the square root of the feature vector length, as suggested by [24].
Classification performance has been measured by means of the κ statistic. For
the Pavia University dataset, the learning step has been carried out using the
standard training set widely used in the literature [2].

In this paper we are considering two of the most popular attributes: area and
moment of inertia. For area thresholds (λa), we have computed the automatic
settings according to [25] and for the moment of inertia (λm) we have employed
the manual settings used in [2]: λa = {770, 1538, 2307, 3076, 3846, 4615, 5384,
6153, 6923, 7692, 8461, 9230, 10000, 10769} and λm = {0.2, 0.3, 0.4, 0.5}. How-
ever, it is well known that attribute threshold selections have a very signifi-
cant effect on the performance of AP [2], and the aforementioned settings, re-



Table 1. The classification performance (κ statistic) of α- and (ω)-tree based AP for
different node representations and for both attributes as well as their combination.

α-tree (ω)-tree
area moment comb. area moment comb.

max/min 0.9327 0.8521 0.9080 0.9264 0.8546 0.9429
average 0.9240 0.8468 0.9379 0.8876 0.8449 0.9302
level 0.8662 0.8477 0.8898 0.9482 0.8489 0.9479

gardless of whether they are automatic or manual, have been empirically deter-
mined by their respective authors with always the max/min strategy in mind.
Which is why, for the sake of fairness, we employ multiple sets (Λa, Λm) of
thresholds for both attributes, by simply scaling them with various multipliers
µ = {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, 5, 6, 7, 8}.

In order to compare the effectiveness of different node representations for par-
titioning trees, we compare the performance of different profiles at the threshold
value µ = 1. These results can be seen in Tab.4. It can be remarked that even
though the max/min node representation effectively uses the same regions twice,
producing the descriptor of twice the size and containing redundancy, it is still
more effective than the average representation which attempts to represent each
region only once by its average gray level. The level representation performs
much better with the (ω)-tree than for the α-tree, which can be explained by
its closer correspondence to region complexity due to global range constraints.
The level representation also has the advantage of being half the size of the
max/min representation (60 vs. 116 for the area attribute and 20 vs. 36 for the
moments). For this reason, and as this representation corresponds most closely
to the pixel value interpretation for the original AP, we chose the level represen-
tation as our preferred one. The additional advantage of this representation is
its extendability to multivariate data: while the descriptor size for the min/max
and the average representations will be multiplied by the number of bands in
case of multivariate data representations, the length does not change when using
the level representation.

We have also tried combining the moments and the area attribute, but have
noticed that for the peak values of the area AP, addition of the moments AP
does not improve performance. For this reason, the remainder of the experiments
were carried out separately for the area and for the moments AP.

As far as their performance across a range of threshold values is concerned,
in the case of the area attribute, the performances of all four tested trees are
relatively similar and consistent, underlining the reliability of the attribute under
consideration (Fig. 4(a)). All the same, one can still observe that the (ω)-tree
systematically outperforms the α-tree. Even though (ω)-tree leads to the best
scores for lower thresholds, it is eventually the tree of shapes, that achieves the
overall best classification performance level with the area attribute.
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Fig. 4. Classifications scores (κ statistic) for the Pavia University dataset for the area
and moment of inertia attributes using a variety of threshold settings.

As to the moment of inertia attribute (Fig. 4(b)), this time the relative scores
vary at a greater level with respect to area. In more detail, the AP based on
inclusion trees are clearly outperformed by both partition tree based profiles,
while the previously best performing tree of shapes is now performing the worst,
and with a higher level of variance across thresholds. Interestingly, both (ω)-tree
and (α)-tree lead to very similar performances, both clearly surpassing their
inclusion based counterparts.

5 Conclusion

Attribute profiles have been one of the most successful morphological tools in
remote sensing recently. They allow for multiscale image description through
successive attribute filterings, and can be efficiently computed using inclusion
trees such as min- and max-tree (AP) and tree of shapes (SDAP). In this paper,
we propose to compute these profiles using another class of tree representations,
namely partitioning trees.



We consider in this first attempt α-tree and (ω)-tree, applied with a marginal
strategy on each band of an hyperspectral image (similarly to the standard
computation of extended AP). We discuss the specific challenges raised when
computing attribute profiles from partitioning trees, in particular the way to
represent tree nodes and build the AP feature vectors. Our preliminary results
show the relevance of such an approach, and calls for further exploration.

Indeed, while we have used here a marginal strategy to ensure a fair com-
parison with existing AP definitions, using partitioning trees allows building a
single tree from a whole dataset (either the original image or its first principal
components). Future work will thus aim to evaluate different local dissimilarity
metrics as well as constrained connectivity criteria (e.g. global range) defined in
a multivariate space.
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