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Abstract—This work shows how deep learning techniques
can benefit to remote sensing. We focus on tasks which are
recurrent in Earth Observation data analysis. For classification
and semantic mapping of aerial images, we present various deep
network architectures and show that context information and
dense labeling allow to reach better performances. For estimation
of normals in point clouds, combining Hough transform with
convolutional networks also improves the accuracy of previous
frameworks by detecting hard configurations like corners. It
shows that deep learning allows to revisit remote sensing and
offers promising paths for urban modeling and monitoring.

I. INTRODUCTION

Deep learning is a new way to solve old problems in remote
sensing. Various changes in the technical ecosystem made
it possible: abundant data (from more and more automated
sensing and processing), a better understanding of the theory
of machine learning that led to complex algorithms and com-
putational capacities which allow training in tractable times.

It comes out that we can now use such powerful statistical
models for various remote sensing tasks: detection, classifi-
cation or data fusion. Since the early applications to road
detection back in 2010 [18], convolutional networks have been
successfully used for classification and dense labeling of aerial
imagery. They have defined new state-of-the-art performances
and showed the re-use of cross-domain databases is possible
to gain and transfer knowledge [20], [9]. New challenges will
soon be addressed, such as image registration or 3D data
analysis. Serendipity plays a role here: while meta-data for
standard decision-making are not always available, the co-
existence of various correlated, continuous data allows the
training of regression models which give the same output as
analytic processes, but faster and with more robustness.

In the following, we propose several deep learning ap-
proaches for urban monitoring and assessment: classification
(Section II), contextual classification (Section III), dense se-
mantic mapping (Section IV) of aerial images and normal
estimation in point clouds (Section V). Two European towns
are chosen to evaluate the results: Vaihingen (ISPRS dataset
[22]) and Zeebruge (IEEE-GRSS dataset [12]). Datasets con-
tain several Infrared-Red-Green (ISPRS) or Red-Green-Blue
(IEEE-GRSS) tiles, and a LiDAR-captured point cloud.

II. MULTISCALE SEMANTIC CLASSIFICATION

Semantic labeling (also known as semantic segmentation in
computer vision) consists in automatically building maps of
geo-localized semantic classes (e.g., land use: buildings, roads,
vegetation; or objects: vehicles) upon Earth Observation data
[9]. In the following, we present our approach for multiscale
classification using pre-trained convolutional neural networks
(CNNs) based on AlexNet [13]. While easy to implement, it
yields state-of-the-art performances on various datasets [9], [2]
and thus works as an efficient baseline.

A. Approach
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Fig. 1. Semantic labeling workflow: (1) superpixel segmentation; (2) multi-
scale patch extraction; (3) classification with parallel CNNs; (4) fusion with
multi-class SVM.

a) Superpixel segmentation: We first segment orthopho-
tos using the SLIC (Simple Linear Iterative Clustering [1])
method. This allows to generate coherent regions at sub-object
level. Patches used to feed the CNN will then be extracted
around the superpixel centroı̈d, and the class estimated by the
algorithm will be assigned to the whole superpixel.

b) Multiscale data extraction: For each superpixel, we
extract patches at various sizes: 32 × 32 (which is roughly
the size of a car), 64 × 64 and 128 × 128. Then we resize
all patches to 228 × 228 to fit the AlexNet input layer. This
allows to extract a multiscale pyramid of appearances for each
superpixel location, more representative than monoscale 32×
32 or 64× 64 (cf. Table I).

c) Convolutional Neural Networks: We use a pretrained
AlexNet neural network [13] as a feature extractor. It is made
of 5 convolutional layers, some of which followed by max-
pooling, and two fully connected layers with a final softmax.
The model weights remain those obtained by training for the
ImageNet classification task. Patches extracted from the image



at different scales are passed through the network and the last
layer outputs before the softmax are used as feature vectors.

d) Data fusion and classification: We concatenate the
resulting vectors to produce one feature vector (sample). At
training time, we process the images with ground truth and
for each superpixel we associate the newly computed sample
with the label obtained by majority vote. We then use this
training set to train a linear Support Vector Machine (SVM),
whose parameters are optimized by stochastic gradient descent
(SGD). At testing time, we use the SVM to predict the label
of each unknown superpixel, and then associate to all pixels in
this region the predicted output label. Thus, the SVM performs
both the data fusion of various networks (i.e., various scales)
and the classification.

III. CONTEXTUAL CLASSIFICATION

A. Contextual information and graph model

The classifier from Section II makes decisions using infor-
mation from a single superpixel location. The basic principle
behind contextual classification is to also get benefit from
information of the neighborhood to regularize the classification
map. Such information can consist in the appearance of
superpixel neighbors or the relationships with and between
neighbors.

Locally, around each superpixel, we extract a subgraph by
picking neighbor superpixels that fall in a circle of radius r
(cf. Fig. 2). Nodes correspond to the superpixels with values
defined as the features extracted by the AlexNet CNN at
scale 32 × 32. Edges are defined between all superpixels
with values defined by the pairwise context features: distance
between neighbors, normalized distance w.r.t. the neighbor-
hood, relative orientation, appearance similarity, and neighbor
importance (inverse of log-distance).

Fig. 2. Subgraph modeling of relationships between superpixel neighbors.

B. Structural model learning and prediction

The training set consists in the local subgraphs xn associ-
ated with the set yn of labels yni of the superpixel nodes. We
denote it by {X = {xn}Nn=1, Y = {yn}Nn=1}. The Structural
SVM [19] generalizes the SVM for structured output labels.
It introduces an auxiliary evaluation function g(x, y, w) over
subgraphs (linear combination over nodes and edges): this
includes unary and pairwise costs. It is denoted as a scalar
product by introducing the reshaping function φ:

g(x, y, w) = 〈w, φ(x, y)〉 (1)

=

N∑
i=1

φ(xi, yi, w) +

N∑
i,j=1

ψ(xi, xj , yi, yj , w)

Then SSVM minimizes the same objective function as the
standard SVM:

w∗ = argmin
1

2
||w||2 +

C

N

N∑
n=1

l(xn, yn, w) (2)

but with a loss function (Eq. 3) which judges whether the
prediction made for training the subgraph is good or similar
enough to the training output (vector of labels). This is a multi-
label problem which is minimized with quadratic pseudo-
boolean optimization.

l(xn, yn, w) = max
y∈Y

∆(y, yn)− g(xn, yn, w) + g(xn, y, w)

(3)
Predicting a label for each superpixel of an unknown image

is achieved by considering local subgraphs for which we
predict vectors of labels following Eq. 4. Table I shows that
context helps refining the classification rates.

f(xn) = argmax
y∈Y

g(xn, y, w) (4)

IV. DENSE PREDICTION FOR SEMANTIC LABELING
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Fig. 3. Fully convolutional architecture for semantic labeling (SegNet [3]) of
remote sensing data extracted from the ISPRS Vaihingen dataset.

Introduced in [16], fully convolutional networks (FCN) are
designed for dense prediction instead of flat classification.
Fully connected layers are replaced by convolutions that keep
the 2-dimensionality of the data (cf. Fig. 3). Therefore, we can
train such a network to classify all pixels of the image. We
show that this approach is state-of-the-art for semantic labeling
of remote sensing data.

A. Deep network architecture
We use the SegNet architecture from [3]. SegNet uses an

encoder-decoder architecture (cf. Fig. 3). The encoder is based
on VGG-16 [6], in which convolutions are followed by a batch
normalization and a ReLU (max(0, x)). Blocks of convolu-
tions end with a max-pooling layer. The decoder is mirrored
from the encoder with pooling replaced by unpooling. The
unpooling layer unpacks the previous layer’s activations at the
indices corresponding to the maximum activations computed
in the associated encoder pooling layer, and upsamples by
padding with zeroes everywhere else. This relocates abstracted
activations at the saliency points detected by the low level
filters, thus increasing the spatial accuracy of the semantic
labeling.

SegNet weights are initialized using VGG-16 trained on
ImageNet and the decoder weights are randomly initialized.
We train the network using SGD with a learning rate of 0.1
and a momentum of 0.9, and we divide the learning rate by
10 every 5 epochs.



(a) IRRG data (b) “SVL” [10] (c) RF + CRF [21] (d) Multiscale (ours, sec-
tion II)

(e) Context (ours, section III) (f) CNN + RF + CRF [20] (g) “DLR” (FCN + CRF)[17] (h) SegNet (ours, section IV)

Fig. 4. Semantic mappings from several methods on an extract of the ISPRS testing set of Vaihingen

B. Results

Tiles from ISPRS dataset (≈ 2500 × 2500) are processed
using a 128 × 128 sliding window with a stride of 32px.
Besides memory management reasons, we average the over-
lapping predictions to produce a smoother final map.

On the validation set, the overall accuracy reaches 89.11%
and a F1 score of 80.57% on cars (to compare with the
results from Tab. I). Compared to our previous works using
superpixel and deep features (cf. Sec. II), SegNet predictions
are more detailed, especially on cars where each instance is
clearly segmented. SegNet is also more accurate on buildings,
confusing less often roads and buildings than previous CNN
and FCN. Moreover, our method even outperforms competitors
using hand-crafted features and structured models such as
Conditional Random Fields (CRF). A qualitative comparison
of several methods is provided in Fig. 4.

TABLE I
F1 MEASURES PER CLASS AND OVERALL ACCURACY OF VARIOUS

WORKFLOWS FOR SEMANTIC LABELING.

Approach Imperv. Building Low Tree Car Overall
surface veget. accur.

Monoscale 32× 32 (II) 81.26 81.58 62.71 77.88 40.10 76.33
Monoscale 64× 64 (II) 81.13 82.36 62.46 76.13 41.03 75.98

Context w/ 32× 32 (III) 82.00 82.40 58.18 78.38 32.46 78.36

Multiscale (section II) 85.04 89.28 72.50 81.66 61.93 82.41

SegNet (section IV) 92.96 94.57 83.93 81.64 80.57 89.11

V. NORMAL ESTIMATION

Estimating normals in a point cloud, i.e., the local orien-
tation of the unknown underlying surface, is a crucial first
step for numerous algorithms, such as surface reconstruction
and scene understanding. Many methods have been proposed

for that, e.g., based on regression [11], Voronoı̈ diagrams [8],
sample consensus [15] or Hough transform [4]. These methods
have different sensitivities to the presence of edges on the
surface (not to oversmooth it) as well as to point outliers, to
sampling noise and to variations of point density, which are
common issues due to the way point clouds are captured.

We propose a novel method [5] for normal estimation in
unorganized point clouds, based on a deep neural network. It
is robust to noise, outliers, density variation and sharp edges,
and it scales well to millions of points. It outperforms most
of the time the state-of-the-art of normal estimation.

We first generate normal hypotheses as in [4], randomly
picking triplets of points in a given neighborhood, which
defines tentative tangent planes and thus possible normal
directions. In a usual Hough-based setting as [4], each di-
rection hypothesis votes in a problem-specific accumulator (a
spherical map) and the estimated normal is computed from the
most voted bin of the accumulator. This approach has good
robustness properties but is sensitive to bin discretization. In
our work, rather than blindly go for the most voted bin, which
can be wrong, especially when close to edges or in presence
of density variation, we let a trained CNN make the decision.

For this, we build an image-like accumulator representing
possible directions by projecting the sphere on a plane and
normalizing its orientation. It is a 33 × 33 regular grid that
is much less discretized than the sphere in [4]. Fig. 5a shows
an accumulator filled from a noisy point cloud: the green dot
indicates the actual normal coordinates, which differs from
the maximum of the distribution, marked with the red dot.
Besides, to deal with density variation, we do not pick triplets
uniformly but according to local density. Last, to reduce the
sensitivity to scale, we consider a multiscale neighborhood
analysis, actually creating a multicanal tensor input, like RGB
channels for processing color images in CNNs.

We train our network using synthetic ground-truth data. The



training set consists of point clouds randomly sampled on arti-
ficial sharp corners created with random angles. The network is
based on LeNet [14]. It is composed of 4 convolutional layers
and 2 max poolings followed by 4 fully-connected layers. The
last regression layer learns and predicts the 2 angles which
represent the 3D direction of the normal.

Fig. 5b illustrates normal estimation errors on an indoor
LiDAR scene. Colors represent the intensity of the deviation
from the ground truth (red indicates an error greater than
10◦). An experiment on aerial LiDAR data is shown on
Fig. 5c. The left image represents a tile with 2.3M points
from the Data Fusion Contest 2015 [12]. The gray shade at
each point depends on the illumination, and thus on the normal
orientation. The right image details a case of very high density
variation, as roofs are much more densely sampled than facade
walls. Details on the method and more quantitative results are
presented in [5].

(a) Accumulator (b) Angular error: regression (left), ours (right)

(c) Aerial LiDAR: large tile (left), robustness to density variation (right) 

Fig. 5. Normal estimation in point cloud.

VI. CONCLUSION

We presented new approaches for producing better Earth
Observation products. First, starting with aerial or satellite
images, we use deep convolutional neural networks for se-
mantic labeling and for the production of accurate thematic
maps (using multiscale or context classification and dense
segmentation). Second, with LiDAR point clouds as input, we
show that neural networks can be used as a beneficial alter-
native to purely geometric procedures for estimating normals,
a preliminary to shape extraction. Our results show that deep
learning can diffuse to various topics of remote sensing and
give alternate ways to deal with old problems.
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