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Towards seamless multi-view scene analysis from
satellite to street-level

Sébastien Lefèvre, Devis Tuia, Senior Member, IEEE, Jan D. Wegner, Timothée Produit, Ahmed Samy Nassar

Abstract—In this paper, we discuss and review how combined
multi-view imagery from satellite to street-level can benefit scene
analysis. Numerous works exist that merge information from
remote sensing and images acquired from the ground for tasks
such as object detection, robots guidance or scene understanding.
What makes the combination of overhead and street-level images
challenging are the strongly varying viewpoints, the different
scales of the images, their illuminations and sensor modality and
time of acquisition. Direct (dense) matching of images on a per-
pixel basis is thus often impossible, and one has to resort to
alternative strategies that will be discussed in this paper. For such
purpose, we review recent works that attempt to combine images
taken from the ground and overhead views for purposes like scene
registration, reconstruction, or classification. After the theoretical
review, we present three recent methods to showcase the interest
and potential impact of such fusion on real applications (change
detection, image orientation, and tree cataloging), whose logic
can then be re-used to extend the use of ground based images
in remote sensing and vice-versa.

Through this review, we advocate that cross-fertilization be-
tween remote sensing, computer vision and machine learning
is very valuable to make the best of geographic data available
from Earth Observation sensors and ground imagery. Despite its
challenges, we believe that integrating these complementary data
sources will lead to major breakthroughs in Big GeoData. It will
open new perspectives for this exciting and emerging field.

I. INTRODUCTION

TRADITIONALLY, interpretation of satellite and aerial
imagery has been approached separately from scene

analysis based on imagery collected at street-level. The reasons
are partially historical, the Earth Observation and remote sens-
ing community has worked on overhead images whereas the
computer vision community has largely focused on mapping
from data acquired at ground-level. In this paper, we advocate
to view these efforts as complementary. By taking into account
both points of view in a common modeling framework, we aim
at achieving complete, yet accurate modeling, as we observe
multiple facets of environmental systems simultaneously: the
differences in spatial and radiometric resolutions, not to speak
of the drastic changes in perspective, allow studying processes
under different viewpoints, thus potentially leading to one,
holistic, complete reconstruction of the scene.
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Earth Observation: Earth Observation has experienced
a significant evolution during the last decades, due to ad-
vances in both hardware and software. Manual interpretation
of analog, aerial surveys that were limited to campaigns at
city-scale, was the dominant technology for most of the XXth
century [1]. The launch of satellite sensors for Earth Obser-
vation (EO) changed this situation and allowed a significant
improvement in terms of spatial scale and temporal coverage.
Since Landsat 1 (1972) and its 80-meter spatial resolution and
18-day revisit period, the ground sampling distance, image
quality and availability of EO data has been growing rapidly.
Today, state-of-the-art satellites offer decimetric accuracy
(e.g., WorldView-2 and 3, Pleiades); their constellations offer
weekly or even daily revisit cycles (e.g., RapidEye, Copernicus
Sentinels). New swarm-like satellite schemes, that rely on a
multitude of small, low-cost sensors are currently changing
the field and will soon have an impact on how we work in EO
(e.g., Google Terra Bella or PlanetLabs constellations). This
ever-increasing data flood can only be analyzed if we rely on
on automated methods that allow close to on-the-fly image
interpretation for such big data. Current scientific efforts in
computer vision, pattern recognition, machine learning, and
remote sensing are making considerable progress, especially
since the comeback of deep learning.

Street-level images and Social Media: The massive
amounts of geo-tagged images on social media (e.g., Flickr,
Facebook, Instagram) provide another possibility for big data
solutions [2]. Flickr gathers 122 millions of users, sharing
daily 1 million of photos, for a total of 10 billion shared
images. Beyond generic photo-sharing platforms like Flickr,
some geolocation-oriented solutions have been introduced
in the last years. 360cities provides a collection of high-
resolution georeferenced panoramic photos. Panoramio was
a geolocation-oriented photo-sharing platform, offering 94
millions of photos (with 75 billions of views). It is now part
of Google Maps, illustrating the convergence between ground-
level imagery and remote sensing technologies. Mapillary aims
to share geo-tagged photos in a crowdsourced initiative to offer
an immersive street-level view of the world. Its 100 millions
of photos are exploited with computer vision techniques in
order to detect and recognize objects, perform 3D modeling
or text/sign understanding.

In addition to crowd-sourced geo-tagged images, Google
Street View [3], Bing Maps Streetside, or Apple Maps are
offering ground-level views that are acquired with planned
mobile mapping campaigns at worldwide scale. Dedicated
imaging campaigns guarantee much denser and complete data
coverage (i.e., all street scenes of a city) as opposed to most
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crowd-sourcing efforts that usually do not have much success
beyond tourist sights. Imagery acquired with large campaigns
usually facilitates processing because data is provided in a
homogeneous format and exhibits less illumination change.
In addition to worldwide imaging campaigns, there are many
similar initiatives at the national or regional scale, e.g. Tencent
Maps in China, Daum Maps in South Korea, Mappy in France,
GlobalVision VideoStreetView in Switzerland, CycloMedia in
various European countries and US cities, etc.

Geo-tagged ground-based images shared via social media
(captured by pedestrians, cars, etc.) thus appear as a relevant
complementary data source for EO applications. These data
provide a high-resolution viewpoint from the ground that
offers much potential to add missing information to overhead
imagery to map and monitor natural and human activities
on Earth. Furthermore, it allows circumnavigating typical
restrictions of remotely sensed data: it is not affected by
cloud coverage nor limited to nadir or oblique views, and it is
widely available via the pervasive use of mobile phones, which
allows for immediate feedback. Nonetheless, this imaging
modality comes with its own specific challenges, including
a large variability in terms of acquisition conditions (leading
to various perspective effects, illumination changes), frequent
object occlusions or motions. Successful coupling of ground-
level and remote sensing imagery requires addressing their
differences in viewpoint, sensor modality, spatial and temporal
resolutions, etc.

Contributions: We present a thorough and detailed review
of works that combine overhead and street-level images. Three
projects are described in detail to complete this survey; each
of these presents a different method for a geodata task, and
emphasize the impact of cross-fertilizing computer vision
and remote sensing. This paper is meant to survey existing
methods for aerial-to-ground image combination, to highlight
current challenges but also to point in promising directions
for future work, by showcasing three recent applications from
the authors’ respective groups [4]–[6]. We hope it will serve
as a motivation for colleagues working in Earth Observation,
remote sensing, machine learning and computer vision to more
closely cooperate, to share ideas, and to show that there are
many common interests.

Paper Organization: The paper is organized as fol-
lows. We provide in Sec. II a survey of the literature in
ground-aerial/spatial matching, and we review existing works
considering three specific problems that are geolocalization,
matching and reconstruction, and multimodal data fusion.
These various problems are illustrated in Sec. III through
an in-depth presentation of some selected examples, that
correspond to some of the authors’ previous works. The three
presented systems aim at coupling ground imagery and remote
sensing to perform change detection, image geolocalization
and orientation, and tree cataloging respectively. Finally, we
conclude this paper with Sec. IV.

II. LITERATURE SURVEY

Ground-to-aerial matching of images or point clouds has
received much attention in research, but is still largely un-
solved. In the following, we roughly subdivide literature

into three main application scenarios that call for different
approaches to the problem: geolocalization, object detection
and reconstruction, and multimodal data fusion.

A. Geolocalization

A great number of pictures found on photo-sharing plat-
forms do not provide information about their spatial location.
If available it is either derived from the GPS of the device or an
approximate location is entered manually by the photographer
at the time of upload.

However, this large number of images without geolocal-
ization is available on social media and could be used, for
example, to improve indexing, facilitate search and offer
augmented reality experiences. For these reasons, locating
pictures has become a fast moving field in computer vision,
which has attracted attention in recent research.

Early works focused on the use of the geolocated im-
ages to extract semantic geographic information and enrich
global maps. Proximate sensing has been used by Leung and
Newsam [7] to build a land cover map of a 100 × 100 km
region of England (with a 1 km spatial resolution). To do
so, input pictures are extracted from the Geograph database
based on their grid location. Such a system remains tributary
of having all pictures georeferenced. It is also possible to
match photos that do not have geotag with those in a database
made of geolocated ones. The IM2GPS system from Hays and
Efros [8] retrieves the pictures, which are the most similar to
those in the database and is used to study whether these images
are also geographically close in space or if they represent
more spatially diffuse (and therefore difficult to precisely
locate) types of land cover. Existing land cover and light
pollution global maps (and their scores at the geolocated
pictures’ location) are also used to estimate land cover and
light pollution in all the pictures.

However, the applicability of these approaches is reduced to
popular locations (often tourist sights), where most web-shared
images are taken and for which data availability (and even
redundancy) can be guaranteed. One possibility to adapt geo-
localization models to wider areas is matching ground-level
photos to overhead images. Aerial or satellite images at very
high-resolution are available almost everywhere on the planet
and provide a much more complete and homogeneous image
database. A true challenge that receives much attention in
recent research is finding correspondences between overhead
and ground-level views. Dense, pixel-wise image matching
is literally impossible due to the great change in viewpoint.
Overhead images and photo collections on the ground also
differ greatly in resolution, illumination etc., which calls for
very robust, truly multimodal approaches to correspondence
search across aerial and ground views.

Recent works aim at developing feature extraction methods
that define common representation spaces, in which a ground
photo is projected close to the corresponding aerial image
patch. Kernel canonical correlation analysis (KCCA [9]) has
been used by Lin et al. [10] to learn the relationships between
pictures and aerial images or land cover maps available online.
The KCCA score is used to map geographically the similarity
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of a picture with appearance observed from above. This way,
one can evaluate the confidence of the localization in the geo-
graphical space and for example discriminate pictures of vague
environments (e.g. a beach) from pictures with strong location
uniqueness (e.g. the Eiffel tower). Deep neural networks play a
key role in works aiming at image localization using overhead
imagery (e.g., [11]), with Siamese Networks being the most
popular variant in current systems [12]–[14]. We describe a
method that relies on siamese CNNs as a workhorse to perform
change detection in Sec. III-A.

In robotics, localization of a rover has been tackled by
the joint use of overhead imagery and ground sensors em-
bedded onto the vehicle. Among existing systems, we can
cite the use of a ground LiDAR to detect tree stems in
forest environment [15], where the detected candidates are
then matched with tree centers extracted from RGB aerial
image analysis to locate the rover. Videos on the rover are
compared to very high resolution grayscale images in [16],
and location is retrieved using a particle filter. Finally, Google
Maps images can be matched with panoramic images from
multiview cameras installed on the rover [17], by creating a
synthetic overhead view using the images from the ground
cameras and performing keypoint matching.

B. Matching and reconstruction

While geolocalization often requires only sparse corre-
spondences across views, object detection and particularly
reconstruction calls for more precise and often dense matching
between data of different viewpoints. Per-pixel matching from
aerial to ground is an extreme wide-baseline matching prob-
lem. Direct (dense) matching of aerial nadir-images and street-
level panoramas is very hard, because it requires compensating
for 90◦ viewpoint changes, and usually also scale differences.
Street-level images often have much higher resolution and
show more details than aerial or satellite images. Much of the
scene can only be observed from either street-level or over-
head perspective, for example, building roofs can hardly be
captured from street-level, but dominate building appearance
in overhead images (the inverse counts for building facades).
As a consequence, most approaches try to avoid per-pixel
matching and propose late fusion of detection or reconstruction
outcomes. Objects are detected or reconstructed separately per
viewpoint, and results are combined.

Nevertheless, many works aim at fine-grained 3D recon-
struction of cities, where missing parts of the scene, invisible
from the air, are added from street-level imagery. The ultimate
goal is a complete, detailed, watertight 3D model (in mesh
or voxel representation) at city-scale that allows seamless
navigation in 3D.

To the best of our knowledge, the first attempt to this aim is
the work of Früh and Zakhor [18], [19]. They densely model
building facades using a mobile mapping system equipped
with laser scanners and a camera. Airborne laser scans are used
to fill in missing data, like roofs and terrain. A digital surface
model (DSM) is created from airborne scans, triangulated
and textured with aerial images. Building facades modeled
from street-level data are globally registered to the DSM

derived from airborne scans using Monte-Carlo-Localization
(a particle filter variant), which refines initial poses of street-
level scans with respect to an edge map derived from the DSM.

An alternative method is proposed by Fiocco et al. [20], who
combine terrestrial and airborne laser scans for the purpose
of 3D city reconstruction. After manual coarse alignment of
terrestrial and aerial scans, roof-edges are detected in both
data sets, projected to the horizontal plane and matched to
refine rotation and translation parameters. The combined point
cloud is processed to a global triangle mesh, which is further
filtered via a volumetric octree. The final mesh is extracted
by contouring the iso-surface with a feature-preserving dual
contouring algorithm.

In contrast to the previous two approaches, Kaminsky et
al. [21] do not combine multiple laser scans in 3D, but
aim at aligning 3D terrestrial point clouds computed from
images via structure-from-motion to a 2D overhead image.
They estimate the optimal alignment with an objective function
that matches 3D points to object edges in the overhead image.
Bódis-Szomorú et al. [22] propose an approach that efficiently
combines a detailed multi-view stereo point cloud with a
coarser, but more complete point cloud acquired with an
airborne platform to reconstruct one, joint surface mesh. At
its core, the method does point cloud blending, by preferring
points stemming from street-level data over airborne points,
and volumetric fusion based on ray casting across a 3D
tetrahedralization of the model. Bansal and Daniilidis [23]
match street view pictures to a 3D model of the skyline ren-
dered by modeling the buildings using LiDAR scans, whereas
Hammoud et al. [24] use a set of modality-specific scores
to match human annotations on the pictures with quantities
extracted from a series of additional modalities: presence of
points of interest from Open Street Maps, building cubes
generated using LiDAR scans, land cover maps and estimation
of the 3D skyline.

Other works rely only on optical images available world-
wide (typically oblique and nadir images), for the pixel match-
ing. Shan et al. [25] propose a fully automated georegistration
pipeline that can cope with ground to aerial viewpoint vari-
ation via object-specific, viewpoint-adaptive matching of key
points. The approach mainly relies on planar, vertical building
facades that can be observed in oblique aerial images, and
street-level photos. Once ground images have been warped
to oblique geometry, standard SIFT (Scale-Invariant Feature
Transform [26]) is applied to match across views. Similar
approaches are found in [27], where building facades are
detected in aerial oblique images and populate a database that
is used to match facades detected in pictures; and in [28],
where Bing’s aerial views are matched with pictures from
several sources (including Panoramio, Flickr and Google Street
View) using a self-similarity index, where facades detected
in the pictures are assigned to the closest cluster of facades
extracted from the aerial view. Finally, Cham et al. [29] locate
Google Street view images using a vector layer of buildings
footprints by finding corners and building outlines in both
sources.

In mountain environments, the skyline has been used as a
strong feature to locate pictures in virtual 3D environments
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rendered from Digital Elevation Models (DEM) [30], [31].
The pictures, once located in the virtual 3D environment, can
be used for digital tourism or can be augmented with peaks’
names and vector information. Such augmented panoramas can
then be used for studying attractiveness for photography of
the landscape, e.g. Chippendale et al. [32] built a synthetic
panorama from the global NASA digital terrain model around
the area imaged in the picture and then align it to the pictures
by matching salient points. Once the pictures have been
located, an attractivness index is computed for every voxel in
the synthetic image. Such index accounts for socially-derived
aesthetics metrics, for example the number of views and
comments a picture has received on the social media platform
it was hosted on. An example of picture-to-landscape model
matching in the Swiss Alps is presented in Section III-B.

C. Multimodal data fusion

The previous two sections reviewed localization and match-
ing by joint use of overhead and ground imagery. This
section reviews recent research under the common name of
multimodal data fusion, a term often used in remote sensing
for strategies using multiple different overhead sensors [33] to
map a certain scene. Here, this definition is extended to ground
imagery. It includes approaches using ground pictures to enrich
land cover classification or to improve object detection.

Land cover classification is probably the most studied area
of remote sensing. Pictures from photosharing platforms might
be used to validate the results of a land cover classification
algorithm trained on overhead images [34]: as an example,
Foody and Boyd [35] compare pictures centered at prediction
locations to assess how accurate the GlobCover land cover
layer is. Other efforts were also reported for the classification
of pictures retrieved from photo-sharing platforms such as
Flickr or databases such as Geograph to describe land cover:
proximate sensing [7] was used to produce a map of the
fraction of land developed in a 100 × 100 km region of
England. The prediction is performed at a 1 km resolution, by
averaging binary classification scores (developed vs. undevel-
oped) obtained for ground images that fall into a common grid
cell of the Geograph database. The classifier used is an SVM
trained on histograms of edge descriptors. In a follow up work
[36], the authors compared results obtained on the Flickr and
Geograph pictures: they conclude that the Geograph results are
more accurate, probably since the database is explicitly built
to be geographically representative of land types in England.
Works in [37], [38] classify Flickr pictures to predict the
presence or absence of snow and compare the pattern retrieved
to those obtained by satellite-based products. The patterns look
similar, but the poor spatial coverage of Flickr leads to a very
sparse map compared to the one that can be obtained by
satellite images. Estima and colleagues [39], [40] study the
effects of such poor spatial coverage at the country level and
conclude that these pictures are not distributed evenly enough
to be used alone in a land cover classification effort thus calling
for multimodal mapping systems.

Building up to that observation, some studies make suc-
cessful use of both modalities (ground pictures and overhead

images) to solve geospatial classification and object detection
problem: Wegner et al. [6] apply a strategy for detecting indi-
vidual trees at city-scale from street-level and aerial images.
Tree detection is performed separately for all available street-
level and overhead images, and all detections are projected to
geographic coordinates followed by soft, probabilistic fusion
(more details in Section III-C). Matthyus et al. [41] propose
a joint system to detect road observed in both street view
and aerial images: using a structured SVM [42] they learn a
set of potentials accounting for 1) road smoothness, 2) lanes
size, 3) the fact that roads are often parallel to each other, 4)
they enforce consistency between detections in both modalities
and 5) with Open Street Maps centerlines. Their results on
the KITTI dataset [43] augmented with aerial images provide
impressive results against state-of-the-art detectors.

Going beyond the classical tasks of land cover classification
and object detection, an increasing interest is being observed
on tasks related to the prediction of city attributes [44], [45].
Pictures acquired on the ground can be used to predict activ-
ities (recreational, sports, green spaces), feelings of security,
crime rates and so on. Such attributes are generally learned
from the pictures themselves via visual attributes [44] and
existing image databases, which provide tags related to the
activities [45]. The attributes are then mapped in space, but few
works make direct use of overhead images to provide complete
maps carrying information where no pictures are available (we
exclude the idea of direct spatial interpolation used in [46]):
in [47], pretrained CNN models learned on picture databases
(ImageNet and Places) are then applied on satellite image
patches in order to see if similar geographical regions of
the images were being activated by the same filters; in [48],
authors predict a set of city attributes (digital elevation, land
use, but also population density, GDP and proportion of infant
mortality) by training classifiers on Flickr pictures labeled by
the scores found at their geolocation on GIS or remote sensing
maps. In [49], authors use a One-Class SVM [50] to predict
the suitability of a spatial location for taking beautiful pictures:
the model relates a set of geographical features (extracted
from a DEM or open GIS layers) to the density of pictures
found on Panoramio at that location. In [51], authors classify
activities happening in the pictures using two models based
on handcrafted features and fusing the classification scores at
the end.
A final set of works aim at transferring attributes from the
pictures domain to the overhead images domain, in a domain
adaptation [52] setting. Attributes from the pictures domain
would allow obtaining labels for activities unseen (and unre-
coverable) in the images, as for example the type of activity
being pursued on a grassland. Studies [53], [54] search for
common embedding spaces (for instance using subspace align-
ment) where images are mapped close to pictures depicting the
same visual features. Once the mapping is done, the attributes
of the nearest neighbours can then be transferred.

III. SELECTED EXAMPLES

We describe three methods in detail to show how possi-
ble solutions for combining ground and aerial imagery may
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look like for specific tasks. Three systems that respectively
aim to perform change detection, image geolocalization and
orientation, and tree cataloging are explained and remaining
challenges are highlighted.

A. Multimodal change detection between ground-level
panoramas and aerial imagery

Despite the proliferation of Earth Observation programs,
the endeavor of updating aerial or satellite high-resolution
imagery is found to be quite costly and time-consuming for
geographical landscapes around the world particularly when
they are constantly and rapidly changing. Consequently, this
acts as a limit towards maintaining an updated data source.
We provide an efficient and low-cost solution by relying
on georeferenced panoramic photos from digital cameras,
smartphones, or web repositories as they offer high spatial
information of the location queried.

With Volunteered Geographic Information (VGI), humans
are able to be extremely beneficial to geographical information
systems by acting as intelligent sensors with a smartphone
equipped with a GPS and a camera. Georeferenced photo
collections are opening doors to “proximate sensing” as re-
called in previous section. Many web services support georef-
erenced information: blogs, wikis, social network portals (e.g.
Facebook or Twitter), but also community contributed photo
collections discussed in the introduction of this paper. Such
collections also benefit from the recent rise of affordable and
consumer-oriented Virtual Reality (VR) headsets, in addition
to 360◦ camera mounts and rigs that aim to generate panoramic
spheres. As such, it will lead to the availability of an extensive
collection of georeferenced panoramic photos since social
networks as Facebook started lately adopting the format, and
many uploaders’ goal is to create the experience for the VR
user as being in a certain location, which makes geolocating
the panoramic photos straightforward.

In this section, we describe a recent multi-modal approach
[4] to change detection, that makes use of both ground-
level panoramic photos and aerial imagery. Furthermore, we
introduce here several improvements to the existing method,
that exploit deep neural networks to improve the overall
results.

1) Method: The proposed method is summarized in Fig. 1.
We first examine how to transform the georeferenced ground-
level 360◦ panoramic photos (panoramic spheres) to top-down
view images to resemble those being obtained from a bird’s
eye view. The transformed or warped photo acquired is then
compared with its counterpart aerial image from the same
geolocation. This comparison indicates whether a change oc-
curred or not at that location. This prevents routinely updating
large landscapes, and allows requesting such an update of the
aerial image only when necessary.

a) Top-down view construction: The panoramic photos
being used here, obtained from Google Street View or from
other sources, go through a warping procedure to get a bird’s
eye view image as proposed in [55]. The first step is con-
structing a spherical 3D model of the panoramic image. World
coordinates are then computed using an inverse perspective

Fig. 1. Flowchart of proposed method.

mapping technique. Finally, bilinear interpolation is used on
the panorama pixels to be able to get the color for the ground
location.

An example of a top-down view image reconstructed from a
panoramic photo is given in Fig. 2. While this process seems to
be straightforward, its quality strongly depends on the kind of
landscape considered. Indeed, top-down view construction for
urban areas is quite problematic compared to suburban or rural
areas due to how complicated the scene is. This causes many
objects such as signs, or cars to blemish the output image, as
well as objects towards the far end of the image to get distorted
heavily. Some illustrations are provided in Fig. 4 (columns 1
and 2).

Fig. 2. Top-down view image (right) constructed from panoramic image (left).

b) Registration: The top-down view image built in the
previous step represents only a small portion of an aerial image
to be compared with (e.g. Bing Map images are 150×150m2).
Hence to compare correctly the images and detect changes,
it is necessary to localize the top-down view image into the
aerial image, then crop the area that contains the objects in
the field of view of the Google Street View image. Similarly
as already done in document image analysis [56], we have
explored performance comparison of SIFT, SURF, FREAK,
and PHOW for matching ground images to satellite images.
The comparison has proven that SIFT is a superior method for
the matching process, even when the satellite image contains
many elements or is complicated.

At first, SIFT [26] key points are extracted from both aerial
and top-down images, and relevant descriptors are generated.
Pairs of similar descriptors are found using Euclidean distance.
The best match is then selected from the group of matches
through a k-NN (nearest neighbor) classifier. We rely here on
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the FLANN library known for its good performance with k-
NN search [57]. Furthermore, to obtain geometric transforma-
tion between the matched key points, we use a homography
matrix [58]. To achieve this, we eliminate the outliers by
RANSAC algorithm [59]. Finally, if the required amount of
inliers is achieved, which is a minimum of 4, the homography
matrix could be computed. An example of registration is
provided in Fig. 3.

Fig. 3. Aerial localized image (middle) using top-down view image (right)
on original aerial image (left).

c) Classification: In our previous experiments [4], we
have observed that the correlation coefficient called z-factor
(see next step and [4]) was highly sensitive to the kind
of landscape to be processed (i.e. urban and rural/suburban
environments), making it difficult to chose an appropriate
change detection threshold.

Therefore, we introduce here an additional preclassification
step to determine if the scene is rather urban or rural/suburban.
To achieve this image classification task, we rely on a stan-
dard fine-tuned AlexNet deep architecture [60] trained with
Caffe [61] using a dataset of aerial images with an output of
2 classes (urban and rural). There was no need to classify the
top-down view images as well, since the pair of images in the
dataset are supposed to be of the same location, therefore of
the same type.

d) Comparison: Detecting the change between multiple
images of the same location has been explored in previous
works [62], [63]. Our initial work [4] was relying on a
correlation index computed between the top-down view image
and the related localized portion of the aerial image. A low
correlation value indicates a change. To eliminate the cases in
which some areas resulted in a very low correlation value, the
z factor was calculated as proposed by [64].

Seeking to attain a better comparison detection accuracy,
we explore here the use of Siamese Networks [65]. Such
networks are most commonly used for face verification ap-
plications and have shown to be more accurate than hand-
crafted features [66], with the goal of minimizing the feature
vectors distance between matching images, and maximizing
the distance for unmatching images. The Siamese Network
architecture is made of two identical Convolutional Neural
Networks (CNN), each network being an AlexNet [60] trained
using Caffe [61]. During training, pairs of images (aerial or
top-down view) are used to feed the two CNNs. The Con-
trastive Loss Function [67] is used to pull together matching
pairs, and push far away unmatching pairs. The network
architecture does not share weights or parameters considering
each image is domain-specific [66]. Each CNN generates a
low dimensional feature representation or vector for the aerial

and top-down view images, and Euclidean Distance is used to
determine whether the views are close to each other or not.
Changes are detected by setting a margin or threshold.

2) Data acquisition: Due to the requirement of a large
number of panoramic spheres in order to train a neural
network, our initial dataset [4] was not sufficient. We recall
we had to build a labeled dataset since we were not aware of
any public dataset addressing the aforementioned image types.
Depending on randomly uploaded panoramic spheres on web
repositories, or by human effort was not a viable option to
build our dataset. Accordingly, we used Google Street View
as it is the most reliable and vastest georeferenced source
available for panoramic spheres. However, a procedure had to
be devised to be able to acquire the photos efficiently. Having
the geocoordinates of the Google Street View panoramas, we
were able to amass aerial imagery associated with the same
coordinates from Bing Maps which was the aerial imagery
data source.

The data acquisition process thus relies on 3 successive
steps: i) using Open Street Maps (OSM), a region of interest is
selected and downloaded through OSM exporting tool. OSM
file is then parsed for geocoordinates of the routes, since
Google Street View panoramas are most likely to be located on
routes to save processing time looking elsewhere; ii) through
Google Maps API and Bing Maps API, requests were sent
to receive the IDs of the images from both services. Due to
proximity and availability issues, many IDs were duplicated
so map and reduce operations were performed, to eliminate
redundancy and ensure having a pair for every coordinate; iii)
finally, each pair of images was downloaded spanning four
different cities (Vannes, Rennes, Lorient, Nantes) of Brittany,
France. It contains both rural and urban areas. After that,
we go through a necessary visual verification to ensure that
each image pertains to the other (i.e. correspond to the same
location), thus guaranteeing a fair evaluation of our method.
Also, each pair is labeled visually whether there is an observed
change or not, as well as if the pair is of a rural or urban
setting. In order for the dataset to contain a substantial amount
of unmatching pairs, a subset of the dataset was purposefully
matched wrong by selecting pairs from different places, and
by selecting old panoramic images from the google street view
that are correctly localized with their corresponding aerial
image. This collection amounted to a total of 27,000 images.

3) Results and discussion: The testing dataset was com-
posed of 8,000 image pairs of aerial images acquired from
Bing Maps and corresponding top-down views built from
Google Street View panoramic images. The aerial image
classification step into urban/rural using CNN achieves an
accuracy of 91%. But let us recall that this classification is
only an intermediate step to ease the overall change detection
process. The latter was able to identify changes with an overall
accuracy of 73%. The preclassification step has proven to be
effective as if bypassed the accuracy drops to 60%. We expect
this accuracy would increase if the dataset was expanded,
especially if it contains a significant amount of pairs with
very slight changes between the aerial and the top-down view
image labeled as unmatching. Compared to our original paper
not relying on deep learning [4] and evaluated on a smaller



PROCEEDINGS OF THE IEEE 7

Fig. 4. Each collection above shows a panoramic image and its construction into a top-down view image, followed by an aerial image, and the localized part
in the aerial image. While the top (rural) and middle (urban) collections are correctly addressed by the proposed approach, the bottom collection illustrates a
challenging situation occurring when urban scenes contain many visible objects in the panoramic image.

dataset, the change detection accuracy grows from 54% to
73%, leading to an improvement of about 20%. We refer the
reader to our previous paper [4] for more details on our former
results.

Interesting extensions to this work would be exploring
having several orientations of each top-down view image and
ranking them by closest distance and picking the image ranked
the highest to avoid detecting a false change due to different
orientations. Road signs, lamp posts, and cars are a great
cause of false positives for change detection. Detecting these
objects and eliminating them from the scene would definitely
affect the outcome. Finally, photometric corrections should be
applied in the top-down view construction step to minimize the
distortions that occur to objects far off in the scene. Indeed
such distortions cause narrow places (especially in cities) lead
to difficult comparison between top-down view and aerial
images, as illustrated in the last line of Fig. 4.

B. Terrestrial image orientation in landscape areas

Terrestrial pictures are a rich source of information for the
study of landscape variations. Specifically, in studies looking

at temporal evolution [68], they provide unmatched spatial and
temporal resolution. However, unlike standard remote sensing
data, sufficiently accurate orientation is often missing, which
is required to relate pixels in images with world coordinates.
This limited orientation accuracy hinders their use for climate
change or territorial development studies in practice.

In a database of webshared pictures, the localization of
pictures is of different provenance and quality. Moving from
the most to the least accurately localized source, images
roughly fall into four categories:

• photos taken with a GPS compass-enabled camera, hav-
ing an accurate location and orientation stored in their
metadata. The accuracy of the GPS position varies ac-
cording to the number of satellites available and the
perturbation of the signal generated by surrounding ob-
jects (such as buildings or other metallic objects). GPS-
located pictures started to be massively available with the
massive spread of smartphones and new generation reflex
cameras.

• the location of the picture is entered manually by the user,
through some websharing platforms that provide a web
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interface. The accuracy of the image location depends on
the ability of the user to indicate the proper location, the
resolution of the manual mapping interface, etc.

• the user has added some tags to the picture. Those tags
may contain place names that help to roughly locate the
picture.

• no geographic coordinates or any hint that points at a
specific location are provided at all. Only the picture
content can be used to compute the location.

In what follows, we present a pose and orientation framework
that can be deployed with pictures issued from photo-sharing
web platforms. The original framework was proposed in [5].
The process has two distinct steps: in the first, we find the
orientation for a set of precisely geolocated pictures in an au-
tomatic way. This is achieved by matching skylines extracted
both in the picture and in a synthetic landscape rendered from a
high resolution DEM. In the second step, we find both location
and orientation of a second database of poorly geolocated
pictures by finding appearance correspondences between the
pictures and the high resolution DEM, this time augmented
with the precisely oriented pictures issued from the first step.

Our goal is to meet the requirements of augmented reality
applications, which do not need photogrammetric accuracy, but
rather a visually good alignment of the image with a 3D model.
To this end, we exploit both the geolocalisation information
recorded by the camera (or provided by the user) and the 3D
models stored in a GIS database. Our proposed system helps
addressing two problems of current natural landscape augmen-
tation systems: on the one hand, the orientation provided by
general public sensors (e.g. smartphones) does not reach the
required accuracy; on the other hand, the matching of an image
with a 3D synthetic model without geospatial constraints is
difficult because state-of-the-art keypoint matching algorithms
cannot be applied. This is due to the facts that i) the texture of
real and synthetic images is too dissimilar (especially in the
steep slopes areas) and ii) the geographical search space is too
large. Hence, the solution we describe below uses this two-
step logic, to benefit from the prior geolocalisation in order to
geospatially constrain the matching with the 3D model.

1) Method: In the following, we present the proposed
pipeline, which is summarized in Fig. 5. The input pictures
considered are representative of a webshared collection: they
have various orientation information (GPS, user-provided loca-
tions or place name) and are generally clustered around easily
accessible locations from which a point of interest is visible.
These pictures are not yet oriented and we will call them
query pictures. In the context of landscape images, a reference
3D model can be generated from a Digital Elevation Model
textured with an orthoimage. Examples of the pictures and of
the DEM are shown in Fig. 6.

a) Orient GPS-located pictures: the first step (Fig. 5, top
half) aims at orienting pictures that already have a GPS posi-
tion. In the context of our accuracy requirements (alignment
of the image with the landscape model), we assume that the
location measured by the GPS is exact. If the Field Of View
(FOV) is estimated from the focal length recorded in the image
metadata, only the image angles (heading, tilt and roll) must
be recovered.

We compared two methods to estimate these angles. The
first estimates the orientation from the horizon silhouette.
Indeed, a 360◦ synthetic panorama can be generated for a
given location and the 3D silhouette can then be extracted
and matched with the 2D silhouette detected in the picture
to orient the camera. We developed our own method for
skyline alignment, but a large range of studies exist in this
field [30], [31]. In our method, we use Dynamic Time Warping
(DTW [69]) to extract correspondences of the picture-extracted
skyline and the reference skyline.

The second method correlates patches of the synthetic
panorama image with patches extracted from the query picture.
Both the query picture and the reference panorama patches are
described with a HOG descriptor at several scales and matched
by a correlation-based distance.

Once GPS-located query images have been oriented, they
are augmented with three bands recording the X,Y and Z
coordinates of the pixels. These pictures can then be used to
texture the DEM and thus improve the landscape model and
serve as reference images for the next step.

b) Estimate location and orientation of poorly referenced
pictures: the second step (Fig. 5, bottom half) matches
the remaining query images, which have a less accurate
geolocalisation (e.g. the one indicated by the user), to the
textured landscape model obtained at Step 1. We developed an
algorithm for the Pose Estimation with Pose and Landscape
Model Priors (PEP-ALP) [5]. This algorithm is based on a
Kalman filter able to fuse the apriori orientation parameters
(pose prior) and the 2D-3D correspondences provided by the
matching of the query pictures with the reference landscape
model (landscape model prior). PEP-ALP is based on the
following steps: first, we use the collinearity equations [70]
and variance propagation to draw in the query pictures a
series of confidence ellipses. These ellipses are centered on
3D keypoints extracted from both the reference images and
the landscape model. They correspond to regions in the 2D
query image, where the 3D keypoint is expected to be located.
Then, keypoints from the query picture are matched to those
in the landscape model. Using this geometric constraint (i.e.
the confidence ellipses) decreases the number of potential
correspondences and discards false positives. This is because
keypoints not falling within an ellipse are removed. Finally,
the Kalman filter is an iterative process, so the detected 2D-
3D correspondences update the orientation estimation and the
orientation covariance. At each step, the size of the ellipses is
reduced together with the matching threshold, which results
in an improved estimate of the orientation.

Note that if the query picture only has an approximate
location (such as one indicated by the user at small zoom or
derived from a geotag), a prior orientation must be computed
before applying PEP-ALP. To this end, the query picture can
be matched with 3D keypoints extracted from the reference
pictures located in the spatial neighborhood. If a small overlap
exists with the reference images, a state-of-the-art RANSAC
[71] algorithm can extract a set of correspondences, providing
the initial orientation. This orientation is then used as prior for
PEP-ALP.
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Fig. 5. Flowchart of the proposed pipeline: t is the vector containing the X,Y, Z coordinates describing the camera position; r is the vector containing the
camera angles: heading, tilt, and roll. The top schematic describes the orientation of the GPS pictures for which t is known. The bottom schematic describes
the orientation of the other pictures, for which prior knowledge of an approximate orientation t0 and r0 is assumed (NNDR stands for Nearest Neighbor
Distance Ratio).

2) Results and discussion: In the following, we present two
applications of the proposed workflow to picture collections
of the Swiss Alps.

a) Orientation of GPS images with horizon and textured
model matching: the orientation of the GPS images was tested
on a set of images in the Swiss Alps acquired by the authors.
In a set of 100 images, both the horizon matching and the
textured model matching were able to recover 80% of the
azimuth within 5◦. The failures can be explained by several
reasons: on the horizon matching side, it cannot be applied if
the weather is not clear or when the mountain peaks are hidden
(typically by foreground object closer to the camera), but this
morphologic feature is relatively unaffected by lightning and
seasonal variations. On the the synthetic panorama side, the
matching is less dependent on the horizon visibility, but is
more impacted by seasonal variations that may change the
land cover and harm matching based on keypoints.

b) Orientation of a real collection of webshared images:
we tested the approach with a set of pictures downloaded from
Panoramio in a famous Swiss alpine landscape (Zermatt). In
total, the set of images in the area of interest is composed of
198 images, among which 10 have a GPS location and 118
have the focal stored in the metadata. Some examples of the

pictures considered, as well as the landscape model, are shown
in Fig. 6. The initial reference landscape model consists of a
DEM at 25m resolution textured with an orthoimage at 0.5m
resolution. The orientation quality was assessed in two ways.
First, we measured the distances between remarkable points of
the orthoimage and query pictures in the geographical space.
Second, the oriented pictures were projected on the DEM to
render a virtual model. This model allowed us to visually
assess the alignment of the pictures with the DEM. An illus-
trative video can be found on https://youtu.be/87dHVDdlPSs,
see Fig. 7.

The orientation of GPS-enabled pictures performs remark-
ably well if the GPS position is correct and the skyline is
not occluded. Once the pose and the 3D coordinates have
been estimated for all the GPS located ones, we can use
them as references for the remaining query pictures. A pose
is computed for the query pictures, for which RANSAC
could found initial matches (i.e. 100 images over the 188
query pictures). However, some poses are clearly incorrect (10
images): these incorrect poses are associated to images, for
which RANSAC returns an incorrect initial pose (based only
on false positives). By simulating priors at various distances
of the ground truth position of a picture, we showed that the

https://youtu.be/87dHVDdlPSs
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Fig. 6. Query pictures. The pictures inside the frame are examples of GPS-
localized images. Bottom: snapshot of the reference landscape mode (DEM
textured with an orthoimage).

success of PEP-ALP in orienting query pictures depends on
the quality of the initial orientation guess. If such guess is
not within 1km from the correct one, the pose and orientation
estimation is seldom successful.

Fig. 7. Left: Oriented image textured on the DEM. Right: Oriented image
orthorectified.

In future work we will fuse more intimately the three match-
ing techniques (horizon, reference GPS images and textured
landscape model). In the current implementation, the textured
landscape model matching operates only in the orientation of
the GPS pictures. However, the encouraging results obtained
so far suggest to involve it also in the orientation of the
remaining query pictures.

C. Cataloging street trees with deep learning and Google
Maps

The RegisTree project1 aims at developing a fully automated
street tree monitoring pipeline that can process thousands of

1http://vision.caltech.edu/registree/, further project members are Steve
Branson, David Hall, Pietro Perona (all Caltech), and Konrad Schindler (ETH
Zurich)

trees within a few hours using publicly available aerial and
street-level images. It is designed as an automated, image-
based system that detects trees, recognizes their species,
and measures further parameters like the trunk diameter at
breast height (DBH). The system is centered around state-of-
the-art supervised deep convolutional neural networks [72]–
[75], where detections from multiple views are combined
with a (piece-wise learned) discriminative probabilistic frame-
work [6].

Trees are of uttermost importance for quality of life in
cities [76]. A healthy canopy cools cities, decreases energy
demand, prevents soil erosion, slows rain-water runoff, and is
key to clean and ample water supply. However, the amount
of trees, their exact location, species, age, health and further
parameters are often unknown because no up-to-date database
exists. Today, the position, species and further attributes of
trees are usually acquired manually in the field, which is
labor-intensive and costly. Since the cost of employing trained
arborists is prohibitive, manually acquired inventories are also
not always as granular and reliable as hoped.

Automated tree mapping and species recognition has been
an important research topic for the last decades (refer to [77],
[78] for a detailed comparison of methods). Most works follow
the standard classification pipeline: extract a (relatively small)
set of texture and shape features from images and/or LiDAR
data, and train a classifier (e.g., Linear Discriminant Analy-
sis, Support Vector Machines) to distinguish between a low
number of species (3 in [79]–[81], 4 in [82], 7 in [83], [84]).
Moreover, most approaches rely on data like full-waveform
LiDAR, hyperspectral imagery, or very high-resolution aerial
images that require dedicated, expensive flight campaigns,
which limits their applicability in practice.

1) Method: The idea here is to avoid application-specific
data, and solely rely on publicly available, standard RGB
images. Missing spectral channels (e.g., near-infrared), that
usually contribute significant evidence to tree detection and
species recognition, are compensated by the sheer amount
of training data in combination with powerful, end-to-end
trained deep learning models. Publicly available imagery has
already found its use in a great number of applications and
circumstances (e.g., [8], [85], [86]). However, the process of
cataloguing and classifying publicly visible objects (trees, but
also street signs, solar panels, mail boxes, etc.) is still carried
out by hand, often by in-person inspection or using expensive
sensors as surveying-grade (LiDAR-based) mobile mapping
platforms. Due to the cost, time, and organizational headache
it involves, such information is rarely collected and analyzed.
The hope is that harvesting such information automatically
from publicly available street-level and aerial imagery will
provide inexpensive, reliable and ready-to-use information to
administrators, scientists and the general public, leading to
important improvement in the quality and timeliness of public
resource management. The system consists of a tree detection
component and a species classifier (see details in [6]).

a) Tree detection: Faster R-CNN [73] is applied to
detect trees in all available street-level and aerial images,
that are downloaded densely for each specified area. Note
that establishing correspondence across aerial and street-level

http://vision.caltech.edu/registree/
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Fig. 8. Example for tree detection results (based on supplementary material of [6]): (top left) input aerial image with camera positions of the street-level
panoramas (3 (left) and 5 (right) are shown below), (top center) aerial image overlaid with true positives (green) and false positives (red), (top right) tree
detections based only on the aerial image, (middle left) tree detections based only on panorama 3, (middle right) tree detections based only on panorama 5,
(bottom left) true positives (green) and false positives (red) overlaid to panorama 3 and (bottom right) panorama 5. Note that the panoramas in the bottom
row and the aerial image top center show combined detection error visualizations.

images generally is a wide-baseline matching problem. Be-
cause of the drastic change of view-point, direct dense pixel-
wise matching and even sparse matching of key points is
largely unsolved. Although promising approaches for ground-
to-aerial image matching (for buildings) have been proposed
recently (e.g., [13], [25]), matching trees that are non-rigid
mostly, and change appearance depending on the season, is
literally impossible. We thus avoid point-wise correspondence
search altogether, and resort to late fusion of detection results.
Individual tree detection is done separately per image and all
individual detections are combined via soft probabilistic fusion

in geographic coordinates2.
In more detail, the following is done: i) Run the Faster

R-CNN detector with a liberal detection threshold to com-
pute an over-complete set of region proposals per view; ii)
Project detections of all views to geographic coordinates; iii)
Collect all detections in geographic coordinates in a multi-
view region proposal set by taking the union of all individual
view proposals; iv) Project each detection region back into
each view. v) Evaluate all detection scores in each view of the

2While transfer from image bounding boxes to geographic coordinates is
trivial for orthophotos, we assume locally flat terrain (and known camera
height) for single street-level panoramas.
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combined multi-view proposal set; vi) Compute a combined
detection score over all views, apply a detection threshold, and
suppress overlapping regions to obtain geographic detections
using a probabilistic conditional random field (CRF) approach.
This workflow is robust to initially missing detections from
single views because it collects all individual detections in
geographic space and projects these back to all views, i.e.
scores are evaluated also in views where nothing was detected
in the first place. The CRF framework also allows adding prior
information to pure detection scores.

A spatial context potential encodes prior knowledge about
the usually very regular spacing of neighboring trees on the
roadside, that have been artificially planted by city adminis-
tration to the largest part. However, the prior could cope with
any kind of distribution of neighboring objects because it is
learned from the training data set. Another prior based on
map data models the distribution of distances between trees
and the road boundary. It helps suppressing false positives by
encoding that trees rarely grow in the middle of a road but
are usually planted alongside at a certain distance. Tree-to-
road-edge distances are computed per pixel using downloaded
Google maps.

b) Tree species recognition: Given geographic coordi-
nates of tree objects, the goal is to predict each tree species.
For this purpose we again use state-of-the-art CNNs, in this
case the GoogLeNet CNN model [75]. One aerial image and
three cropped versions at increasing zoom level of the closest
street-view panorama are collected per tree. Four separate
GoogLeNet models are trained, features of the four models
are stacked into a single feature vector per object, and a linear
SVM is finally trained.

2) Results: First results of the RegisTree project [6] show
that the system is able to detect > 70% of all trees in the
city of Pasadena (CA), and to correctly classify ≈ 80% of
those trees into the 18 species that make up most of the towns
population. Tree detection results for an example scene are
shown in Fig. 8. Red boxes highlight typical cases for false
positives, which are usually due to either (10) wooden utility
poles and (rarely) street signs (11), (9) double detections of
the same tree at two different positions (1, correct) and (9,
wrong). The latter case is usually due to inaccurate projection
of detections in images to geographic coordinates. This can be
caused by inaccurate GPS and heading information that comes
with the panorama images, a violation of the locally flat terrain
assumption, or simply wrong bounding box position and size
in the image, which seems to be the reason for error (9) here.
A first larger-scale feasibility study for all of the Los Angeles
bay area, shows that the system is able to detect and classify
more than a million trees from ca. 500 different species (data
verification pending)3.

One insight of this project is that state-of-the-art deep learn-
ing methods in combination with very large-scale, standard
RGB imagery, and a massive amount of publicly available
ground truth can lead to surprisingly good results. The massive
amount of training data over-compensates the partially poor

3For an interactive demo, check the project webpage http://vision.caltech.
edu/registree/explore-demos.html.

quality of the reference data. Soft probabilistic fusion of
detector outputs of multiple viewpoints (under simplifying but
often sufficiently fulfilled assumptions like locally flat terrain)
can help avoiding direct per-pixel or per-key point match-
ing. Such a detector-based, soft probabilistic fusion approach
would also allow the introduction of different modalities like
LiDAR or SAR, for example, as long as correspondence can
be established via geographic coordinates.

IV. CONCLUSION

In this paper, we have presented a thorough, comprehensive
review and discussion of works that explore the challenging
but very promising task of combining images from satellite and
aerial to street-level sensors. From this review, it emerges that
there is not one gold-standard or a single, general framework
that can generically be applied to any kind of task. Rather,
different applications and data scenarios call for task-specific
techniques and original solutions.

A common hurdle is the very wide baseline between
overhead imagery and images acquired on the ground. This
drastic viewpoint change makes establishing direct, dense
correspondence on per-pixel level largely impossible and one
has to resort to alternative strategies. Thus, multiple viewpoints
are rarely combined at an early image-stage, but rather at
a later stage on per-object basis, through intermediate rep-
resentations, or relying on late fusion of separate detector
outcomes. This implies that many state-of-the-art methods
combine knowledge of the sensor geometries with machine
learning to align detections across viewpoints. The precision
requirements for object localization as well as the available
data sources differ from one application to another, raising
the need for application-specific solutions.

The ever-increasing amount of viewpoints is likely to ease
the wide-baseline matching problem in the near future. For
example, oblique images are today often captured by aerial
campaigns, while 3D information can be reconstructed from
stereoscopic images acquired with EO satellite sensors. These
various oblique images can serve to bridge the gap between
nadir imagery and street-level data. Great promise in this
regard are also UAVs, which allow photo acquisition from
basically arbitrary viewpoints. This heterogeneous but rich
collection of multi-view data in combination with powerful
machine learning techniques can be viewed as a unified
approach to model our environment.

Although still in its infancy, the combination of overhead
and ground images brings the promise of revolutionizing how
we approach geo-spatial problems like self-driving vehicles,
robots-and-drones-based rescue systems, virtual tourism or
reality augmentation with smartphones. The multi-view frame-
works we discussed in this paper open a whole new world of
opportunities in Earth Observation and Computer Vision.

ACKNOWLEDGMENT

This work was partly funded by the Swiss National Science
Foundation under the grant PP00P2-150593 and by the French
Agence Nationale de la Recherche (ANR) under reference
ANR-13-JS02-0005-01 (Asterix project).

http://vision.caltech.edu/registree/explore-demos.html
http://vision.caltech.edu/registree/explore-demos.html


PROCEEDINGS OF THE IEEE 13

REFERENCES

[1] D. Belcher, “The five facets of aerial photography,” Photogramm. Eng.,
vol. 19, no. 5, pp. 746–752, 1953.

[2] J. Luo, D. Joshi, J. Yu, and A. Gallagher, “Geotagging in multimedia
and computer vision – a survey,” Multimed. Tools Appl., vol. 51, no. 1,
pp. 187–211, 2011.

[3] L. Vincent, “Taking online maps down to street level,” Computer,
vol. 40, no. 12, pp. 118–120, Dec 2007.
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