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Spatial point processes intensity estimation with a diverging number of covariates
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Feature selection procedures for spatial point processes parametric intensity estimation have been recently developed since more and more applications involve a large number of covariates. In this paper, we investigate the setting where the number of covariates diverges as the domain of observation increases. In particular, we consider estimating equations based on Campbell theorems derived from Poisson and logistic regression likelihoods regularized by a general penalty function. We prove that, under some conditions, the consistency, the sparsity, and the asymptotic normality are valid for such a setting. We support the theoretical results by numerical ones obtained from simulation experiments and an application to forestry datasets.

Introduction 1.Background

Spatial point pattern data arise in many contexts, e.g. ecology (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF][START_REF] Renner | Point process models for presence-only analysis[END_REF], epidemiology (e.g. [START_REF] Peter | A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point[END_REF][START_REF] Peter | Statistical analysis of spatial and spatio-temporal point patterns[END_REF], criminology (e.g. [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF][START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF], biology (e.g. [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF] and astronomy (e.g. [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF], where interest lies in describing the distribution of an event in space. Stochastic models generating spatial point patterns are called spatial point processes (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF][START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF][START_REF] Peter | Statistical analysis of spatial and spatio-temporal point patterns[END_REF][START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF].

Usually, the first step to analyze spatial point pattern data is to investigate the intensity. The intensity serves as the first-order characteristics of a spatial point process and often becomes the main interest in many studies, especially when the intensity is suspected to depend on spatial covariates. Examples include the study of spatial variation of specific disease risk related to pollution sources (e.g. [START_REF] Peter | A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point[END_REF][START_REF] Peter | Statistical analysis of spatial and spatio-temporal point patterns[END_REF], crime rate analysis in a city related to some demographical information (e.g. [START_REF] Shirota | Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries[END_REF], and modeling of the spatial distribution of trees species in a forest related to some environmental factors (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF][START_REF] Renner | Point process models for presence-only analysis[END_REF].

We focus in this study on the log-linear model for the intensity function of an inhomogeneous spatial point process defined by

ρ(u; β) = exp(z(u) β), u ∈ D ⊂ R d , (1.1)
where z(u) = {z 1 (u), . . . , z p (u)} are the p spatial covariates measured at location u, d represents the state space of the spatial point processes (usually d = 2, 3) and β = {β 1 , . . . , β p } is a real p-dimensional parameter. Hence, our main concern is to assess the magnitudes of the vector β. For parametric estimation, while maximum likelihood estimation (e.g. [START_REF] Berman | Approximating point process likelihoods with glim[END_REF][START_REF] Stephen | Asymptotic properties of estimators for the parameters of spatial inhomogeneous Poisson point processes[END_REF] has been widely implemented for Poisson point processes models, estimating equation-based methods (e.g. [START_REF] Rasmus Plenge | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Rasmus Plenge | Estimating functions for inhomogeneous spatial point processes with incomplete covariate data[END_REF]; [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF][START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] are simpler to implement for more general spatial point processes models, overcoming the possible drawback of MCMC methods which are usually computational expensive [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]. However, when the number of covariates is relatively large, maximum likelihood estimation and estimating equation-based methods become undesirable: all covariates are selected yielding an increasing standard error for parameter estimates.

Feature selection techniques

To select significant covariates, one may consider a traditional procedure such as a stepwise method. This technique starts with an initial set of covariates, then considers adding or deleting a covariate from the current set at each iteration using a criterion such as an F-statistic or AIC. However, such procedure has a number of limitations: it can be numerically unstable and exhibits high variance due to its discrete procedure (e.g. [START_REF] Breiman | Heuristics of instability and stabilization in model selection[END_REF][START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF][START_REF] Friedman | The elements of statistical learning (2nd Edition)[END_REF]. It is even computationally unfeasible especially when the number of covariates is too large (e.g. [START_REF] Breiman | Heuristics of instability and stabilization in model selection[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF].

To overcome this drawback, regularization techniques have recently been developed for spatial point processes intensity estimation. Such methods are able to perform variable selection while keeping interesting properties in terms of prediction. For Poisson point process models, the idea is to penalize the Poisson likelihood by a penalty function such as l 1 penalty (see [START_REF] Renner | Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology[END_REF][START_REF] Andrew | Variable selection for spatial Poisson point processes via a regularization method[END_REF]. For more general point process models, instead of employing the likelihood of the processes which often requires computational intensive MCMC methods [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], penalized versions of estimating equations based on Campbell theorem derived both from Poisson and logistic regression likelihoods have been developed (see [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF][START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF]. Furthermore, [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF] and [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] show that, under some conditions, the estimates obtained from such procedures are consistent, sparse, and asymptotically normal.

Issues in high dimensional data

The motivation of our paper comes from a study of biodiversity in a 50-hectare region (D = 1, 000m × 500m) of the tropical moist forest of Barro Colorado Island (BCI) in central Panama, where censuses have been carried out such that all freestanding woody stems at least 10 mm diameter at breast height were identified, tagged, and mapped, resulting in maps of over 350,000 individual trees with around 300 species (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF]. In the same region, many environmental covariates such as topographical attributes and soil properties have been also collected. In particular, we are interested to study the spatial distribution of 3,604 locations of Beilschmiedia pendula Lauraceae (BPL) trees and to model its intensity as a parametric function of 93 covariates consisting of 2 topological attributes, 13 soil properties and 78 interactions between two soil nutrients.

Although it seems that the number of covariates is not very large with respect to the number of data points, two hours are required to estimate the parameters and select covariates using a standard stepwise procedure. To do this, we use the step function in R which intrinsically assumes that X is a Poisson point process since we use the AIC in the stepwise procedure. For a general point process, other criteria could be investigated such as the one based on the F statistic, but they require to estimate the asymptotic covariance matrix of the estimates at each step: even if we know the right covariates, it is known as a difficult task (see e.g. [START_REF] Coeurjolly | Covariance of empirical functionals for inhomogeneous spatial point processes when the intensity has a parametric form[END_REF]) especially when the number of parameters is large. That would easily triple the time of this estimation/selection procedure. To evaluate the performance of such a selection/estimation procedure, a simulation would be required which is unrealistic (1000 replications of a single model would take 250 days). This motivates us to consider regularization methods. [START_REF] Andrew L Thurman | Regularized estimating equations for model selection of clustered spatial point processes[END_REF] and [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] are the first two theoretical works. Both these works have the important limitation that the number of covariates p is finite. We extend this in the present paper. Asymptotic properties which consider a diverging number of parameters for M -estimators have a long story (e.g Huber, 1973;[START_REF] Portnoy | Asymptotic behavior of M-estimators of p regression parameters when p 2 /n is large. I. consistency[END_REF] but have recently been investigated for penalized regression estimators by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF]; [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]. In particular, as argued by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF], even though the asymptotic properties (i.e., consistency, sparsity, and asymptotic normality) proposed by [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] for penalized generalized linear models under the assumption that p is finite, are encouraging, there are many naive and simple model selection procedures which possess those properties. Establishing the validity of these asymptotic properties in a diverging number of parameters setting is, therefore, a major importance. We study this type of asymptotic properties in the spatial point processes framework. Hence, our work can be regarded as an extension of the study conducted by [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF].

A standard way of measuring asymptotic for spatial point process is the increasing domain asymptotic. Therefore, we investigate the problem where p = p n grows with |D n | the volume of the observation domain. In our setting, |D n | plays the same role as n, the number of observations, in standard problems such as in linear models or generalized linear models. We obtain consistency, sparsity, and asymptotic normality for our estimator. One of our main assumptions is that p 3 n /|D n | → 0 as n → ∞, which is similar to the one required by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] when |D n | is simply replaced by n (the sample size in their context).

Our results are general: (1) a large choice of penalty functions (either convex or non-convex function) and methods (e.g. ridge, lasso, elastic net, SCAD, and MC+) are available; (2) we include a large class of mixing spatial point processes. The implementation is done by combining the spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] R package with the two R packages implementing penalized methods for generalized linear models: glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF].

Outline of the paper

In Section 2, we introduce brief background on spatial point processes as well as regularization methods for spatial point processes intensity estimation. Section 3 presents our asymptotic results. We investigate in Section 4 the finite sample performance of our estimates in a simulation study and in an application to tropical forestry datasets. Conclusion and discussion are presented in Section 5. Proofs of the main results are postponed to Appendices A-C.

Regularization methods for spatial point processes

This section gives brief introduction on spatial point processes and reviews regularization methods for spatial point processes intensity estimation previously studied by [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] when the number of parameters is finite. Let X be a spatial point process on R d . We view X as a locally finite random subset of R d . Let D ⊂ R d be a compact set of Lebesgue measure |D| which will play the role of the observation domain. A realization of X in D is thus a set x = {x 1 , x 2 , . . . , x m }, where x ∈ D and m is the observed number of points in D. Suppose X has intensity function ρ and second-order product density ρ (2) . Campbell theorem (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF] states that, for any function

k : R d → [0, ∞) or k : R d × R d → [0, ∞) E u∈X k(u) = R d k(u)ρ(u)du (2.2) E = u,v∈X k(u, v) = R d R d k(u, v)ρ (2) (u, v)dudv. (2.3)
We may interpret ρ(u)du as the probability of occurence of a point in an infinitesimally small ball with centre u and volume du. Intuitively, ρ (2) (u, v)dudv is the probability for observing a pair of distinct points from X occuring jointly in each of two infinitesimally small balls with centres u, v and volume du, dv. For further background materials on spatial point processes, see for example [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF]; [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF].

In our study, we assume that the intensity function depends on parameter β, ρ = ρ(•; β). The standard parametric methods for estimating β are by maximizing the weighted Poisson likelihood (e.g. [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] or the weighted logistic regression likelihood (e.g. [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF][START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] given respectively by

PL (w; β) = u∈X∩D w(u) log ρ(u; β) - D w(u)ρ(u; β)du,
(2.4)

LRL (w; β) = u∈X∩D w(u) log ρ(u; β) δ(u) + ρ(u; β) - D w(u)δ(u) log ρ(u; β) + δ(u) δ(u) du, (2.5)
where w(•) is a weight non-negative function depending on the first and the secondorder characterictics of X and δ(•) is a non-negative real-valued function. The solution of maximizing (2.4) (resp. (2.5)) is called Poisson estimator (resp. the logistic regression estimator). We refer readers to [START_REF] Guan | A weighted estimating equation approach for inhomogeneous spatial point processes[END_REF] for further details on the weight function w(•) and to [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] for the role of function δ(•). These standard methods cannot perform variable selection. To do so, Thurman et al. (2015) and [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] suggest to maximize a penalized version of (2.4)-(2.5)

Q(w; β) = (w; β) -|D| p j=1 p λ j (|β j |), (2.6) 
where (w; β) is either the Poisson likelihood (2.4) or the logistic regression likelihood (2.5). We refer the second term of (2.6) to a penalization term. In this term, we have mainly two parts: (1) a penalty function p λ parameterized by λ ≥ 0 and (2) the volume of the observation domain |D| which plays the same role as the sample size in the spatial point process framework.

For any non-negative λ, we say that p λ (•) is a penalty function if p λ is a nonnegative function with p λ (0) = 0. Some examples, described in Table 1, include l 2 penalty [START_REF] Arthur | Ridge regression. Encyclopedia of statistical sciences[END_REF], l 1 penalty [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], elastic net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], and MC+ [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF]. Note that, as indicated by (2.6), we allow each direction to have different tuning parameters λ j , j = 1, . . . , p. Such a method is called an adaptive method (e.g. adaptive lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] and adaptive elastic net [START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF]). For further backgrounds about penalty function and regularization methods, see, for example, [START_REF] Friedman | The elements of statistical learning (2nd Edition)[END_REF]. 

l 2 penalty 1 2 λθ 2 l 1 penalty λ|θ| Enet λ{γ|θ| + 1 2 (1 -γ)θ 2 }, for any 0 < γ < 1 SCAD λθI(θ ≤ λ) + γλθ-1 2 (θ 2 +λ 2 ) γ-1 I(λ ≤ θ ≤ γλ) + λ 2 (γ 2 -1) 2(γ-1) I(θ ≥ γλ), for any γ > 2 MC+ λθ -θ 2 2γ I(θ ≤ γλ) + 1 2 γλ 2 I(θ ≥ γλ), for any γ > 1
3 Asymptotic properties

In this section, we present asymptotic properties of the regularized Poisson estimator when both |D n | → ∞ and p n → ∞ as n → ∞. In particular, we consider X as a d-dimensional point process observed over a sequence of observation domain D = D n , n = 1, 2, . . . which expands to R d as n → ∞. We assume that X has a log-linear form given by (1.1) for which the dimension of parameter β, denoted now by p n , diverges to ∞ as n → ∞. In Section 3.1, we provide notation and conditions, and discuss the differences from the setting where p is fixed. Our main results are presented in Section 3.2. For sake of conciseness, we do not present the asymptotic results for the regularized logistic regression estimator. The results are very similar. The main difference is lying in the conditions (C.6) and (C.7) for which the matrices A n , B n , and C n have a different expression (see Remark 2).

Notation and conditions

Throughout this section and Appendices A-C, let

n (w; β) = n,PL (w; β) = u∈X∩Dn w(u) log ρ(u; β) - Dn w(u)ρ(u; β)du, (3.7) Q n (w; β) = n (w; β) -|D n | pn j=1 p λ n,j (|β j |), (3.8) 
be respectively the weighted Poisson likelihood and its penalized version. Let β 0 = {β 01 , . . . , β 0s , β 0(s+1) , . . . , β 0pn } = {β 01 , β 02 } = (β 01 , 0 ) denote the p n -dimensional vector to estimate, where β 01 is the s-dimensional vector of nonzero coefficients and β 02 is the (p n -s)-dimensional vector of zero coefficients. We assume that the number of non-zero coefficients, s, does not depend on n. Let z 01 and z 02 denote the corresponding s-dimensional and (p n -s)-dimensional vectors of spatial covariates. We denote the regularized Poisson estimator by β = ( β 1 , β 2 ) .

We recall the classical definition of strong mixing coefficients adapted to spatial point processes (e.g. [START_REF] Dimitris N Politis | Large sample inference for irregularly spaced dependent observations based on subsampling[END_REF]

: for k, l ∈ N ∪ {∞} and q ≥ 1, define α k,l (q) = sup{|P(A ∩ B) -P(A)P(B)| : A ∈ F (Λ 1 ), B ∈ F (Λ 2 ), Λ 1 ∈ B(R d ), Λ 2 ∈ B(R d ), |Λ 1 | ≤ k, |Λ 2 | ≤ l, d(Λ 1 , Λ 2 ) ≥ q}, (3.9)
where F is the σ-algebra generated by sets Λ 1 andΛ 2 , andB

X ∩ Λ i , i = 1, 2, d(Λ 1 , Λ 2 ) is the minimal distance between
(R d ) denotes the class of Borel sets in R d .
We define the p n × p n matrices A n (w; β 0 ), B n (w; β 0 ) and C n (w; β 0 ) by

A n (w; β 0 ) = Dn w(u)z(u)z(u) ρ(u; β 0 )du, B n (w; β 0 ) = Dn w(u) 2 z(u)z(u) ρ(u; β 0 )du, C n (w; β 0 ) = Dn Dn w(u)w(v)z(u)z(v) {g(u, v) -1}ρ(u; β 0 )ρ(v; β 0 )dudv,
where g(u, v) is the classical pair correlation function [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF] given by

g(u, v) = ρ (2) (u, v) ρ(u)ρ(v) ,
when both ρ and ρ (2) exist with the convention 0/0 = 0. For a Poisson point process, we have

g(u, v) = 1 since ρ (2) (u, v) = ρ(u)ρ(v). If, for example, g(u, v) > 1 (resp.
g(u, v) < 1), this indicates that pair of points are more likely (resp. less likely) to occur at locations u, v than for a Poisson point process.

We denote the s×s top-left corner of A n (w; β 0 ) (resp. B n (w; β 0 ), C n (w; β 0 )) by A n,11 (w; β 0 ) (resp. B n,11 (w; β 0 ), C n,11 (w; β 0 )). It is worth noticing that A n,11 (w; β 0 ), B n,11 (w; β 0 ) and C n,11 (w; β 0 ) depend on n only through D n and not through p n . In what follows, for a squared symmetric matrix M n , ν min (M n ) and ν max (M n ) denote respectively the smallest and largest eigenvalue of M n .

Under the conditions (C.8)-(C.9), we define the sequences a n , b n and c n by

a n = max j=1,...,s |p λ n,j (|β 0j |)|, (3.10) b n = inf j=s+1,...,pn inf |θ|≤ n θ =0 p λ n,j (θ), for n = K 1 p n |D n | , (3.11) c n = max j=1,...,s |p λ n,j (|β 0j |)|, (3.12)
where K 1 is any positive constant. Consider the following conditions (C.1)-(C.9) which are required to derive our asymptotic results:

(C.1) For every n ≥ 1, D n = nE = {ne : e ∈ E}, where E ⊂ R d is convex, compact,
and contains the origin of R d in its interior. (C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2+t, the product density ρ (k) exists and satisfies ρ (k) < ∞.

(C.5) For the strong mixing coefficients (3.9), we assume that there exists some

t > d(2 + t)/t such that α 2,∞ (q) = O(q -t). (C.6) lim inf n ν min |D n | -1 {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} > 0. (C.7) lim inf n ν min |D n | -1 A n (w; β 0 ) > 0.
(C.8) The penalty function p λ (•) is non-negative on R + , continuously differentiable on R + \ {0} with derivative p λ assumed to be a Lipschitz function on R + \ {0}. Furthermore, given (λ n,j ) n≥1 , for j = 1, . . . , s, we assume that there exists (r n,j ) n≥1 , where rn,j |D n |/p n → ∞ as n → ∞, such that, for n sufficiently large, p λ n,j is thrice continuously differentiable in the ball centered at |β 0j | with radius rn,j and we assume that the third derivative is uniformly bounded.

(C.9)

p 3 n /|D n | → 0 as n → ∞.
Conditions (C.1)-(C.8) are quite similar to the ones required by [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] in the setting when the number of parameters to estimate is fixed. Condition (C.2) is slightly stronger since we have to ensure that ρ(u; β) is finite for β in the neighborhood of β 0 . Note that sup u∈R d ρ(u; β 0 ) < ∞ follows directly from condition (C.3). We derive asymptotic properties when both |D n | and p n tend to infinity with n. However, to obtain an estimator which is consistent and has two other properties: sparsity and asymptotic normality, we need that the number of covariates does not grow too fast with respect to the volume of the observation domain. This condition is stated by condition (C.9) which is similar to the one required by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] when |D n | is simply replaced by n (the sample size in their context).

Main results

We state our main results here. Proofs are relegated to Appendices A-C.

We first show in Theorem 1 that the regularized Poisson estimator converges in probability and exhibits its rate of convergence. 

β of Q n (w; β) such that β -β 0 = O P √ p n (|D n | -1/2 + a n ) .
This implies that, the regularized Poisson estimator is root-(|D n |/p n ) consistent. Note that, as expected, the convergence rate is √ p n times the convergence rate of the estimator obtained when p is fixed (see Theorem 1 [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF].

In addition, when we compare our results with the ones obtained by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF], who also considered a diverging number of parameters setting, our estimator has the same rate of convergence when we replace |D n | by n to their context. This rate of convergence also appears in other contexts considering diverging number of parameters setting (see e.g. [START_REF] Lam | Profile-kernel likelihood inference with diverging number of parameters[END_REF][START_REF] Zou | On the adaptive elastic-net with a diverging number of parameters[END_REF][START_REF] Li | Nonconcave penalized M-estimation with a diverging number of parameters[END_REF][START_REF] Cho | Model selection for correlated data with diverging number of parameters[END_REF][START_REF] Wang | Variable selection and parameter estimation via WLAD-SCAD with a diverging number of parameters[END_REF]. Now, we demonstrate in Theorem 2 that such a root-(|D n |/p n ) consistent estimator ensures the sparsity of β; that is, the estimate will correctly set β 2 to zero with probability tending to 1 as n → ∞, and β1 is asymptotically normal.

Theorem 2. Assume the conditions (C.1)-(C.9) are satisfied. If

a n |D n | → 0, b n |D n |/p 2 n → ∞ and c n √ p n → 0 as n → ∞, the root-(|D n |/p n ) consistent local maximizer β = ( β 1 , β 2 )
in Theorem 1 satisfies:

(i) Sparsity:

P( β2 = 0) → 1 as n → ∞, (ii) Asymptotic Normality: |D n | 1/2 Σ n (w; β 0 ) -1/2 ( β1 -β 01 ) d - → N (0, I s ),
where

Σ n (w; β 0 ) =|D n |{A n,11 (w; β 0 ) + |D n |Π n } -1 {B n,11 (w; β 0 ) + C n,11 (w; β 0 )} {A n,11 (w; β 0 ) + |D n |Π n } -1 , (3.13) Π n =diag{p λ n,1 (|β 01 |), . . . , p λn,s (|β 0s |)}. (3.14)
As a consequence, Σ n (w; β 0 ) is the asymptotic covariance matrix of β1 . Here,

Σ n (w; β 0 ) -1/2 is the inverse of Σ n (w; β 0 ) 1/2 , where Σ n (w; β 0 ) 1/2 is any square ma- trix with Σ n (w; β 0 ) 1/2 Σ n (w; β 0 ) 1/2 = Σ n (w; β 0 ).
Remark 1. For lasso and adaptive lasso, Π n = 0. For other penalties, since

c n = o(1), then Π n = o(1). Since A n,11 (w; β 0 ) = O(|D n |) from conditions (C.1)-(C.3), |D n | Π n is asymptotically negligible with respect to A n,11 (w; β 0 ) .
Remark 2. Theorems 1 and 2 remain true for the regularized logistic regression estimator if we replace in the expression of the matrices A n , B n , and C n , w(u) by w(u)δ(u)/(ρ(u; β 0 ) + δ(u)), u ∈ D n and extend the condition (C.3) by adding sup u∈R d δ(u) < ∞.

The proofs of Theorems 1 and 2 for this estimator are slightly different mainly because unlike the Poisson likelihood for which we have 2 n (w; β) = -A n (w; β), for the regularized logistic regre 2 n (w; β) is now stochastic and we only have E( 2 n (w; β)) = -A n (w; β). Despite the additional difficulty, we maintain that no additional assumption is required.

We show in Theorem 2 that the sparsity and asymptotic normality are still valid when the number of parameters diverges. By Remark 1, when n is large enough, Σ n (w; β 0 ) in (3.13) becomes approximately

|D n |{A n,11 (w; β 0 )} -1 {B n,11 (w; β 0 ) + C n,11 (w; β 0 )}{A n,11 (w; β 0 )} -1 ,
which is precisely the asymptotic covariance matrix of the estimator of β 01 obtained by maximizing the likelihood function or solving estimating equations based on the submodel knowing that β 02 = 0. This shows that when n is sufficiently large, our estimator is as efficient as the oracle one.

To satisfy Theorem 2, we require that

a n |D n | → 0, b n |D n |/p 2 n → ∞ and c n √ p n → 0 as n → ∞ simultaneously.
In particular, conditions on a n and c n ensure the asymptotic normality of β1 while condition on b n is used to prove the sparsity. Conditions regarding a n and c n are similar to the ones imposed by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] when |D n | is replaced by n in their context. However, we require a slightly stronger condition on b n than the one required by [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] which in the present setting could be written as b n |D n |/p n → ∞. As compensation, we do not need to impose, as [START_REF] Fan | Nonconcave penalized likelihood with a diverging number of parameters[END_REF] did, for any 0 < K 2 < ∞,

ν max |D n | -1 A n (w; β 0 ) < K 2
. Such a condition is not straightforwardly satisfied in our setting since the other conditions only imply that

ν max |D n | -1 A n (w; β 0 ) = O(p n ).
Further details regarding a n , b n and c n for each method are presented in Table 2. For the ridge regularization method, b n = 0, preventing from applying Theorem 2 for this penalty. For lasso and elastic net, a n = K 3 b n for some constant K 3 > 0 (K 3 =1 for lasso). The two conditions a n |D n | → 0 and b n |D n |/p 2 n → ∞ as n → ∞ cannot be satisfied simultaneously. This is different for the adaptive versions where a compromise can be found by adjusting the λ n,j 's, as well as the two non-convex penalties SCAD and MC+, for which λ n can be adjusted. For the regularization methods we consider in this study, the condition c n √ p n → 0 is implied by the condition a n |D n | → 0 as n → ∞ and condition (C.9).

Numerical results

This section is devoted to present numerical results. More precisely, we conduct simulation experiments in Section 4.1 to assess the finite sample peformance of our estimates and apply our method to an application in ecology in Section 4.2. We 

{λ n,j (1 -γ)|β 0j | + γ } γ min j=s+1,...pn {λ n,j } (1 -γ) max j=1,...,s {λ n,j } SCAD 0 * λ n ** 0 * MC+ 0 * λ n - K 1 √ pn γ √ |Dn| ** 0 * * if λ n → 0 for n sufficient large ** if λ n |D n |/p 2 n → ∞ for n sufficient large
apply the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL) to select covariates and estimate their coefficients. Similar approach can be straightforwardly used for the regularized versions using logistic regression likelihood.

To numerically evaluate the parameters estimates, we apply Berman-Turner method [START_REF] Berman | Approximating point process likelihoods with glim[END_REF] combined with coordinate descent algorithm [START_REF] Friedman | Pathwise coordinate optimization[END_REF] to perform variable selection and parameter estimation. Berman-Turner device allows to show that maximizing (2.4) is equivalent to fitting a weighted Poisson generalized linear model, so the standard software for generalized linear models (GLMs) can be used. This has been exploited by the spatstat R package [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]. As we make links between spatial point processes intensity estimation and GLMs, we only have to deal with feature selection procedures for GLMs. Hence, we clearly have many advantages: the various computational strategies are carefully studied, and, in particular, efficiently implemented in R. In this study, to compute the regularization path solutions, we employ coordinate descent algorithm [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. This is implemented in the glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for regularization methods for GLMs using some convex penalties (i.e., ridge, lasso, elastic net, adaptive lasso and adaptive elastic net) and in the ncvreg [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF] for regularization methods for GLMs using some non-convex penalties (i.e., SCAD and MC+). More details for computational strategies are discussed in detail by [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF].

Our methods rely on the tuning parameter λ. Some previous studies (see e.g. [START_REF] Zou | On the degrees of freedom of the lasso[END_REF][START_REF] Wang | Tuning parameter selectors for the smoothly clipped absolute deviation method[END_REF][START_REF] Wang | Shrinkage tuning parameter selection with a diverging number of parameters[END_REF] suggest to use a modified BIC criterion to select the tuning parameter. We follow the literature and choose λ by minimizing WQBIC(λ), a modified version of the BIC criterion, defined by

WQBIC(λ) = -2 (w; β(λ)) + s(λ) log |D|,
where s(λ) = p j=1 I{ βj (λ) = 0} is the number of selected covariates with non-zero regression coefficients and |D| is the volume of observation domain. To implement the adaptive methods (i.e., adaptive lasso and adaptive elastic net), we follow [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] and define λ j = λ/| βj (ridge)|, j = 1, • • • , p, where β(ridge) is the estimates obtained from ridge regression and λ is a tuning parameter chosen by WQBIC(λ) criterion as described above. Following [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF], we fix γ = 0.5 for elastic net and its adaptive version, γ = 3.7 for SCAD, and γ = 3 for MC+. For further discussion regarding the selection of γ for SCAD and MC+, see e.g. [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF].

Simulation study

In this section, we investigate the behavior of our estimators in a simulation experiment in different situations when a large number of covariates for fitting spatial point process intensity estimation is involved. We intend to extend the setting considered by [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF]. We start with relatively complex situation where strong multicollinearity is present (Scenarios 1a and 2a) and we then consider a more complex setting using real datasets (Scenarios 1b and 2b). We have two different scenarios (Scenarios 1 and 2) for which the number of true covariates as well as their coefficients are different.

The spatial domain we consider is D = [0, 1000] × [0, 500]. The true intensity function has the form ρ(u; β 0 ) = exp(z(u) β 0 ), where z(u) = {1, z 1 (u), . . . , z 50 (u)} and β 0 = {β 0 , β 01 , • • • , β 050 }. We set β 0 such that the mean number of points over D is equal to 1600. We consider two different scenarios described as follows.

Scenario 1. We define the true vector β 0 = {β 0 , 2, 0.75, 0, • • • , 0}. To define the covariates, we center and scale the 201 × 101 pixel images of elevation (x 1 ) and gradient of elevation (x 2 ) contained in the bei datasets of spatstat library in R and use them as two true covariates. In addition, we create two settings to define extra covariates:

a. First, we generate 48 201 × 101 pixel images of covariates as a standard Gaussian white noise and denote them by x 3 , . . . , x 50 . Second, we transform them, together with x 1 and x 2 , to have multicollinearity. In particular, we define z(u) = V x(u), where x(u) = {x 1 (u), . . . , x 50 (u)} . More precisely, V is such that Ω = V V, and (Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 50, except (Ω) 12 = (Ω) 21 = 0, to preserve the correlation between x 1 and x 2 . In this setting, z(u) = {1, z(u)}.

b. We center and scale the 13 50 × 25 pixel images of soil nutrients obtained from the study in tropical forest of Barro Colorado Island (BCI) in central Panama (see [START_REF] Condit | Tropical forest census plots[END_REF][START_REF] Stephen P Hubbell | Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[END_REF][START_REF] Stephen P Hubbell | Barro Colorado forest census plot data[END_REF] and convert them to be 201 × 101 pixel images as x 1 and x 2 .

In addition, we consider the interaction between two soil nutrients such that we have 50 covariates in total. We use 48 covariates (13 soil nutrients and 35 interactions between them) as the extra covariates.

Together with x 1 and x 2 , we keep the structure of the covariance matrix to preserve the complexity of the situation. In this setting, we have z(u) = x(u) = {1, x 1 (u), . . . , x 50 (u)} .

Scenario 2. In this setting, we consider five true covariates out of 50 covariates.

In addition of elevation (x 1 ) and gradient of elevation (x 2 ), we convert 50 × 25 pixel images of concentration of Aluminium (x 3 ), Boron (x 4 ) and Calcium (x 5 ) in the soil to be 201 × 101 pixel images as x 1 and x 2 and set them to be other three true covariates. All five covariates are centered and scaled. We define the true coefficient vector β 0 = {β 0 , 5, 4, 3, 2, 1, 0, • • • , 0}. As in Scenario 1, we make two settings to define 45 extra covariates:

a. This setting is similar to that of Scenario 1a. We generate 45 201×101 pixel images of covariates as standard Gaussian white noise, denote them by x 6 , . . . , x 50 , and define z(u) = V x(u), where V is such that Ω = V V, and (Ω) ij = (Ω) ji = 0.7 |i-j| for i, j = 1, . . . , 50, except (Ω) kl = (Ω) lk = 0, for k, l = 1, • • • , 5, k = l, to preserve the correlation among x 1 -x 5 . We still define z(u) = {1, z(u)}.

b. We use the real dataset as in Scenario 1b and consider similar setting. In this setting, we define 5 true covariates which have different regression coefficients as in Scenario 1b.

With these scenarios, we simulate 2000 spatial point patterns from a Thomas point process using the rThomas function in the spatstat package. We set the interaction parameter κ to be κ = 5 × 10 -4 , κ = 5 × 10 -5 and let ω = 20. Briefly, smaller values of ω correspond to tighter clusters, and smaller values of κ correspond to a fewer number of parents (see e.g. [START_REF] Møller | Statistical inference and simulation for spatial point processes[END_REF], for further details regarding the Thomas point process). For each scenario with different κ, we fit the intensity to the simulated point pattern realizations.

We report the performances of our estimates in terms of two characteristics: selection and prediction properties. We present the selection properties in Table 3 and the prediction properties in Table 4 To evaluate the selection properties of the estimates, we consider the true positive rate (TPR), the false positive rate (FPR), and the positive predictive value (PPV). We want to find the methods which have a TPR close to 100% meaning that it can select correctly all the true covariates, a FPR close to 0 showing that it can remove all the extra covariates from the model, and a PPV close to 100% indicating that, for Scenario 1 (resp. Scenario 2), it can keep exactly the two (resp. five) true covariates and remove all the 48 (resp. 45) extra covariates. In general, for both regularized PL and regularized WPL, the best selection properties are obtained from larger κ (5 × 10 -4 ) which indicates weaker spatial dependence. To compare the regularization methods, we emphasize here that the main difference between regularization methods which satisfy (adaptive lasso, adaptive elastic net, SCAD, and MC+) and which cannot satisfy (lasso, elastic net) our theorems is that the methods which cannot satisfy our theorems tend to over-select covariates, leading to suffering from larger FPR and smaller PPV in general. Among all regularization methods considered in this study, adaptive lasso and adaptive elastic net seem to outperform the other methods in most cases. Although adaptive lasso and adaptive elastic net perform quite similarly, the adaptive lasso is slightly better.

In this simulation study, we are still able to show that even when the strong multicollinearity exists such as in Scenario 1a, our proposed methods work well for the penalization methods satisfying our theorems. However, as probably expected, our methods are getting difficult to distinguish between the important and the noisy covariates as the setting becomes more and more complex. In the experiments we conduct, we find that the regularized PL and WPL (with adaptive lasso) perform quite similar for the easiest (Scenario 1a) and the toughest (Scenario 2b) setting. For Scenarios 1b and 2a, the regularized WPL with adaptive lasso seems to be more favorable. From Table 3, we would recommend in general to combine the regularized WPL with the adaptive lasso to perform variable selection.

Table 4 gives the prediction properties of the estimates (except for β 0 which is excluded) in terms of biases, standard deviations (SD), and square root of mean squared errors (RMSE), some criteria we define by

Bias = 50 j=1 { Ê( βj ) -β 0j } 2 1 2 , SD = 50 j=1 σ2 j 1 2 , RMSE = 50 j=1 Ê( βj -β 0j ) 2 1 2
, where Ê( βj ) and σ2 j are respectively the empirical mean and variance of the estimates βj , for j = 1, . . . , 50.

In general, the properties improve with larger κ due to weaker spatial dependence. Regarding the regularization methods considered in this study, adaptive lasso and adaptive elastic net perform best. Adaptive elastic net becomes more preferable than adaptive lasso for a clustered process (κ = 5 × 10 -5 ) and for a structured spatial data (Scenarios 1b and 2b). The adaptive elastic net is more efficient than the adaptive lasso especially in the complex situation: large number of covariates, strong multicollinearity, clustered processes, and complex spatial structure due to the advantage of combining l 1 and l 2 penalties.

By employing regularized WPL, we have potentially more efficient estimates than that of the regularized PL, especially for the more clustered process. However, this does not mean that the regularized WPL is able to improve the RMSE since it usually introduces extra biases. Regularized WPL seems more appropriate for the case having covariates with complex spatial structure (Scenarios 1b and 2b). Otherwise, regularized PL is more favorable. From Table 4, when the focus is on prediction, we would recommend to apply adaptive elastic net as a general advice, and we would combine with regularized WPL if the covariates have complex spatial structure (e.g. Scenarios 1b and 2b) or combine with regularized PL if there is no evidence of complex spatial structure in the covariates (e.g. Scenarios 1a and 2a).

Note that, from Table 3, the adaptive lasso is more preferable if the focus is on variable selection while, from Table 4, the adaptive elastic net is more favorable if the focus is for prediction. To have a more general recommendation, we would recommend applying adaptive elastic net when we are faced with a complex situation: a large number of covariates, strong multicollinearity, clustered processes and complex spatial structure. By combining l 1 and l 2 penalties, the adaptive elastic net provides a nice balance between selection and prediction properties. This is why in most complex cases (Scenario 2 with κ = 5 × 10 -5 ), adaptive elastic net decides to choose more covariates than adaptive lasso (which includes true and noisy covariates) to suffer from slightly less appropriate properties for the selection performance but to be able to improve significantly the prediction properties.

Application to forestry datasets

We now consider the study of ecology in a tropical rainforest in Barro Corrolado Island (BCI), Panama, described previously in Section 1. In particular, we are interested in studying the spatial distribution of 3,604 locations of Beilschmiedia pendula Lauraceae (BPL) trees by modeling its intensity as a log-linear function of 93 covariates consisting of 2 topological attributes, 13 soil properties, and 78 interactions between two soil nutrients.Regarding the relatively large number of covariates, we apply our proposed methods to select few covariates among them and estimate their coefficients. In particular, we use the regularized Poisson methods with the lasso, adaptive lasso, and adaptive elastic net. Note that we center and scale all the covariates to observe which covariates owing relatively large effect on the intensity. We present in Table 5 the number of selected and non-selected covariates by each method. Out of 93 covariates, more than 50% from the total number of covariates are selected by regularized PL while much fewer covariates are selected by regularized WPL. The regularized PL seems to overfit the model.

Regarding lasso method, 77 covariates are selected by regularized PL method while 20 covariates are selected by regularized WPL. Compared to the two adaptive methods (i.e., adaptive lasso and adaptive elastic net), lasso tends to keep less important covariates. This may explain why lasso cannot satisfy our Theorem 2. In terms of selection properties, adaptive lasso and adaptive elastic net perform similarly when regularized WPL is applied. 6 gives the information regarding nine covariates commonly selected among the six methods. Although the magnitudes of the estimates can be slightly different, the signs all agree with each other.

These results suggest that BPL trees favor to live in the areas of higher elevation and slope with a high concentration of Copper and Manganese in the soil. Furthermore, BPL trees prefer to live in the areas with lower concentration levels of Phosphorus and Zinc in the soil. The interaction between Aluminum and Phosphorus gives a negative association with the appearance of BPL trees while the interaction between Magnesium and Phosphorus and the interaction between Nitrogen mineralization and pH show a positive association with the occurrence of BPL trees. The maps of 3,604 locations of BPL trees, as well as the nine commonly selected covariates, are depicted in Figure 1.

Conclusion and discussion

We consider feature selection techniques for spatial point processes intensity estimation by regularizing estimating equations derived from Poisson and logistic regression likelihoods in a setting where the number of parameters diverges as the volume of observation domain increases. Under some conditions, we prove that the estimates obtained from such setting satisfy consistency, sparsity, and asymptotic normality. Our results are available for large classes of spatial point processes and for many penalty functions.

We conduct simulation experiments to evaluate the finite sample properties of the regularized Poisson estimator and regularized weighted Poisson estimator. From the results, we would recommend in general the combination between regularized WPL and adaptive lasso if the concern is on variable selection. Furthermore, when the focus is on prediction, the regularized WPL combined with the adaptive elastic net is more preferable for the situation where there is a complex spatial structure in the covariates. For more general advice, we would recommend using the adaptive elastic net rather than the adaptive lasso since the adaptive elastic net is able to balance the selection and the prediction properties by combining the l 1 and the l 2 penalties.

To implement our methods, we combine the spatstat R package and the two R packages glmnet and ncvreg dealing with penalized generalized linear models. This results in a computationally fast procedure even when the number of covariates is large. It is worth noticing that, as other regularization methods, our methods also rely on the selection of the tuning parameter. As the study in a classical regression analysis, the BIC-type methods are proposed to obtain selection consistent estimator (see e.g. [START_REF] Zou | On the degrees of freedom of the lasso[END_REF][START_REF] Wang | Tuning parameter selectors for the smoothly clipped absolute deviation method[END_REF][START_REF] Wang | Shrinkage tuning parameter selection with a diverging number of parameters[END_REF]. We have numerical evidence from simulation studies that this criterion can satisfy the selection consistency. Theoretical justification in this spatial point process framework is the purpose of a future research.

We apply our methods to the Barro Corrolado Island study to estimate the intensity of Beilschmiedia pendula Lauraceae (BPL) tree as a log-linear function of 93 environmental covariates. Regularized weighted Poisson likelihood combined with adaptive elastic net performs similarly to adaptive lasso. Among 93 covariates, we find nine spatial covariates which may have a high influence to the appearance of BPL trees, including two topological attributes: elevation and slope, four soil nutrients: Copper, Manganese, Phosphorus and Zinc, and three interaction between two soil properties: the interaction between Aluminum and Phosphorus, between Magnesium and Phosphorus, and between Nitrogen mineralisation and pH.

A further work would consider to include the 296 other species of trees, which were surveyed in the same observation region, to study the existence of any competition between BPL and other species of trees in the forest. In such a situation, the methods used in this study may face some computational issues. The Dantzig selector [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]) might be a good alternative since the implementation for linear models (and generalized linear models) results in a linear programming. Thus, more competitive algorithms are available. It would be interesting to bring this approach to spatial point process framework.

Proof. Using Campbell Theorems (2.2)-(2.3), the score vector 

B Proof of Theorem 1

In the proof of this result and the following ones, the notation κ stands for a generic constant which may vary from line to line. In particular this constant is independent of n, β 0 and k.

Proof. Let d n = √ p n (|D n | -1/2 + a n )
, and k = {k 1 , k 2 , . . . , k pn } . We remind the reader that the estimate of β 0 is defined as the maximum of the function Q n (given by (3.8)) over Θ, an open convex bounded set of R pn for any n ≥ 1. For any k such that k ≤ K < ∞, β 0 + d n k ∈ Θ for n sufficiently large. Assume this is valid in the following. To prove Theorem 1, we aim at proving that for any given > 0, there exists sufficiently large K > 0 such that for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ , where ∆ n (k) = Q n (w; β 0 + d n k) -Q n (w; β 0 ). (B.16)
Equation (B.16) will imply that with probability at least 1 -, there exists a local maximum in the ball {β 0 + d n k : k ≤ K}, and therefore a local maximizer β is such that ββ 0 = O P (d n ). We decompose ∆ n (k) as ∆ n (k) = T 1 + T 2 where

T 1 = n (w; β 0 + d n k) -n (w; β 0 ) T 2 = |D n | pn j=1 p λ n,j (|β 0j |) -p λ n,j (|β 0j + d n k j |) .
Since ρ(u; •) is infinitely continuously differentiable and

(2) n (w; β) = -A n (w; β), then using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T 1 = d n k (1) n (w; β 0 ) - 1 2 d 2 n k A n (w; β 0 )k + 1 2 d 2 n k (A n (w; β 0 ) -A n (w; β 0 + td n k)) k.
By conditions (C.2)-(C.3), there exists a non-negative constant κ such that

1 2 A n (w; β 0 ) -A n (w; β 0 + td n k) ≤ κd n |D n |p n .
Now, denote ν := lim inf n→∞ ν min (|D n | -1 A n (w; β 0 )). By condition (C.7), we have that for any k

0 < ν ≤ k (|D n | -1 A n (w; β 0 )) k k 2 .
Therefore, we have

T 1 ≤ d n (1) n (w; β 0 ) k - ν 2 d 2 n |D n | k 2 + κp n d 3 n |D n | k 2 .
Now by the condition (C.9) and by assumption that

a n = O(|D n | -1/2 ), we obtain p n d n = o(1), so κp n d 3 n |D n | k 2 = o(1)d 2 n |D n | k 2 .
Hence, for n sufficiently large

T 1 ≤ d n (1) n (w; β 0 ) k - ν 4 d 2 n |D n | k 2 .
Regarding the term T 2 ,

T 2 ≤ T 2 := |D n | s j=1 p λ n,j (|β 0j |) -p λ n,j (|β 0j + d n k j |)
since for any j the penalty function p λ n,j is non-negative and p λ n,j (|β 0j |) = 0 for j = s + 1, . . . , p n . From (C.8), for n sufficiently large, p λ n,j is twice continuously differentiable for every β j = β 0j +td n k j with t ∈ (0, 1). Therefore using a third-order Taylor expansion, there exist t j ∈ (0, 1), j = 1, . . . , s such that -T 2 = T 2,1 + T 2,2 + T 2,3 , where

T 2,1 = d n |D n | s j=1 k j p λ n,j (|β 0j |) sign(β 0,j ) ≤ √ sa n d n |D n | k ≤ d 2 n |D n | k , T 2,2 = 1 2 d 2 n |D n | s j=1 k 2 j p λ n,j (|β 0j |) ≤ c n d 2 n |D n | k 2 , T 2,3 = 1 6 d 3 n |D n | s j=1 k 3 j p λ n,j (|β 0j + t j d n k j |) ≤ κd 3 n |D n |.
The three inequalities above are obtained using the definitions of a n and c n , condition (C.8) and Cauchy-Schwarz inequality. We deduce that for n sufficiently large

T 2 ≤ |T 2 | ≤ 2d 2 n |D n | k , and then ∆ n (k) ≤ d n (1) n (w; β 0 ) k - ν 4 d 2 n |D n | k 2 + 2d 2 n |D n | k .
We now return to (B.16): for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ P (1) n (w; β 0 ) > ν 4 d n |D n |K -2d n |D n | . Since d n |D n | = O( p n |D n |)
, by choosing K large enough, there exists κ such that for n sufficiently large

P sup k =K ∆ n (k) > 0 ≤ P (1) n (w; β 0 ) > κ p n |D n | ≤
for any given > 0 from (A.15) in Lemma 1.

C Proof of Theorem 2

Before proving Theorem 2, we present Lemmas 2-3. Lemma 2 is used to prove Theorem 2(i) while Lemma 3 is used to derive Theorem 2(ii). 

(C. 2 )

 2 The intensity function has the log-linear specification given by (1.1) where β ∈ Θ and Θ is an open convex bounded set of R pn . Furthermore, we assume that there exists a neighborhood Ξ(β 0 ) of β 0 such that sup

Theorem 1 .

 1 Assume the conditions (C.1)-(C.5) and (C.7)-(C.9) hold. Let a n and c n be given respectively by (3.10) and (3.12). If a n = O(|D n | -1/2 ) and c n = o(1), then there exists a local maximizer

Figure 1 :

 1 Figure 1: Maps of 3,604 locations of BPL trees and the nine common selected covariates, from left to right, row 1: elevation, slope and Copper, row 2: Manganese, Phosphorus and Zinc, row 3: the interaction between Aluminum and Phosphorus, between Magnesium and Phosphorus, and between Nitrogen mineralisation and pH.

  n (w; β 0 )] = B n (w; β 0 ) + C n (w; β 0 ).Conditions (C.4)-(C.5) allow us to obtain that sup u∈Rd R d {g(u, v) -1}dv < ∞. We then deduce using conditions (C.1)-(C.3) that B n (w; β 0 ) + C n (w; β 0 ) = O(p n |D n |).The result is proved since for any centered real-valued stochastic process Y n with finite variance Var[Y n ], Y n = O P ( Var[Y n ]).

Lemma 2 .

 2 Assume the conditions (C.1)-(C.8) hold. If a n = O(|D n | -1/2 ) and b n |D n |/p 2n → ∞ as n → ∞, then with probability tending to 1, for any β 1 satisfying β 1 -β 01 = O P ( p n /|D n |), and for any constant K 1 > 0,Q n w; (β 1 , 0 ) = max β 2 ≤K 1 √ pn/|Dn| Q n w; (β 1 , β 2 ) . Proof. Let ε n = K 1 p n /|D n |.It is sufficient to show that with probability tending to 1 as n → ∞, for anyβ 1 satisfying β 1 -β 01 = O P ( p n /|D n |),we have for any j = s + 1, . . . , p n ∂Q n (w; β) ∂β j < 0 for 0 < β j < ε n , and (C.17)∂Q n (w; β) ∂β j > 0 for -ε n < β j < 0. (C.18) From (3.7), ∂ n (w; β) ∂β j = ∂ n (w; β 0 ) ∂β j + R n ,where R n = Dn w(u)z j (u) ρ(u; β) -ρ(u; β 0 ) du. Using similar arguments used in the proof of Lemma 1, we can prove that∂ n (w; β 0 ) ∂β j = O P ( |D n |).Let u ∈ R d . By Taylor expansion, there exists t ∈ (0, 1), such thatρ(u; β) = ρ(u; β 0 ) + (β -β 0 ) z(u)ρ(u; β 0 + t(β -β 0 )).For n sufficiently large, β 0 +t(β -β 0 ) ∈ Ξ(β 0 ) defined in condition (C.2). Therefore, for n sufficiently large, we have by Cauchy-Schwarz inequality and conditions (C.2)-(C.3)|R n | ≤ κ Dn ββ 0 z(u) du = O P ( |D n |p 2 n ).We therefore deduce that for any j = s + 1, . . . , p n ∂ n (w; β)∂β j = O P ( |D n |p 2 n ). (C.19)Now, we want to prove (C.17). Let 0 < β j < ε n and b n be the sequence given by (3.11). By condition (C.8), b n is well-defined and since by the assumption b n |D n |/p 2 n → ∞, in particular, b n > 0 for n sufficiently large. Therefore, for n sufficiently large,P ∂Q n (w; β) ∂β j < 0 = P ∂ n (w; β) ∂β j -|D n |p λ n,j (|β j |) sign(β j ) < 0 = P ∂ n (w; β) ∂β j < |D n |p λ n,j (|β j |)The assertion (C.17) is therefore deduced from (C.19) and from the assumption that b n |D n |/p 2 n → ∞ as n → ∞. We proceed similarly to prove (C.18). Lemma 3. Under the conditions (C.1)-(C.8) and the conditions required in Lemma 2, the following convergence holds in distribution as n → ∞ {B n,11 (w; β 01 ) + C n,11 (w; β 01 )} -1/2 (1) n,1 (w; β 01 ) (w; β 0 ) is the first s components of (1) n (w; β 0 ) and B n,11 (w; β 0 ) (resp. C n,11 (w; β 0 )) is the s × s top-left corner of B n (w; β 0 ) (resp C n (w; β 0 )). Proof. By Lemma 2 and by using Campbell Theorems (2.2)-(2(w; β 0 )] = B n,11 (w; β 0 ) + C n,11 (w; β 0 ).The remainder of the proof follows[START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. Let C i = i + (-1/2, 1/2] d be the unit box centered at i ∈ Z d and defineI n = {i ∈ Z d , C i ∩ D n = ∅}. Set D n = i∈In C i,n , where C i,n = C i ∩ D n . We have (1) n,1 (w; β 0 ) = i∈In Y i,nwhereY i,n = u∈X∩C i,n w(u)z 01 (u) -C i,n w(u)z 01 (u) exp(β 01 z 01 (u))du.For any n ≥ 1 and any i ∈ I n , Y i,n has zero mean, and by condition (C.4(C.21) with conditions (C.1)-(C.6), we can applyKarácsony (2006, Theorem 4), a central limit theorem for triangular arrays of random fields.Proof. We now focus on the proof of Theorem 2. Since Theorem 2(i) is proved by Lemma 2, we only need to prove Theorem 2(ii), which is the asymptotic normality of β1 . As shown in Theorem 1, there is a root-(|D n |/p n ) consistent local maximizer β of Q n (w; β), and it can be shown that there exists an estimator β1 in Theorem 1 that is a root-(|D n |/p n ) consistent local maximizer of Q n w; (β 1 , 0 ) , which is regarded as a function of β 1 , and that satisfies ∂Q n (w; β) ∂β j = 0 for j = 1, . . . , s and β = ( β 1 , 0 ) .There exists t ∈ (0, 1) andβ = β + t(β 0 -β) such that for j = 1, • • • , s 0 = ∂ n (w; β) ∂β j -|D n |p λ n,j (| βj |) sign( βj ) β) ∂β j ∂β l ( βl -β 0l ) -|D n |p λ n,j (| βj |) sign( βj ) = ∂ n (w; β 0 ) ∂β j + s l=1 ∂ 2 n (w; β 0 ) ∂β j ∂β l ( βl -β 0l ) + s l=1 Ψ n,jl ( βl -β 0l ) -|D n |p λ n,j (|β 0j |) sign(β 0j ) -|D n |φ n,j ,β0 ) ∂β j ∂β l and φ n,j = p λ n,j (| βj |) sign( βj ) -p λ n,j (|β 0j |) sign(β 0j ). Since p λ is a Lipschitz function by condition (C.8), there exists κ ≥ 0 such that by condition on a n φ n,j = p λ n,j (| βj |) sign( βj ) -p λ n,j (|β 0j |) sign(β 0j ) = p λ n,j (| βj |) -p λ n,j (|β 0j |) sign( βj ) + p λ n,j (|β 0j |) sign( βj ) -sign(β 0j ) ≤ κ | βj | -|β 0j | + 2a n ≤ κ| βj -β 0j | + 2a n . (C.23)

Table 1 :

 1 Examples of penalty function.

	Penalty p λ (θ)

Table 2 :

 2 Details of the sequences a n , b n and c n for a given regularization method.

	Method a n			b n	c n
	Ridge λ n max j=1,...s	{|β 0j |}	0	λ n
	Lasso λ n			λ n	0
	Enet	λ n (1 -γ) max j=1,...s	{|β 0j |} + γ γλ n	(1 -γ)λ n
	AL	max j=1,...s	{λ n,j }	min j=s+1,...pn	{λ n,j } 0
	Aenet	max j=1,...s			

Table 3 :

 3 Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of Thomas processes on the domain D for two different values of κ and for the two different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

		Regularized PL Regularized WPL Regularized PL Regularized WPL
	Method		κ = 5 × 10 -4					κ = 5 × 10 -5		
		TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV
						Scenario 1a					
	Lasso	100 1 13 28	96	4	62	97 23 20	64	1	76
	Enet	100 1 34 12	93	8	48	97 48 10	59	2	58
	AL	100 1 1	92	97	0 1	96	95	3	68	70	0 1	98
	Aenet	100 1 2	76	97	1	85	95	6	52	67	0 1	95
	SCAD 100 1 7	41	97	1	87	96	4	61	56	0 1	79
	MC+	100 1 8	37	96	1	85	96	5	58	52	1	74
						Scenario 1b					
	Lasso	100 1 45 10	91 11	52	100 1 96	4	20	6	22
	Enet	100 1 63	7	87 18	31	100 1 98	4	15	6	14
	AL	100 1 26 19	95	5	81	99 85	5	26	5	35
	Aenet	100 1 30 15	95	6	74	100 1 87	5	24	5	30
	SCAD 100 1 26 18	93	5	76	100 1 76	5	23	4	28
	MC+	100 1 26 17	93	5	76	99 76	5	22	5	27
						Scenario 2a					
	Lasso	98 93 10	84 73	14	98 96 10	47 35	16
	Enet	99 98 10	85 80	11	99 98 10	46 38	12
	AL	95 49 18	83 35	27	95 64 15	50 23	28
	Aenet	96 52 17	84 40	21	96 68 14	48 26	20
	SCAD	86 74 13	65 45	36	75 60 21	39 26	30
	MC+	87 78 13	65 47	35	73 60 22	39 26	30
						Scenario 2b					
	Lasso	80 64 13	75 60	12	78 69 11	64 57	9
	Enet	85 73 12	82 69	11	84 79 11	68 64	8
	AL	56 26 19	54 25	20	59 35 17	48 30	13
	Aenet	59 30 18	57 29	18	64 43 15	52 36	11
	SCAD	43 21 20	42 20	23	46 24 27	41 25	16
	MC+	44 21 20	43 20	23	46 24 26	41 26	16

Table 4 :

 4 Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of Thomas processes on the domain D for two different values of κ and for the two different scenarios. Different penalty functions are considered as well as two estimating equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson likelihood (WPL).

		Regularized PL Regularized WPL Regularized PL Regularized WPL
	Method	κ = 5 × 10 -4	κ = 5 × 10 -5
		Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
		Scenario 1a	
	Lasso 0.19 0.19 0.27 0.43 0.29 0.52 0.29 0.60 0.67 0.94 0.53 1.08
	Enet	0.27 0.22 0.35 0.72 0.32 0.79 0.34 0.66 0.74 1.21 0.40 1.27
	AL	0.05 0.18 0.19 0.14 0.24 0.28 0.19 0.60 0.63 0.57 0.57 0.81
	Aenet 0.07 0.19 0.20 0.20 0.27 0.33 0.22 0.60 0.64 0.69 0.55 0.88
	SCAD 0.19 0.19 0.27 0.29 0.32 0.43 0.14 0.55 0.57 1.10 0.71 1.31
	MC+ 0.20 0.19 0.28 0.32 0.37 0.49 0.15 0.55 0.57 1.15 0.72 1.35
		Scenario 1b	
	Lasso 0.18 1.03 1.05 0.57 0.58 0.81 1.97 8.00 8.23 1.85 2.11 2.81
	Enet	0.27 1.32 1.34 0.81 0.73 1.09 1.87 7.73 7.96 1.94 2.02 2.80
	AL	0.18 0.73 0.76 0.28 0.43 0.51 1.26 6.23 6.36 1.68 1.70 2.39
	Aenet 0.21 0.72 0.75 0.36 0.44 0.57 1.05 5.45 5.55 1.76 1.49 2.31
	SCAD 0.26 0.99 1.02 0.39 0.63 0.74 1.20 5.55 5.68 1.71 1.59 2.34
	MC+ 0.26 0.99 1.03 0.40 0.64 0.76 1.21 5.53 5.66 1.71 1.59 2.33
		Scenario 2a	
	Lasso 1.45 1.89 2.38 2.24 2.47 3.34 0.94 8.86 8.91 4.53 5.79 7.35
	Enet	1.54 1.89 2.44 2.38 2.62 3.54 1.27 6.54 6.66 4.95 4.85 6.93
	AL	1.57 1.80 2.39 2.20 2.16 3.09 1.33 6.38 6.52 4.31 4.50 6.23
	Aenet 2.05 1.60 2.59 2.64 2.11 3.38 1.95 4.75 5.13 4.89 3.73 6.14
	SCAD 2.26 1.75 2.86 3.84 2.43 4.54 3.74 3.45 5.09 5.79 2.73 6.40
	MC+ 2.45 1.77 3.02 3.95 2.39 4.61 3.81 3.41 5.12 5.82 2.71 6.42
		Scenario 2b	
	Lasso 3.28 2.87 4.36 3.36 3.20 4.64 3.85 13.41 13.95 4.61 11.20 12.11
	Enet	3.39 2.45 4.18 3.48 2.75 4.44 3.76 7.86 8.71 4.66 6.96 8.37
	AL	3.64 1.59 3.97 3.69 1.78 4.10 3.89 8.99 9.80 4.70 6.95 8.39
	Aenet 3.71 1.34 3.95 3.79 1.58 4.10 4.03 4.89 6.34 4.88 4.38 6.55
	SCAD 4.56 2.22 5.07 4.67 2.27 5.19 5.22 3.27 6.16 5.65 3.18 6.48
	MC+ 4.53 2.24 5.05 4.64 2.29 5.18 5.23 3.25 6.15 5.66 3.21 6.51

Table 5 :

 5 Number of selected and non-selected covariates among 93 covariates by regularized Poisson likelihood with lasso, adaptive lasso and adaptive elastic net regularization.

	Method	Regularized PL	Regularized WPL
		#Selected #Non-selected #Selected #Non-selected
	LASSO	77	16	20	73
	AL	50	43	9	84
	AENET	69	24	9	84

Table 6 :

 6 Nine common covariates selected

	Covariates	Regularized PL	Regularized WPL
		LASSO AL AENET LASSO AL AENET
	Elev	0.33 0.37	0.34	0.23 0.14	0.14
	Slope	0.37 0.37	0.37	0.45 0.44	0.46
	Cu	0.45 0.30	0.30	0.16 0.22	0.19
	Mn	0.11 0.10	0.11	0.18 0.14	0.14
	P	-0.49 -0.45	-0.48	-0.50 -0.43	-0.39
	Zn	-0.69 -0.54	-0.70	-0.21 -0.31	-0.25
	Al:P	-0.28 -0.24	-0.28	-0.13 -0.14	-0.13
	Mg:P	0.49 0.26	0.30	0.38 0.38	0.34
	N.Min:pH	0.42 0.39	0.39	0.22 0.17	0.17
	Table				

Approximate value
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A Auxiliary Lemma

The following lemma is used in the proof of Theorem 1 and Lemma 2 (which includes Lemma 3 and Theorem 2). Throughout the proofs, the notation X n = O P (x n ) or X n = o P (x n ) for a random vector X n and a sequence of real numbers x n means that X n = O P (x n ) and X n = o P (x n ). In the same way for a vector V n or a squared matrix M n , the notation

Lemma 1. Under conditions (C.1)-(C.5), the following result holds as n → ∞

(1)

We now decompose φ n,j as φ n,j = T 1 + T 2 where

and where rn,j is the sequence defined in the condition (C.8). Under this condition, the following Taylor expansion can be derived for the term T 1 : there exists t ∈ (0, 1) and βj = βj + t(β 0j -βj ) such that

where the latter equation ensues from Theorem 1 and condition (C.8). Again, from

Theorem 1,

Regarding the term T 2 , we have by (C.23)

We want to prove that

) for some δ > 0. We claim that the result is proved if we prove that ET n → 0 for any δ > 0. Condition (C.8) implies in particular that for n large enough, rn,j > p n /|D n | > 1/|D n |. Using this, it can be checked that the binary random variable T n reduces to

→ 0 as n → ∞. Then, we deduce that

n,1 (w; β 0 ) (resp.

(2)

n,1 (w; β 0 )) be the first s components (resp. s × s top-left corner) of (1) n (w; β 0 ) (resp.

(2) n (w; β 0 )). Let also Ψ n be the s × s matrix containing Ψ n,jl , j, l = 1, . . . , s. Finally, let the vector p n , the vector φ n and the s × s matrix M n be defined by

We rewrite both sides of (C.22) as

By definition of Π n given by (3.14) and from (C.24), we obtain

). Using this, we deduce, by premultiplying both sides of (C.25) by M n , that 

The last two lines are obtained from (C.9). Therefore, we have that where Σ n (w, β 0 ) is given by (3.13).