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Abstract: Feature selection procedures for spatial point processes para-
metric intensity estimation have been recently developed since more and
more applications involve a large number of covariates. In this paper,
we investigate the setting where the number of covariates diverges as the
domain of observation increases. In particular, we consider estimating
equations based on Campbell theorems derived from Poisson and logis-
tic regression likelihoods regularized by a general penalty function. We
prove that, under some conditions, the consistency, the sparsity, and the
asymptotic normality are valid for such a setting. We support the theo-
retical results by numerical ones obtained from simulation experiments
and an application to forestry datasets.
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1 Introduction

1.1 Background

Spatial point pattern data arise in many contexts, e.g. ecology (see e.g. Møller
and Waagepetersen, 2004; Renner et al., 2015), epidemiology (e.g. Diggle, 1990,
2013), criminology (e.g. Baddeley et al., 2015; Shirota et al., 2017), biology (e.g.
Illian et al., 2008) and astronomy (e.g. Baddeley et al., 2015), where interest lies in
describing the distribution of an event in space. Stochastic models generating spatial

1



point patterns are called spatial point processes (see e.g. Møller and Waagepetersen,
2004; Illian et al., 2008; Diggle, 2013; Baddeley et al., 2015).

Usually, the first step to analyze spatial point pattern data is to investigate the
intensity. The intensity serves as the first-order characteristics of a spatial point
process and often becomes the main interest in many studies, especially when the
intensity is suspected to depend on spatial covariates. Examples include the study
of spatial variation of specific disease risk related to pollution sources (e.g. Diggle,
1990, 2013), crime rate analysis in a city related to some demographical information
(e.g. Shirota et al., 2017), and modeling of the spatial distribution of trees species in
a forest related to some environmental factors (e.g. Waagepetersen, 2007; Thurman
et al., 2015; Renner et al., 2015).

We focus in this study on the log-linear model for the intensity function of an
inhomogeneous spatial point process defined by

ρ(u;β) = exp(z(u)>β), u ∈ D ⊂ Rd, (1.1)

where z(u) = {z1(u), . . . , zp(u)}> are the p spatial covariates measured at location
u, d represents the state space of the spatial point processes (usually d = 2, 3) and
β = {β1, . . . , βp}> is a real p-dimensional parameter. Hence, our main concern is
to assess the magnitudes of the vector β. For parametric estimation, while max-
imum likelihood estimation (e.g. Berman and Turner, 1992; Rathbun and Cressie,
1994) has been widely implemented for Poisson point processes models, estimating
equation-based methods (e.g. Waagepetersen, 2007, 2008; Guan and Shen, 2010;
Baddeley et al., 2014) are simpler to implement for more general spatial point pro-
cesses models, overcoming the possible drawback of MCMC methods which are usu-
ally computational expensive (Møller and Waagepetersen, 2004). However, when
the number of covariates is relatively large, maximum likelihood estimation and
estimating equation-based methods become undesirable: all covariates are selected
yielding an increasing standard error for parameter estimates.

1.2 Feature selection techniques

To select significant covariates, one may consider a traditional procedure such as
a stepwise method. This technique starts with an initial set of covariates, then
considers adding or deleting a covariate from the current set at each iteration using
a criterion such as an F-statistic or AIC. However, such procedure has a number
of limitations: it can be numerically unstable and exhibits high variance due to its
discrete procedure (e.g. Breiman, 1996; Fan and Li, 2001; Friedman et al., 2008). It
is even computationally unfeasible especially when the number of covariates is too
large (e.g. Breiman, 1996; Zou, 2006).

To overcome this drawback, regularization techniques have recently been de-
veloped for spatial point processes intensity estimation. Such methods are able to
perform variable selection while keeping interesting properties in terms of prediction.
For Poisson point process models, the idea is to penalize the Poisson likelihood by
a penalty function such as l1 penalty (see Renner and Warton, 2013; Thurman and
Zhu, 2014). For more general point process models, instead of employing the likeli-
hood of the processes which often requires computational intensive MCMC methods
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(Møller and Waagepetersen, 2004), penalized versions of estimating equations based
on Campbell theorem derived both from Poisson and logistic regression likelihoods
have been developed (see Thurman et al., 2015; Choiruddin et al., 2017). Further-
more, Thurman et al. (2015) and Choiruddin et al. (2017) show that, under some
conditions, the estimates obtained from such procedures are consistent, sparse, and
asymptotically normal.

1.3 Issues in high dimensional data

The motivation of our paper comes from a study of biodiversity in a 50-hectare
region (D = 1, 000m × 500m) of the tropical moist forest of Barro Colorado Island
(BCI) in central Panama, where censuses have been carried out such that all free-
standing woody stems at least 10 mm diameter at breast height were identified,
tagged, and mapped, resulting in maps of over 350,000 individual trees with around
300 species (see Condit, 1998; Hubbell et al., 1999, 2005). In the same region, many
environmental covariates such as topographical attributes and soil properties have
been also collected. In particular, we are interested to study the spatial distribution
of 3,604 locations of Beilschmiedia pendula Lauraceae (BPL) trees and to model
its intensity as a parametric function of 93 covariates consisting of 2 topological
attributes, 13 soil properties and 78 interactions between two soil nutrients.

Although it seems that the number of covariates is not very large with respect to
the number of data points, two hours are required to estimate the parameters and
select covariates using a standard stepwise procedure. To do this, we use the step

function in R which intrinsically assumes that X is a Poisson point process since we
use the AIC in the stepwise procedure. For a general point process, other criteria
could be investigated such as the one based on the F statistic, but they require to
estimate the asymptotic covariance matrix of the estimates at each step: even if we
know the right covariates, it is known as a difficult task (see e.g. Coeurjolly and
Guan (2014)) especially when the number of parameters is large. That would easily
triple the time of this estimation/selection procedure. To evaluate the performance
of such a selection/estimation procedure, a simulation would be required which is
unrealistic (1000 replications of a single model would take 250 days). This motivates
us to consider regularization methods.

Thurman et al. (2015) and Choiruddin et al. (2017) are the first two theoretical
works. Both these works have the important limitation that the number of covari-
ates p is finite. We extend this in the present paper. Asymptotic properties which
consider a diverging number of parameters for M -estimators have a long story (e.g
Huber, 1973; Portnoy, 1984) but have recently been investigated for penalized re-
gression estimators by Fan and Peng (2004); Zou and Zhang (2009). In particular,
as argued by Fan and Peng (2004), even though the asymptotic properties (i.e.,
consistency, sparsity, and asymptotic normality) proposed by Fan and Li (2001) for
penalized generalized linear models under the assumption that p is finite, are encour-
aging, there are many naive and simple model selection procedures which possess
those properties. Establishing the validity of these asymptotic properties in a di-
verging number of parameters setting is, therefore, a major importance. We study
this type of asymptotic properties in the spatial point processes framework. Hence,
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our work can be regarded as an extension of the study conducted by Choiruddin
et al. (2017).

A standard way of measuring asymptotic for spatial point process is the increas-
ing domain asymptotic. Therefore, we investigate the problem where p = pn grows
with |Dn| the volume of the observation domain. In our setting, |Dn| plays the same
role as n, the number of observations, in standard problems such as in linear mod-
els or generalized linear models. We obtain consistency, sparsity, and asymptotic
normality for our estimator. One of our main assumptions is that p3

n/|Dn| → 0 as
n → ∞, which is similar to the one required by Fan and Peng (2004) when |Dn| is
simply replaced by n (the sample size in their context).

Our results are general: (1) a large choice of penalty functions (either convex
or non-convex function) and methods (e.g. ridge, lasso, elastic net, SCAD, and
MC+) are available; (2) we include a large class of mixing spatial point processes.
The implementation is done by combining the spatstat (Baddeley et al., 2015) R
package with the two R packages implementing penalized methods for generalized
linear models: glmnet (Friedman et al., 2010) and ncvreg (Breheny and Huang,
2011).

1.4 Outline of the paper

In Section 2, we introduce brief background on spatial point processes as well as
regularization methods for spatial point processes intensity estimation. Section 3
presents our asymptotic results. We investigate in Section 4 the finite sample per-
formance of our estimates in a simulation study and in an application to tropical
forestry datasets. Conclusion and discussion are presented in Section 5. Proofs of
the main results are postponed to Appendices A-C.

2 Regularization methods for spatial point pro-

cesses

This section gives brief introduction on spatial point processes and reviews regular-
ization methods for spatial point processes intensity estimation previously studied
by Choiruddin et al. (2017) when the number of parameters is finite.

Let X be a spatial point process on Rd. We view X as a locally finite random
subset of Rd. Let D ⊂ Rd be a compact set of Lebesgue measure |D| which will
play the role of the observation domain. A realization of X in D is thus a set
x = {x1, x2, . . . , xm}, where x ∈ D and m is the observed number of points in D.
Suppose X has intensity function ρ and second-order product density ρ(2). Campbell
theorem (see e.g. Møller and Waagepetersen, 2004) states that, for any function
k : Rd → [0,∞) or k : Rd × Rd → [0,∞)

E
(∑
u∈X

k(u)
)

=

∫
Rd

k(u)ρ(u)du (2.2)

E
( 6=∑
u,v∈X

k(u, v)
)

=

∫
Rd

∫
Rd

k(u, v)ρ(2)(u, v)dudv. (2.3)
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We may interpret ρ(u)du as the probability of occurence of a point in an infinites-
imally small ball with centre u and volume du. Intuitively, ρ(2)(u, v)dudv is the
probability for observing a pair of distinct points from X occuring jointly in each
of two infinitesimally small balls with centres u, v and volume du, dv. For fur-
ther background materials on spatial point processes, see for example Møller and
Waagepetersen (2004); Illian et al. (2008).

In our study, we assume that the intensity function depends on parameter β,
ρ = ρ(·;β). The standard parametric methods for estimating β are by maximizing
the weighted Poisson likelihood (e.g. Guan and Shen, 2010) or the weighted logis-
tic regression likelihood (e.g. Baddeley et al., 2014; Choiruddin et al., 2017) given
respectively by

`PL(w;β) =
∑

u∈X∩D

w(u) log ρ(u;β)−
∫
D

w(u)ρ(u;β)du, (2.4)

`LRL(w;β) =
∑

u∈X∩D

w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)
−
∫
D

w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (2.5)

where w(·) is a weight non-negative function depending on the first and the second-
order characterictics of X and δ(·) is a non-negative real-valued function. The
solution of maximizing (2.4) (resp. (2.5)) is called Poisson estimator (resp. the
logistic regression estimator). We refer readers to Guan and Shen (2010) for further
details on the weight function w(·) and to Baddeley et al. (2014) for the role of
function δ(·).

These standard methods cannot perform variable selection. To do so, Thurman
et al. (2015) and Choiruddin et al. (2017) suggest to maximize a penalized version
of (2.4)-(2.5)

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj(|βj|), (2.6)

where `(w;β) is either the Poisson likelihood (2.4) or the logistic regression likelihood
(2.5). We refer the second term of (2.6) to a penalization term. In this term, we
have mainly two parts: (1) a penalty function pλ parameterized by λ ≥ 0 and (2)
the volume of the observation domain |D| which plays the same role as the sample
size in the spatial point process framework.

For any non-negative λ, we say that pλ(·) is a penalty function if pλ is a non-
negative function with pλ(0) = 0. Some examples, described in Table 1, include l2
penalty (Hoerl and Kennard, 1988), l1 penalty (Tibshirani, 1996), elastic net (Zou
and Hastie, 2005), SCAD (Fan and Li, 2001), and MC+ (Zhang, 2010). Note that, as
indicated by (2.6), we allow each direction to have different tuning parameters λj, j =
1, . . . , p. Such a method is called an adaptive method (e.g. adaptive lasso (Zou,
2006) and adaptive elastic net (Zou and Zhang, 2009)). For further backgrounds
about penalty function and regularization methods, see, for example, Friedman et al.
(2008).
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Table 1: Examples of penalty function.

Penalty pλ(θ)

l2 penalty 1
2
λθ2

l1 penalty λ|θ|

Enet λ{γ|θ|+ 1
2
(1− γ)θ2}, for any 0 < γ < 1

SCAD
λθI(θ ≤ λ) +

γλθ− 1
2

(θ2+λ2)

γ−1
I(λ ≤ θ ≤ γλ) + λ2(γ2−1)

2(γ−1)
I(θ ≥ γλ),

for any γ > 2

MC+
(
λθ − θ2

2γ

)
I(θ ≤ γλ) + 1

2
γλ2I(θ ≥ γλ), for any γ > 1

3 Asymptotic properties

In this section, we present asymptotic properties of the regularized Poisson estimator
when both |Dn| → ∞ and pn → ∞ as n → ∞. In particular, we consider X
as a d-dimensional point process observed over a sequence of observation domain
D = Dn, n = 1, 2, . . . which expands to Rd as n → ∞. We assume that X has a
log-linear form given by (1.1) for which the dimension of parameter β, denoted now
by pn, diverges to∞ as n→∞. In Section 3.1, we provide notation and conditions,
and discuss the differences from the setting where p is fixed. Our main results are
presented in Section 3.2. For sake of conciseness, we do not present the asymptotic
results for the regularized logistic regression estimator. The results are very similar.
The main difference is lying in the conditions (C.6) and (C.7) for which the matrices
An,Bn, and Cn have a different expression (see Remark 2).

3.1 Notation and conditions

Throughout this section and Appendices A-C, let

`n(w;β) =`n,PL(w;β)

=
∑

u∈X∩Dn

w(u) log ρ(u;β)−
∫
Dn

w(u)ρ(u;β)du, (3.7)

Qn(w;β) =`n(w;β)− |Dn|
pn∑
j=1

pλn,j
(|βj|), (3.8)

be respectively the weighted Poisson likelihood and its penalized version.
Let β0 = {β01, . . . , β0s, β0(s+1), . . . , β0pn}> = {β>01,β

>
02}> = (β>01,0

>)> denote
the pn-dimensional vector to estimate, where β01 is the s-dimensional vector of non-
zero coefficients and β02 is the (pn − s)-dimensional vector of zero coefficients. We
assume that the number of non-zero coefficients, s, does not depend on n. Let z01

and z02 denote the corresponding s-dimensional and (pn− s)-dimensional vectors of

spatial covariates. We denote the regularized Poisson estimator by β̂ = (β̂
>
1 , β̂

>
2 )>.
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We recall the classical definition of strong mixing coefficients adapted to spatial
point processes (e.g. Politis et al., 1998): for k, l ∈ N ∪ {∞} and q ≥ 1, define

αk,l(q) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F (Λ1), B ∈ F (Λ2),

Λ1 ∈ B(Rd),Λ2 ∈ B(Rd), |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ q}, (3.9)

where F is the σ-algebra generated by X ∩ Λi, i = 1, 2, d(Λ1,Λ2) is the minimal
distance between sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in Rd.

We define the pn × pn matrices An(w;β0),Bn(w;β0) and Cn(w;β0) by

An(w;β0) =

∫
Dn

w(u)z(u)z(u)>ρ(u;β0)du,

Bn(w;β0) =

∫
Dn

w(u)2z(u)z(u)>ρ(u;β0)du,

Cn(w;β0) =

∫
Dn

∫
Dn

w(u)w(v)z(u)z(v)>{g(u, v)− 1}ρ(u;β0)ρ(v;β0)dudv,

where g(u, v) is the classical pair correlation function (Møller and Waagepetersen,
2004) given by

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
,

when both ρ and ρ(2) exist with the convention 0/0 = 0. For a Poisson point process,
we have g(u, v) = 1 since ρ(2)(u, v) = ρ(u)ρ(v). If, for example, g(u, v) > 1 (resp.
g(u, v) < 1), this indicates that pair of points are more likely (resp. less likely) to
occur at locations u, v than for a Poisson point process.

We denote the s×s top-left corner of An(w;β0) (resp. Bn(w;β0), Cn(w;β0)) by
An,11(w;β0) (resp. Bn,11(w;β0),Cn,11(w;β0)). It is worth noticing that An,11(w;β0),
Bn,11(w;β0) and Cn,11(w;β0) depend on n only through Dn and not through pn. In
what follows, for a squared symmetric matrix Mn, νmin(Mn) and νmax(Mn) denote
respectively the smallest and largest eigenvalue of Mn.

Under the conditions (C.8)-(C.9), we define the sequences an, bn and cn by

an = max
j=1,...,s

|p′λn,j
(|β0j|)|, (3.10)

bn = inf
j=s+1,...,pn

inf
|θ|≤εn
θ 6=0

p′λn,j
(θ), for εn = K1

√
pn
|Dn|

, (3.11)

cn = max
j=1,...,s

|p′′λn,j
(|β0j|)|, (3.12)

where K1 is any positive constant.
Consider the following conditions (C.1)-(C.9) which are required to derive our

asymptotic results:

(C.1) For every n ≥ 1, Dn = nE = {ne : e ∈ E}, where E ⊂ Rd is convex, compact,
and contains the origin of Rd in its interior.
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(C.2) The intensity function has the log-linear specification given by (1.1) where
β ∈ Θ and Θ is an open convex bounded set of Rpn . Furthermore, we assume
that there exists a neighborhood Ξ(β0) of β0 such that

sup
n≥1

sup
β∈Ξ(β0)

sup
u∈Rd

ρ(u;β) <∞.

(C.3) The covariates z and the weight function w satisfy

sup
n≥1

sup
i=1,...,pn

sup
u∈Rd

|zi(u)| <∞, and sup
u∈Rd

w(u) <∞.

(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2+t, the product density
ρ(k) exists and satisfies ρ(k) <∞.

(C.5) For the strong mixing coefficients (3.9), we assume that there exists some

t̃ > d(2 + t)/t such that α2,∞(q) = O(q−t̃).

(C.6) lim infn νmin

(
|Dn|−1{Bn,11(w;β0) + Cn,11(w;β0)}

)
> 0.

(C.7) lim infn νmin

(
|Dn|−1An(w;β0)

)
> 0.

(C.8) The penalty function pλ(·) is non-negative on R+, continuously differentiable
on R+\{0} with derivative p′λ assumed to be a Lipschitz function on R+\{0}.
Furthermore, given (λn,j)n≥1, for j = 1, . . . , s, we assume that there exists

(r̃n,j)n≥1, where r̃n,j
√
|Dn|/pn → ∞ as n → ∞, such that, for n sufficiently

large, pλn,j
is thrice continuously differentiable in the ball centered at |β0j| with

radius r̃n,j and we assume that the third derivative is uniformly bounded.

(C.9) p3
n/|Dn| → 0 as n→∞.

Conditions (C.1)-(C.8) are quite similar to the ones required by Choiruddin et al.
(2017) in the setting when the number of parameters to estimate is fixed. Condi-
tion (C.2) is slightly stronger since we have to ensure that ρ(u;β) is finite for β
in the neighborhood of β0. Note that supu∈Rd ρ(u;β0) < ∞ follows directly from
condition (C.3). We derive asymptotic properties when both |Dn| and pn tend to
infinity with n. However, to obtain an estimator which is consistent and has two
other properties: sparsity and asymptotic normality, we need that the number of
covariates does not grow too fast with respect to the volume of the observation do-
main. This condition is stated by condition (C.9) which is similar to the one required
by Fan and Peng (2004) when |Dn| is simply replaced by n (the sample size in their
context).
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3.2 Main results

We state our main results here. Proofs are relegated to Appendices A-C.
We first show in Theorem 1 that the regularized Poisson estimator converges in

probability and exhibits its rate of convergence.

Theorem 1. Assume the conditions (C.1)-(C.5) and (C.7)-(C.9) hold. Let an and
cn be given respectively by (3.10) and (3.12). If an = O(|Dn|−1/2) and cn =

o(1), then there exists a local maximizer β̂ of Qn(w;β) such that ‖β̂ − β0‖ =
OP

(√
pn(|Dn|−1/2 + an)

)
.

This implies that, the regularized Poisson estimator is root-(|Dn|/pn) consistent.
Note that, as expected, the convergence rate is

√
pn times the convergence rate of

the estimator obtained when p is fixed (see Theorem 1 Choiruddin et al., 2017).
In addition, when we compare our results with the ones obtained by Fan and Peng
(2004), who also considered a diverging number of parameters setting, our estimator
has the same rate of convergence when we replace |Dn| by n to their context. This
rate of convergence also appears in other contexts considering diverging number of
parameters setting (see e.g. Lam and Fan, 2008; Zou and Zhang, 2009; Li et al.,
2011; Cho and Qu, 2013; Wang and Zhu, 2017).

Now, we demonstrate in Theorem 2 that such a root-(|Dn|/pn) consistent esti-

mator ensures the sparsity of β̂; that is, the estimate will correctly set β2 to zero

with probability tending to 1 as n→∞, and β̂1 is asymptotically normal.

Theorem 2. Assume the conditions (C.1)-(C.9) are satisfied. If an
√
|Dn| → 0,

bn
√
|Dn|/p2

n → ∞ and cn
√
pn → 0 as n → ∞, the root-(|Dn|/pn) consistent local

maximizer β̂ = (β̂
>
1 , β̂

>
2 )> in Theorem 1 satisfies:

(i) Sparsity: P(β̂2 = 0)→ 1 as n→∞,

(ii) Asymptotic Normality: |Dn|1/2Σn(w;β0)−1/2(β̂1 − β01)
d−→ N (0, Is),

where

Σn(w;β0) =|Dn|{An,11(w;β0) + |Dn|Πn}−1{Bn,11(w;β0) + Cn,11(w;β0)}
{An,11(w;β0) + |Dn|Πn}−1, (3.13)

Πn =diag{p′′λn,1
(|β01|), . . . , p′′λn,s

(|β0s|)}. (3.14)

As a consequence, Σn(w;β0) is the asymptotic covariance matrix of β̂1. Here,
Σn(w;β0)−1/2 is the inverse of Σn(w;β0)1/2, where Σn(w;β0)1/2 is any square ma-

trix with Σn(w;β0)1/2
(
Σn(w;β0)1/2

)>
= Σn(w;β0).

Remark 1. For lasso and adaptive lasso, Πn = 0. For other penalties, since
cn = o(1), then ‖Πn‖ = o(1). Since ‖An,11(w;β0)‖ = O(|Dn|) from conditions
(C.1)-(C.3), |Dn| ‖Πn‖ is asymptotically negligible with respect to ‖An,11(w;β0)‖.
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Remark 2. Theorems 1 and 2 remain true for the regularized logistic regression
estimator if we replace in the expression of the matrices An,Bn, and Cn, w(u)
by w(u)δ(u)/(ρ(u;β0) + δ(u)), u ∈ Dn and extend the condition (C.3) by adding
supu∈Rd δ(u) <∞.

The proofs of Theorems 1 and 2 for this estimator are slightly different mainly be-
cause unlike the Poisson likelihood for which we have `2

n(w;β) = −An(w;β), for the
regularized logistic regre `2

n(w;β) is now stochastic and we only have E(`2
n(w;β)) =

−An(w;β). Despite the additional difficulty, we maintain that no additional as-
sumption is required.

We show in Theorem 2 that the sparsity and asymptotic normality are still valid
when the number of parameters diverges. By Remark 1, when n is large enough,
Σn(w;β0) in (3.13) becomes approximately

|Dn|{An,11(w;β0)}−1{Bn,11(w;β0) + Cn,11(w;β0)}{An,11(w;β0)}−1,

which is precisely the asymptotic covariance matrix of the estimator of β01 obtained
by maximizing the likelihood function or solving estimating equations based on the
submodel knowing that β02 = 0. This shows that when n is sufficiently large, our
estimator is as efficient as the oracle one.

To satisfy Theorem 2, we require that an
√
|Dn| → 0, bn

√
|Dn|/p2

n → ∞ and
cn
√
pn → 0 as n → ∞ simultaneously. In particular, conditions on an and cn

ensure the asymptotic normality of β̂1 while condition on bn is used to prove the
sparsity. Conditions regarding an and cn are similar to the ones imposed by Fan
and Peng (2004) when |Dn| is replaced by n in their context. However, we require a
slightly stronger condition on bn than the one required by Fan and Peng (2004) which

in the present setting could be written as bn
√
|Dn|/pn → ∞. As compensation,

we do not need to impose, as Fan and Peng (2004) did, for any 0 < K2 < ∞,
νmax

(
|Dn|−1An(w;β0)

)
< K2. Such a condition is not straightforwardly satisfied

in our setting since the other conditions only imply that νmax

(
|Dn|−1An(w;β0)

)
=

O(pn).
Further details regarding an, bn and cn for each method are presented in Table 2.

For the ridge regularization method, bn = 0, preventing from applying Theorem 2 for
this penalty. For lasso and elastic net, an = K3bn for some constant K3 > 0 (K3=1

for lasso). The two conditions an
√
|Dn| → 0 and bn

√
|Dn|/p2

n → ∞ as n → ∞
cannot be satisfied simultaneously. This is different for the adaptive versions where
a compromise can be found by adjusting the λn,j’s, as well as the two non-convex
penalties SCAD and MC+, for which λn can be adjusted. For the regularization
methods we consider in this study, the condition cn

√
pn → 0 is implied by the

condition an
√
|Dn| → 0 as n→∞ and condition (C.9).

4 Numerical results

This section is devoted to present numerical results. More precisely, we conduct
simulation experiments in Section 4.1 to assess the finite sample peformance of our
estimates and apply our method to an application in ecology in Section 4.2. We
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Table 2: Details of the sequences an, bn and cn for a given regularization method.

Method an bn cn

Ridge λn max
j=1,...s

{|β0j|} 0 λn

Lasso λn λn 0

Enet λn

[
(1− γ) max

j=1,...s
{|β0j|}+ γ

]
γλn (1− γ)λn

AL max
j=1,...s

{λn,j} min
j=s+1,...pn

{λn,j} 0

Aenet max
j=1,...s

{λn,j
(
(1− γ)|β0j|+ γ

)
} γ min

j=s+1,...pn
{λn,j} (1− γ) max

j=1,...,s
{λn,j}

SCAD 0* λn
** 0*

MC+ 0* λn − K1
√
pn

γ
√
|Dn|

** 0*

* if λn → 0 for n sufficient large
** if λn

√
|Dn|/p2

n →∞ for n sufficient large

apply the regularized Poisson likelihood (PL) and the regularized weighted Pois-
son likelihood (WPL) to select covariates and estimate their coefficients. Similar
approach can be straightforwardly used for the regularized versions using logistic
regression likelihood.

To numerically evaluate the parameters estimates, we apply Berman-Turner
method (Berman and Turner, 1992) combined with coordinate descent algorithm
(Friedman et al., 2007) to perform variable selection and parameter estimation.
Berman-Turner device allows to show that maximizing (2.4) is equivalent to fitting
a weighted Poisson generalized linear model, so the standard software for general-
ized linear models (GLMs) can be used. This has been exploited by the spatstat

R package (Baddeley et al., 2015). As we make links between spatial point pro-
cesses intensity estimation and GLMs, we only have to deal with feature selection
procedures for GLMs. Hence, we clearly have many advantages: the various compu-
tational strategies are carefully studied, and, in particular, efficiently implemented
in R. In this study, to compute the regularization path solutions, we employ co-
ordinate descent algorithm (Friedman et al., 2007). This is implemented in the
glmnet (Friedman et al., 2010) for regularization methods for GLMs using some
convex penalties (i.e., ridge, lasso, elastic net, adaptive lasso and adaptive elastic
net) and in the ncvreg (Breheny and Huang, 2011) for regularization methods for
GLMs using some non-convex penalties (i.e., SCAD and MC+). More details for
computational strategies are discussed in detail by Choiruddin et al. (2017).

Our methods rely on the tuning parameter λ. Some previous studies (see e.g.
Zou et al., 2007; Wang et al., 2007, 2009) suggest to use a modified BIC criterion to
select the tuning parameter. We follow the literature and choose λ by minimizing
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WQBIC(λ), a modified version of the BIC criterion, defined by

WQBIC(λ) = −2`(w; β̂(λ)) + s(λ) log |D|,

where s(λ) =
∑p

j=1 I{β̂j(λ) 6= 0} is the number of selected covariates with non-zero

regression coefficients and |D| is the volume of observation domain. To implement
the adaptive methods (i.e., adaptive lasso and adaptive elastic net), we follow Zou

(2006) and define λj = λ/|β̃j(ridge)|, j = 1, · · · , p, where β̃(ridge) is the estimates
obtained from ridge regression and λ is a tuning parameter chosen by WQBIC(λ)
criterion as described above. Following Choiruddin et al. (2017), we fix γ = 0.5 for
elastic net and its adaptive version, γ = 3.7 for SCAD, and γ = 3 for MC+. For
further discussion regarding the selection of γ for SCAD and MC+, see e.g. Fan
and Li (2001) and Breheny and Huang (2011).

4.1 Simulation study

In this section, we investigate the behavior of our estimators in a simulation exper-
iment in different situations when a large number of covariates for fitting spatial
point process intensity estimation is involved. We intend to extend the setting con-
sidered by Choiruddin et al. (2017). We start with relatively complex situation
where strong multicollinearity is present (Scenarios 1a and 2a) and we then consider
a more complex setting using real datasets (Scenarios 1b and 2b). We have two
different scenarios (Scenarios 1 and 2) for which the number of true covariates as
well as their coefficients are different.

The spatial domain we consider is D = [0, 1000] × [0, 500]. The true intensity
function has the form ρ(u;β0) = exp(z(u)>β0), where z(u) = {1, z1(u), . . . , z50(u)}>
and β0 = {β0, β01, · · · , β050}. We set β0 such that the mean number of points over
D is equal to 1600. We consider two different scenarios described as follows.

Scenario 1. We define the true vector β0 = {β0, 2, 0.75, 0, · · · , 0}. To define the
covariates, we center and scale the 201 × 101 pixel images of elevation
(x1) and gradient of elevation (x2) contained in the bei datasets of
spatstat library in R and use them as two true covariates. In addition,
we create two settings to define extra covariates:

a. First, we generate 48 201× 101 pixel images of covariates as a stan-
dard Gaussian white noise and denote them by x3, . . . , x50. Sec-
ond, we transform them, together with x1 and x2, to have multi-
collinearity. In particular, we define z̃(u) = V>x(u), where x(u) =
{x1(u), . . . , x50(u)}>. More precisely, V is such that Ω = V>V, and
(Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 50, except (Ω)12 = (Ω)21 = 0,
to preserve the correlation between x1 and x2. In this setting, z(u) =
{1, z̃(u)}.

b. We center and scale the 13 50 × 25 pixel images of soil nutrients
obtained from the study in tropical forest of Barro Colorado Island
(BCI) in central Panama (see Condit, 1998; Hubbell et al., 1999,
2005) and convert them to be 201 × 101 pixel images as x1 and x2.

12



In addition, we consider the interaction between two soil nutrients
such that we have 50 covariates in total. We use 48 covariates (13 soil
nutrients and 35 interactions between them) as the extra covariates.
Together with x1 and x2, we keep the structure of the covariance
matrix to preserve the complexity of the situation. In this setting,
we have z(u) = x(u) = {1, x1(u), . . . , x50(u)}>.

Scenario 2. In this setting, we consider five true covariates out of 50 covariates.
In addition of elevation (x1) and gradient of elevation (x2), we convert
50 × 25 pixel images of concentration of Aluminium (x3), Boron (x4)
and Calcium (x5) in the soil to be 201 × 101 pixel images as x1 and
x2 and set them to be other three true covariates. All five covariates
are centered and scaled. We define the true coefficient vector β0 =
{β0, 5, 4, 3, 2, 1, 0, · · · , 0}. As in Scenario 1, we make two settings to
define 45 extra covariates:

a. This setting is similar to that of Scenario 1a. We generate 45 201×101
pixel images of covariates as standard Gaussian white noise, denote
them by x6, . . . , x50, and define z̃(u) = V>x(u), where V is such
that Ω = V>V, and (Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 50,
except (Ω)kl = (Ω)lk = 0, for k, l = 1, · · · , 5, k 6= l, to preserve the
correlation among x1 - x5. We still define z(u) = {1, z̃(u)}.

b. We use the real dataset as in Scenario 1b and consider similar set-
ting. In this setting, we define 5 true covariates which have different
regression coefficients as in Scenario 1b.

With these scenarios, we simulate 2000 spatial point patterns from a Thomas
point process using the rThomas function in the spatstat package. We set the
interaction parameter κ to be κ = 5 × 10−4, κ = 5 × 10−5 and let ω = 20. Briefly,
smaller values of ω correspond to tighter clusters, and smaller values of κ correspond
to a fewer number of parents (see e.g. Møller and Waagepetersen, 2004, for further
details regarding the Thomas point process). For each scenario with different κ, we
fit the intensity to the simulated point pattern realizations.

We report the performances of our estimates in terms of two characteristics:
selection and prediction properties. We present the selection properties in Table 3
and the prediction properties in Table 4

To evaluate the selection properties of the estimates, we consider the true positive
rate (TPR), the false positive rate (FPR), and the positive predictive value (PPV).
We want to find the methods which have a TPR close to 100% meaning that it
can select correctly all the true covariates, a FPR close to 0 showing that it can
remove all the extra covariates from the model, and a PPV close to 100% indicating
that, for Scenario 1 (resp. Scenario 2), it can keep exactly the two (resp. five)
true covariates and remove all the 48 (resp. 45) extra covariates. In general, for
both regularized PL and regularized WPL, the best selection properties are obtained
from larger κ (5 × 10−4) which indicates weaker spatial dependence. To compare
the regularization methods, we emphasize here that the main difference between
regularization methods which satisfy (adaptive lasso, adaptive elastic net, SCAD,
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Table 3: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D for two different values of κ
and for the two different scenarios. Different penalty functions are considered as
well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method

Regularized PL Regularized WPL Regularized PL Regularized WPL

κ = 5× 10−4 κ = 5× 10−5

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1a

Lasso 1001 13 28 96 4 62 97 23 20 64 1 76

Enet 1001 34 12 93 8 48 97 48 10 59 2 58

AL 1001 1 92 97 01 96 95 3 68 70 01 98

Aenet 1001 2 76 97 1 85 95 6 52 67 01 95

SCAD 1001 7 41 97 1 87 96 4 61 56 01 79

MC+ 1001 8 37 96 1 85 96 5 58 52 1 74

Scenario 1b

Lasso 1001 45 10 91 11 52 1001 96 4 20 6 22

Enet 1001 63 7 87 18 31 1001 98 4 15 6 14

AL 1001 26 19 95 5 81 99 85 5 26 5 35

Aenet 1001 30 15 95 6 74 1001 87 5 24 5 30

SCAD 1001 26 18 93 5 76 1001 76 5 23 4 28

MC+ 1001 26 17 93 5 76 99 76 5 22 5 27

Scenario 2a

Lasso 98 93 10 84 73 14 98 96 10 47 35 16

Enet 99 98 10 85 80 11 99 98 10 46 38 12

AL 95 49 18 83 35 27 95 64 15 50 23 28

Aenet 96 52 17 84 40 21 96 68 14 48 26 20

SCAD 86 74 13 65 45 36 75 60 21 39 26 30

MC+ 87 78 13 65 47 35 73 60 22 39 26 30

Scenario 2b

Lasso 80 64 13 75 60 12 78 69 11 64 57 9

Enet 85 73 12 82 69 11 84 79 11 68 64 8

AL 56 26 19 54 25 20 59 35 17 48 30 13

Aenet 59 30 18 57 29 18 64 43 15 52 36 11

SCAD 43 21 20 42 20 23 46 24 27 41 25 16

MC+ 44 21 20 43 20 23 46 24 26 41 26 16

1 Approximate value
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Table 4: Empirical prediction properties (Bias, SD, and RMSE) based on 2000
replications of Thomas processes on the domain D for two different values of κ
and for the two different scenarios. Different penalty functions are considered as
well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method

Regularized PL Regularized WPL Regularized PL Regularized WPL

κ = 5× 10−4 κ = 5× 10−5

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1a

Lasso 0.19 0.19 0.27 0.43 0.29 0.52 0.29 0.60 0.67 0.94 0.53 1.08

Enet 0.27 0.22 0.35 0.72 0.32 0.79 0.34 0.66 0.74 1.21 0.40 1.27

AL 0.05 0.18 0.19 0.14 0.24 0.28 0.19 0.60 0.63 0.57 0.57 0.81

Aenet 0.07 0.19 0.20 0.20 0.27 0.33 0.22 0.60 0.64 0.69 0.55 0.88

SCAD 0.19 0.19 0.27 0.29 0.32 0.43 0.14 0.55 0.57 1.10 0.71 1.31

MC+ 0.20 0.19 0.28 0.32 0.37 0.49 0.15 0.55 0.57 1.15 0.72 1.35

Scenario 1b

Lasso 0.18 1.03 1.05 0.57 0.58 0.81 1.97 8.00 8.23 1.85 2.11 2.81

Enet 0.27 1.32 1.34 0.81 0.73 1.09 1.87 7.73 7.96 1.94 2.02 2.80

AL 0.18 0.73 0.76 0.28 0.43 0.51 1.26 6.23 6.36 1.68 1.70 2.39

Aenet 0.21 0.72 0.75 0.36 0.44 0.57 1.05 5.45 5.55 1.76 1.49 2.31

SCAD 0.26 0.99 1.02 0.39 0.63 0.74 1.20 5.55 5.68 1.71 1.59 2.34

MC+ 0.26 0.99 1.03 0.40 0.64 0.76 1.21 5.53 5.66 1.71 1.59 2.33

Scenario 2a

Lasso 1.45 1.89 2.38 2.24 2.47 3.34 0.94 8.86 8.91 4.53 5.79 7.35

Enet 1.54 1.89 2.44 2.38 2.62 3.54 1.27 6.54 6.66 4.95 4.85 6.93

AL 1.57 1.80 2.39 2.20 2.16 3.09 1.33 6.38 6.52 4.31 4.50 6.23

Aenet 2.05 1.60 2.59 2.64 2.11 3.38 1.95 4.75 5.13 4.89 3.73 6.14

SCAD 2.26 1.75 2.86 3.84 2.43 4.54 3.74 3.45 5.09 5.79 2.73 6.40

MC+ 2.45 1.77 3.02 3.95 2.39 4.61 3.81 3.41 5.12 5.82 2.71 6.42

Scenario 2b

Lasso 3.28 2.87 4.36 3.36 3.20 4.64 3.85 13.41 13.95 4.61 11.20 12.11

Enet 3.39 2.45 4.18 3.48 2.75 4.44 3.76 7.86 8.71 4.66 6.96 8.37

AL 3.64 1.59 3.97 3.69 1.78 4.10 3.89 8.99 9.80 4.70 6.95 8.39

Aenet 3.71 1.34 3.95 3.79 1.58 4.10 4.03 4.89 6.34 4.88 4.38 6.55

SCAD 4.56 2.22 5.07 4.67 2.27 5.19 5.22 3.27 6.16 5.65 3.18 6.48

MC+ 4.53 2.24 5.05 4.64 2.29 5.18 5.23 3.25 6.15 5.66 3.21 6.51
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and MC+) and which cannot satisfy (lasso, elastic net) our theorems is that the
methods which cannot satisfy our theorems tend to over-select covariates, leading
to suffering from larger FPR and smaller PPV in general. Among all regularization
methods considered in this study, adaptive lasso and adaptive elastic net seem to
outperform the other methods in most cases. Although adaptive lasso and adaptive
elastic net perform quite similarly, the adaptive lasso is slightly better.

In this simulation study, we are still able to show that even when the strong
multicollinearity exists such as in Scenario 1a, our proposed methods work well for
the penalization methods satisfying our theorems. However, as probably expected,
our methods are getting difficult to distinguish between the important and the noisy
covariates as the setting becomes more and more complex. In the experiments we
conduct, we find that the regularized PL and WPL (with adaptive lasso) perform
quite similar for the easiest (Scenario 1a) and the toughest (Scenario 2b) setting.
For Scenarios 1b and 2a, the regularized WPL with adaptive lasso seems to be more
favorable. From Table 3, we would recommend in general to combine the regularized
WPL with the adaptive lasso to perform variable selection.

Table 4 gives the prediction properties of the estimates (except for β0 which is
excluded) in terms of biases, standard deviations (SD), and square root of mean
squared errors (RMSE), some criteria we define by

Bias =

[
50∑
j=1

{Ê(β̂j)− β0j}2

] 1
2

, SD =

[
50∑
j=1

σ̂2
j

] 1
2

,RMSE =

[
50∑
j=1

Ê(β̂j − β0j)
2

] 1
2

,

where Ê(β̂j) and σ̂2
j are respectively the empirical mean and variance of the estimates

β̂j, for j = 1, . . . , 50.
In general, the properties improve with larger κ due to weaker spatial depen-

dence. Regarding the regularization methods considered in this study, adaptive
lasso and adaptive elastic net perform best. Adaptive elastic net becomes more
preferable than adaptive lasso for a clustered process (κ = 5×10−5) and for a struc-
tured spatial data (Scenarios 1b and 2b). The adaptive elastic net is more efficient
than the adaptive lasso especially in the complex situation: large number of covari-
ates, strong multicollinearity, clustered processes, and complex spatial structure due
to the advantage of combining l1 and l2 penalties.

By employing regularized WPL, we have potentially more efficient estimates
than that of the regularized PL, especially for the more clustered process. However,
this does not mean that the regularized WPL is able to improve the RMSE since
it usually introduces extra biases. Regularized WPL seems more appropriate for
the case having covariates with complex spatial structure (Scenarios 1b and 2b).
Otherwise, regularized PL is more favorable. From Table 4, when the focus is on
prediction, we would recommend to apply adaptive elastic net as a general advice,
and we would combine with regularized WPL if the covariates have complex spatial
structure (e.g. Scenarios 1b and 2b) or combine with regularized PL if there is no
evidence of complex spatial structure in the covariates (e.g. Scenarios 1a and 2a).

Note that, from Table 3, the adaptive lasso is more preferable if the focus is
on variable selection while, from Table 4, the adaptive elastic net is more favorable
if the focus is for prediction. To have a more general recommendation, we would

16



recommend applying adaptive elastic net when we are faced with a complex situa-
tion: a large number of covariates, strong multicollinearity, clustered processes and
complex spatial structure. By combining l1 and l2 penalties, the adaptive elastic net
provides a nice balance between selection and prediction properties. This is why in
most complex cases (Scenario 2 with κ = 5× 10−5), adaptive elastic net decides to
choose more covariates than adaptive lasso (which includes true and noisy covari-
ates) to suffer from slightly less appropriate properties for the selection performance
but to be able to improve significantly the prediction properties.

4.2 Application to forestry datasets

We now consider the study of ecology in a tropical rainforest in Barro Corrolado
Island (BCI), Panama, described previously in Section 1. In particular, we are
interested in studying the spatial distribution of 3,604 locations of Beilschmiedia
pendula Lauraceae (BPL) trees by modeling its intensity as a log-linear function
of 93 covariates consisting of 2 topological attributes, 13 soil properties, and 78
interactions between two soil nutrients.Regarding the relatively large number of
covariates, we apply our proposed methods to select few covariates among them and
estimate their coefficients. In particular, we use the regularized Poisson methods
with the lasso, adaptive lasso, and adaptive elastic net. Note that we center and
scale all the covariates to observe which covariates owing relatively large effect on
the intensity.

Table 5: Number of selected and non-selected covariates among 93 covariates by
regularized Poisson likelihood with lasso, adaptive lasso and adaptive elastic net
regularization.

Method
Regularized PL Regularized WPL

#Selected #Non-selected #Selected #Non-selected

LASSO 77 16 20 73

AL 50 43 9 84

AENET 69 24 9 84

We present in Table 5 the number of selected and non-selected covariates by each
method. Out of 93 covariates, more than 50% from the total number of covariates are
selected by regularized PL while much fewer covariates are selected by regularized
WPL. The regularized PL seems to overfit the model.

Regarding lasso method, 77 covariates are selected by regularized PL method
while 20 covariates are selected by regularized WPL. Compared to the two adaptive
methods (i.e., adaptive lasso and adaptive elastic net), lasso tends to keep less
important covariates. This may explain why lasso cannot satisfy our Theorem 2.
In terms of selection properties, adaptive lasso and adaptive elastic net perform
similarly when regularized WPL is applied.
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Table 6: Nine common covariates selected

Covariates
Regularized PL Regularized WPL

LASSO AL AENET LASSO AL AENET

Elev 0.33 0.37 0.34 0.23 0.14 0.14

Slope 0.37 0.37 0.37 0.45 0.44 0.46

Cu 0.45 0.30 0.30 0.16 0.22 0.19

Mn 0.11 0.10 0.11 0.18 0.14 0.14

P -0.49 -0.45 -0.48 -0.50 -0.43 -0.39

Zn -0.69 -0.54 -0.70 -0.21 -0.31 -0.25

Al:P -0.28 -0.24 -0.28 -0.13 -0.14 -0.13

Mg:P 0.49 0.26 0.30 0.38 0.38 0.34

N.Min:pH 0.42 0.39 0.39 0.22 0.17 0.17

Table 6 gives the information regarding nine covariates commonly selected among
the six methods. Although the magnitudes of the estimates can be slightly different,
the signs all agree with each other.

These results suggest that BPL trees favor to live in the areas of higher ele-
vation and slope with a high concentration of Copper and Manganese in the soil.
Furthermore, BPL trees prefer to live in the areas with lower concentration lev-
els of Phosphorus and Zinc in the soil. The interaction between Aluminum and
Phosphorus gives a negative association with the appearance of BPL trees while
the interaction between Magnesium and Phosphorus and the interaction between
Nitrogen mineralization and pH show a positive association with the occurrence of
BPL trees. The maps of 3,604 locations of BPL trees, as well as the nine commonly
selected covariates, are depicted in Figure 1.

5 Conclusion and discussion

We consider feature selection techniques for spatial point processes intensity estima-
tion by regularizing estimating equations derived from Poisson and logistic regression
likelihoods in a setting where the number of parameters diverges as the volume of
observation domain increases. Under some conditions, we prove that the estimates
obtained from such setting satisfy consistency, sparsity, and asymptotic normality.
Our results are available for large classes of spatial point processes and for many
penalty functions.

We conduct simulation experiments to evaluate the finite sample properties of
the regularized Poisson estimator and regularized weighted Poisson estimator. From
the results, we would recommend in general the combination between regularized
WPL and adaptive lasso if the concern is on variable selection. Furthermore, when
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Figure 1: Maps of 3,604 locations of BPL trees and the nine common selected
covariates, from left to right, row 1: elevation, slope and Copper, row 2: Manganese,
Phosphorus and Zinc, row 3: the interaction between Aluminum and Phosphorus,
between Magnesium and Phosphorus, and between Nitrogen mineralisation and pH.

the focus is on prediction, the regularized WPL combined with the adaptive elastic
net is more preferable for the situation where there is a complex spatial structure in
the covariates. For more general advice, we would recommend using the adaptive
elastic net rather than the adaptive lasso since the adaptive elastic net is able to
balance the selection and the prediction properties by combining the l1 and the l2
penalties.

To implement our methods, we combine the spatstat R package and the two R

packages glmnet and ncvreg dealing with penalized generalized linear models. This
results in a computationally fast procedure even when the number of covariates is
large. It is worth noticing that, as other regularization methods, our methods also
rely on the selection of the tuning parameter. As the study in a classical regression
analysis, the BIC-type methods are proposed to obtain selection consistent estimator
(see e.g. Zou et al., 2007; Wang et al., 2007, 2009). We have numerical evidence from
simulation studies that this criterion can satisfy the selection consistency. Theoret-
ical justification in this spatial point process framework is the purpose of a future
research.

We apply our methods to the Barro Corrolado Island study to estimate the
intensity of Beilschmiedia pendula Lauraceae (BPL) tree as a log-linear function
of 93 environmental covariates. Regularized weighted Poisson likelihood combined
with adaptive elastic net performs similarly to adaptive lasso. Among 93 covariates,
we find nine spatial covariates which may have a high influence to the appearance
of BPL trees, including two topological attributes: elevation and slope, four soil
nutrients: Copper, Manganese, Phosphorus and Zinc, and three interaction between
two soil properties: the interaction between Aluminum and Phosphorus, between
Magnesium and Phosphorus, and between Nitrogen mineralisation and pH.

A further work would consider to include the 296 other species of trees, which
were surveyed in the same observation region, to study the existence of any compe-
tition between BPL and other species of trees in the forest. In such a situation, the
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methods used in this study may face some computational issues. The Dantzig selec-
tor (Candes and Tao, 2007) might be a good alternative since the implementation
for linear models (and generalized linear models) results in a linear programming.
Thus, more competitive algorithms are available. It would be interesting to bring
this approach to spatial point process framework.
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A Auxiliary Lemma

The following lemma is used in the proof of Theorem 1 and Lemma 2 (which includes
Lemma 3 and Theorem 2). Throughout the proofs, the notation Xn = OP(xn) or
Xn = oP(xn) for a random vector Xn and a sequence of real numbers xn means that
‖Xn‖ = OP(xn) and ‖Xn‖ = oP(xn). In the same way for a vector Vn or a squared
matrix Mn, the notation Vn = O(xn) and Mn = O(xn) mean that ‖Vn‖ = O(xn)
and ‖Mn‖ = O(xn).

Lemma 1. Under conditions (C.1)-(C.5), the following result holds as
n→∞

`(1)
n (w;β0) = OP

(√
pn|Dn|

)
. (A.15)
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Proof. Using Campbell Theorems (2.2)-(2.3), the score vector `
(1)
n (w;β0) has vari-

ance

Var[`(1)
n (w;β0)] = Bn(w;β0) + Cn(w;β0).

Conditions (C.4)-(C.5) allow us to obtain that supu∈Rd

∫
Rd{g(u, v)− 1}dv <∞. We

then deduce using conditions (C.1)-(C.3) that

Bn(w;β0) + Cn(w;β0) = O(pn|Dn|).

The result is proved since for any centered real-valued stochastic process Yn with
finite variance Var[Yn], Yn = OP(

√
Var[Yn]).

B Proof of Theorem 1

In the proof of this result and the following ones, the notation κ stands for a generic
constant which may vary from line to line. In particular this constant is independent
of n, β0 and k.

Proof. Let dn =
√
p
n
(|Dn|−1/2 + an), and k = {k1, k2, . . . , kpn}>. We remind the

reader that the estimate of β0 is defined as the maximum of the function Qn (given
by (3.8)) over Θ, an open convex bounded set of Rpn for any n ≥ 1. For any k such
that ‖k‖ ≤ K < ∞, β0 + dnk ∈ Θ for n sufficiently large. Assume this is valid in
the following. To prove Theorem 1, we aim at proving that for any given ε > 0,
there exists sufficiently large K > 0 such that for n sufficiently large

P

(
sup
‖k‖=K

∆n(k) > 0

)
≤ ε, where ∆n(k) = Qn(w;β0 +dnk)−Qn(w;β0). (B.16)

Equation (B.16) will imply that with probability at least 1− ε, there exists a local

maximum in the ball {β0 + dnk : ‖k‖ ≤ K}, and therefore a local maximizer β̂ is

such that ‖β̂ − β0‖ = OP(dn). We decompose ∆n(k) as ∆n(k) = T1 + T2 where

T1 = `n(w;β0 + dnk)− `n(w;β0)

T2 = |Dn|
pn∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)
.

Since ρ(u; ·) is infinitely continuously differentiable and `
(2)
n (w;β) = −An(w;β),

then using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T1 = dnk
>`(1)

n (w;β0)− 1

2
d2
nk
>An(w;β0)k

+
1

2
d2
nk
> (An(w;β0)−An(w;β0 + tdnk)) k.

By conditions (C.2)-(C.3), there exists a non-negative constant κ such that

1

2
‖An(w;β0)−An(w;β0 + tdnk)‖ ≤ κdn|Dn|pn.
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Now, denote ν̌ := lim infn→∞ νmin(|Dn|−1An(w;β0)). By condition (C.7), we have
that for any k

0 < ν̌ ≤ k> (|Dn|−1An(w;β0)) k

‖k‖2
.

Therefore, we have

T1 ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

2
d2
n|Dn|‖k‖2 + κpnd

3
n|Dn|‖k‖2.

Now by the condition (C.9) and by assumption that an = O(|Dn|−1/2), we obtain
pndn = o(1), so κpnd

3
n|Dn|‖k‖2 = o(1)d2

n|Dn|‖k‖2. Hence, for n sufficiently large

T1 ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

4
d2
n|Dn|‖k‖2.

Regarding the term T2,

T2 ≤ T ′2 := |Dn|
s∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)
since for any j the penalty function pλn,j

is non-negative and pλn,j
(|β0j|) = 0 for

j = s+ 1, . . . , pn.
From (C.8), for n sufficiently large, pλn,j

is twice continuously differentiable for
every βj = β0j+tdnkj with t ∈ (0, 1). Therefore using a third-order Taylor expansion,
there exist tj ∈ (0, 1), j = 1, . . . , s such that −T ′2 = T ′2,1 + T ′2,2 + T ′2,3, where

T ′2,1 = dn|Dn|
s∑
j=1

kjp
′
λn,j

(|β0j|) sign(β0,j) ≤
√
sandn|Dn| ‖k‖ ≤ d2

n|Dn| ‖k‖,

T ′2,2 =
1

2
d2
n|Dn|

s∑
j=1

k2
jp
′′
λn,j

(|β0j|) ≤ cnd
2
n|Dn|‖k‖2,

T ′2,3 =
1

6
d3
n|Dn|

s∑
j=1

k3
jp
′′′
λn,j

(|β0j + tjdnkj|) ≤ κd3
n|Dn|.

The three inequalities above are obtained using the definitions of an and cn, condi-
tion (C.8) and Cauchy-Schwarz inequality. We deduce that for n sufficiently large

T2 ≤ |T ′2| ≤ 2d2
n|Dn|‖k‖,

and then

∆n(k) ≤ dn‖`(1)
n (w;β0)‖ ‖k‖ − ν̌

4
d2
n|Dn|‖k‖2 + 2d2

n|Dn|‖k‖.

We now return to (B.16): for n sufficiently large

P

(
sup
‖k‖=K

∆n(k) > 0

)
≤ P

(
‖`(1)
n (w;β0)‖ > ν̌

4
dn|Dn|K − 2dn|Dn|

)
.
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Since dn|Dn| = O(
√
pn|Dn|), by choosing K large enough, there exists κ such that

for n sufficiently large

P

(
sup
‖k‖=K

∆n(k) > 0

)
≤ P

(
‖`(1)
n (w;β0)‖ > κ

√
pn|Dn|

)
≤ ε

for any given ε > 0 from (A.15) in Lemma 1.

C Proof of Theorem 2

Before proving Theorem 2, we present Lemmas 2-3. Lemma 2 is used to prove
Theorem 2(i) while Lemma 3 is used to derive Theorem 2(ii).

Lemma 2. Assume the conditions (C.1)-(C.8) hold. If an = O(|Dn|−1/2) and

bn
√
|Dn|/p2

n → ∞ as n → ∞, then with probability tending to 1, for any β1 satis-

fying ‖β1 − β01‖ = OP(
√
pn/|Dn|), and for any constant K1 > 0,

Qn

(
w; (β1

>,0>)>
)

= max
‖β2‖≤K1

√
pn/|Dn|

Qn

(
w; (β1

>,β2
>)>
)
.

Proof. Let εn = K1

√
pn/|Dn|. It is sufficient to show that with probability tending

to 1 as n→∞, for any β1 satisfying ‖β1 − β01‖ = OP(
√
pn/|Dn|), we have for any

j = s+ 1, . . . , pn

∂Qn(w;β)

∂βj
< 0 for 0 < βj < εn, and (C.17)

∂Qn(w;β)

∂βj
> 0 for − εn < βj < 0. (C.18)

From (3.7),

∂`n(w;β)

∂βj
=
∂`n(w;β0)

∂βj
+Rn,

where Rn =
∫
Dn
w(u)zj(u)

(
ρ(u;β) − ρ(u;β0)

)
du. Using similar arguments used in

the proof of Lemma 1, we can prove that

∂`n(w;β0)

∂βj
= OP(

√
|Dn|).

Let u ∈ Rd. By Taylor expansion, there exists t ∈ (0, 1), such that

ρ(u;β) = ρ(u;β0) + (β − β0)>z(u)ρ(u;β0 + t(β − β0)).
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For n sufficiently large, β0 +t(β−β0) ∈ Ξ(β0) defined in condition (C.2). Therefore,
for n sufficiently large, we have by Cauchy-Schwarz inequality and conditions (C.2)-
(C.3)

|Rn| ≤ κ

∫
Dn

‖β − β0‖‖z(u)‖du = OP(
√
|Dn|p2

n).

We therefore deduce that for any j = s+ 1, . . . , pn

∂`n(w;β)

∂βj
= OP(

√
|Dn|p2

n). (C.19)

Now, we want to prove (C.17). Let 0 < βj < εn and bn be the sequence
given by (3.11). By condition (C.8), bn is well-defined and since by the assump-

tion bn
√
|Dn|/p2

n → ∞, in particular, bn > 0 for n sufficiently large. Therefore, for
n sufficiently large,

P

(
∂Qn(w;β)

∂βj
< 0

)
= P

(
∂`n(w;β)

∂βj
− |Dn|p′λn,j

(|βj|) sign(βj) < 0

)
= P

(
∂`n(w;β)

∂βj
< |Dn|p′λn,j

(|βj|)
)

≥ P

(
∂`n(w;β)

∂βj
< |Dn|bn

)
= P

(
∂`n(w;β)

∂βj
<
√
|Dn|p2

n

√
|Dn|
p2
n

bn

)
.

The assertion (C.17) is therefore deduced from (C.19) and from the assumption that

bn
√
|Dn|/p2

n →∞ as n→∞. We proceed similarly to prove (C.18).

Lemma 3. Under the conditions (C.1)-(C.8) and the conditions required in
Lemma 2, the following convergence holds in distribution as n→∞

{Bn,11(w;β01) + Cn,11(w;β01)}−1/2`
(1)
n,1(w;β01)

d−→ N (0, Is), (C.20)

where `
(1)
n,1(w;β0) is the first s components of `

(1)
n (w;β0) and Bn,11(w;β0)

(resp. Cn,11(w;β0)) is the s× s top-left corner of Bn(w;β0) (resp Cn(w;β0)).

Proof. By Lemma 2 and by using Campbell Theorems (2.2)-(2.3),

Var[`
(1)
n,1(w;β0)] = Bn,11(w;β0) + Cn,11(w;β0).

The remainder of the proof follows Coeurjolly and Møller (2014). Let Ci = i +
(−1/2, 1/2]d be the unit box centered at i ∈ Zd and define In = {i ∈ Zd, Ci ∩Dn 6=
∅}. Set Dn =

⋃
i∈In

Ci,n, where Ci,n = Ci ∩Dn. We have

`
(1)
n,1(w;β0) =

∑
i∈In

Yi,n
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where

Yi,n =
∑

u∈X∩Ci,n

w(u)z01(u)−
∫
Ci,n

w(u)z01(u) exp(β>01z01(u))du.

For any n ≥ 1 and any i ∈ In, Yi,n has zero mean, and by condition (C.4),

sup
n≥1

sup
i∈In

E(‖Yi,n‖2+δ) <∞. (C.21)

If we combine (C.21) with conditions (C.1)-(C.6), we can apply Karácsony (2006,
Theorem 4), a central limit theorem for triangular arrays of random fields.

Proof. We now focus on the proof of Theorem 2. Since Theorem 2(i) is proved by
Lemma 2, we only need to prove Theorem 2(ii), which is the asymptotic normality

of β̂1. As shown in Theorem 1, there is a root-(|Dn|/pn) consistent local maximizer

β̂ of Qn(w;β), and it can be shown that there exists an estimator β̂1 in Theorem 1

that is a root-(|Dn|/pn) consistent local maximizer of Qn

(
w; (β1

>,0>)>
)

, which is

regarded as a function of β1, and that satisfies

∂Qn(w; β̂)

∂βj
= 0 for j = 1, . . . , s and β̂ = (β̂

>
1 ,0

>)>.

There exists t ∈ (0, 1) and β̃ = β̂ + t(β0 − β̂) such that for j = 1, · · · , s

0 =
∂`n(w; β̂)

∂βj
− |Dn|p′λn,j

(|β̂j|) sign(β̂j)

=
∂`n(w;β0)

∂βj
+

s∑
l=1

∂2`n(w; β̃)

∂βj∂βl
(β̂l − β0l)− |Dn|p′λn,j

(|β̂j|) sign(β̂j)

=
∂`n(w;β0)

∂βj
+

s∑
l=1

∂2`n(w;β0)

∂βj∂βl
(β̂l − β0l) +

s∑
l=1

Ψn,jl(β̂l − β0l)

− |Dn|p′λn,j
(|β0j|) sign(β0j)− |Dn|φn,j, (C.22)

where

Ψn,jl =
∂2`n(w; β̃)

∂βj∂βl
− ∂2`n(w;β0)

∂βj∂βl

and φn,j = p′λn,j
(|β̂j|) sign(β̂j)−p′λn,j

(|β0j|) sign(β0j). Since p′λ is a Lipschitz function

by condition (C.8), there exists κ ≥ 0 such that by condition on an

φn,j = p′λn,j
(|β̂j|) sign(β̂j)− p′λn,j

(|β0j|) sign(β0j)

=
(
p′λn,j

(|β̂j|)− p′λn,j
(|β0j|)

)
sign(β̂j) + p′λn,j

(|β0j|)
(

sign(β̂j)− sign(β0j)
)

≤ κ
∣∣|β̂j| − |β0j|

∣∣+ 2an

≤ κ|β̂j − β0j|+ 2an. (C.23)
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We now decompose φn,j as φn,j = T1 + T2 where

T1 = φn,jI(|β̂j − β0j| ≤ r̃n,j) and T2 = φn,jI(|β̂j − β0j| > r̃n,j)

and where r̃n,j is the sequence defined in the condition (C.8). Under this condition,
the following Taylor expansion can be derived for the term T1: there exists t ∈ (0, 1)

and β̌j = β̂j + t(β0j − β̂j) such that

T1 = p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j)

+
1

2
(β̂j − β0j)

2p′′′λn,j
(|β̃j|)sign(β̌j)I(|β̂j − β0j| ≤ r̃n,j)

= p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j) +OP(pn/|Dn|)

where the latter equation ensues from Theorem 1 and condition (C.8). Again, from

Theorem 1, I(|β̂j − β0j| ≤ r̃n,j)
L1

−→ 1 which implies that I(|β̂j − β0j| ≤ r̃n,j)
P−→ 1, so

T1 = p′′λn,j
(|β0j|)(β̂j − β0j)

(
1 + oP(1)

)
+OP(pn/|Dn|).

Regarding the term T2, we have by (C.23)

T2 ≤ {κ|β̂j − β0j|+ 2an} I(|β̂j − β0j| > r̃n,j)

= κ|β̂j − β0j| I(|β̂j − β0j| > r̃n,j) + o(|Dn|−1/2).

We want to prove that T2 = oP(|Dn|−1/2). Define Sn = |β̂j − β0j| I(|β̂j − β0j| > r̃n,j)
and Tn = I(Sn > δ|Dn|−1/2) for some δ > 0. We claim that the result is proved if we
prove that ETn → 0 for any δ > 0. Condition (C.8) implies in particular that for n

large enough, r̃n,j >
√
pn/|Dn| >

√
1/|Dn|. Using this, it can be checked that the

binary random variable Tn reduces to Tn = I(|β̂j − β0j| > r̃n,j)
L1

→ 0 as n→∞.
Then, we deduce that

φn,j = p′′λn,j
(|β0j|)(β̂j − β0j)

(
1 + oP(1)

)
+OP(pn/|Dn|) + oP(|Dn|−1/2). (C.24)

Let `
(1)
n,1(w;β0) (resp. `

(2)
n,1(w;β0)) be the first s components (resp. s× s top-left

corner) of `
(1)
n (w;β0) (resp. `

(2)
n (w;β0)). Let also Ψn be the s× s matrix containing

Ψn,jl, j, l = 1, . . . , s. Finally, let the vector p′n, the vector φn and the s × s matrix
Mn be defined by

p′n = {p′λn,1
(|β01|) sign(β01), . . . , p′λn,s

(|β0s|) sign(β0s)}>,
φn = {φn,1, . . . , φn,s}>, and

Mn = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2.

We rewrite both sides of (C.22) as

`
(1)
n,1(w;β0) + `

(2)
n,1(w;β0)(β̂1 −β01) + Ψn(β̂1 −β01)− |Dn|p′n − |Dn|φn = 0. (C.25)
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By definition of Πn given by (3.14) and from (C.24), we obtain φn = Πn(β̂1 −
β01)

(
1 + oP(1)

)
+OP(pn/|Dn|) + oP(|Dn|−1/2). Using this, we deduce, by premulti-

plying both sides of (C.25) by Mn, that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01)

= O(|Dn| ‖Mnp
′
n‖) + oP(|Dn| ‖MnΠn(β̂1 − β01)‖)

+OP(‖Mn‖pn) + oP(‖Mn‖|Dn|1/2)

+OP(‖MnΨn(β̂1 − β01)‖).

Now, ‖Mn‖ = O(1/
√
|Dn|) by condition (C.6), ‖Ψn‖ = OP(

√
pn|Dn|) by condi-

tions (C.2)-(C.3) and Theorem 1, and ‖β̂1−β01‖ = OP(
√
pn/|Dn|) by Theorem 1 and

Theorem 2(i). Finally, since by assumptions that

an
√
|Dn| → 0 and cn

√
pn → 0 as n→∞, we deduce that

|Dn| ‖Mnp
′
n‖ = O(an

√
Dn) = o(1),

|Dn| ‖MnΠn(β̂1 − β01)‖ = OP

(√
|Dn|cn

√
pn
|Dn|

)
= oP(1),

‖Mn‖
√
|Dn| = O(1),

‖Mn‖ pn = O

(√
p2
n

|Dn|

)
= o(1),

‖MnΨn(β̂1 − β01)‖ = OP

(√
p2
n

|Dn|

)
= oP(1).

The last two lines are obtained from (C.9). Therefore, we have that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01) = oP(1).

By (C.20) in Lemma 3 and by Slutsky’s Theorem, we deduce that

{Bn,11(w;β0) + Cn,11(w;β0)}−1/2×

{An,11(w;β0) + |Dn|Πn}(β̂1 − β01)
d−→ N (0, Is)

as n→∞, which can be rewritten, in particular under (C.7), as

|Dn|1/2Σn(w;β0)−1/2(β̂1 − β01)
d−→ N (0, Is)

where Σn(w,β0) is given by (3.13).
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E-mail: frederique.letue@univ-grenoble-alpes.fr

30


	Introduction
	Background
	Feature selection techniques
	Issues in high dimensional data
	Outline of the paper

	Regularization methods for spatial point processes
	Asymptotic properties
	Notation and conditions
	Main results

	Numerical results
	Simulation study
	Application to forestry datasets

	Conclusion and discussion
	Auxiliary Lemma
	Proof of Theorem 1
	Proof of Theorem 2

