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SUPER-RIGID AFFINE FANO VARIETIES

IVAN CHELTSOV, ADRIEN DUBOULOZ, JIHUN PARK

Abstract. We study a wide class of affine varieties, which we call affine Fano varieties. By
analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano
varieties, and provide many examples and non-examples of super-rigid affine Fano varieties.

1. Introduction

Throughout the present article, all varieties and morphisms are assumed to be defined over a
field k of characteristic zero.

The automorphism group of an affine surface admitting a smooth projective completion X
whose boundary SX consists of a single smooth curve has been intensively studied during the
last decades [1,2,22,26,27], inspired by the pioneering work of Gizatullin in [25]. The upshot is
that depending on whether the curve SX is rational or not, the group Aut(X \ SX) is either an
infinite dimensional group which sometimes cannot even be generated by any countable family
of its algebraic subgroups, or an affine algebraic group isomorphic to the group Aut(X,SX) of
automorphisms of the pair (X,SX). In higher dimension, given a projective variety X and an
ample prime divisor SX on it, not much is known about geometric conditions on the pair (X,SX)
which ensure that the restriction map Aut(X,SX)→ Aut(X\SX) is again an isomorphism. This
holds in general when X is smooth and SX is a non-ruled hypersurface of X ( [41, Proposition 1]),
and for certain specific families of singular hypersurfaces SX in X = Pn recently studied in [41].
For affine cubic hypersurfaces, there is a folklore:

Conjecture 1.1. Let X be a smooth cubic hypersurface in the complex projective space P4, and
let SX be its hyperplane section. The complement X \ SX is an affine cubic hypersurface in A4.
Suppose that the cubic surface SX is smooth. Then

Aut (X \ SX) = Aut (X,SX) .

In particular, the group Aut(X \ SX) is finite.

In this article, we study a similar problem for a wide class of affine varieties, which we call
affine Fano varieties, as follows. Let X be a projective normal variety of Picard rank 1 with
Q-factorial singularities, and let SX be a prime divisor on X such that the pair (X,SX) has
purely log terminal singularities. In particular, the set X \ SX is an affine variety since the
divisor SX is ample.

Definition 1.2. If −(KX + SX) is an ample divisor, then the affine variety X \ SX is called an
affine Fano variety with completion X and boundary SX .

By analogy with Mori fiber spaces in birational geometry, we introduce the following relative
version of Definition 1.2.

2010 Mathematics Subject Classification. Primary 14E07, 14J45, 14J50, 14R10, 14R20, 14R25; Secondary 14C20,
14E05, 14J17, 14J70.
Key words and phrases. A1-cylinder, affine Fano variety, α-invariant, automorphism, birational automorphism, del
Pezzo surface, Fano variety, finite quotient of affine space, Ga-action, log Noether-Fano inequality, polar cylinder,
purely log terminal, super-rigidity.
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2 IVAN CHELTSOV, ADRIEN DUBOULOZ, JIHUN PARK

Definition 1.3. Let X and B be quasi-projective normal varieties such that there exists a
dominant non-birational projective morphism ρ : X → B with connected fibers, and let SX be a
prime divisor on X . Denote by Xη the scheme theoretic generic fiber of ρ, so that Xη is defined
over the function field of B. Put SXη = SX |Xη . We say that X \ SX is a (relative) affine Fano
variety over B provided that the following properties are satisfied

• the generic fiber Xη is a projective variety of Picard rank 1 with Q-factorial singularities;
• the pair (Xη,SXη) has purely log terminal singularities;
• the divisor −(KXη + SXη) is ample.

This definition comprises two important notions: “usual” affine Fano varieties as in Defini-
tion 1.2 when the base B is a point, and A1-cylinders when the dimension of B is positive. Recall
that an A1-cylinder is a variety isomorphic to B×A1 for some smooth quasi-projective variety B.
In this case, the projection prB : X = B × P1 → B is a relative affine Fano variety with respect
to the divisor SX = B×{∞}, where∞ = P1 \A1. Projective varieties that contain Zariski open
A1-cylinders appear naturally in many problems and questions (see [11,12,20,32,34,43]). Some
of them are still open. For instance, it is not known whether every smooth projective rational
variety always contains a Zariski open A1-cylinder or not.

In dimension one, the only affine Fano variety is the affine line A1, and its automorphisms are
induced by the automorphisms of its completion P1. This is no longer true in higher dimensions:
the complement A2 of a line L in P2 is an affine Fano variety that contains an open A1-cylinder,
for which Aut(A2) 6= Aut(P2, L). Keeping in mind Conjecture 1.1 and the fact that smooth
cubic threefolds in P4 do not contain open A1-cylinders (see [20]) we are primarily interested in
affine Fano varieties with the following properties:

(1) Their automorphisms are induced by automorphisms of their completions.
(2) They do not contain proper relative affine Fano varieties over varieties of positive di-

mensions. In particular, they do not contain open A1-cylinders.

These resemble basic properties of the so-called birationally super-rigid Fano varieties. We
recall from [18, Definition 1.3] that a Fano variety V with terminal Q-factorial singularities and
Picard rank 1 is said to be birationally super-rigid if the following two conditions hold.

(1) For every Fano variety V ′ with terminal Q-factorial singularities and Picard rank 1, if
there exists a birational map φ : V 99K V ′, then φ is an isomorphism. In particular, one
has

Bir (V ) = Aut (V ) .

(2) The variety V is not birational to a fibration into Fano varieties over a variety of positive
dimension. In particular, the variety V is not birationally ruled.

The first example of birationally super-rigid Fano variety was given by Iskovskikh and Manin
in [30], where they implicitly showed that every smooth quartic threefold is birationally super-
rigid. Since then birational super-rigidity has been proved for many higher-dimensional Fano
varieties (see [4, 9, 19,23,38,40]).

By analogy with birational super-rigidity Fano varieties, we introduce

Definition 1.4. An affine Fano variety X \SX with completion X and boundary SX is said to
be super-rigid if the following two conditions hold.

(1) For every affine Fano variety X ′ \ S′X′ with completion X ′ and boundary S′X′ , if there
exists an isomorphism φ : X \ SX → X ′ \ S′X′ , then φ is induced by an isomorphism
X → X ′ that maps SX onto S′X′ . In particular, one has

Aut (X \ SX) = Aut (X,SX) .

(2) The affine Fano variety X \SX does not contain relative affine Fano varieties of the same
dimension over varieties of positive dimensions. In particular, X \ SX does not contain
open A1-cylinders.
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The arguably simplest example of a super-rigid affine Fano surface is given by

Example 1.5 (cf. Corollary 2.6). Let C be an irreducible conic in P2. Then P2 \C is an affine
Fano variety. If C has a rational point, then P2 \C contains an open A1-cylinder, so that P2 \C
is not super-rigid. On the other hand, if the conic C does not have a rational point, then P2 \C
is super-rigid.

As in the theory of birational super-rigidity, in general it is arduous to determine whether a
given affine Fano variety is super-rigid or not. For a terminal Q-factorial Fano variety of Picard
rank 1, the following theorem, known as a classical Noether-Fano inequality, serves as a criterion
for birational super-rigidity.

Theorem 1.6. Let V be a terminal Q-factorial Fano variety of Picard rank 1. If for any mobile
linear system MV on V and a positive rational number λ such that

KV + λMV ∼Q 0,

the pair (V, λMV ) is canonical, then V is birationally super-rigid.

In Section 2, we will establish a similar statement for super-rigid affine Fano varieties as below.

Theorem A. Let X \SX be an affine Fano variety with completion X and boundary SX . If for
any mobile linear system MX on X and a positive rational number λ such that

KX + SX + λMX ∼Q 0,

the pair (X,SX + λMX) is log canonical along SX , then X \ SX is super-rigid.

From the viewpoint of the classical Noether-Fano inequality, a terminal Q-factorial Fano
variety V of Picard rank 1 is birationally super-rigid provided that

(*) the pair (V,D) is canonical for every effective Q-divisor D that is Q-linearly
equivalent to −KV .

Note that this condition is not a necessary condition for birational super-rigidity.
In order to introduce analogy with this sufficient condition, we use a generalized version of

Tian’s α-invariant, which was introduced in [48] using a different language. Let X \ SX be an
affine Fano variety with completion X and boundary SX . Then there exists a uniquely deter-
mined effective Q-divisor DiffSX (0) on SX , usually called the different, which was introduced
by Shokurov in [46]. To be precise, let R1, . . . , Rs be all irreducible components of the singular
locus of X that are of codimension 2 and contained in SX . Then

DiffSX (0) =

s∑
i=1

mi − 1

mi
Ri,

where mi is the smallest positive integer such that miSX is Cartier at a general point of the
divisor Ri. By the adjunction formula, we have

KSX + DiffSX (0) ∼Q (KX + SX)|SX .

Moreover, by Adjunction (see [35, Theorem 7.5]), the pair (SX ,DiffSX (0)) has Kawamata log
terminal singularities. Thus, since X \ SX is an affine Fano variety, the pair (SX ,DiffSX (0)) is
a log Fano variety in a usual sense.

The α-invariant of the pair (SX ,DiffSX (0)) is defined as

α(SX ,DiffSX (0)) = sup

{
λ ∈ Q

∣∣∣∣∣ the pair (SX ,DiffSX (0) + λD) is log canonical for every

effective Q-divisor D such that D ∼Q − (KSX + DiffSX (0))

}
.

Then the condition α(SX ,DiffSX (0)) > 1 will be an analogy of the condition (*).
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Theorem B. Let X \ SX be an affine Fano variety with completion X and boundary SX .
If α(SX ,DiffSX (0)) > 1, then the affine Fano variety X \ SX is super-rigid.

This sufficient condition allows us to give large supply of super-rigid affine Fano varieties
in every dimension bigger than or equal to 3. As in birational super-rigidity theory, it can
scarcely be expected that the condition in Theorem B is sufficient and necessary to be super-
rigid. However, our results (Theorems 3.7, 3.10 and 3.11) show that it plays a role of a
criterion for affine Fano varieties of a certain type to be super-rigid.

With Theorem B and some result on non-rationality of Fano varieties we can provide an
instructive example that fosters our understanding of Conjecture 1.1. The example below stands
in the same stream as Conjecture 1.1, with slightly less difficulty.

Example 1.7. Let X be a smooth hypersurface in P(1, 1, 1, 2, 3) of degree 6 and SX be a
hyperplane section of X by an equation of degree 1 with at most Du Val singularities. The
hyperplane section SX is a del Pezzo surface of anticanonical degree 1. The pair (X,SX) has
purely log terminal singularities, and hence X \SX is an affine Fano variety. It follows from [5,8]
that α(SX ,DiffSX (0)) = 1 if the following two conditions are satisfied:

(1) the surface SX has only singular points of types A1, A2 and A3;
(2) the linear system | −KSX | does not contain cuspidal curves.

In such a case, Theorem B immediately implies that X \ SX is super-rigid. However, in general
we do not know whether X \ SX is super-rigid or not. We may draw only a conclusion that
Aut(X \ SX) = Aut(X,SX) regardless of how singular the surface SX is. This follows from
the result of Grinenko ( [28, 29]) that every birational automorphism of X is biregular, i.e.,
Bir(X) = Aut(X).

It is natural that there should be a lot of conundrums in the border area between super-rigidity
and non-super-rigidity. For those affine Fano varieties X \SX near the border even the problem
to determine whether the groups Aut(X \ SX) and Aut(X,SX) coincide or not is subtle. We
believe that smooth cubic threefolds lie in this border area from the super-rigidity side. This is
one of the reasons why Conjecture 1.1 is far away from its proof.

Meanwhile, as in the theory of birational super-rigidity, the super-rigidity of an affine Fano
variety X \ SX may be easily destroyed if we allow some singularities in the boundary SX .
This has been partially observed and investigated in [20, 33] from singular cubic surfaces. In
Section 4 we provide a complete and uniform picture for the complements of del Pezzo surfaces
in the context of affine Fano varieties. We obtain in particular the following characterization of
non super-rigid complement of del Pezzo surfaces:

Theorem C. Let S be a del Pezzo surface of anticanonical degree at most 3 with Du Val
singularities. The surface is a hypersurface in a (weighted) projective space P. If the surface
S contains a (−KS)-polar cylinder, then P \ S is an affine Fano variety that contains an open
A1-cylinder. In particular, it is not super-rigid.

Here we recall from [34, Definition 0.2] that an open A1-cylinder U in a del Pezzo surface
S is called a (−KS)-polar cylinder if S \ U is the support of an effective Q-divisor Q-linearly
equivalent to the anticanonical divisor −KS of S.

2. Log Noether-Fano Inequalities and α-invariant

In this section, we will establish Theorems A and B. For this goal we generalise the classical
Noether-Fano inequality for affine Fano varieties X \ SX in the context of purely log terminal
pairs (X,SX).

First, we suppose that there is an affine Fano variety Y \SY and a birational map φ : X 99K Y
such that
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(1) the map φ is not an isomorphism in codimension 1;
(2) the map φ induces an isomorphism of X \ SX onto Y \ SY .

Let MY be a very ample complete system on Y , and let MX be the proper transform of MY

by φ. We consider the following resolution of indeterminacy of φ

W
f

~~

g

  
X

φ
// Y,

where f and g are birational morphisms and W is a smooth projective variety. Let S̃X and S̃Y
be the proper transforms of SX and SY by f and g, respectively. Due to the conditions above,

the divisor S̃X is g-exceptional, the divisor S̃Y is f -exceptional, and f(S̃Y ) is contained in SX .
By analogy with the notion of ε-Kawamata log terminal singularities, we say that a pair (Y, SY )

with irreducible and reduced boundary SY has ε-purely log terminal singularities, if for every
resolution of singularities h : Z → Y , where Z is a smooth projective variety, the log discrepancy
of every exceptional divisor of h is bigger than ε.

Lemma 2.1 (Log Noether-Fano Inequality I). Suppose that the pair (Y, SY ) is ε-purely log
terminal for some positive rational number ε. Let µ and λ be non-negative rational numbers
such that 1− ε 6 µ 6 1 and

KX + µSX + λMX ∼Q 0.

Then the log discrepancy of S̃Y with respect to (X,µSX + λMX) is less than 1− µ.

Proof. We have

KW + µS̃X + λMW ∼Q f
∗(KX + µSX + λMX) + aS̃Y +

∑
aiEi,

and

KW + µS̃Y + λMW ∼Q g
∗(KY + µSY + λMY ) + bS̃X +

∑
biEi,

where each Ei is simultaneously f -exceptional and g-exceptional. The hypothesis that (Y, SY )
is ε-purely log terminal immediately implies that µ+ b is positive.

Suppose a+ µ > 0. Since µ+ b is positive, applying Negativity Lemma ( [46, 1.1]) to

(µ+ a)S̃Y − g∗(KY + µSY + λMY ) ∼Q (µ+ b)S̃X +
∑

(bi − ai)Ei
we see that KY + µSY + λMY is positive.

Let λ′ be the number such that KY + µSY + λ′MY ∼Q 0. Note that λ′ < λ. We have

KW + µS̃X + λ′MW ∼Q f
∗(KX + µSX + λ′MX) + a′S̃Y +

∑
a′iEi,

and

KW + µS̃Y + λ′MW ∼Q g
∗(KY + µSY + λ′MY ) + bS̃X +

∑
biEi,

where a′ > a and a′i > ai. We then get

(µ+ b)S̃X − f∗(KX + µSX + λ′MX) ∼Q (µ+ a′)S̃Y +
∑

(a′i − bi)Ei.

Since µ+ b > 0 and KX +µSX +λ′MX is negative, Negativity Lemma implies µ+ a′ ≤ 0. This
is absurd. Therefore, a+ 1 < 1− µ. �

Corollary 2.2. Let λ be a non-negative rational number such that

KX + SX + λMX ∼Q 0.

Then the log discrepancy of S̃Y with respect to the pair (X,SX + λMX) is negative.
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Now let Y be a quasi-projective variety, let SY be a prime divisor on the variety Y , and
let ρ : Y → B be a dominant non-birational projective morphism with connected fibers such that
the complement Yη \ SYη is an affine Fano variety over the function field of the variety B. Here

Yη is a generic fiber of ρ, and SYη = SY |Yη . We projectivize Y and B into projective varieties Y

and B respectively. We may assume that ρ : Y → B extends to a projective morphism ρ̄ : Y → B.
Suppose that dim(B) > 0, and that there exists a birational map ψ : Y 99K X that induces an

embedding Y \SY into X \SX . As above, we consider the following resolution of indeterminacy
of ψ

V
p

��

q

��
X Y

ψoo

ρ̄
��
B

where p and q are birational morphisms and V is a smooth projective variety. Let SY be the

closure of SY in Y . Let S̃X and S̃Y be the proper transforms of SX and SY by p and q,

respectively. Then S̃Y is p-exceptional, because X has Q-factorial singularities, and its Picard

group is of rank 1. Moreover, since ψ induces an embedding Y \ SY into X \ SX , q(S̃X) is

contained either in SY or in Y \ Y . Thus, the divisor S̃X is either q-exceptional or mapped

by ρ̄ ◦ q to a proper subvariety of B. Since SX is ample, the latter also implies that p(S̃Y ) is
contained in SX .

Let H be a very ample Cartier divisor on B. Let HY be the complete linear system |ρ̄∗(H)|,
and let HX be the proper transform of HY on the variety X by ψ.

Lemma 2.3 (Log Noether-Fano Inequality II). Let µ and λ be non-negative rational numbers
such that µ 6 1 and

KX + µSX + λHX ∼Q 0.

Then the log discrepancy of S̃Y with respect to (X,µSX + λHX) is less than 1− µ.

Proof. As in the proof of Lemma 2.1, we have

KV + µS̃X + λHV ∼Q p
∗(KX + µSX + λHX) + aS̃Y +

∑
aiEi,

and

KV + µS̃Y + λHV ∼Q q
∗(KY + µSY + λHY ) + bS̃X +

∑
bjFj ,

where each Ei is p-exceptional, and each Fj is q-exceptional. Then

(a+ µ)S̃Y ∼Q q
∗(KY + µSY + λHY ) + (b+ µ)S̃X +

∑
bjFj −

∑
aiEi.

Thus, we have

(a+ µ)SY ∼Q KY + µSY + λHY + (b+ µ)q(S̃X)−
∑

aiq(Ei).

On the other hand, each p-exceptional divisor Ei is either q-exceptional or mapped by ρ̄ ◦ q to
a proper subvariety of B. This shows that

−(a+ µ)SYη ∼Q −(KYη + µSYη) = −(KYη + SYη) + (1− µ)SYη .

Since −(KYη + SYη) and SYη are ample, we obtain a + µ < 0. Therefore, the log discrepancy

of S̃Y with respect to (X,µSX + λHX) is less than 1− µ. �
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Corollary 2.4. Let λ be a non-negative rational number such that

KX + SX + λHX ∼Q 0.

Then the log discrepancy of S̃Y with respect to the pair (X,SX + λHX) is negative.

Theorem 2.5 (Theorem A). Let X \ SX be an affine Fano variety with completion X and
boundary SX . If for any mobile linear system MX on X and a positive rational number λ such
that

KX + SX + λMX ∼Q 0,

the pair (X,SX + λMX) is log canonical along SX , then X \ SX is super-rigid.

Proof. This immediately follows from Corollaries 2.2 and 2.4. �

As an application of Theorem A, we obtain the following positive solution to Conjecture 1.1
for smooth cubic surfaces without rational points.

Corollary 2.6. Let S be a smooth cubic surface in P3
k without k-rational points. Then P3

k \ S
is a super-rigid affine Fano variety.

Proof. Indeed, otherwise Theorem A implies that there exists a mobile linear system M on P3
k

of degree m such that the singularities of the pair(
P3, S +

1

m
M
)

are not log canonical along S. Write D = 1
mM|S . Then the pair (S,D) is not log canonical by

Inversion of adjunction (see [35, Theorem 7.5]), and D is an effective Q-divisor on S such that
D ∼Q −KS .

Let Sk be the surface obtained from S by base change to an algebraic closure k of k. Similarly,
let Dk be the Q-divisor obtained from D by the same base change. Then Dk is an effective Q-
divisor on Sk such that

Dk ∼Q −KSk
.

Moreover, the pair (Sk, Dk) is not log canonical at some point P ∈ Sk. Furthermore, it follows
from [5, Lemma 3.7] that this pair is log canonical outside of the point P . Thus, the point P
must be invariant under the action of the Galois group Gal(k/k) on Sk, and hence corresponds
to a k-rational point of S. This is a contradiction. �

Example 2.7. Let X be the cubic hypersurface in P4
Q that is given by

5x3 + 9y3 + 10z3 + 12w3 + uf2(x, y, z, w, u) = 0,

where f2 is a homogeneous polynomial of degree 2. Let SX be its hyperplane section cut by
u = 0. Then X has at most canonical singularities, the surface SX is smooth, and X \ SX is an
affine cubic hypersurface in A4

Q. Moreover, Cassels and Guy proved in [3] that the surface SX
violates the Hasse principle. In particular, it does not contain any Q-rational points. Then the
proof of Corollary 2.6 shows verbatim that X \ SX is super-rigid.

Theorem 2.8 (Theorem B). Let X \ SX be an affine Fano variety with completion X and
boundary SX . If α(SX ,DiffSX (0)) > 1, then the affine Fano variety X \ SX is super-rigid.

Proof. Suppose that X\SX is not super-rigid. Then Theorem A above implies that the variety X
must carry a mobile linear system MX such that the singularities of the pair (X,SX + λMX)
are not log canonical along SX for a positive rational number λ satisfying

KX + SX + λMX ∼Q 0.

However, the condition α(SX ,DiffSX (0)) > 1 and Inversion of adjunction (see [35, Theorem 7.5])
immediately show that this is impossible. �
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Applying Theorem B to quasi-smooth well-formed (see [24]) Fano hypersurfaces in well-formed
weighted projective spaces, we are able to provide many examples of super-rigid affine Fano
varieties. To be precise, let X be a well-formed weighted projective space P(a0, a1, . . . , an),
where a0, a1, . . . , an are positive integers such that a0 6 a1 6 · · · 6 an. Let SX be a quasi-
smooth well-formed hypersurface in X of degree d <

∑n
i=0 ai. Then X \ SX is an affine Fano

variety of dimension n, and DiffX(0) = 0.
The examples below are motivated by Conjecture 1.1.

Example 2.9. Suppose that X = Pn and d = n > 4. Then

Aut (X \ SX) = Aut (X,SX) ,

because SX is not ruled (see [23,30,38]). We do not know whether the affine Fano variety X \SX
is super-rigid or not. However, if n > 6 and SX is a general hypersurface of degree n, then
α(SX) = 1 by [39], so that X \ SX should be super-rigid by Theorem B.

Smooth cubic surfaces in P3, smooth quartic surfaces in P(1, 1, 1, 2), and smooth sextic surfaces
in P(1, 1, 2, 3) form three special families of a much larger class of quasismooth well-formed two-
dimensional del Pezzo hypersurfaces in three-dimensional weighted projective spaces. They
provide a lot of examples of super-rigid affine Fano threefolds.

Example 2.10. Suppose that n = 3, so that X \ SX should be an affine Fano threefold. Then
it follows from [10,15] that α(SX) > 1 if and only if (a0, a1, a2, a3, d) is one of the following the
quintuples:

(2, 3, 5, 9, 18), (3, 3, 5, 5, 15), (3, 5, 7, 11, 25), (3, 5, 7, 14, 28),
(3, 5, 11, 18, 36), (5, 14, 17, 21, 56), (5, 19, 27, 31, 81), (5, 19, 27, 50, 100),
(7, 11, 27, 37, 81), (7, 11, 27, 44, 88), (9, 15, 17, 20, 60), (9, 15, 23, 23, 69),
(11, 29, 39, 49, 127), (11, 49, 69, 128, 256), (13, 23, 35, 57, 127), (13, 35, 81, 128, 256),
(3, 4, 5, 10, 20), (3, 4, 10, 15, 30), (5, 13, 19, 22, 57), (5, 13, 19, 35, 70),
(6, 9, 10, 13, 36), (7, 8, 19, 25, 57), (7, 8, 19, 32, 64), (9, 12, 13, 16, 48),
(9, 12, 19, 19, 57), (9, 19, 24, 31, 81), (10, 19, 35, 43, 105), (11, 21, 28, 47, 105),
(11, 25, 32, 41, 107), (11, 25, 34, 43, 111), (11, 43, 61, 113, 226), (13, 18, 45, 61, 135),
(13, 20, 29, 47, 107), (13, 20, 31, 49, 111), (13, 31, 71, 113, 226), (14, 17, 29, 41, 99),
(5, 7, 11, 13, 33), (5, 7, 11, 20, 40), (11, 21, 29, 37, 95), (11, 37, 53, 98, 196),
(13, 17, 27, 41, 95), (13, 27, 61, 98, 196), (15, 19, 43, 74, 148), (9, 11, 12, 17, 45),
(10, 13, 25, 31, 75), (11, 17, 20, 27, 71), (11, 17, 24, 31, 79), (11, 31, 45, 83, 166),
(13, 14, 19, 29, 71), (13, 14, 23, 33, 79), (13, 23, 51, 83, 166), (11, 13, 19, 25, 63),
(11, 25, 37, 68, 136), (13, 19, 41, 68, 136), (11, 19, 29, 53, 106), (13, 15, 31, 53, 106),
(11, 13, 21, 38, 76).

In all these cases, the affine Fano variety X \ SX is super-rigid by Theorem B.

Example 2.11. With the notation and assumptions of Example 2.10, one has α(SX) = 1 if
(a0, a1, a2, a3, d) is one of the following the quintuples:

(1, 3, 5, 8, 16), (2, 3, 4, 7, 14), (5, 6, 8, 9, 24), (5, 6, 8, 15, 30),
(2, 2n+ 1, 2n+ 1, 4n+ 1, 8n+ 4), (3, 3n, 3n+ 1, 3n+ 1, 9n+ 3),
(3, 3n+ 1, 3n+ 2, 3n+ 2, 9n+ 6), (3, 3n+ 1, 3n+ 2, 6n+ 1, 12n+ 5),
(3, 3n+ 1, 6n+ 1, 9n, 18n+ 3), (3, 3n+ 1, 6n+ 1, 9n+ 3, 18n+ 6),
(4, 2n+ 1, 4n+ 2, 6n+ 1, 12n+ 6), (4, 2n+ 3, 2n+ 3, 4n+ 4, 8n+ 12),
(6, 6n+ 3, 6n+ 5, 6n+ 5, 18n+ 15), (6, 6n+ 5, 12n+ 8, 18n+ 9, 36n+ 24),
(6, 6n+ 5, 12n+ 8, 18n+ 15, 36n+ 30), (8, 4n+ 5, 4n+ 7, 4n+ 9, 12n+ 23),
(9, 3n+ 8, 3n+ 11, 6n+ 13, 12n+ 35),
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where n is any positive integer. Moreover, we also have α(SX) = 1 if SX is a general hypersurface
of degree d in P(a0, a1, a2, a3) and (a0, a1, a2, a3, d) is one of the following quintuples: (1, 1, 2, 3, 6),
(1, 2, 3, 5, 10), (1, 3, 5, 7, 15), (2, 3, 4, 5, 12). In all these cases, the affine Fano variety X \ SX is
super-rigid by Theorem B.

Smooth quartic threefolds in P4 form one family among the famous 95 families of Reid and
Iano-Fletcher in [24]. They also provide many examples of super-rigid affine Fano fourfolds
through Theorem B.

Example 2.12. For the case where n = 4, d =
∑4

i=0 ai − 1, Iano-Fletcher verified that there
are exactly 95 quintuples (a0, a1, a2, a3, a4) that define the hypersurface SX with only terminal
singularities and listed such quintuples in [24]. Moreover, it follows from [9,19] that

Aut (X \ SX) = Aut (X,SX) .

Furthermore, if −K3
SX
6 1 and the hypersurface SX is general, then α(SX) = 1 by [6,7], so that

the corresponding affine Fano fourfold X \ SX should be super-rigid by Theorem B.

Meanwhile, Johnson and Kollár completely described the quintuples (a0, a1, a2, a3, a4) that

define quasi-smooth hypersurface SX of degree
∑4

i=0 ai − 1 in P(a0, a1, a2, a3, a4) in [31]. They
also show that α(SX) > 1 in many these cases. In such cases, the corresponding affine Fano
variety X \ SX is super-rigid by Theorem B.

3. Global finite quotients of affine spaces

As seen in the previous section, it is hardly expected that the α-invariant plays a role of
a criterion (a sufficient and necessary condition) for an affine Fano variety to be super-rigid.
However, it is able to serve as a criterion for affine Fano varieties of a certain type. In this
section, we study affine Fano varieties that are quotients of An by actions of finite subgroups
of GLn(C). We verify that the α-invariant completely determines super-rigidity of such affine
Fano varieties of dimensions up to 4.

Let G be a finite subgroup in GLn(C), where n > 2. Put V = An and consider V as a
linear representation of the group G. In addition, let us identify GLn(C) with a subgroup of
PGLn+1(C) = Aut(Pn) by means of the natural embedding GLn(C) ↪→ GLn+1(C) and the quo-
tient homomorphism GLn+1(C)→ PGLn+1(C). In this way, we thus consider G as a subgroup
of Aut(Pn).

Let H be the GLn(C)-invariant hyperplane Pn \ V. The action of G on H is not necessarily
faithful. Denote by G the image of G in Aut(H) = PGLn(C), and denote by Z the kernel of
the group homomorphism G→ G. Then Z is a cyclic group of order m > 1, and G is a central
extension of the group G by Z. Letting

X = Pn/G,

we can identify the quotient SX = H/G with a prime divisor in X, so that by construction

(3.1) X \ SX ∼= An/G.

Recall that an element g ∈ G ⊂ GLn(C) is called a quasi-reflection if there is a hyperplane in
H ∼= Pn−1 that is pointwise fixed by the image of g in G. If G is generated by quasi-reflections,
then by virtue of the Chevalley-Shephard-Todd theorem An/G is isomorphic to An, hence is in
particular an affine Fano variety. More generally, we have:

Lemma 3.2. The quotient (3.1) is an affine Fano variety with completion X = Pn/G and
boundary SX = H/G.
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Proof. Since the subgroup of G generated by quasi-reflections is normal, we may assume that G
does not contain non trivial quasi-reflection. Note that G when considered as a subgroup
in GLn+1(C) may contain quasi-reflections. These are just elements of Z that are different from
identity. To take these quasi-reflexions into account, we consider the commutative diagram

Pn

π   

q // P(1n,m)

π
zz

X

where π is the quotient map by the group G, the morphism q is the quotient map by the group Z,
and π is the quotient map by the group G. By construction, the finite morphism q is branched
over q(H), which is a smooth hypersurface in P(1n,m) of degree n, that does not contain the
singular point of the weighted projective space P(1n,m). Moreover, the finite morphism π is
unramified in codimension one. This implies that the divisor

−(KX + SX)

is ample, and (X,SX) has purely log terminal singularities. Thus, the quotient (3.1) is an affine
Fano variety as desired. �

In view of the above discussion, to address the question whether the quotient (3.1) is a super-
rigid affine Fano variety, we may and will assume in the sequel that G is small, i.e., does not
contain any nontrivial quasi-reflection. Let αG(H) be the number defined as

sup

{
λ ∈ Q

∣∣∣∣∣ the pair (H,λD) is log canonical for every effective

G-invariant Q-divisor D on H such that D ∼Q −KH .

}
.

Then αG(H) is the G-equivariant α-invariant of the projective space H. Moreover, it follows
from the proof of [14, Theorem 3.16] that

(3.3) α (SX ,DiffSX (0)) = αG(H).

Furthermore, one has αG(H) > 1 if and only if the quotient singularity An/G is weakly-
exceptional in the notation of [14, 16, 44, 45]. In particular, if αG(H) > 1, then V must be
an irreducible representation of the group G by [14, Theorem 3.18]. In this case, the subgroup
G ⊂ Aut(H) is usually called transitive.

Lemma 3.4. One has αG(H) > 1 ⇒ (3.1) is super-rigid ⇒ G is transitive.

Proof. The first implication follows from Theorem B and (3.3). For the second one, suppose on
the contrary that V splits as the direct sum of two nontrivial representations

V = V1 ⊕ V2.

Then the projection pr1 : V → V1 descends to a fibration ρ : X \ SX → V1/G, whose general
fibers are isomorphic to V2/G

′, where G′ ⊂ G denotes the stabilizer of a general fiber of pr1.
Since V2/G

′ is an affine Fano variety by Lemma 3.2, we see that the generic fiber of ρ is an
affine Fano variety. In other words, ρ : X \ SX → V1/G is a relative affine Fano variety in
contradiction to the super-rigidity hypothesis. �

Corollary 3.5. Suppose that for every irreducible G-invariant subvariety Z ⊂ H, there exists
no hypersurface in H of degree dim(Z) + 1 that contains Z. Then X \ SX is super-rigid.

Proof. Indeed, the conditions imply that αG(H) > 1 by virtue of [16, Theorem 1.12]. �

One can show that super-rigid affine Fano quotients (3.1) exist in all dimensions.
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Example 3.6. Suppose that n is an odd prime. Let G be a subgroup in SLn(C) that is
isomorphic to the Heisenberg group of order n3. Then αG(H) > 1 by [16, Theorem 1.15], so
that X \ SX should be super-rigid by Lemma 3.4.

We now give a complete classification of super-rigid affine Fano varieties (3.1) of dimensions
at most 4.

Theorem 3.7. Suppose that n = 2. Then the following conditions are equivalent:

(1) The affine Fano variety (3.1) is super-rigid.
(2) The inequality αG(H) > 1 holds.
(3) The line H does not have G-fixed points.
(4) The representation V is irreducible.
(5) The group G is not abelian.
(6) The group G is not cyclic.

Proof. We have SX ∼= H ∼= P1. For every point P ∈ SX , denote by nP the order of the stabilizer
in G of any point on H that is mapped to P by the quotient map π : P2 → X. Then

DiffSX (0) =
∑
P∈SX

nP − 1

nP
P.

Note that DiffX(0) 6= 0 provided that G is not trivial. Let Q be the point in SX with the
largest nQ. Then it follows from [14, Example 3.3] that

α (SX ,DiffSX (0)) =
1− nQ−1

nQ

2−
∑

P∈SX
nP−1
nP

=



6 if G ∼= A5,

3 if G ∼= S4,

2 if G ∼= A4,

1 if G is a dihedral group,

1 if G ∼= Z/2Z× Z/2Z,
1

2
if G is cyclic.

Furthermore, since we assumed that G is small, it is abelian if and only if it is cyclic. Finally,
observe that αG(H) is the length of the smallest G-orbit in H, so that

α (SX ,DiffSX (0)) = αG(H) =
|G|
nQ

by virtue of (3.3). Now the conclusion follows from Lemma 3.4 together with the fact that the
representation V splits when G is cyclic. �

Using Theorem 3.7 together with the results of Miyanishi and Sugie on Q-homology planes
with quotient singularities ( [36]), we obtain the following classification of all two-dimensional
super-rigid affine Fano varieties.

Theorem 3.8. Let S \ C be an affine Fano variety of dimension 2 with completion S and
boundary C. Then S \ C is super-rigid if and only if the pair (S,C) is isomorphic to a pair(

P2/G,H/G
)

for some non-cyclic small finite subgroup G ⊂ GL2(C).

Proof. Since (S,C) has purely log terminal singularities, −(KS + C) is ample and the Picard
rank of S is equal to 1, it follows that S \ C is a logarithmic Q-homology plane with smooth
locus of negative Kodaira dimension. By [36, Theorems 2.7 and 2.8], the surface S \ C either
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contains an open A1-cylinder, which is impossible as it is super-rigid by the hypothesis, or is
isomorphic to a quotient A2/G for a small finite subgroup G of GL2(C).

Since S \ C is super-rigid, the group G is not cyclic by Theorem 3.7.
The quotient space P2/G is the natural projective completion of A2/G with boundary H/G.

The isomorphism S \ C ∼= A2/G extends to a birational map S 99K P2/G, which must be an
isomorphism of pairs (S,C) ∼= (P2/G,H/G) by the definition of super-rigidity. �

A consequence of Theorem 3.7 is that for n = 2 all three conditions of Lemma 3.4 are actually
equivalent. This is no longer true for n > 3 as illustrated by the following example.

Example 3.9. Suppose that n = 3. Let G = A5 and let V be an irreducible three-dimensional
representation of G. Then G ∼= G, and the center Z is trivial. Moreover, there exists a G-
invariant smooth conic C in H. Let π : W → P3 be the blow up of the conic C with exceptional

divisor E, and let H̃ be the proper transform of the plane H on the threefold W . Then there
exists a G-equivariant commutative diagram

W

π   

η // Q

ψ��
P3

where Q is a smooth quadric threefold in P4, the morphism η is the contraction of the surface

H̃ to a smooth point of Q, and ψ is a linear projection from this point. Then (Q, η(E)) is
purely log terminal and −(KQ + η(E)) is ample, so that (Q, η(E)) is an affine Fano variety. By
construction, we have Q \ η(E) ∼= P3 \H. Let Y = Q/G and SY = η(E)/G. Then (Y, SY ) is an
affine Fano variety and Y \ SY ∼= X \ SX , so that (X,SX) could not be super-rigid.

In fact, for n = 3 and 4, we can obtain criteria for X \SX to be super-rigid which are similar
to Theorem 3.7. For example, we have:

Theorem 3.10. Suppose that n = 3. Then the following conditions are equivalent:

(1) The affine Fano variety X \ SX is super-rigid;
(2) One has αG(H) > 1;

(3) The plane H contains neither G-invariant lines nor G-invariant conics.

Proof. By [14, Theorem 3.23], the conditions (2) and (3) are equivalent. By Theorem B and
(3.3), the condition (2) implies (1). Thus, it is enough to show that (1) implies (3). If H
contains a G-invariant line, then X \ SX is not super-rigid by Lemma 3.4. Similarly, if H
contains a G-invariant conic, then the construction presented in Example 3.9 shows that X \SX
is not super-rigid. �

Similarly, for n = 4 we have

Theorem 3.11. Suppose that n = 4. Then the following conditions are equivalent:

(1) The affine Fano variety X \ SX is super-rigid;
(2) One has αG(H) > 1;

(3) The group G is transitive, and the hyperplane H does not contain G-invariant quadrics,
G-invariant cubic surfaces or G-invariant twisted cubic curves.

Proof. By [14, Theorem 4.3], Theorem B and (3.3), it is enough to show that (1) implies (3).
If the group G is not transitive, then X \ SX is not super-rigid by Lemma 3.4. Thus, we may
assume that G is transitive. Let us show that X \ SX is not super-rigid in the case where the
hyperplane H contains one of the following G-invariant subvarieties: a quadric surface, a cubic
surface, or a twisted cubic curve.
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Suppose first that the hyperplane H contains a G-invariant surface Sd of degree d = 2 or 3.
Because G is transitive, this surface must be smooth. This is obvious in the case when d = 2
while in the case when d = 3, the conclusion follows from the classification of singular cubic
surfaces.

We may assume that H is given by u = 0, and Sd is defined by{
fd(x, y, z, w) = 0,

u = 0,

where fd(x, y, z, w) is a homogeneous polynomial of degree d, and x, y, z, w, u are homogeneous
coordinates on P4. Let V be a hypersurface in P(15, d− 1) given by

ut = fd(x, y, z, w),

where x, y, z, w, u, t are quasi-homogeneous coordinates on P(15, d−1) such that t is a coordinate
of weight d− 1. Then there exists a G-equivariant commutative diagram

W

π   

η // V

ψ~~
P4

where π is the blow up of the surface Sd with exceptional divisor E, the morphism η is the
contraction of the proper transform of the hyperplane H to the point [0 : 0 : 0 : 0 : 0 : 1], and ψ
is the linear projection from this point. Then η(E) is cut out on V by u = 0. Let Y = V/G and
SY = η(E)/G. Then (Y, SY ) is an affine Fano variety and Y \ SY ∼= X \ SX . In particular, we
see that X \ SX is not super-rigid.

Next suppose that H contains a G-invariant twisted cubic curve C. Then the group G acts
faithfully on the curve C. Using the classification of finite subgroups in PGL2(C), we see that
G is isomorphic to one of the three groups A4, S4, A5, because we assumed that G is transitive.

Let σ : U → P4 be the blow up of the curve C with exceptional divisor F , and denote by H̃
the proper transform of the hyperplane H on the fourfold U . Then there exists a G-equivariant

morphism υ : H̃ → P2 that is a P1-bundle (see [47, Application 1]). Its fibers are the proper
transforms of the secants of the curve C. It follows from [37, Proposition 3.9] that there exists
a G-equivariant commutative diagram

U

σ ��

ν // W5

φ}}
P4

where W5 is a smooth del Pezzo fourfold in P7 of degree 5, the morphism ν is a contraction

of the proper transform of H̃ to a plane in W5 such that the restriction ν|
H̃

: H̃ → ν(H̃) is

the P1-bundle υ, and φ is the linear projection from the plane ν(H̃). Then ν(F ) is a singular
hyperplane section of the fourfold W5 such that the pair (W5, ν(F )) has purely log terminal
singularities. As above, we let M = W5/G and SM = ν(F )/G. Then (M,SM ) is an affine Fano
variety and M \ SM ∼= X \ SX , so that X \ SX could not be super-rigid. �

4. Complements to del Pezzo surfaces

Let S be a del Pezzo surface of anticanonical degree at most 3, i.e., K2
S 6 3, with at worst Du

Val singularities. If the anticanonical degree is 3, then S is a cubic surface in P3. Similarly, if the
anticanonical degree is 2, then S is a quartic surface in P(1, 1, 1, 2). Finally, if the anticanonical
degree is 1, then S is a sextic surface in P(1, 1, 2, 3).
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In this section, we study automorphism groups of affine Fano varieties whose boundary is S
and whose completion is the corresponding ambient weighted projective space. Using the result
obtained in this section we are able to yield many examples of nontrivial non-super-rigid affine
Fano threefolds.

Let P be the ambient spaces P3, P(1, 1, 1, 2) and P(1, 1, 2, 3) in the cases of anticanonical
degrees 3, 2 and 1, respectively. We have

P = Proj (C[x, y, z, w]) ,

where the variables x, y, z and w are of weights (1, 1, 1, 1), (1, 1, 1, 2) and (1, 1, 2, 3) according
to anticanonical degrees 3, 2 and 1. Denote by d the degree of the surface S as a hypersurface
in P. Then d is equal to 3, 4 and 6 according to anticanonical degrees 3, 2 and 1, respectively.

The following theorem summarizes the current knowledge towards the structure of the auto-
morphism groups of the complements of smooth del Pezzo surfaces in P.

Theorem 4.1. Suppose that S is smooth. If its anticanonical degree is 1, then

Aut (P \ S) = Aut (P, S) .

In particular, Aut (P \ S) is a finite group. If its anticanonical degree is either 2 or 3, then
Aut(P \ S) does not contain nontrivial connected algebraic groups.

Proof. We follow the same strategy as [20, § 2.2], which consists in shifting the question to a
suitable finite étale cover of P \ S. Namely, let π : V → P be a cyclic Galois cover of degree d
branched along S and étale elsewhere. Then V is a smooth Fano threefold of index 2, isomorphic
to a hypersurfaces of degree d in P4, P(1, 1, 1, 1, 2) and P(1, 1, 1, 2, 3) in the cases K2

S = 3, 2 and
1, respectively. Furthermore, the ramification divisor of π coincides with a hyperplane section
H of V . We then have a split exact sequence of groups

0→ Aut (V \H,π)→ Aut (V \H)→ Aut (P \ S)→ 0,

where Aut(V \H,π) ∼= Z/dZ denotes the group of the deck transformations of the induced étale
Galois cover π|V \H : V \ H → P \ S. The surjectivity of the right hand side homomorphism
follows from the fact that

π∗OV \H ∼=
d−1⊕
i=0

(
ω−1
P\S

)⊗i
where ω−1

P\S = ω−1
P |P\S ∼= OP(d + 1)|P\S ∼= OP(1)|P\S denotes the anticanonical sheaf of the

variety P \ S.
If K2

S = 1, then Bir(V ) = Aut(V ) by [28, 29], so that Aut(V \H) = Aut(V,H). This implies
in turn that Aut(P \ S) = Aut(P, S), which is a finite group.

If K2
S = 2 or K2

S = 3, then V is not rational by [49, Corollaire 4.8] and [17], respectively. Now
suppose that Aut(P\S) contains a nontrivial connected algebraic subgroup G. First note that G
is necessarily an affine algebraic group. Indeed, otherwise by Chevalley’s theorem, there would
exist a maximal proper normal linear algebraic subgroup G′ of G such that G/G′ is abelian
variety, and so the affine variety P \ S would inherit a nontrivial action of a proper connected
algebraic group, which is absurd. Since it is affine and connected, G thus contains either Gm or
Ga, which implies in turn that V \H admits a nontrivial action of either Gm or Ga. By virtue
of Rosenlicht’s Theorem [42], it would follow that V is birational to Z × P1 for some rational
surface Z. But then, the threefold V itself would be rational, which is a contradiction. �

A consequence of Theorem 4.1 is the following generalization of [20, Proposition 10].

Corollary 4.2. If S is smooth, then P \ S does not contain open A1-cylinders.
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Proof. Observe that the divisor class group of P\S is isomorphic to the finite group Z/dZ. Thus,
it follows from [20, Proposition 2] that for every open A1-cylinder B × A1 in P \ S, there exists
an action of Ga on P \ S whose general orbits coincide with the general fibers of the projection
prB : B×A1 → B. But on the other hand, the group Aut(P\S) does not contain any nontrivial
connected algebraic group by Theorem 4.1. �

It is known that a smooth del Pezzo surface of anticanonical degree at most 3 never contains
any (−KS)-polar cylinder. For the singular case, we obtain a complete description for (−KS)-
polar cylinders from [11, Theorem 1.5].

Theorem 4.3. The surface S does not contain any (−KS)-polar cylinder if and only if one of
the following conditions is satisfied:

(1) Its anticanonical degree is 1 and it has only singular points of types A1, A2, A3, D4 if
any;

(2) Its anticanonical degree is 2 and it allows only singular points of type A1 if any;
(3) Its anticanonical degree is 3 and it allows no singular point.

Existence of open A1-cylinders in the complements of singular normal cubic surfaces with
singularities strictly worse than A2 was first established in [33, Proposition 3.7]. The first
example of a single nodal cubic surface whose complement contains an open A1-cylinder was
constructed later on by Lamy (unpublished). Combined with the above results on (−KS)-
polar cylinders of singular del Pezzo surfaces and Example 1.7, this leads to anticipate that the
complement of a del Pezzo surface with a (−KS)-polar cylinder contains an open A1-cylinder.
Ideas evolving from the proof of [11, Theorem 4.1] and the study of open “vertical” A1-cylinders
in del Pezzo fibrations [21] turn out to confirm this expectation, namely:

Theorem 4.4 (Theorem C). If the surface S contains a (−KS)-polar cylinder, then the affine
Fano variety P \ S contains an open A1-cylinder.

Before we proceed the proof, let us first prepare setups for the proof. Due to Theorem 4.3
above the surface S contains a singular point P . Furthermore, we may assume that the singular
point P is not of type A1 if the anticanonical degree of S is 2; it is not of types A1, A2, A3, D4

if the anticanonical degree is 1. By suitable coordinate changes, we may assume that the point
P is located at [1 : 0 : 0 : 0]. Under such conditions, we immediately observe the following:

Lemma 4.5. Under the condition above, the surface S is defined in P by one quasi-homogenous
equation of the following types:

• Case K2
S = 3.

(4.6) xf2(y, z, w) + f3(y, z, w) = 0,

where f2(y, z, w) and f3(y, z, w) are homogenous polynomials of degrees 2 and 3.
• Case K2

S = 2.

(4.7) w2 + x (ayw + f3(y, z)) + f4(y, z) = 0,

where f3(y, z) and f4(y, z) are homogenous polynomials of degrees 3 and 4, respectively,
and a is a constant.
• Case K2

S = 1.

(4.8) w2 + x
(
ay2w + f5(y, z)

)
+ f6(y, z) = 0

or

(4.9) w2 + x (zw + f5(y, z)) + f6(y, z) = 0,

where f5(y, z) and f6(y, z) are quasi-homogenous polynomials of degrees 5 and 6, respec-
tively, and a is a constant.
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Proof. We omit the proof since it is easy. �

Let π : S 99K Π be the projection from the point P to the hyperplane Π defined by x = 0
in P, i.e., π([x : y : z : w]) = [y : z : w]. The hyperplane Π is isomorphic to P2, P(1, 1, 2),
P(1, 2, 3) according to the anticanonical degrees, 3, 2, 1, respectively. We denote by g(y, z, w)
the coefficient quasi-homogenous polynomial of x in each of the quasi-homogenous equations of
(4.6), (4.7), (4.8) and (4.9), i.e., for the case K2

S = 1

g(y, z, w) = ay2w (or zw) + f5(y, z),

for the case K2
S = 2

g(y, z, w) = ayw + f3(y, z),

and for the case K2
S = 3

g(y, z, w) = f2(y, z, w).

Let D be the divisor on S cut by the equation g(y, z, w) = 0. In the case of K2
S = 3, the divisor

D consists of the lines in S that pass through P . There are at most six such lines and they are
defined by the system of homogenous equations{

g(y, z, w) = 0

f3(y, z, w) = 0

in P3. In the case of K2
S = 2, D consists of at most six curves passing through the point P .

They are defined by the system of quasi-homogeneous equations{
g(y, z, w) = 0

w2 + f4(y, z) = 0

in P(1, 1, 1, 2). Finally, in the case of K2
S = 1, it consists of at most five curves passing through

the point P , which are defined by the system of quasi-homogeneous equations{
g(y, z, w) = 0

w2 + f6(y, z) = 0

in P(1, 1, 2, 3). In each case, the number of curves in D is completely determined by the number
of points determined by the system of quasi-homogeneous equations on Π. Denote these curves
by L1, . . . , Lr in each case. The map π contracts each curve Li to a point on Π.

Now we are ready to prove Theorem C.

Proof of Theorem C.

Lemma 4.5 immediately implies that the projection π is a birational map. Moreover, it induces
an isomorphism

π̃ : S \ (L1 ∪ · · · ∪ Lr)→ Im(π̃) ⊂ Π.

Let C be the curve on Π defined by
g(y, z, w) = 0.

Note that this can be reducible or non-reduced.

Claim 1. If K2
S = 3, then Im(π̃) = Π \ C and there is an hyperplane section H of S such that

S \ (H ∪ L1 ∪ · · · ∪ Lr) is an A1-cylinder.

Let ϕ : S → S be the blow up at the point P . Then there exists a commutative diagram

S
ϕ

��

φ

��
S

π // Π
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where φ is the birational morphism that contracts exactly the proper transforms of the lines
L1, . . . , Lr. Let E be the exceptional divisor of the blow up ϕ. Then the image of the curve E
by φ in Π is the conic curve C. Then C contains all the points π(Li). If P is an ordinary double
point of the surface S, then C is a smooth conic. Moreover, if P is a singular point of the surface
S of type An for n > 2, then C consists of two distinct lines. Finally, if P is either of type Dn

or of type E6, then C is a double line.

If C is smooth, let ` be a general line in Π that is tangent to C. If C is singular, let ` be a
general line in Π that passes through a singular point of the conic C. By a suitable coordinate
change, we may assume that ` is defined by the equation y = 0 on Π. Let H be the divisor on
S cut by the equation y = 0 in P3.

Then
S \ (H ∪ L1 ∪ · · · ∪ Lr) ∼= Π \ (C ∪ `) ∼=

(
A1 \ {0}

)
× A1,

so that S \ (H ∪ L1 ∪ · · · ∪ Lr) is an A1-cylinder.

For the rest of the cases we also denote by ` the curve defined by y = 0 on Π. In addition let
H be the divisor on S cut by y = 0 in P.

Claim 2. If K2
S = 2 or if K2

S = 1 and the surface S is defined by a quasi-homogenous equation
of type (4.8), then S \ (H ∪ L1 ∪ · · · ∪ Lr) is an A1-cylinder.

As in the case of K2
S = 3, the isomorphism π̃ maps S \ (H ∪ L1 ∪ · · · ∪ Lr) onto Π \ (C ∪ `).

Meanwhile, the projection π maps S\H onto Π\` ∼= A2. The affine variety S\(H ∪ L1 ∪ · · · ∪ Lr)
is therefore isomorphic to the complement of the curve defined by

aw + f3(1, z) = 0

for type (4.7) (resp. aw + f5(1, z) = 0 for type (4.8)) in Π \ ` ∼= A2. This immediately implies
the claim.

Claim 3. If K2
S = 1 and the surface S is defined by a quasi-homogenous equation of type (4.9),

let Hz be the hyperplane section of S cut by the equation z = 0. Then S \ (Hz ∪ L1 ∪ · · · ∪ Lr)
is an A1-cylinder. In particular, S \Hz contains an open A1-cylinder.

In this case, the isomorphism π̃ maps S \(Hz ∪ L1 ∪ · · · ∪ Lr) onto Π\(C ∪ `z), where `z is the
curve on Π defined by z = 0. The projection π maps S \Hz onto Π\ `z. The affine variety Π\ `z
is isomorphic to the quotient space A2/µ2, where the µ2-action is given by (y, w) 7→ (−y,−w).
Notice that we abuse our notations y and w. The affine open subset Π\(C ∪ `z) is an A1-cylinder.
To see this, notice that Π \ (C ∪ `z) is the complement of the image of the curve defined by

w + f5(y, 1) = 0

in Π\`z ∼= A2/µ2. Since f5(y, 1) is an odd polynomial in y, the isomorphism ψ : A2 → A2 defined
by (y1, w1) = ψ(y, w) = (y, w + f5(y, 1)) is µ2-equivariant for the action (y1, w1) 7→ (−y1,−w1)
so that we have a µ2-equivariant diagram

A2

""

ψ // A2

||
A2/µ2

,

where the morphisms from A2 to A2/µ2 are the respective quotient maps. This shows that
Π \ (C ∪ `z) is isomorphic to the complement in A2/µ2 of the image of the curve defined by
w1 = 0 . Letting s = w2

1, t = y2
1 and u = w1y1, A2/µ2 is isomorphic the affine variety defined

by the equation st = u2 in A3. The image in A2/µ2 of the curve defined by w1 = 0 coincides
with the curve defined by s = u = 0. Its complement is thus isomorphic to A1 \ {0}×A1, which
is an A1-cylinder as desired.
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From now on, let H (resp. G) be the hyperplane defined by y = 0 (resp. z = 0) in P and let
Q be the (weighted) hypersurface (possibly reducible or non-reduced) defined by g(y, z, w) = 0
in P.

We first consider the surface S dealt in Claims 1 and 2.
From Claims 1 and 2 we obtain the property that

S \ (H ∪Q) ∼= Π \ (C ∪ `)
is an A1-cylinder. In addition we suppose that the weighted surface S is defined by f(x, y, z, w) =
0 in P. The equation must be one of the types in Lemma 4.5.

The pencil on P generated by the surfaces S and H +Q consists of (weighted) surfaces with
equations of the form

αf(x, y, z, w) + βyg(y, z, w) = 0,

where [α : β] ∈ P1. This pencil gives a rational map ρ : P 99K P1. Its generic fiber Sη is the
weighted surface defined by equation

f(x, y, z, w) + λyg(y, z, w) = 0

in the corresponding weighted projective space Pk(λ) over the field k(λ), where λ is a parameter.
It is singular at the point [1 : 0 : 0 : 0], and the intersection of Sη with the surface in Pk(λ) given
by f(x, y, z, w) = 0 consists of the k(λ)-rational hyperplane section

Hη = Sη ∩ {y = 0}
and the k(λ)-rational (weighted) hypersurface section

Qη = Sη ∩ {g(y, z, w) = 0}.
As in the case of S \ (H ∪Q), the complement Sη \ (Hη ∪ Qη) is an A1-cylinder in Sη, defined
over the field k(λ), and hence P \ S contains an open A1-cylinder (see [21, Lemma 3]).

Now we consider the surface S defined by a quasi-homogenous equation of type (4.9). Letting
Sη be the generic member of the pencil of hypersurfaces of degree 6 generated by S and 3G, we
deduce from Claim 3 in the same way as in the previous cases that the complement of Sη \ G
contains an open A1-cylinder defined over the field k(λ), and hence that P \ S contains an open
A1-cylinder. �

Corollary 4.10. If S contains a (−KS)-polar cylinder, then Aut(P \ S) 6= Aut(P, S).

Proof. Suppose that S contains a (−KS)-polar cylinder. Using Theorems 4.3 and C, we see
that the affine Fano variety P \ S contains an open A1-cylinder. Then we conclude in the same
way as in the proof of Corollary 4.2 that the existence of an open A1-cylinder in P \ S implies
the existence of a nontrivial action of Ga on P \ S. This implies that Aut(P \ S) 6= Aut(P, S),
because the right hand side is a finite group. �

Remark 4.11. The proof of Theorem C reproves [11, Theorem 1.5] in a uniform manner. The
original proof for anticanonical degrees 1 and 2 in [11] has been given in a case-by-case way.

Combined with Corollary 4.2, Theorem C fully settles the question of existence of open A1-
cylinders in the complements to cubic surfaces with at worst Du Val singularities. Since the cubic
surface S has a (−KS)-polar cylinder if and only if S is singular, it follows from Corollary 4.2
and Theorem C that the following two conditions are equivalent:

• The affine Fano variety P \ S contains an open A1-cylinder;
• The cubic surface S contains a (−KS)-polar cylinder.

It is natural to expect that the same holds in the cases of lower anticanonical degrees.

Conjecture 4.12. Let S be a del Pezzo surface of anticanonical degree at most 2 with at worst
Du Val singularities. The affine Fano variety P \ S contains an open A1-cylinder if and only if
S contains a (−KS)-polar cylinder.
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Remark 4.13. Using the idea of the proof of Theorem 4.1, one can try to prove that the affine
Fano variety P \ S does not contain open A1-cylinders provided that K2

S 6 2 and S does not
contain (−KS)-polar cylinders. The crucial difference, in this case, is that the threefold V in
the proof of Theorem 4.1 would no longer be smooth, because S may be singular. Hence, we
cannot use [28,29] and [49, Corollaire 4.8] anymore. For instance, if K2

S = 2 and S is a singular
quartic surface in P(1, 1, 1, 2) that has at most ordinary double points, then the threefold V is a
singular double cover of P3 ramified in a quartic surface, which has singular points of type A3.
The rationality problem for such singular quartic double solids has never been addressed as far
as we are aware. A priori, one can adapt [13,49] to prove their irrationality in some cases.
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