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In this paper, we study the existence (uniqueness) and asymptotic stabil-
ity of the p-th mean S-asymptoticallyω-periodic solutions for some non-
autonomous Stochastic Evolution Equations driven by a Q-Brownian
motion. This is done using the Banach fixed point Theorem and a Gron-
wall inequality.

1 Introduction

Let (Ω,F ,P) be a complete probability space and
(H, ||.||) a real separable Hilbert space. We are con-
cerned in this paper with the existence and asymp-
totic stability of p-th mean S-asymptotically ω-
periodic solution of the following stochastic evolution
equation 

dX(t) = A(t)X(t)dt + f (t,X(t))dt

+g(t,X(t))dW (t), t ≥ 0
X(0) = c0,

(1)

where (A(t))t≥0 is a family of densely defined closed
linears operators which generates an exponentially
stable ω-periodic two-parameter evolutionary fam-
ily. The functions f : R+ × Lp(Ω,H) → L

p(Ω,H),
g : R+ × Lp(Ω,H) → L

p(Ω,L0
2) are continuous satis-

fying some additional conditions and (W (t))t≥0 is a Q-
Brownian motion. The spaces L

p(Ω,H), L0
2 and the

Q-Brownian motion are defined in the next section.
The concept of periodicity is important in proba-

bility especially for investigations on stochastic pro-
cesses. The interest in such a notion lies in its signif-
icance and applications arising in engineering, statis-
tics, etc. In recent years, there has been an increasing
interest in periodic solutions (pseudo-almost periodic,
almost periodic, almost automorphic, asymptotically

almost periodic, etc) for stochastic evolution equa-
tions. For instance among others, let us mentioned the
existence, uniqueness and asymptotic stability results
of almost periodic solutions, almost automorphic so-
lutions, pseudo almost periodic solutions studied by
many authors, see, e.g. ([1]-[11]). The concept of S-
asymptotically ω-periodic stochastic processes, which
is the central question to be treated in this paper, was
first introduced in the literature by Henriquez, Pierri
et al in ([12, 13]). This notion has been developed by
many authors.

In the literature, there has been a significant atten-
tion devoted this concept in the deterministic case;
we refer the reader to ([14]-[20]) and the references
therein. However, in the random case, there are
few works related to the notion of S-asymptotically
ω-periodicity with regard to the existence, unique-
ness and asymptotic stability for stochastic pro-
cesses. To our knowledge, the first work dedicated
to S-asymptotically ω-periodicity for stochastic pro-
cesses is due to S. Zhao and M. Song ([21, 22]) where
they show existence of square-mean S-asymptotically
ω-periodic solutions for a class of stochastic frac-
tional functional differential equations and for a cer-
tain class of stochastic fractional evolution equation
driven by Levy noise. But until now and to the best
our knowledge,there is no investigations for the exis-
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tence (uniqueness), asymptotic stability of p-th mean
S-asymptotically ω-periodic solutions when p > 2.

This paper is organized as follows. Section 2 deals
with some preliminaries intended to clarify the pre-
sentation of concepts and norms used latter. We
also give a composition result, see Theorem 1. In
section 3 we present theoretical results on the exis-
tence and uniqueness of S-asymptotically ω-periodic
solution of equation (1), see Theorem 2. We also
present results on asymptotic stability of the unique
S-asymptotically ω-periodic solution of equation(1),
see Theorem 3.

2 Preliminaries

This section is concerned with some notations, defini-
tions, lemmas and preliminary facts which are used in
what follows.

2.1 p-th mean S asymptotically omega pe-
riodic process

Assume that the probability space (Ω,F ,P) is
equipped with some filtration (Ft)t≥0 satisfying the
usual conditions. Let p ≥ 2. Denote by L

p(Ω,H) the
collection of all strongly measurable p-th integrable
H-valued random variables such that

E||X || =
∫
Ω

||X(ω)||pdP(ω) <∞.

Definition 1 A stochastic process X : R+→ L
p(Ω,H) is

said to be continuous whenever

lim
t→s

E||X(t)−X(s)||p = 0.

Definition 2 A stochastic process X : R+→ L
p(Ω,H) is

said to be bounded if there exists a constant C > 0 such
that

E||X(t)||p ≤ C ∀t ≥ 0

Definition 3 A continous and bounded stochastic pro-
cess X : R+ → L

p(Ω,H) is said to be p-mean S-
asymptotically ω periodic if there exists ω > 0 such that

lim
t→+∞

E||X(t +ω)−X(t)||p = 0, ∀t ≥ 0.

The collection of p-mean S-asymptotically ω-
periodic stochastic process with values in H is then
denoted by SAPω

(
L
p(Ω,H)

)
.

A continuous bounded stochastic processX, which
is 2-mean S-asymptotically ω-periodic is also called
square-mean S-asymptotically ω-periodic.

Remark 1 Since any p-mean S-asymptotically ω-
periodic process X is Lp(Ω,H) bounded and continuous,
the space SAPω

(
L
p(Ω,H)

)
is a Banach space equipped

with the sup norm :

||X ||∞ = sup
t≥0

(
E||X(t)||p

)1/p

Definition 4 A function F : R+×Lp(Ω,H)→ L
p(Ω,H)

which is jointly continuous, is said to be p-mean S-
asymptotically ω periodic in t ∈ R+ uniformly in X ∈ K
where K ⊆ L

p(Ω,K) is bounded if for any ε > 0 there
exists Lε > 0 such that

E||F(t +ω,X)−F(t,X)||p
]
≤ ε

for all t ≥ Lε and all process X : R+→ K

Definition 5 A function F : R+×Lp(Ω,H)→ L
p(Ω,H)

which is jointly continuous, is said to be p-mean asymp-
totically uniformly continuous on bounded sets K ′ ⊆
L
p(Ω,H), if for all ε > 0 there exists δε > 0 such that

E||F(t,X)−F(t,Y )||p ≤ ε

for all t ≥ δε and every X,Y ∈ K ′ with E||X −Y ||p ≤ δε.

Theorem 1 Let F : R+ ×Lp(Ω,H)→ L
p(Ω,H) be a p-

mean S-asymptotically ω periodic in t ∈ R+ uniformly
in X ∈ K where K ⊆ L

p(Ω,H) is bounded and p-mean
asymptotically uniformly continuous on bounded sets.
Assume that X : R+ → L

p(Ω,H) is a p-mean S asymp-
totically ω-periodic process. Then the stochastic process
(F(t,X(t)))t≥0 is p-mean S-asymptotically ω periodic.

Proof 1 Since X : R+ → L
p(Ω,H) is a p-mean S-

asymptotically ω-periodic process, for all ε > 0, there ex-
ists Tε > 0 such that for all t ≥ Tε:

E||X(t +ω)−X(t)||p ≤ ε (2)

In addition X is bounded that is

sup
t≥0

E||X(t)||p <∞

Let K ⊂ L
p(Ω,H) be a bounded set such that X(t) ∈ K for

all t ≥ 0.
We have :
E ||F(t +ω,X(t +ω))−F(t,X(t))||p

≤ 2p−1
E ||F(t +ω,X(t +ω))−F(t +ω,X(t))||p

+ 2p−1
E ||F(t +ω,X(t))−F(t,X(t))||p

Taking into account (2) and using the fact that F is p-
mean asymptotically uniformly continuous on bounded
sets, there exists δε = ε and Lε = Tε such that for all t ≥ Tε
:

E ||F(t +ω,X(t +ω))−F(t +ω,X(t))||p ≤
ε
2p

(3)

Similarly, using the p-mean S-asymptoticallyω periodic-
ity in t ≥ 0 uniformly on bounded sets of F it follows that
for all t ≥ Tε :

E ||F(t +ω,X(t))−F(t,X(t))||p ≤
ε
2p

(4)

Bringing together the inequalities (3) and (4), we thus
obtain that for all t ≥ Tε > 0

E ||F(t +ω,X(t +ω))−F(t,X(t))||p ≤ ε

so that the stochastic process t→ F(t,X(t)) is p-mean S-
asymptotically ω- periodic.
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Lemma 1 Assume that F : R+ ×Lp(Ω,H)→ L
p(Ω,H)

is p-mean uniformly S-asymptotically ω-periodic in t ∈
R+ uniformly on bounded sets and satisfies the Lipschitz
condition, that is, there exists constant L(F) > 0 such that

E||F(t,X)−F(t,Y )||p ≤ L(F)E||X −Y ||p ∀t ≥ 0,

∀X,Y ∈ Lp(Ω,K). Let X be an p-mean S asymptotically
ω-periodic proces, then the process (F(t,X(t)))t≥0 is p-
mean S-asymptotically ω-periodic.

For the proof, the reader can refer to [22] whenever
p = 2. The case p > 2 is similar.

Now let us recall the notion of evolutionary family
of operators.

Definition 6 A two-parameter family of bounded linear
operators {U (t, s) : t ≥ s with t, s ≥ 0} from L

p(Ω,H))
into itself associate with A(t) is called an evolutionary
family of operators whenever the following conditions
hold:

(a)

U (t, s)U (s, r) =U (t, r) for every r ≤ s ≤ t;

(b)

U (t, t) = I, where I is the identity operator ;

(c) For all X ∈ L
p(Ω,H)), the function (t, s) →

U (t, s)X is continuous for s < t ;

(d) The function t→U (t, s) is differentiable and

∂
∂t

(U (t, s)) = A(t)U (t, s) for every r ≤ s ≤ t;

For additional details on evolution families, we refer
the reader to the book by Lunardi [23].

2.2 Q-Brownian motion and Stochastic
integrals

Let (Bn(t))n≥1, t ≥ 0 be a sequence of real valued stan-
dard Brownian motion mutulally independent on the
filtered space (Ω,F ,P,Ft). Set

W (t) =
∑
n≥1

√
λnBn(t)en, t ≥ 0,

where λn ≥ 0, n ≥ 1, are non negative real num-
bers and (en)n≥1 the complete orthonormal basis in the
Hilbert space (H, ||.||). Let Q be a symmetric nonnega-
tive operator with finite trace defined by

Qen = λnen such that T r(Q) =
∑
n≥1

λn <∞

It is well known that E[Wt] = 0 and for all t ≥ s ≥ 0,
the distribution of W (t)−W (s) is a Gaussian distribu-
tion (N (0, (t − s)Q)). The above-mentioned H-valued
stochastic process (W (t))t≥0 is called an Q-Brownian

motion.
Let (K, ||.||K ) be a real separable Hilbert space.
Let also L(K,H) be the space of all bounded linear
operators from K into H. If K = H, we denote it by
L(H).

Set H0 = Q1/2
H. The space H0 is a Hilbert space

equipped with the norm ||u||
H0

= ||Q1/2u||.
Define

L0
2 = {Φ ∈ L(H0,H) : T r

[
(ΦQΦ∗)

]
<∞}

the space of all Hilbert-Schmidt operators from H0 to
H equipped with the norm

||Φ ||L0
2

= T r
[
(ΦQΦ∗)

]
= E||ΦQ1/2||2

In the sequel, to prove Lemma 4 and Theorem 2
we need the following Lemma that is a particular case
of Lemma 2.2 in [24] (see also [25]).

Assume T > 0.

Lemma 2 Let G : [0,T ] → L(Lp(Ω,H)) be an
Ft-adapted measurable stochastic process satisfying∫ T

0 E||G(t)||2dt <∞ almost surely. Then,

(i) the stochastic integral
∫ t

0 G(s)dW (s) is a continu-
ous, square integrable martingale with values in
(H, ||.||) such that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
G(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣2 ≤ E

∫ t

0
||G(s)||2ds

(ii) There exists some constant Cp > 0 such that the fol-
lowing particular case of Burkholder-Davis-Gundy
inequality holds :

E sup
0≤t≤T

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
G(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p ≤ CpE

(∫ T

0
||G(s)||2ds

)p/2
In the sequel, we’ll frequently make use of the fol-

lowing inequalities :

|a+b|p ≤ 2p−1(|a|p+|b|p) for all p ≥ 1 and any real numbers a, b.

∫ t

t0

e−2a(t−s)ds ≤
∫ t

t0

e−a(t−s)ds ≤ 1
a
∀t ≥ t0, where a > 0.

3 Main results

In this section, we investigate the existence and
the asymptotically stability of the p-th mean S-
asymptotically ω-periodic solution to the already de-
fined stochastic differential equation :

{
dX(t) = A(t)X(t)dt + f (t,X(t))dt + g(t,X(t))dW (t), t ≥ 0
X(0) = c0,

(5)
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where A(t), t ≥ 0 is a family of densely defined closed
linear operators and

f : R+ ×Lp(Ω,H)→ L
p(Ω,H),

g : R+ ×Lp(Ω,H)→ L
p(Ω,L0

2)

are jointly continuous satisfying some additional con-
ditions and (W (t))t≥0 is a Q-Brownian motion with
values in H and Ft-adapted.

Throughout the rest of this section, we require the
following assumption on U (t, s) :

(H1): A(t) generates an exponentially ω-periodic
stable evolutionnary process (U (t, s))t≥s in L

p(Ω,H),
that is, a two-parameter family of bounded linear op-
erators with the following additional conditions :

1. U (t + ω,s + ω) = U (t, s) for all t ≥ s (ω-
periodicity).

2. There existsM > 0 and a > 0 such that ||U (t, s)|| ≤
Me−a(t−s) for t ≥ s.

Now, note that if A(t) generates an evolutionary
family (U (t, s))t≥s on L

p(Ω,H)) then the function g
defined by g(s) = U (t, s)X(s) where X is a solution of
equation (1), satisfies the following relation

dg(s) = −A(s)U (t, s)X(s) +U (t, s)dX(s)

= −A(s)U (t, s)X(s) +A(s)U (t, s)X(s)ds

+U (t, s)f (s,X(s))ds+U (t, s)g(s,X(s))dW (s).

Thus

dg(s) =U (t, s)f (s,X(s))ds+U (t, s)g(s,X(s))dW (s). (6)

Integrating (6) on [0, t] we obtain that

X(t)−U (t,0)c0 =
∫ t

0
U (t, s)f (s,X(s))ds

+
∫ t

0
U (t, s)g(s,X(s))dW (s).

Therefore, we define

Definition 7 An (Ft)-adapted stochastic process
(X(t))t≥0 is called a mild solution of (1) if it satisfies
the following stochastic integral equation :

X(t) =U (t,0)c0 +
∫ t

0
U (t, s)f (s,X(s))ds

+
∫ t

0
U (t, s)g(s,X(s))dW (s).

3.1 The existence of p-th mean S-
asymptotically ω-periodic solution

We require the following additional assumptions:

(H.2) The function f : R+ ×Lp(Ω,H)→ L
p(Ω,H)

is p-mean S-asymptotically ω periodic in t ∈ R+ uni-
formly in X ∈ K where K ⊆ L

p(Ω,H) is a bounded set.
Moreover the function f satisfies the Lipschitz condi-
tion, that is, there exists constant L(f ) > 0 such that

E||f (t,X)− f (t,Y )||p ≤ L(f )E||X −Y ||p ∀t ≥ 0

∀X,Y ∈ Lp(Ω,H).
(H.3) The function g : R+ ×Lp(Ω,L0

2)→ L
p(Ω,L0

2)
is p-mean S-asymptotically ω periodic in t ∈ R+ uni-
formly in X ∈ K where K ⊆ L

p(Ω,L0
2) is a bounded set.

Moreover the function g satisfies the Lipschitz condi-
tion, that is, there exists constant L(g) > 0 such that

E||g(t,X)− g(t,Y )||p
L0

2
≤ L(g)E||X −Y ||p ∀t ≥ 0,

∀X,Y ∈ Lp(Ω,H).

Lemma 3 We assume that hypothesis (H.1) and (H.2)
are satisfied. We define the nonlinear operator ∧1 by: for
each φ ∈ SAPω(Lp(Ω,H))

(∧1φ)(t) =
∫ t

0
U (t, s)f (s,φ(s))ds

Then the operator ∧1 maps SAPω(Lp(Ω,H)) into itself.

Proof 2 We define h(s) = f (s,φ(s)). Since the hypothe-
sis (H.2) is satisfied, using Lemma 1, we deduce that the
function h is p-mean S-asymptotically ω-periodic.
Define F(t) =

∫ t
0 U (t, s)h(s)ds. It is easy to check that F is

bounded and continuous. Now we have :
F(t +ω)−F(t)

=
∫ ω

0
U (t +ω,s)h(s)ds+

∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
ds

=U (t +ω,ω)
∫ ω

0
U (ω,s)h(s)ds

+
∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
ds

E||F(t +ω)−F(t)||p

≤ 2p−1M2pe−aptE
(∫ ω

0
e−a(ω−s)||h(s)||ds

)p
+ 2p−1Mp

E

(∫ t

0
e−a(t−s) ||h(s+ω)− h(s)||ds

)p
Let p and q be conjugate exponents. Using Hölder in-

equality, we obtain that E||F(t +ω)−F(t)||p

≤ 2p−1M2pe−apt
(∫ ω

0
e−aq(ω−s)ds

)p/q∫ ω

0
E||h(s)||pds

+ 2p−1Mp
E

(∫ t

0
e−a(t−s) ||h(s+ω)− h(s)||ds

)p
= I(t) + J(t)

where

I(t) = 2p−1M2pe−apt
(∫ ω

0
e−aq(ω−s)ds

)p/q∫ ω

0
E||h(s)||pds
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J(t) = 2p−1Mp
E

(∫ t

0
e−a(t−s) ||h(s+ω)− h(s)||ds

)p
= 2p−1Mp

E

(∫ t

0
e−

a
q (t−s)×e−

a
q (t−s) ||h(s+ω)− h(s)||ds

)p
It is obvious that

lim
t→+∞

I(t) = 0.

Using Hölder inequality, we obtain that J(t)

≤ 2p−1Mp
(∫ t

0
e−a(t−s)ds

)p/q
∫ t

0
e−a(t−s)E ||h(s+ω)− h(s)||p ds

(7)

≤ 2p−1Mp
(1
a

)p/q∫ t

0
e−a(t−s)E ||h(s+ω)− h(s)||p ds (8)

(9)

Let ε > 0. Since lim
u→+∞

E||h(u +ω)− h(u)||p = 0 :

∃Tε > 0, u > Tε⇒ E||h(u+ω)−h(u)||p ≤ εap

2p−1Mp
. (10)

We have
J(t)

≤ 2p−1Mp
(1
a

)p/q∫ Tε

0
e−a(t−s)E ||h(s+ω)− h(s)||p ds

+ 2p−1Mp
(1
a

)p/q∫ t

Tε

e−a(t−s)E ||h(s+ω)− h(s)||p ds

= J1(t) + J2(t),

where

J1(t) = 2p−1Mp
(1
a

)p/q∫ Tε

0
e−a(t−s)E ||h(s+ω)− h(s)||p ds

J2(t) = 2p−1Mp
(1
a

)p/q∫ t

Tε

e−a(t−s)E ||h(s+ω)− h(s)||p ds

Estimation of J1(t).

J1(t)

≤ 2p−1Mp
(1
a

)p/q∫ Tε

0
e−a(t−s)E ||h(s+ω)− h(s)||p ds

≤ 2p−1Mp
(1
a

)p/q
2p sup

t≥0
E||h(t)||pe−at

∫ Tε

0
eaqsds.

It is clear that lim
t→+∞

J1(t) = 0.

Estimation of J2(t).

Unsing the Inequality in (10) we have
J2(t)

= 2p−1Mp
(1
a

)p/q∫ t

Tε

e−a(t−s)E ||h(s+ω)− h(s)||p ds

≤ 2p−1Mp
(1
a

)p/q(1
a

) εap

2p−1Mp

= 2p−1Mpa−p
εap

2p−1Mp

≤ ε.

Lemma 4 We assume that hypothesis (H.1) and (H.3)
are satisfied. We define the nonlinear operator ∧2 by: for
each φ ∈ SAPω(Lp(Ω,L0

2))

(∧2φ)(t) =
∫ t

0
U (t, s)g(s,φ(s))dW (s)

Then the operator ∧2 maps SAPω(Lp(Ω,L0
2)) into itself.

Proof 3 We define h(s) = g(s,φ(s)). Since the hypothesis
(H.3) is satisfied, using Lemma 1, we deduce that the
function h is p- mean S asymptotically ω periodic.
Define F(t) =

∫ t
0 U (t, s)h(s)dW (s)ds. It is easy to check

that F is bounded and continuous. We have :

F(t +ω)−F(t)

=
∫ ω

0
U (t +ω,s)h(s)dW (s) +

∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
dW (s)

=U (t +ω,ω)
∫ ω

0
U (ω,s)h(s)dW (s)+∫ t

0
U (t, s)(h(s+ω)− h(s))dW (s)

=U (t +ω,ω)F(ω) +
∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
ds

E||F(t +ω)−F(t)||p

≤ 2p−1Mpe−aptE

∣∣∣∣∣∣∣∣∣∣∫ ω

0
U (ω,s)h(s)dW (s)

∣∣∣∣∣∣∣∣∣∣p
+ 2p−1

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p

:= I(t) + J(t)

where

I(t) = 2p−1Mpe−patE

∣∣∣∣∣∣∣∣∣∣∫ ω

0
U (ω,s)h(s)dW (s)

∣∣∣∣∣∣∣∣∣∣p

J(t) = 2p−1
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p

It is clear that

lim
t→+∞

EI(t) = 0.

Let ε > 0. Since lim
t→+∞

E||h(t +ω)− h(t)||p = 0

∃Tε > 0, t > Tε⇒ E||h(s+ω)− h(s)||p
L2

0
≤ ε (2a)p/2

4p−1MpCp
,

(11)
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where the constant Cp will be precised in the next lines.
We have
EJ(t)

= 2p−1
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
U (t, s)

(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p

≤ 4p−1
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ Tε

0
U (t, s)

(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
p

+ 4p−1
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

Tε

U (t, s)
(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p

:= EJ1(t) +EJ2(t),

where

J1(t) = 4p−1

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ Tε

0
U (t, s)

(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
p

J2(t) = 4p−1

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

Tε

U (t, s)
(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p

Note that for all t ≥ 0,

h(t +ω)− h(t) ∈ Lp(Ω,L0
2) ⊆ L

2(Ω,L0
2)

and ∫ t

0
E||U (t, s)(h(s+ω)− h(s))||2ds

≤M2
∫ t

0
e−2a(t−s)

E||h(s+ω)− h(s)||2
L0

2
ds

≤ 4M2 sup
t≥0

E||h(t)||2
L0

2

∫ t

0
e−2a(t−s)ds

≤ 4M2a−2 sup
t≥0

E||h(t)||2
L0

2

<∞.

Estimation of EJ1(t).

Assume that p > 2. Using Hölder inequality between
conjugate exponents p

p−2 and p
2 together with Lemma 2,

part (ii), there exists constant Cp such that :
EJ1(t)

≤ Cp4p−1Mp
E

[∫ Tε

0
e−2a(t−s)||h(s+ω)− h(s)||2

L0
2
ds

]p/2
≤ Cp4p−1Mp

(∫ Tε

0
e−

2ap(t−s)
p−2 ds

) p−2
2

∫ Tε

0
E||h(s+ω)− h(s)||p

L0
2
ds

≤ Cp4p−1Mp e−apt
(∫ Tε

0
e

2aps
p−2 ds

) p−2
2
Tε2p sup

s≥0
E||h(s)||p

L0
2

Therefore
lim
t→+∞

EJ1(t) = 0.

Assume that p = 2. By Lemma 2, part (i) we get :
EJ1(t)

≤ 4M2
E

[∫ Tε

0
e−a(t−s)||h(s+ω)− h(s)||L0

2
dB(s)

]2

≤ 4M2
E

[∫ Tε

0
e−2a(t−s)||h(s+ω)− h(s)||2

L0
2
ds

]
≤ 16M2e−2at sup

s≥0
E||h(s)||2

L0
2

∫ Tε

0
e2asds

≤ 16M2e−2at sup
s≥0

E||h(s)||2
L0

2

∫ Tε

0
e2asds

Thus
lim
t→+∞

EJ1(t) = 0.

Estimation of EJ2(t).

Assume that p > 2. Using again Lemma 2, part (ii),
Hölder inequality between conjugate exponents p

p−2 and
p
2 and the inequality in (11) we have
EJ2(t)

= 4p−1
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

Tε

U (t, s)
(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣p

≤ 4p−1MpCpE

[∫ t

Tε

e−2a(t−s)||h(s+ω)− h(s)||2
L0

2
ds

]p/2
= 4p−1MpCpE

[∫ t

Tε

e−2a(t−s) p−2
p × e−2a(t−s) 2

p ||h(s+ω)− h(s)||2
L0

2
ds

]p/2
≤ Cp4p−1Mp

(∫ t

Tε

e−2a(t−s)ds
) p−2

2
∫ t

Tε

e−2a(t−s)
E||h(s+ω)− h(s)||p

L0
2
ds

≤
Cp4p−1Mpε(2a)p/2

Cp4p−1Mp

(∫ t

Tε

e−2a(t−s)ds
) p

2

≤ ε.

We conclude that

lim
t→+∞

EJ2(t) = 0.

Assume that p = 2. By Lemma 2, part (i) and Cauchy-
Schwarz inequality we have
EJ2(t)

= 4E

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

Tε

U (t, s)
(
h(s+ω)− h(s)

)
dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣2

≤ 4M2
E

[∫ t

Tε

e−2a(t−s)||h(s+ω)− h(s)||2
L0

2
ds

]
= 4M2

[∫ t

Tε

e−a(t−s) × e−a(t−s)E||h(s+ω)− h(s)||2
L0

2
ds

]
≤ 4M2

(∫ t

Tε

e−2a(t−s)ds
)1/2

(∫ t

Tε

e−2a(t−s)
(
E||h(s+ω)− h(s)||2

L0
2

)2
ds

)1/2

Note also that for t ≥ Tε :

E||h(s+ω)− h(s)||2
L

0
2
≤ εa

2M2

www.astesj.com 129

http://www.astesj.com


S. M. Manou-Abi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 124-133
(2017)

so that

EJ2(t) ≤ 4M2εa

2M2

(∫ t

Tε

e−2a(t−s)ds
)

≤ ε.

This implies that

lim
t→+∞

EJ2(t) = 0

Finally, we conclude that

lim
t→+∞

E||F(t +ω)−F(t)||p = 0

Theorem 2 We assume that hypothesis (H.1), (H.2) and
(H.3) are satisfied and

(i)

Θ = 2p−1Mp
(
L(f )a−p+CpL(g)a

−p
2
)
< 1 if p > 2

(12)

(ii)

Ξ = 2M2
(
L(f )

1
a2 +L(g)

1
a

)
< 1 if p = 2 (13)

Then the stochastic evolution equation (1) has a unique
p-mean S-asymptoticaly ω-periodic solution.

Proof 4 We define the nonlinear operator Γ by the ex-
pression

(Γ Φ)(t) =U (t,0)c0+

∫ t

0
U (t, s)f (s,Φ(s))ds+

∫ t

0
U (t, s)g(s,Φ(s))dW (s)

Note that

(Γ Φ)(t) =U (t,0)c0 + (∧1Φ)(t) + (∧2Φ)(t)

According to the hypothesis (H1) we have :
E||U (t +ω,0)−U (t,0)||p

≤ 2p−1
(
E||U (t +ω,0||p +E||U (t,0)||p

)
≤ 2p−1Mpe−ap(t+ω) +Mpe−apt

= 2p−1Mpe−apt
(
e−apω + 1

)
Therefore

lim
t→+∞

E||U (t +ω,0)−U (t,0)||p = 0

According to Lemma 3 and Lemma 4, the operators ∧1
and ∧2 maps the space of p-mean S-asymptotically ω-
periodic solutions into itself. Thus Γ maps the space of
p-mean S-asymptotically ω periodic solutions into itself.
We have
E||Γ Φ(t)− Γ Ψ (t)||p

≤ 2p−1
E

(∫ t

0
||U (t, s)|| ||f (s,Φ(s))− f (s,Ψ (s))||ds

)p
+ 2p−1

E

(∫ t

0
||U (t, s)|| ||g(s,Φ(s))− g(s,Ψ (s))||dW (s)

)p
≤ 2p−1Mp

E

(∫ t

0
e−a(t−s) ||f (s,Φ(s))− f (s,Ψ (s))||ds

)p
+ 2p−1Mp

E

(∫ t

0
e−a(t−s) ||g(s,Φ(s))− g(s,Ψ (s))||dW (s)

)p
Case p > 2 : By Lemma 2, part (ii) and Hölder in-

equality we have
E||Γ Φ(t)− Γ Ψ (t)||p

≤ 2p−1MpL(f )
(∫ t

0
e−a(t−s)ds

)p−1
∫ t

0
e−a(t−s)E||Φ(s)−Ψ (s)||pds

+ 2p−1MpCpE
(∫ t

0
e−2a(t−s) ||g(s,Φ(s))− g(s,Ψ (s))||2

L0
2
ds

)p/2
≤ 2p−1MpL(f )sup

s≥0
E||Φ(s)−Ψ (s)||p

(∫ t

0
e−a(t−s)ds

)p
+ 2p−1MpCpE

(∫ t

0
e−a(t−s) ||g(s,Φ(s))− g(s,Ψ (s))||2

L0
2
ds

)p/2
≤ 2p−1Mpa−pL(f )||Φ −Ψ ||p∞+

2p−1MpCpE
(∫ t

0
e−

ap(t−s)
p−2 e−

a(t−s)
p ||g(s,Φ(s))− g(s,Ψ (s))||2

L0
2
ds

)p/2
≤ 2p−1Mpa−pL(f )||Φ −Ψ ||p∞

+ 2p−1MpCp

(∫ t

0
e−a(t−s)ds

) p−2
2
×∫ t

0
e−a(t−s)E||g(s,Φ(s))− g(s,Ψ (s))||p

L0
2
ds

≤ 2p−1Mp
(
L(f )a−p +CpL(g)a−

p
2
)
||Φ −Ψ ||p∞

This implies that

||Γ Φ − Γ Ψ ||p∞ ≤ 2p−1Mp
(
L(f )a−p +CpL(g)a−

p
2
)
||Φ −Ψ ||p∞

Consequently, if Θ < 1, then Γ is a contraction mapping.
One completes the proof by the Banach fixed-point prin-
ciple.

Case p = 2 : using Cauchy-Schwarz inequality and
Lemma 2, part (i), we obtain
E||Γ Φ(t)− Γ Ψ (t)||2

≤ 2M2
(∫ t

0
e−a(t−s)ds

)
E

∫ t

0
e−a(t−s)||f (s,Φ(s))− f (s,Ψ (s))||2ds

+ 2M2
E

∫ t

0
e−2a(t−s) ||g(s,Φ(s))− g(s,Ψ (s))||2

L0
2
ds

≤ 2M2L(f )sup
s≥0

E||Φ(s)−Ψ (s)||2
(∫ t

0
e−a(t−s)ds

)2

+ 2M2L(g)sup
s≥0

E||Φ(s)−Ψ (s)||2
∫ t

0
e−2a(t−s)ds

≤ 2M2
(
L(f )

1
a2 +L(g)

1
a

)
sup
s≥0

E||Φ(s)−Ψ (s)||2
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This implies that

||Γ Φ − Γ Ψ ||2∞ ≤ 2M2
(
L(f )

1
a2 +L(g)

1
a

)
||Φ −Ψ ||2∞

Consequently, if Ξ < 1, then Γ is a contraction map-
ping. One completes the proof by the Banach fixed-point
principle.

3.2 Stability of p-mean S asymptotically
ω periodic solution

In the previous section, for the non linear SDE, we ob-
tain that it has a unique p-mean S-asymptotically ω-
periodic solution under some conditions. In this sec-
tion, we will show that the unique p mean S asymp-
totically ω periodic solution is asymptotically stable
in the p mean sense.
Recall that

Definition 8 The unique p-mean S asymptoticallyω pe-
riodic solution X∗(t) of (1) is said to be stable in p-mean
sense if for any ε > 0, there exists δ > 0 such that

E||X(t)−X∗(t)||p < ε, t ≥ 0,

whenever E||X(0) −X∗(0)||p < δ, where X(t) stands for a
solution of (1) with initial value X(0).

Definition 9 The unique p-mean S asymptoticallyω pe-
riodic solution X∗(t) is said to be asymptotically stable in
p-mean sense if it is stable in p-mean sense and

lim
t→∞

E||X(t)−X∗(t)||p = 0

The following Gronwall inequality is proved to be
useful in our asymptotical stability analysis.

Lemma 5 Let u(t) be a non negative continuous func-
tions for t ≥ 0, and α,γ be some positive constants. If

u(t) ≤ αe−βt +γ
∫ t

0
e−β(t−s)u(s)ds, t ≥ 0,

then
u(t) ≤ α exp {(−β +γ)t}

Theorem 3 Suppose that hypothesis (H.1), (H.2) and
(H.3) are satisfied and assume that

(i)
3p−1Mp

(
L(f )a1−p +L(g)Cp a

2−p
2

)
< a (14)

whenever p > 2.

(ii)
3M2

(
L(f )a−1 +L(g)

)
< a (15)

whenever p = 2.

Then the p-mean S-asymptotically solution X∗t of (1) is
asymptotically stable in the p-mean sense.

Remark 2 Note that the above conditions (14) respec-
tively (15) implies conditions (12) respectively (13) of
Theorem 2.

Proof 5 E||X(t)−X∗(t)||p

= E

∣∣∣∣∣∣∣∣U (t,0)(X(0)−X∗(0))

+
∫ t

0
U (t, s)

(
f (s,X(s))− f (s,X∗(s))

)
ds

+
∫ t

0
U (t, s)

(
g(s,X(s))− g(s,X∗(s))

)
dW (s)

∣∣∣∣∣∣∣∣p
Assume that p > 2. Using Hölder inequality we have

E||X(t)−X∗(t)||p

≤ 3p−1Mpe−aptE||X(0)−X∗(0)||p

+ 3p−1
E

(∫ t

0
||U (t, s)|| ||f (s,X(s))− f (s,X∗(s))||ds

)p
+ 3p−1

E

(∫ t

0
||U (t, s)|| ||g(s,X(s))− g(s,X∗(s))||dW (s)

)p
≤ 3p−1Mpe−aptE||X(0)−X∗(0)||p

+ 3p−1Mp
E

(∫ t

0
e−a(t−s) ||f (s,X(s))− f (s,X∗(s))||ds

)p
+ 3p−1Mp

E

(∫ t

0
e−a(t−s) ||g(s,X(s))− g(s,X∗(s))||dW (s)

)p
= 3p−1Mpe−aptE||X(0)−X∗(0)||p + 3p−1Mp ×

(
E

(∫ t

0
e−

a(p−1)(t−s)
p e−

a(t−s)
p ||f (s,X(s))− f (s,X∗(s))||ds

)p)
+ 3p−1MpCp ×

(
(∫ t

0
e−

2a(p−2)(t−s)
p e−

4a(t−s)
p

E||g(s,X(s))− g(s,X∗(s))||2
L0

2
ds

)p/2)
≤ 3p−1Mpe−aptE||X(0)−X∗(0)||p

+ 3p−1MpL(f )
(∫ t

0
e−a(t−s)ds

)p−1
×
(

∫ t

0
e−a(t−s)E||X(s)−X∗(s)||pds

)
+ 3p−1MpCp

(∫ t

0
e−2a(t−s)

) p−2
2
×
(

∫ t

0
e−2a(t−s)

E ||g(s,X(s))− g(s,X∗(s))||p
L0

2
ds

)
so that
E||X(t)−X∗(t)||p

≤ 3p−1Mpe−aptE||X(0)−X∗(0)||p

+ 3p−1MpL(f )(
1
a

)p−1
∫ t

0
e−a(t−s)E||X(s)−X∗(s)||pds

+ 3p−1MpCpL(g)(
1
a

)
p−2

2

∫ t

0
e−a(t−s)E ||X(s)−X∗(s)||pds

Using Lemma 5, we obtain :
E||X(t)−X∗(t)||p

≤ 3p−1Mp ×E||X(0)−X∗(0)||p×

exp
{(
− a+ 3p−1Mp

(
L(f )a1−p +L(g)Cp a

2−p
2

))
t
}
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Straightforwardly, we obtain that X(t) converges to 0
exponentially fast if

−a+ 3p−1Mp
(
L(f )(

1
a

)p−1 +L(g)Cp a
2−p

2
)
< 0,

which is equivalent to our condition (14). Therefore X∗

is asymptotically stable in the p-mean sense.

Assume that p = 2. We have
E||X(t)−X∗(t)||2

≤ 3M2e−atE||X(0)−X∗(0)||2

+ 3E
(∫ t

0
||U (t, s)|| ||f (s,X(s))− f (s,X∗(s))||ds

)2

+ 3E
(∫ t

0
||U (t, s)|| ||g(s,X(s))− g(s,X∗(s))||dW (s)

)2

≤ 3M2e−atE||X(0)−X∗(0)||2

+ 3M2
E

(∫ t

0
e−a(t−s) ||f (s,X(s))− f (s,X∗(s))||ds

)2

+ 3M2
E

(∫ t

0
e−a(t−s) ||g(s,X(s))− g(s,X∗(s))||dW (s)

)2

Then using Cauchy-Schwartz inequality and Lemma 2.3
part (i), we have
E||X(t)−X∗(t)||2

≤ 3M2e−atE||X(0)−X∗(0)||2

+ 3M2
∫ t

0
e−a(t−s)ds

∫ t

0
e−a(t−s)E||f (s,X(s))− f (s,X∗(s))||2ds

+ 3M2
∫ t

0
e−2a(t−s)

E||g(s,X(s))− g(s,X∗(s))||2
L0

2
ds,

≤ 3M2e−atE||X(0)−X∗(0)||2

+ 3M2L(f )a−1
∫ t

0
e−a(t−s)E||X(s)−X∗(s)||2ds

+ 3M2L(g)
∫ t

0
e−a(t−s)E||X(s)−X∗(s)||2ds

Thus
E||X(t)−X∗(t)||2

≤ 3M2e−atE||X(0)−X∗(0)||2

+
(3M2L(f )

a
+ 3M2L(g)

)∫ t

0
e−a(t−s)E||X(s)−X∗(s)||2ds

By Lemma 5 we have

E||X(t)−X∗(t)||2

≤ 3M2
E||X(0)−X∗(0)||2 exp

{(
− a+ 3M2(

L(f )
a

+L(g))
)
t

}
Therefore E||X(t) − X∗(t)||2 converges to 0 exponen-

tially fast whenever condition (15) holds. In particu-
lar the unique S-asymptotically ω-periodic solution is
asymptotically stable in square mean sense.
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