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INTRODUCTION

Most studies of ionic transport in porous media have been carried out using the assumption of binary, symmetric electrolytes ( [START_REF] Bazant | Diffuse-Charge Dynamics in Electrochemical Systems[END_REF][START_REF] Chu | Surface Conservation Laws at Microscopically Diffuse Interfaces[END_REF][START_REF] Biesheuvel | Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes[END_REF][START_REF] Gabitto | Volume Averaging Study of the Capacity Deionization Process in Homogeneous Porous Media[END_REF][START_REF] Gabitto | Volume Averaging Study of the Capacity Deionization Process in Dual-Porosity Electrodes[END_REF]; among others). This assumption leads to a single equation for the salt concentration instead of dealing with several equations for multiple ions of different charges and diffusivities (mobilities). Biesheuvel at al. [START_REF] Biesheuvel | Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes[END_REF] presented a porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary charges and diffusion coefficients. The authors focused on porous electrodes comprising solid particles that are porous themselves. Biesheuvel at al. [START_REF] Biesheuvel | Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes[END_REF] proposed that the macropores operate as transport pathways while the ionic species are stored inside the micropores. The potentials and ionic concentrations between the macro and microscales are related by a modified Donnan model. This phenomenological formulation led to a set of individual ionic concentrations plus equations to calculate ionic charges and potentials. Schmuck and Bazant [START_REF] Schmuck | Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media[END_REF] derived effective Poisson-Nernst-Planck (PNP) equations for macroscopic ionic transport in charged porous media. The authors performed a homogenization analysis of a two-component periodic porous medium consisting of a dilute electrolyte and a continuous dielectric matrix impermeable to the ions and carrying a given surface charge. The transport coefficients in the macroscopic PNP equations were calculated from periodic reference cell problems.

The goal of this research project is to derive a system of equations to model ionic transport in porous media without the assumption of binary, symmetric salts and equal diffusivities. We will represent ionic transport using the PNP system of equations and the Poisson-Boltzmann equation for the electrostatic potential [START_REF] Pivonka | Electrodiffusive Transport in Charged Porous Media: From the Particle-Level Scale to the Macroscopic Scale Using Volume Averaging[END_REF].

THEORETICAL SECTION Model Development

The ion flux of species i in the bulk of the solution filling the pores is given by [START_REF] Biesheuvel | Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes[END_REF],
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Here, N i is the ion flux, c i is the ion concentration,  is the nabla operator in the x direction, z i is the ion charge, i D is the diffusion coefficient of ionic species i, F is the Faraday constant, R is the universal gas constant, and  is the electrostatic potential in the pores. Equation (1) has been derived assuming that the isotropic mobility, u i , is given by the Nernst-Einstein relation [START_REF] Bazant | Current-Voltage Relations for Electrochemical Thin Films[END_REF], (u i = D i /RT).

Figure 1. Porous medium and representative elementary volume (REV).

We consider a two-phase medium consisting of a phase  (liquid) and a phase  (solid) as shown in Figure 1. The point species molar continuity equation, including the Nernst-Planck expression for the molar flux for the  phase, is given by:
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We use the boundary condition at the  interphase proposed by Bazant et al. [START_REF] Bockris | Modern Electrochemistry 2A; Fundamentals of Electrodics[END_REF],
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Here,  is the dimensionless potential (=  F/ R /T).

The relationship between liquid-phase potential and the spatial distribution of electric charges in the solution is given by the Poisson equation [START_REF] Scheiner | Two-scale Model For Electro-diffusive Transport Through Charged Porous Materials[END_REF].
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In the liquid-solid interphase (A  ) we use the boundary condition proposed by Scheiner et al. [START_REF] Scheiner | Two-scale Model For Electro-diffusive Transport Through Charged Porous Materials[END_REF]:
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Here,  is the permittivity of the electrolyte. The surface charge density () represents the charge in the solid and it is assumed to be constant.

Equations ( 2) and ( 4) describe ionic transport by concentration and electrical potential gradients at the microscale inside porous media and are referred to as the Poisson-Nernst-Planck (PNP) system of equations ( [START_REF] Pivonka | Electrodiffusive Transport in Charged Porous Media: From the Particle-Level Scale to the Macroscopic Scale Using Volume Averaging[END_REF] and [START_REF] Smith | Theoretical Analysis of Anion Exclusion and Diffusive Transport Through Platy-clay Soils[END_REF]). In order to obtain the macroscopic formulation of the PNP equations, we will use the volume averaging method developed by Prof. Whitaker and coworkers [START_REF] Whitaker | The Method of Volume Averaging[END_REF]. A brief description of the derivations is shown in the next sections.

Species Concentration

We start our derivation from eq. ( 2) and the boundary condition at the  interphase given by eq. ( 3). A variety of averages is encountered in this type of analysis [START_REF] Whitaker | The Method of Volume Averaging[END_REF]. The traditionally encountered averages are the phase average given by:
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The intrinsic phase average which takes the form:

dV c V 1 c V α α       =     cα . (7) 
Here, V is the volume of the REV,  V represents the volume of the  phase contained within the REV, and   is the volume fraction given explicitly by   =  V /V. We also use the spatial averaging theorem [START_REF] Gray | On the Theorems for Local Volume Averaging of Multiphase Systems[END_REF] that takes the form for a scalar variable   
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After repeated use of the averaging tools described above, plus algebraic manipulations, we obtain the following volume averaged equation:
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In the derivation of eq. ( 9), we have used Gray's decomposition for the species i concentration [START_REF] Gray | A Derivation of the Equations for Multiphase Transport[END_REF],
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The term
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is given by,
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Here,     ĩ c represents the dispersion of species i produced by the electric field.

Introducing eq. ( 11) into eq. ( 9) leads to,
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Closing eq. ( 12) requires expressions for the species concentration and potential deviations
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. These expressions are calculated in the closure section.

Potential

We start our derivation from eq. ( 4) and the boundary condition at the  interphase given by eq. ( 5). The use of the phase average plus complex algebraic manipulations lead to,
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In eq. ( 13) we have used Gray's decomposition for the potential and
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A constitutive expression for the potential deviations (  ~) is calculated in next section.

Closure Section

Potential

We start by the boundary condition given by eq. ( 5). Gray's decomposition for the potential and the approximation
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Based upon eq. ( 15) we propose the following constitutive equation for the potential deviations:
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) Here, g and g 1 are the closure variables for the species concentrations. We obtain the equation for the potential deviation (  ~) by subtracting eq. ( 13) divided by   from eq. ( 4) to obtain:
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The last term in the left-hand-side is negligible compared to the first and considering the permittivity constant within a unit cell leads to,
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Introducing eq. ( 16) into eqns. ( 15) and ( 18) leads to the following boundary value problems required to calculate the values of the closure variables g and g 1 . Problem 1
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in the A  and for spatially periodic porous media,
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)
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in the A  and also for spatially periodic porous media,

g 1 (r+l i ) = g 1 (r) for i = 1, 2, 3. (24) 

Species Concentration

We start by introducing eq. ( 1) into the boundary condition given by eq. ( 2),
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Inspection of eq. ( 26) allows us to propose the following equation for the deviation:
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Here, f and f 1 are the closure variables for the species concentrations.

We obtain the equation for the salt concentration deviation ( c ~) by subtracting eq. ( 12) divided by   from eq. ( 2) to obtain:
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An order of magnitude analysis shows that the second and third terms on the right-hand-side of eq. ( 28) are negligible compared to the first. The dispersion term is also negligible. The local process in the REV is quasi-stationary when the following restriction holds:
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Here t * is the characteristic time for the mass transport process and l  is a characteristic length of the microscale. The derivation of the closure problem is complicated because the charging process presents two very different transport regimes [START_REF] Biesheuvel | Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes[END_REF]. At very short times, supercapacitor regime, there is a fast charging of the EDLs and we can say that the predominant transport process is the migration step. At long times, the diffusive flow from outside the electrode predominates over the charging process and, from that point on, the concentration increases (desalination regime).

After long algebraic manipulations, the following boundary value problems to calculate the closure variables f and f 1 can be written:
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in the A  and for spatially periodic porous media.
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in the A  and also for spatially periodic porous media.

Here,   is the cell's dimensionless charge density, . More will be said about the calculation of the effective diffusivities for co-and counter-ions in the results section.

Closed Equations Section

Potential

Introducing eq. ( 16) into eq. ( 13) leads to,
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An order of magnitude analysis proves that the second term in the left-hand-side is negligible compared to the first in the right-hand-side; consequently, the closed potential equation can be written as,
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Here, the effective permittivity tensor ( eff  ) can be expressed as,
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Species Concentration

Introducing eq. ( 27) into eq. ( 12) leads, after algebraic manipulations, to,
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Here, the effective diffusivity tensor ( eff D ), the effective mobility tensor ( eff U ), and the vector ( v ) are given, respectively, by,
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Assuming that the constraints discussed in the closure section hold the terms containing the vector are negligible with respect to the first and second on the right-hand-side during most of the charging period; therefore, eq. (37) can be written as,
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Inspection of closure problems 1 and 3 shows that the vector field f is a function of the geometry and electrode charge while the vector field g is a function of the geometry only; therefore, the effective diffusivity and mobility tensors are not equal.

RESULTS

Closure Section

The effective permittivity ( eff  ) and the effective mobility ( eff U ) are calculated by solving boundary value problem 1 and then, calculating the integral given by eqns. (36) and (39). Closure problem 1 has been solved numerically many times in literature for isotropic porous media ( [START_REF] Ryan | Effective Diffusivities for Catalyst Pellets under Reactive Conditions[END_REF][START_REF] Kim | Diffusion in Anisotropic Porous Media[END_REF][START_REF] Ochoa-Tapia | Bulk and Surface Diffusion in Porous Media: An Application of the Surface-Averaging Theorem[END_REF][START_REF] Quintard | Diffusion in Isotropic and Anisotropic Porous Systems: Three-Dimensional Calculations[END_REF][START_REF] Valdes-Parada | On the Effective Diffusivity under Chemical Reaction in Porous Media[END_REF]; among others). Quintard and Whitaker [START_REF] Quintard | Diffusion in Isotropic and Anisotropic Porous Systems: Three-Dimensional Calculations[END_REF] showed that solving this closure problem in Chang's unit cells [START_REF] Chang | Multiscale Analysis of Effective Transport in Periodic Heterogeneous Media[END_REF][START_REF] Chang | Effective Diffusion and Conduction in Two-Phase Media: a Unified Approach[END_REF] leads to Rayleigh's [START_REF] Rayleigh | On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of the Medium[END_REF] equation for the effective diffusivity.
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In order to calculate the effective diffusivity tensor we have to solve boundary value problem 3. In the case of isotropic porous media only one component of the effective diffusivity tensor is needed ( xx i D , ).In this work, we will use Chang's unit cells [START_REF] Chang | Multiscale Analysis of Effective Transport in Periodic Heterogeneous Media[END_REF][START_REF] Chang | Effective Diffusion and Conduction in Two-Phase Media: a Unified Approach[END_REF], see Figure 2, to obtain analytical solutions for isotropic beds of cylinders ( [18, 19, and 24]; among others). In this case the problem becomes independent of the axial direction (z/r 2 ) and, following the relationships presented by Ochoa-Tapia et al. [START_REF] Ochoa-Tapia | Bulk and Surface Diffusion in Porous Media: An Application of the Surface-Averaging Theorem[END_REF], we can rewrite the closure problem 3 in dimensionless form as,
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Here, F x is the x component of f (f x /r 2 ), and r* = r/r 2. The solution procedure presented by Ochoa-Tapia et al. [START_REF] Ochoa-Tapia | Bulk and Surface Diffusion in Porous Media: An Application of the Surface-Averaging Theorem[END_REF] leads to,
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Eq. ( 46) shows that the value of the effective diffusivity is a function of the charge in the electrolyte-solid interface. Figure 3 depicts the variation of co-and counter-ion effective diffusivity values at a fixed porosity value.

Figure 3 shows that different behavior is predicted for counter-and co-ions. In the case of coions, there is a continuous increase of the dimensionless effective diffusivity from the uncharged value, predicted by Raleigh's equation, until the effective diffusivity approaches the ionic diffusivity value in free solution. The counter-ion behavior predicts that at low charge a singular point will appear. The value of the effective diffusivity tends to -∞ and ∞ in a neighborhood of the singular point. At high charge values, the counter-ion transport coefficient approaches the value of the free solution ionic diffusivity. The location of the singular point is a function of the void fraction and interface charge values. The behavior in the neighborhood of the singular point is, obviously, non-physical. It reveals that the system behaves in different ways before and after r 1 r 2

-phase -phase the singular point. Biesheuvel and Bazant [START_REF] Biesheuvel | Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes[END_REF] proposed that for small charge values, below the thermal voltage, a weak nonlinear solution is valid in the supercapacitor regime. In this linearized problem, at low voltages or early times, the porous electrode acts as a "transmission line" in series with the mass transfer layer resistor outside. However, in the desalination regime the authors stated that this linearized approximation is not valid and the full nonlinear problem has to be solved. Biesheuvel and Bazant [START_REF] Biesheuvel | Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes[END_REF] also stated that especial mathematical tools are required to match both limiting solutions. Typical capacitive deionization experiments are carried out at high charge; therefore, under normal operating conditions both ions will be have effective diffusivity values approaching the free electrolyte solution values.

Model Implementation

Sharma et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF] reported that the left-hand-side of eq. ( 35) is negligible compared to the two terms in the right-hand-side. After making the equation dimensionless the left-hand-side term is multiplied by the square of the ratio of the microscopic over the macroscopic length scales,   /L. The microscopic length scale (  ) is typically of the order of magnitude of the EDL Debye length, while the macroscopic length scale (L) is estimated by the electrode thickness; therefore, eq. (35) becomes,
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Equation (47) states that, at the macroscopic level, the charge on the solid electrode is balanced by the charge in the solution. It is important to notice that this global electroneutrality condition results naturally from the different length scales used and not from any arbitrary assumption. MacGillivray [START_REF] Macgillivray | Nernst-Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions[END_REF] used an asymptotic expansion method to show that under certain 

Co-Ion

Counter-Ion assumptions eq. ( 47) is the upscaled form of the Poisson equation. The replacement of eq. ( 35) by the electroneutrality condition makes the mathematical problem open as there are more variables than equations. In order to overcome this problem, Sharma et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF] proposed a model to calculate the average potential at the macroscopic level. The authors assumed highly overlapping EDLs in slit-shaped pores following the treatment presented by Yang et al. [START_REF] Yang | Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel: An Electrical Double-Layer Model[END_REF]. These authors proposed that a representative pore can be viewed as a slit formed by two planar plates with a separation distance 2L between them, more details are given in Sharma et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF].

A simple model can be also used to calculate the macroscopic potential inside the pores. We can assume that the EDL functions as a parallel plate capacitor with a distance between the plates equal to the Debye length. This model predicts an EDL capacitance equal to the Debye-Hückel linear approximation of the Poisson equation problem (Debye and Hückel [START_REF] Debye | The Theory of Electrolytes. I. Lowering of Freezing Point and Related Phenomena[END_REF]). The advantage of this model is the simplicity to implement and the fact that produces very robust numerical schemes.

Results for a charge-discharge capacitive deionization (CDI) cycle calculated using the two models are presented in Figures 4 and5. In Figures 4 and5 we show values of ionic concentrations averaged throughout the electrode. The broken line in both figures represents the free solution ionic concentration. During the charging step the counter-ion concentration increases continuously while the co-ion concentration decreases. The discharge step starts when the applied potential is set to zero; therefore, the counter-ions held inside the EDL by the source potential diffuse back into the bulk of the solution. The charge of the freed ions also creates a 'reverse' potential that transport by migration the counter-ions into the solution bulk and the co-ions into the EDL, i.e., migration and diffusion transport the co-ions inside the EDL and the counter-ions outside. Sharma et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF] reported that in the case of small pores the two combined transport processes can produce an increase of co-ion concentration inside the electrode above the concentration in the solution bulk.

The authors also determined this phenomenon experimentally using a neutron imaging technique.

Figure 5. CDI charge-discharge cycle using big pores electrodes (60 nm).

Figure 4 depicts results for small pores (2 nm width). We can see in the figure that, during the discharge step, both the co-ions and counter-ions concentrations have values above the free solution ones (broken line). We can also see that both models predict very similar values for small pores. Equivalent results for the dimensionless potential, not shown here, showed that Sharma's et al. model predicts very similar values for D  and bulk  . In the case of bigger pores Figure 5 shows that the Debye-Hückel model significantly overestimated the concentration of the counter-ions and underestimated the concentration of co-ions compared to Sharma's et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF] model. The reason is that there is significant difference in the  values calculated using both models. In the case of macropores (d p > 50 nm) the bulk of the electrolyte is a neutral region with uniform ionic concentration and no net charge. This fact is reflected in the results calculated using Sharma's et al. model. The model predicts slightly different ionic concentrations because it averages the dimensionless concentrations in the thin EDLs ( 1

 i C or 1  i C
) with the wider bulk (

1  i C
).

In conclusion, we can say that the model presented by Sharma et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF] describes well the qualitative behavior of the system for all pore sizes while the parallel plate capacitor model describes well qualitative behavior in the CDI cycle only for meso and microporous electrodes.

CONCLUSIONS

The volume averaging method has been used to derive the averaged equations describing ionic transport phenomena in charged porous electrodes. We have derived individual ionic volume averaged equations starting from the PNP point equations and the appropriate boundary conditions. Our derivations show that the effective diffusivity and mobility tensors are not equal as they are in the point equations. We have also derived the macroscopic Poisson-Boltzmann averaged equation. However, at the macroscopic scale this equation is transformed into a global electroneutrality condition. This condition leads to an open problem due to the loss of microscopic information during the averaging process. In order to deal with this problem we used the model presented by Sharma et al. [START_REF] Sharma | Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions[END_REF]. This model represents the transport behavior of counter and co-ions in pores of all sizes. We have also calculated effective diffusivities for isotropic porous media of cylindrical particles by solving the closure problem in Chang's unit cells following the procedure presented by Ochoa-Tapia et al. [START_REF] Ochoa-Tapia | Bulk and Surface Diffusion in Porous Media: An Application of the Surface-Averaging Theorem[END_REF]. The solution of the appropriate closure problems shows that the effective diffusivity is a function of the electric charge density in the solid-solution interphase. In the case where the porous media is uncharged the effective diffusivity values are given by Rayleigh's [START_REF] Rayleigh | On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of the Medium[END_REF] equation while for high charge values the effective diffusivity values approach the free solution bulk diffusivity values.
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 2 Figure 2. Chang's approximate unit cell for spatially periodic porous media.
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 3 Figure 3. Variation of the effectivity diffusivity with interface charge (  = 0.3).
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 4 Figure 4. CDI charge-discharge cycle using small pores electrodes (2 nm).
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