
HAL Id: hal-01672735
https://hal.science/hal-01672735

Submitted on 17 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Type-Preserving CPS Translation of Σ and Π Types is
Not Not Possible

William J. Bowman, Youyou Cong, Nick Rioux, Amal Ahmed

To cite this version:
William J. Bowman, Youyou Cong, Nick Rioux, Amal Ahmed. Type-Preserving CPS Translation of
Σ and Π Types is Not Not Possible. Proceedings of the ACM on Programming Languages, 2018, 2
(POPL), pp.1-33. �10.1145/3158110�. �hal-01672735�

https://hal.science/hal-01672735
https://hal.archives-ouvertes.fr


22

Type-Preserving CPS Translation of Σ and Π Types
is Not Not Possible∗

WILLIAM J. BOWMAN, Northeastern University, USA

YOUYOU CONG, Ochanomizu University, Japan

NICK RIOUX, Northeastern University, USA

AMAL AHMED, Northeastern University, USA

Dependently typed languages such as Coq are used to specify and prove functional correctness of source

programs, but what we ultimately need are guarantees about correctness of compiled code. By preserving

dependent types through each compiler pass, we could preserve source-level specifications and correctness

proofs into the generated target-language programs. Unfortunately, type-preserving compilation of dependent

types is hard. In 2002, Barthe and Uustalu showed that type-preserving CPS is not possible for languages such
as Coq. Specifically, they showed that for strong dependent pairs (Σ types), the standard typed call-by-name

CPS is not type preserving. They further proved that for dependent case analysis on sums, a class of typed CPS

translations—including the standard translation—is not possible. In 2016, Morrisett noticed a similar problem

with the standard call-by-value CPS translation for dependent functions (Π types). In essence, the problem is

that the standard typed CPS translation by double-negation, in which computations are assigned types of the

form (𝐴 → ⊥) → ⊥, disrupts the term/type equivalence that is used during type checking in a dependently

typed language.

In this paper, we prove that type-preserving CPS translation for dependently typed languages is not not
possible. We develop both call-by-name and call-by-value CPS translations from the Calculus of Constructions

with both Π and Σ types (CC) to a dependently typed target language, and prove type preservation and

compiler correctness of each translation. Our target language is CC extended with an additional equivalence

rule and an additional typing rule, which we prove consistent by giving a model in the extensional Calculus of

Constructions. Our key observation is that we can use a CPS translation that employs answer-type polymor-
phism, where CPS-translated computations have type ∀𝛼.(𝐴 → 𝛼) → 𝛼 . This type justifies, by a free theorem,

the new equality rule in our target language and allows us to recover the term/type equivalences that CPS

translation disrupts. Finally, we conjecture that our translation extends to dependent case analysis on sums,

despite the impossibility result, and provide a proof sketch.

CCS Concepts: • Software and its engineering→ Correctness; Functional languages; Polymorphism;

Control structures; Compilers; • Theory of computation → Type theory.

Additional Key Words and Phrases: Dependent types, type theory, secure compilation, type-preserving

compilation, parametricity, CPS
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1 INTRODUCTION
Dependently typed languages such as Coq’s Gallina have had tremendous impact on the state of

the art in fully verified software in recent years. Such languages enable verification of program

properties alongside program development, a strategy that has been used to verify full functional

correctness of a range of software, including the CompCert C compiler [Leroy 2006, 2009], the

CertiKOS OS kernel [Gu et al. 2015], and implementations of cryptographic protocols [Appel 2015;

Barthe et al. 2009]. But, while dependently typed languages make it easier to verify properties of

source (Gallina) programs, what is ultimately needed is a guarantee that the same properties hold

of compiled low-level code. This calls for a verified compiler for Gallina and the work underway on

CertiCoq [Anand et al. 2017] is a good first step. However, CertiCoq erases Gallina types and then

performs transformations such as CPS and closure conversion on untyped code. The problem with

erasing types too early in the compilation pipeline
1
is that it becomes difficult to build a verified

compiler that supports safe/secure linking of compiled code with code from other languages [Ahmed

2015; Patterson and Ahmed 2017]. For instance, consider a (pure) higher-order Gallina function f

that is compiled to C or assembly (as in CertiCoq) and linked with a target context that passes the

compiled f an impure C or assembly “function” as input. This impure function may break Gallina’s

type-abstraction or security guarantees or modify f’s control flow.

Investigating type-preserving compilation of dependently typed languages is critical because, in-
tuitively, the key to protecting the compiled version of f from contexts that provide ill-behaved

inputs is to ensure that compiled code can only be linked with target-level contexts that correspond
to well-typed source-level contexts. By translating types during compilation, we can encode that

correspondence in the types. Then, at link time, we allow linking a well-typed compiled component

with other well-typed target language components. With type-preserving compilation and suffi-

ciently rich types at the target level, we can statically rule out linking with ill-behaved/insecure

contexts. Thus, type-preserving compilation provides a path to building secure (fully abstract)

compilers [Abadi 1998; Ahmed and Blume 2008, 2011; Bowman and Ahmed 2015; Fournet et al.

2013; Kennedy 2006; New et al. 2016; Patrignani et al. 2015] without the overhead of dynamic

checks. By preserving dependent types, we can even preserve the full functional specifications into

the target level, so that compiled code can be independently verified by type checking.

This paper investigates type-preserving CPS for dependently typed languages. CPS translation is

an important compiler pass that makes control flow and evaluation order explicit
2
. However, it is a

transformation that presents nontrivial problems in a dependently typed setting, as discussed next.

Prior Work. Barthe et al. [1999] showed how to scale typed call-by-name (CBN) CPS translation to

a large class of Pure Type Systems (PTSs), including the Calculus of Constructions (CC) without Σ
types. They used the standard double-negation translation, i.e., the typed variant of Plotkin’s original
CPS translation, translating source computations of type 𝐴 to CPS-translated (CPS’d) computations

of type (𝐴+ → ⊥) → ⊥ (where
+
denotes value translation of types, as explained in Section 3). To

avoid certain technical difficulties (which we discuss in Section 5), they consider only domain-free

1
Here “too early” means “before we have a whole program”—i.e., before the stage in the compilation pipeline where we link

with low-level libraries and code compiled from other languages to form a whole program.

2
We discuss the popular alternative, ANF translation [Flanagan et al. 1993], in Section 7.
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PTSs, a variant of PTSs where 𝜆 abstractions do not carry the domain of their bound variable—i.e.,
they are of the form 𝜆𝑥. 𝑒 instead of 𝜆𝑥 : 𝐴. 𝑒 as in the domain-full variant.

Barthe and Uustalu [2002] tried to extend these results to the Calculus of Inductive Constructions

(CIC), but ended up reporting a negative result, namely that the standard typed CBN CPS translation

is not type preserving for Σ types. They go on to prove a general impossibility result: for sum types

with dependent case analysis, type preservation is not possible for the class of CPS translations that
can implement call/cc. We return to this latter impossibility result, which does not apply to our

translation, in Section 7.

The problem of CPS translation for Σ types has been revisited by others over the years, but without

positive results. In 2016, Greg Morrisett attempted typed call-by-value (CBV) CPS translation of an

A-normalized variant of CC, again using the double-negation translation.
3
He alerted us to the fact

that typed CBV CPS translation of Σ seems to work when translating from A-normal form, but the

CBV CPS translation of Π types (specifically, the application case) fails to type check.

Why is CPS’ing Dependent Types so Hard? In a dependently typed language like CC or CIC, the

power of the type system comes from the ability to express decidable equality between terms

and types. Intuitively, these equalities are decided by reducing terms to canonical forms and

checking that the resulting values are syntactically identical. In the source language—i.e., before
CPS translation—since the language is effect-free, every term can be thought of as a value since every

term reduces a value. But CPS translation converts source (terms and) values into computations of

type (𝐴 → ⊥) → ⊥. This changes the interface to the values—now we can only access the value

indirectly, by providing a computation that will do something with the value. In essence, ensuring

CPS translations are well typed is hard because every source value has turned into a computation

whose “underlying value” isn’t directly accessible for purposes of deciding equivalence. In particular,

with the double-negation type translation, one cannot recover the underlying value, because every

continuation must return false (⊥).
This description in terms of interfaces is just a shallow description of the problem. At a deeper

level, the problem is that dependently typed languages rely on the ability of the type system to copy

expressions from a term-level context into a type-level context, but CPS transforms expressions

into computations whose meaning, or “underlying value”, depends on its term-level context. This

copying happens in particular in the elimination rules for Π and Σ types, and the dependent case

analysis of sum types—hence these features are at the heart of past negative results—but in general

this happens any time a type depends on an expression. After CPS, we no longer copy an expression,

whose meaning is self contained; instead we copy a computation, whose meaning depends on

its term-level context. Not only do we “forget” part of the meaning of computations, but as we

discussed before, a computation cannot run in a type-level context—it requires a term-level context.

As we describe next, our solution to these problems will be to record part of the term-level contexts

during type checking and to provide an interface that allows types to run computations.

Answer-Type Polymorphism (and a Free Theorem) to the Rescue! In this paper, we show that type-

preserving CBN and CBV CPS translations of CC, with both Σ and Π types, are indeed possible. The

key to our result is that we abandon the standard typed CPS translation based on double negation

in favor of one that employs answer-type polymorphism [Ahmed and Blume 2011; Thielecke 2003,

2004]. Specifically, CPS’d computations are assigned types of the form ∀𝛼.(𝐴 → 𝛼) → 𝛼 .4 We use

answer-type polymorphism because it lets us choose what type of answer we want back from

a computation. This gives us the ability to locally “run” any CPS’d computation to extract the

3
Personal communication, Greg Morrisett, April 2016.

4
In CC, ∀𝛼.(𝐴→ 𝛼) → 𝛼 is written Π𝛼 : ∗.(𝐴→ 𝛼) → 𝛼 . We switch to the latter after we introduce CC in Section 2.
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Universes U ::= ∗ | □
Expressions t, e,A, B ::= ∗ | x | Π x : A. e | 𝜆 x : A. e | e e | let x = e : A in e

| Σ x : A. B | ⟨e1, e2⟩ as Σ x : A. B | fst e | snd e
Environments Γ ::= · | Γ, x : A | Γ, x = e : A

Fig. 1. CC Syntax

underlying result by running the computation with the identity continuation. We use our ability to

extract the underlying result from a computation to recover the equalities needed to prove that

CPS translation is type preserving.

We define a CPS target language that extends CC with two additional rules—an equivalence rule

and a typing rule—inspired (and justified) by a free theorem for the type ∀𝛼.(𝐴 → 𝛼) → 𝛼 . The two

new rules are essential for type checking the previously problematic CBN/CBV CPS translations of

Σ and Π types. We show the consistency of our target language by translating it into a parametric

model of extensional CC.

Contributions. This paper makes the following contributions.

(1) We give CBN and CBV CPS translations for the domain-full version of CC, with Σ as well as

Π types, and prove that the translations are type preserving (Section 5 and Section 6). Unlike

Barthe et al. [1999], our translation is defined by induction on typing derivations and we

avoid the proof-staging difficulties they discussed as their motivation for studying CPS of

domain-free CC.

(2) We prove the consistency of our CPS target language CC
𝑘
, which includes two additional

rules (that, in essence, internalize a free theorem) by showing that we can translate CC
𝑘
into

a parametric model of extensional CC (Section 4). The translation of the new typing rule

resembles the inverse CPS translation of Flanagan et al. [1993].

(3) We prove separate compilation correctness of our CPS translations. Since we are in a depen-

dently typed setting, proving type preservation requires proving preservation of reduction,

which then easily yields correct separate compilation (Section 5.1 and Section 6.1).

(4) We conjecture that our CPS translation, based on answer-type polymorphism, should work

for sum types with dependent elimination and provide a proof sketch (Section 7). We explain

why the impossibility proof by Barthe and Uustalu [2002], which applies to a class of CPS

translations, does not apply to the answer-type-polymorphism translation and discuss how

to tackle other issues we expect in scaling to CIC.

Next, we present our source language CC (Section 2), then discuss cases of the (CBN/CBV)

double-negation translation that fail to type check and how we fix the problem (Section 3). Parts of

translations and proofs elided from this paper are presented in detail in the online supplementary

material [Bowman et al. 2017]. The supplementary material includes both a technical appendix with

the additional figures and proofs, and Coq sources for the key lemma in the proof of consistency of

our CPS target language CC
𝑘
(discussed in Section 4.1).

2 THE CALCULUS OF CONSTRUCTIONS (CC)
Our source language is an extension of the intensional Calculus of Constructions (CC) with strong

dependent pairs (Σ types) and dependent let. We typeset this language in a non-bold, blue, sans-serif
font. We adapt this presentation from the model of the Calculus of Inductive Constructions (CIC)

given in the Coq reference manual [The Coq Development Team 2017, Chapter 4].

We present the syntax of CC in Figure 1 in the style of a Pure Type System (PTS) with no syntactic

distinction between terms, which are run-time computations, types, which statically describe terms

and compute during type checking, and kinds, which describe types. We use the phrase “expression”

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 22. Publication date: January 2018.
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Γ ⊢ e ▷ e′

x ▷𝛿 e where x = e : A ∈ Γ

(𝜆 x : A. e1) e2 ▷𝛽 e1 [e2/x]
let x = e2 : A in e1 ▷𝜁 e1 [e2/x]

fst ⟨e1, e2⟩ ▷𝜋1 e1

snd ⟨e1, e2⟩ ▷𝜋2 e2

Γ ⊢ e ≡ e′

Γ ⊢ e ▷★ e1 Γ ⊢ e′ ▷★ e1
Γ ⊢ e ≡ e′

[≡]
Γ ⊢ e ▷★ 𝜆 x : A. e1 Γ ⊢ e′ ▷★ e2 Γ, x : A ⊢ e1 ≡ e2 x

Γ ⊢ e ≡ e′
[≡-𝜂1]

Γ ⊢ e ▷★ e1 Γ ⊢ e′ ▷★ 𝜆 x : A. e2 Γ, x : A ⊢ e1 x ≡ e2
Γ ⊢ e ≡ e′

[≡-𝜂2]

Fig. 2. CC Convertibility and Equivalence

to refer to a term, type, or kind in the PTS syntax. We usually use the meta-variable e to evoke a

term expression and A or B to evoke a type expression. Similarly, we use x to evoke term variables

and 𝛼 for type variables; note that we have no kind-level computation in this language. We use t
for an expression to be explicitly ambiguous about its nature as a term, type, or kind.

The language includes one impredicative universe, or sort, ∗, and its type, □. The syntax of

expressions includes the universe ∗, variables x or 𝛼 , Π types Π x :A. B, functions 𝜆 x :A. e, application
e1 e2, dependent let let x = e : A in e′, Σ types Σ x : A. B, dependent pairs ⟨e1, e2⟩ as Σ x : A. B, and first

and second projections fst e and snd e. Note that we cannot write □ in source programs—it is only

used by the type system. The environment Γ includes assumptions x : A and definitions x = e : A.
Definitions, introduced while type checking let, allow us to convert a variable x to its definition e,
called 𝛿-reduction, and provides additional definitional equivalences compared to application.

For brevity, we omit the type annotations on pairs, ⟨e1, e2⟩, and let expressions, let x = e in e′, when
they are clear from context. We use the notation A→ B for a function type whose result B does not

depend on the input.

In Figure 2 we present the convertibility and equivalence relations for CC. These relations are

defined over untyped expressions and are used to decide equivalences between types during type

checking. The conversion relation can also be seen as the dynamic semantics of programs in CC. It

does not fix an evaluation order, but this is not important since CC is effect-free.

We start with the small-step reductions Γ ⊢ e ▷ e′. Note that we label each individual reduction

rule with an appropriate subscript, such as ▷𝛽 for 𝛽-reduction. When we refer to the undecorated

transition Γ ⊢ e▷ e′ we mean that e reduces to e′ using some reduction rule— i.e., using one of ▷𝛿 , ▷𝛽 ,
▷𝜁 , ▷𝜋1 , or ▷𝜋2 . This relation requires the environment Γ for 𝛿-reduction as mentioned previously.

For brevity, we usually write this relation as e ▷ e′, with the environment Γ as an implicit parameter.

This reduction relation is completely standard, although 𝛿-reduction may be surprising to readers

unfamiliar with dependent type theory. We can 𝛿-reduce any variable x to its definition e, written
x ▷𝛿 e.

We define the relation Γ ⊢ e ▷★ e′ as the reflexive, transitive, compatible closure of the small-step

relation Γ ⊢ e ▷ e′. This relation can apply the small-step relation any number of times to any

sub-expression in any order. We usually omit the Γ and write e ▷★ e′ for brevity, but note that the
compatible closure rule for let introduces a new definition into Γ, as follows.
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⊢ Γ

⊢ ·
[W-Empty]

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
[W-Assum]

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ, x = e : A
[W-Def]

Γ ⊢ e : A
⊢ Γ

Γ ⊢ ∗ : □
[Ax-*]

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
[Var]

Γ, x : A ⊢ B : ∗
Γ ⊢ Π x : A. B : ∗

[Prod-*]

Γ, x : A ⊢ B : □

Γ ⊢ Π x : A. B : □
[Prod-□]

Γ, x : A ⊢ e : B Γ ⊢ Π x : A. B : U

Γ ⊢ 𝜆 x : A. e : Π x : A. B
[Lam]

Γ ⊢ e : Π x : A′. B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
[App]

Γ ⊢ e′ : A Γ, x = e′ : A ⊢ e : B

Γ ⊢ let x = e′ : A in e : B[e′/x]
[Let]

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Γ ⊢ Σ x : A. B : ∗

[Sigma]

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]
Γ ⊢ ⟨e1, e2⟩ as Σ x : A. B : Σ x : A. B

[Pair]

Γ ⊢ e : Σ x : A. B

Γ ⊢ fst e : A
[Fst]

Γ ⊢ e : Σ x : A. B

Γ ⊢ snd e : B[fst e/x]
[Snd]

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

Fig. 3. CC Typing

Γ, x = e : A ⊢ e1 ▷★ e2
Γ ⊢ let x = e : A in e1 ▷★ let x = e : A in e2

We define definitional equivalence Γ ⊢ e≡e′ as reduction in the ▷★ relation to the same expression,

up to 𝜂-equivalence. This algorithmic presentation induces symmetry and transitivity of ≡ without

explicit symmetry and transitivity rules, but requires two symmetric versions of 𝜂-equivalence. We

usually abbreviate this judgment as e ≡ e′, leaving Γ implicit.

The typing rules for CC, Figure 3, are completely standard. The judgment ⊢ Γ checks that the

environment Γ is well formed; it is defined by mutual recursion with the typing judgment. The

typing judgment Γ ⊢ e : A checks that expressions are well typed. The rule [Prod-*] implicitly

allows impredicativity in ∗, since the domain A could be in the higher universe □. The rule [Lam]

for functions 𝜆 x : A. e gives this function the type Π x : A. B, binding the function’s variable x in

the result type B. The rule [App] is the standard dependent application rule. When applying a

dependent function e : Π x :A. B to an argument e′, the argument is substituted into the result type B
yielding an expression e e′ : B[e′/x]. The rule [Let] is similar; however, when checking the body of

let x = e′ : A in e, we also adds a definition x = e′ : A to the environment. This provides strictly more

type expressivity than the application rule, since the body e is typed with respect to a particular

value for x while a function is typed with respect to an arbitrary value. The rule [Sigma] ensures

we do not allow impredicative strong Σ types, which are inconsistent [Coquand 1986; Hook and

Howe 1986]. Note that the type of a dependent pair Σ x :A. B may have the first component x free in
the type of the second component B. The rule [Snd] for the second projection of a dependent pair,

snd e, replaces the free variable x by the first projection, giving snd e the dependent type B[(fst e)/x].
Finally, as we have computation in types, the rule [Conv] allows typing an expression e : A as e : B
when A ≡ B. Note that while the equivalence relation is untyped, we ensure decidability by only

using equivalence in [Conv] after type checking both A and B.
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Kinds 𝜅 ::= ∗ | Π𝛼 : 𝜅. 𝜅 | Π x : A. 𝜅
Types A, B ::= 𝛼 | 𝜆 x : A. B | 𝜆 𝛼 : 𝜅. B | A e | A B | Π x : A. B

| Π𝛼 : 𝜅. B | let x = e : A inB | let𝛼 = A : 𝜅 inB | Σ x : A. B
Terms e ::= x | 𝜆 x : A. e | 𝜆 𝛼 : 𝜅. e | e e | e A | let x = e : A in e

| let𝛼 = A : 𝜅 in e | ⟨e1, e2⟩ as Σ x : A. B | fst e | snd e
Environment Γ ::= · | Γ, x : A | Γ, x = e : A, | Γ, 𝛼 : 𝜅 | Γ, 𝛼 = A : 𝜅

Fig. 4. CC Explicit Syntax

To make our upcoming CPS translation easier to follow, we present a second version of the syntax

for CC in which we make the distinction between terms, types, and kinds explicit (see Figure 4).

The two presentations are equivalent [Barthe et al. 1999]. Distinguishing terms from types and

kinds is useful since we only want to CPS translate terms, because our goal is to internalize only

run-time evaluation contexts. (We discuss pervasive translation, which also internalizes the type
contexts, in Section 7.)

3 MAIN IDEAS: HOW DOUBLE-NEGATION CPS FAILS AND HOW TO FIX IT
In Section 1 we informally explained why CPS translation of dependent types causes type preser-

vation to fail. We now make that intuition concrete by studying two examples. We focus on two

cases of the double-negation CPS translation that fail to type check: the CBN translation of snd e
(reported by Barthe and Uustalu [2002]) and the CBV translation of e e′ (noticed by Morrisett).

Consider the CBN CPS translation. We translate a term e of type A into a CPS’d computation,

written e÷, of type A÷
. Given a type A, we define its computation translation A÷

and its value
translationA+

. Below, we define the translations for Σ andΠ. (Technically, the translations are defined
by induction on typing derivations, but we present them less formally in this section.) We write

our target language in a bold, red, serif font, but for now it is identical to the source language CC.

A÷ = (A+
→ ⊥) → ⊥ (Σ x : A. B)+ = 𝚺 x : A÷ . B÷ (Π x : A. B)+ = 𝚷 x : A÷ . B÷

Note that since this is the CBN translation, the translated argument type for Π is a computation

type A÷
instead of a value type A+

, and the translated component types for Σ are computation types

A÷
and B÷.
As a warm-up, consider the CBN translation of fst e (where e : Σ x : A. B):

(fst e : A)÷ = 𝝀 k : A+
→ ⊥. e÷ (𝝀 y : (𝚺 x : A÷ . B÷) . let z = (fst y) : A÷ in z k)

It is easy to see that the above type checks (checking the types of y, z, and k).
Next, consider the CBN translation of snd e (where e : Σ x : A. B):

(snd e : B[fst e/x])÷ = 𝝀 k : B+ [(fst e)÷/x] → ⊥. e÷ (𝝀 y : (𝚺 x : A÷ . B÷) . let z = (snd y) : B÷ [fst y/x] in z k)

The above does not type check because z expects a continuation of type B+ [fst y/x]→⊥ but k has
type B+ [(fst e)÷/x] →⊥. Somehow we need to show that fst y ≡ (fst e)÷. But what is the relationship
between y and e? Intuitively, e÷ : A÷

is a computation that will pass its result—i.e., the underlying
value of type A+

inside e÷, which corresponds to the value produced by evaluating the source term

e—to its continuation. So when e÷’s continuation is called, its argument y will always be equal

to the unique “underlying value” inside e÷. However, since we have used a function to describe a

continuation, we must type check the body of the continuation assuming that y is any value of the

appropriate type instead of the exactly one underlying value from e÷.
Even if we could communicate that y is equal to exactly one value, we have no way to extract the

underlying A+
value from e÷ since the latter takes a continuation that never returns (since it must

return a term of type ⊥). To extract the underlying value from a computation, we need a means

of converting from A÷
to A+

. In essence, after CPS, we have an interoperability problem between
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the term language (where computations have type A÷
) and the type language (which needs values

of type A+
). In the source language, before CPS, we are able to pretend that the term and type

languages are the same because all computations of type A reduce to values of type A. However,
the CPS translation creates a gap between the term and type languages; it changes the interface to
terms so that the only way to get a value out of a computation is to have a continuation, which can

never return, ready to receive that value.

The solution to both of the above problems requires a CPS translation based on answer-type

polymorphism. That is, we change the computation translation to A÷ = 𝚷 𝜶 : ∗. (A+ →𝜶 )→𝜶 . Now,

to extract the underlying A+
value from e÷ : A÷

, we can run e÷ with the identity continuation as

follows: e÷ A+ id. Moreover, we can now justify type checking the body of e÷’s continuation under

the assumption that y ≡ e÷ A+ id thanks to a free theorem we get from the type A÷
. The free theorem

says that running some e : A÷
with continuation k : A → B is equivalent to running e with the

identity continuation and then passing the result to k, i.e., e B k ≡ k (e A id).
To formalize this intuition in our target language, we first add new syntax for the application of a

computation to its answer type and continuation: e @ A e′. Next, we internalize the aforementioned

free theorem by adding two rules to our target language. The first is the following typing rule

which records (a representation of) the value of a computation while type checking a continuation.

That is, it allows us to assume y ≡ e÷ A+ id when type checking the body of e÷’s continuation.

𝚪 ⊢ e : 𝚷 𝜶 : ∗. (A→ 𝜶 ) → 𝜶 𝚪 ⊢ B : ∗ 𝚪, x = e A id ⊢ e′ : B

𝚪 ⊢ e @ B (𝝀 x : A. e′) : B
[T-Cont]

The second is the following equivalence rule, which is justified by the free theorem. Intuitively,

this rule normalizes CPS’d computations to the “value” e÷ A+ id.

𝚪 ⊢ (e1 @ B (𝝀 x : A. e2)) ≡ (𝝀 x : A. e2) (e1 A id)
[≡-Cont]

Here is the updated CPS translation (snd e : B[fst e/x])÷ that leverages answer-type polymorphism:

𝝀 𝜶 : ∗.𝝀 k : B+ [(fst e)÷/x] → 𝜶 . e÷ @ 𝜶 (𝝀 y : (𝚺 x : A÷ . B÷). let z = (snd y) : B÷ [fst y/x] in z 𝜶 k)

To type check e÷ @ 𝜶 . . . we use [T-Cont]. When type checking the body of e÷’s continuation,
we have that y ≡ e÷ (𝚺 x :A÷ . B÷) id and recall that we need to show that fst y ≡ (fst e)÷. This requires
expanding (fst e)÷ and making use of the [≡-Cont] rule we now have available in the target language.

Here is an informal sketch of the proof—we give the detailed proof in Section 5.1.

(fst e)÷ ≡ e÷ @ 𝜶 ′ (𝝀 y. fst y) by (roughly) the translation of fst and by 𝜂-equivalence (1)

≡ (𝝀 y. fst y) (e÷ (𝚺 x : A÷ . B÷) id) by [≡-Cont] (2)

≡ fst (e÷ (𝚺 x : A÷ . B÷) id) by reduction (3)

≡ fst y by y ≡ e÷ (𝚺 x : A÷ . B÷) id (4)

The astute reader will have noticed that our CPS translation—as well as the new rules [T-Cont]

and [≡-Cont]—only uses the new @ syntax for certain applications. Intuitively, we use @ only

when type checking requires the free theorem.

Next, let’s look at the translation of Π types. Again, we start with a warm-up; consider the

following CBN double-negation CPS translation of e e′ (where e : Π x : A. B and e′ : A):

(e e′ : B[e′/x])÷ = 𝝀 k : (B+ [e′÷/x]) → ⊥. e÷ (𝝀 f : 𝚷 x : A÷ . B÷ . (f e′÷) k)
The above type checks (as seen by inspecting the types of f and k). Notice that e′÷ appears as an

argument to f so the type of f e′÷ : B÷ [e′÷/x].
Now consider the CBV CPS translation based on double negation, which fails to type check. We

define the CBV computation translation A÷
and value translation A+

as follows.
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A÷ = (A+
→ ⊥) → ⊥ (Σ x : A. B)+ = 𝚺 x : A+ . B+ (Π x : A. B)+ = 𝚷 x : A+ . B÷

Since we’re doing a CBV translation, the translated argument Π is a value of type A+
and the

translated component types for Σ are values of types A+
and B+.

Here is the CBV CPS translation e e′ (where e : Π x : A. B and e′ : A):

(e e′ : B[e′/x])÷ = 𝝀 k : (B+ [e′+/x]) → ⊥. e÷ (𝝀 f : 𝚷 x : A+ . B÷ . e′÷ (𝝀 x : A+ . (f x) k))
For the moment, ignore that our type annotation on k, (B+ [e′+/x]), seems to requires a value

translation of terms e′+, which we can’t normally define. Instead, notice that unlike in the CBN

translation, we now evaluate the argument e′÷ before calling f , so in CBV we have the application

f x : B÷ [x/x]. This translation fails to type check since the computation f x expects a continuation
of type (B+ [x/x]) →⊥ but k has type (B+ [e′+/x]) →⊥. Somehow we need to show that x ≡ e′+. This
situation is almost identical to what we saw with the failing CBN translation of snd e. Analogously,
this time we ask what is the relationship between x and e′÷, or e′+? As before, we note that the
only value that can flow into x is the unique underlying value in e′÷.

Hence, fortunately, the solution is again to do what we did for the CBN translation: adopt a CPS

translation based on answer-type polymorphism. As before, we change the computation translation

to A÷ = 𝚷 𝜶 : ∗. (A+ → 𝜶 ) → 𝜶 . Here is the updated CBV CPS translation of (e e′ : B[e′/x])÷:

𝝀 𝜶 : ∗.𝝀 k : (B+ [(e′÷ A+ id)/x]) → 𝜶 . e÷ 𝜶 (𝝀 f : 𝚷 x : A+ . B÷ . e′÷ @ 𝜶 (𝝀 x : A+ . (f x) 𝜶 k))

First, notice that we use the new @ form when evaluating the argument e′÷, which tells us we’re

using our new typing rule to record the value of e′÷ while we type check its continuation. Second,

notice the type annotation on k. Earlier we observed that the type annotation for k, (B+ [e′+/x]),
seemed to require a value translation on terms e′+ that cannot normally be defined. Our translation

gives us a sensible way of modeling the value translation of a term by invoking a computation

with the identity continuation—so e′+ is just the underlying value in e′÷, i.e., (e′÷ A+ id). This is an
important point to note: unlike CBN CPS, where we can substitute computations for variables, in

CBV CPS we must find a way to extract the underlying value from computations of type A÷
since

variables expect values of type A+
. Without answer-type polymorphism, CBV CPS is, in some sense,

much more broken than CBN CPS! Indeed, Barthe et al. [1999] already gave a CBN double-negation

CPS translation for CC’s Π types, but typed CBV double-negation CPS of Π types fails.

Using the new typing rule and equivalence rule that we already added to our target languages,

we are able to type check the above translation of e e′ in essentially the same way as we did for the

CBN translation of snd e. We show the detailed proof in Section 6.1.

The reader may worry that our CBV CPS translation produces many terms of the form k (e÷ A+ id),
which aren’t really in CPS since e÷ A+ idmust return. However, notice that these only appear in type

annotations, not as run-time expressions. We only run a computation with the identity continuation

to convert a CPS expression into a value in the types for deciding type equivalence. The run-time

terms are all in CPS and can be run in a machine-like semantics in which computations do not

return.

4 THE CALCULUS OF CONSTRUCTIONS WITH CPS AXIOMS (CC𝐾 )
Our target language CC

𝑘
is CC extended with a syntax for parametric reasoning about computations

in CPS form, as discussed in Section 3. We present these extensions formally in Figure 5. We add

the form e @ A e′ to the syntax of CC𝑘 . This form represents a computation e applied to the answer
type A and the continuation e′. The dynamic semantics are the same as standard application.

The equivalence rule [≡-Cont] states that a computation e applied to its continuation 𝝀 x : B. e′

is equivalent to the application of that continuation to the underlying value of e. We extract the
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underlying value by applying e to the “halt continuation”, encoded as the identity function in our

system. The rule [T-Cont] is used to type check applications that use our new@ syntax. This typing

rule internalizes the fact that a continuation will be applied to one particular input, rather than

an arbitrary value. It tells the type system that the application of a computation to a continuation

e @ A (𝝀 x : B. e′) jumps to the continuation e′ after evaluating e to a value and binding the result

to x. We check the body of the continuation e′ under the assumption that x = e B id, i.e., with the

equality that the name x refers to the underlying value in the computation e, which we access using

the interface given by the polymorphic answer type.

The rule [≡-Cont] is a declarative rule that requires explicit symmetry and transitivity rules

to complete the definition (elided here, but included in the supplementary material). We give a

declarative presentation of this rule for clarity.

Note that [≡-Cont] and [T-Cont] internalize a specific “free theorem” that we need to prove type

preservation of the CPS translation. In particular, [≡-Cont] only holds when the CPS’d term e1 has
the expected parametric type 𝚷 𝜶 : ∗. (A→ 𝜶 ) → 𝜶 given in [T-Cont]. Notice, however, that our

statement of [≡-Cont] does not put any requirements on the type of e1. This is because we use
an untyped equivalence based on the presentation of CIC in Coq [The Coq Development Team

2017, Chapter 4], and this untyped equivalence is necessary in our type-preservation proof (see

Section 5.1). Therefore, we cannot simply add typing assumptions directly to [≡-Cont]. Instead,
we rely on the fact that the term e @ A e′ has only one introduction rule, [T-Cont]. Since there is

only one applicable typing rule, anytime e @ A e′ appears in our type system, e has the required
parametric type. Furthermore, while our equivalence is untyped, we never appeal to equivalence

with ill-typed terms; we only refer to the equivalence A′ ≡ B′
in [Conv] after checking that both

A′
and B′

are well-typed. For example, suppose the term e @ A e′ occurs in type A′
, and to prove

that A′ ≡ B′
requires our new rule [≡-Cont]. Because A′

is well-typed, we know that its subterms,

including e @ A e′, are well-typed. Since e @ A e′ can only be well-typed by [T-Cont], we know e
has the required parametric type.

Finally, notice that in [T-Cont] and [≡-Cont] we use standard application syntax for the term

e B id. We only use the @ syntax in our CPS translation when we require one of our new rules. The

type of the identity function doesn’t depend on any value, so we never need [T-Cont] to type-check

the identity continuation. In a sense, e B id is the normal form of a CPS’d “value” so we never need

[≡-Cont] to rewrite this term—i.e., using [≡-Cont] to rewrite e B id to id (e B id) would just evaluate
the original term.

4.1 Consistency of CC𝑘

We prove that CC
𝑘
is consistent by giving a model of CC

𝑘
in the extensional Calculus of Construc-

tions. Boulier et al. [2017] provide a detailed explanation of this standard technique.

The idea behind the model is that we can translate each use of [≡-Cont] in CC
𝑘
to a propositional

equivalence in extensional CC. Next, we translate any term that is typed by [T-Cont] into a

dependent let. Finally, we establish that if there were a proof of False in CC
𝑘
, our translation would

construct a proof of 𝐹𝑎𝑙𝑠𝑒 in extensional CC. But since extensional CC is consistent, there can be

no proof of False in CC
𝑘
. We construct the model in three parts.

(1) produce proofs (in extensional CC) of all propositional equivalences introduced by our

translation of [≡-Cont],
(2) show False in CC

𝑘
is translated to 𝐹𝑎𝑙𝑠𝑒 in extensional CC,

(3) show our translation is type preserving, i.e., it translates a proof of A to a proof of its

translation A◦
.
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Extensions to Syntax, Figure 1

e ::= · · · | e @ A e′

Extensions to Convertibility and Equivalence, Figure 2

𝚪 ⊢ e ▷ e′

. . .

𝝀 𝜶 : ∗. e1 @A e2 ▷@ (e1 [A/𝜶 ]) e2
𝚪 ⊢ e ≡ e′

. . . 𝚪 ⊢ (e1 @A (𝝀 x : B. e2)) ≡ (𝝀 x : B. e2) (e1 B id)
[≡-Cont]

Extensions to Typing, Figure 3

𝚪 ⊢ e : A

. . .

𝚪 ⊢ e : 𝚷 𝜶 : ∗. (B→ 𝜶 ) → 𝜶 𝚪 ⊢ A : ∗ 𝚪, x = e B id ⊢ e′ : A

𝚪 ⊢ e @ A (𝝀 x : B. e′) : A
[T-Cont]

Fig. 5. CC𝑘 : CC with extensions

Γ ⊢ 𝑒1 ≡ 𝑒2

. . .

Γ ⊢ 𝑝 : 𝑒1 = 𝑒2

Γ ⊢ 𝑒1 ≡ 𝑒2
[≡-Ext]

Fig. 6. Additional Equivalence Rule for Extensional CC

As our model is in the extensional CC, it is not clear that type checking in CC
𝑘
is decidable. We

believe that type checking should be decidable for all programs produced by our compiler, since type

checking in our source language CC is decidable. In the worst case, to ensure decidability we could

change our translation to use a propositional version of [≡-Cont]. The definitional presentation
is simpler, but it should be possible to change the translation so that, in any term that currently

relies on [≡-Cont], we insert type annotations that compute type equivalence using a propositional

version of [≡-Cont]. We leave the issue of decidability of type checking in CC
𝑘
for future work.

4.1.1 Modeling [≡-Cont]. The extensional Calculus of Constructions differs from our source

language CC in only one way: it allows using the existence of a propositional equivalence as a

definitional equivalence, as shown in Figure 6. The syntax and typing rules are exactly the same as

in CC presented in Section 2. We write terms in extensional CC using a italic, black, serif font.
In extensional CC we can model each use of the definitional equivalence [≡-Cont] by [≡-Ext],

as long as there exists a proof 𝑝 : (𝑒 𝐴 𝑘) = (𝑘 (𝑒 𝐵 𝑖𝑑)), i.e., a propositional proof of [≡-Cont]; we
prove this propositional proof always exists by using the parametricity translation of Keller and

Lasson [2012]. This translation gives a parametric model of CC in itself. This translation is based

on prior translations that apply to all Pure Type Systems [Bernardy et al. 2012], but includes an

impredicative universe and provides a Coq implementation that we use.

The translation of a type 𝐴, written J𝐴K, essentially transforms the type into a relation on terms

of that type. On terms 𝑒 of type 𝐴, the translation J𝑒K produces a proof that 𝑒 is related to itself in the

relation given by J𝐴K. For example, a type ∗ is translated to the relation J∗K = 𝜆 (𝑥, 𝑥 ′ : ∗) . 𝑥 → 𝑥 ′ →∗.
The translation of a polymorphic function type JΠ 𝛼 : ∗. 𝐴K is the following.

𝜆 (𝑓 , 𝑓 ′ : (Π 𝛼 : ∗. 𝐴)) .Π (𝛼, 𝛼 ′
: ∗) .Π 𝛼𝑟 : J∗K𝛼 𝛼 ′. (J𝐴K (𝑓 𝛼) (𝑓 ′ 𝛼 ′))

This relation produces a proof that the bodies of functions 𝑓 and 𝑓 ′ are related when provided a

relation 𝛼𝑟 for the two types of 𝛼 and 𝛼 ′
. This captures the idea that functions at this type must
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𝚪 ⊢ e : A {◦ 𝑒

. . .

𝚪 ⊢ e : _ {◦ 𝑒 𝚪 ⊢ B : _ {◦ 𝐵 𝚪 ⊢ A : _ {◦ 𝐴 𝚪, x = e B id ⊢ e′ : A {◦ 𝑒 ′

𝚪 ⊢ e @ A (𝝀 x : B. e′) : A {◦ 𝑙𝑒𝑡 𝑥 = 𝑒 𝐵 𝑖𝑑 : 𝐵 𝑖𝑛 𝑒 ′
[Un-Cont]

Fig. 7. Translation from CC𝑘 to Extensional CC (excerpt)

behave parametrically in the abstract type 𝛼 . This translation gives us Theorem 4.1 (Parametricity

for extensional CC), i.e., that every expression in extensional CC is related to itself in the relation

given by its type.

Theorem 4.1 (Parametricity for extensional CC). If Γ ⊢ 𝑡 : 𝑡 ′ then JΓK ⊢ J𝑡K : J𝑡 ′K 𝑡 𝑡

We apply Theorem 4.1 to our CPS type Π 𝛼 : ∗. (𝐵 → 𝛼) → 𝛼 to prove Lemma 4.2. Since a CPS’d

term is a polymorphic function, we get to provide a relation 𝛼𝑟 for the type 𝛼 . The translation

then gives us a proof that 𝑒 𝐴 𝑘 and 𝑒 𝐵 𝑖𝑑 are related by 𝛼𝑟 , so we simply choose 𝛼𝑟 to be a relation

that guarantees 𝑒 𝐴 𝑘 = 𝑘 (𝑒 𝐵 𝑖𝑑). We formalize part of the proof in Coq in our supplementary

materials [Bowman et al. 2017]. By [≡-Ext], Theorem 4.1, and the relation just described, we arrive

at a proof of Lemma 4.2 for CPS’d computations encoded in the extensional CC.

Lemma 4.2 (Continuation Shuffling). If Γ ⊢ 𝐴 : ∗, Γ ⊢ 𝐵 : ∗, Γ ⊢ 𝑒 : Π 𝛼 : ∗. (𝐵 → 𝛼) → 𝛼 ,
Γ ⊢ 𝑘 : 𝐵 →𝐴, and Γ ⊢ 𝑒 : Π 𝛼 : ∗. (𝐵 → 𝛼) → 𝛼 then Γ ⊢ 𝑒 𝐴 𝑘 ≡ 𝑘 (𝑒 𝐵 𝑖𝑑)

Note that this lemma relies on the type of the term 𝑒. We must only appeal to this lemma, and

the equivalence justified by it, when 𝑒 has the right type. In CC
𝑘
, this is guaranteed by the typing

rule [T-Cont], as discussed earlier in this section.

4.1.2 Modeling [T-Cont]. In Figure 7 we present the key translation rule for modeling CC
𝑘
in

extensional CC. All other rules are inductive on the structure of typing derivations. Note that since

we only need to justify the additional typing rule [T-Cont], this is the only rule that is changed

by the translation. This translation rule is essentially the same rule from the inverse CPS given

by Flanagan et al. [1993], although we do not necessarily produce output in A-normal form (ANF)

since we only translate uses of this one typing rule. We discuss CPS and ANF in detail in Section 7.

For brevity in our proofs, we define the following notation for the translation of terms and types

from CC
𝑘
into extensional CC.

e◦ def

= 𝑒 where 𝚪 ⊢ e : A {◦ 𝑒

By writing e◦, we refer to the term produced by the translation with the typing derivation 𝚪 ⊢ e : A
as an implicit parameter.

First, we show that the definition of False is preserved. We define False as 𝚷 𝜶 : ∗.𝜶 , i.e., the
function that accepts any proposition and returns a proof that the proposition holds. It is simple

to see that this type has type ∗ in CC
𝑘
by the rule [Prod-*]. Note that 𝚷 𝜶 : ∗.𝜶 is translated to

Π 𝛼 : ∗. 𝛼 of type ∗, i.e., False is translated to 𝐹𝑎𝑙𝑠𝑒.

Lemma 4.3 (False Preservation). 𝚪 ⊢ (𝚷 𝜶 : ∗.𝜶 ) : ∗ {◦ Π 𝛼 : ∗. 𝛼

Next, to show type preservation, we must first show that equivalence is preserved since the

type system appeals to equivalence. A crucial lemma to both equivalence preservation and type

preservation is compositionality, which says that the translation commutes with substitution. The

proof is straightforward by induction on the typing derivation of e. See our technical appendix for
details [Bowman et al. 2017].

Lemma 4.4 (Compositionality). (e[e′/x])◦ ≡ e◦ [e′◦/𝑥]
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The equivalence rules of extensional CC with the addition of Lemma 4.2 (Continuation Shuffling)

are the same as CC
𝑘
. Therefore, to show that equivalence is preserved, it suffices to show that

reduction sequences are preserved. We first show that single-step reduction is preserved, Lemma 4.5,

which easily implies preservation of reduction sequences, Lemma 4.6.

Lemma 4.5 (Preservation of One-Step Reduction). If e1 ▷ e2, then e◦
1
▷★ 𝑒 ′ and e◦

2
≡ 𝑒 ′

Proof. By cases on the reduction step e1 ▷ e2. There is one interesting case.

Case e = (𝝀 𝜶 : ∗. e1) @ B (𝝀 x′ : A. e2) ▷@ (e1 [B/𝜶 ]) (𝝀 x′ : A. e2)
By definition e◦ = (𝑙𝑒𝑡 𝑥 ′ = ((𝝀 𝜶 : ∗. e1)◦ A◦ 𝑖𝑑) 𝑖𝑛 e◦

2
) ▷𝜁 e◦

2
[((𝝀 𝜶 : ∗. e1)◦ A◦ 𝑖𝑑)/𝑥 ′]

We must show ((e1 [B/𝜶 ]) (𝝀 x′ : A. e2))◦ ≡ e◦
2
[((𝝀 𝜶 : ∗. e1)◦ A◦ 𝑖𝑑)/𝑥 ′].

((e1 [B/𝜶 ]) (𝝀 x′ : A. e2))◦ (5)

≡ ((e◦1 [B
◦/𝛼]) (𝜆 𝑥 ′ : A◦ . e◦2)) by Lemma 4.4 and definition of

◦
(6)

≡ (𝜆 𝛼 : ∗. e◦1) B
◦ (𝜆 𝑥 ′ : A◦ . e◦2) by [≡] and ▷𝛽 (7)

≡ (𝜆 𝑥 ′ : A◦ . e◦2) ((𝜆 𝛼 : ∗. e◦1) A
◦ 𝑖𝑑) by Lemma 4.2 (Continuation Shuffling) (8)

≡ e◦2 [((𝜆 𝛼 : ∗. e◦1) A
◦ 𝑖𝑑)/𝑥 ′] by [≡] and ▷𝛽 (9)

≡ e◦2 [((𝝀 𝜶 : ∗. e1)◦ A◦ 𝑖𝑑)/𝑥 ′] by Lemma 4.4 (10)

□

Lemma 4.6 (Preservation of Reduction Seqences). If e1 ▷★ e2, then e◦
1
▷★ 𝑒 ′ and e◦

2
≡ 𝑒 ′.

Lemma 4.7 (Eqivalence Preservation). If e1 ≡ e2, then e◦
1
≡ e◦

2

Finally, we can show type preservation, which completes our proof of consistency. Since the

translation is homomorphic on all typing rules except [T-Cont], there is only one interesting case

in the proof of Lemma 4.8. We must show that [Un-Cont] is type preserving. Note that the case for

[Conv] appeals to Lemma 4.7.

Lemma 4.8 (Type Preservation). If 𝚪 ⊢ e : A then 𝚪
◦ ⊢ e◦ : A◦

Proof. By induction on the derivation 𝚪 ⊢ e : A. There is one interesting case.

Case [T-Cont]

We have the following.

𝚪 ⊢ e1 : 𝚷 𝜶 : ∗. (B→ 𝜶 ) → 𝜶 𝚪 ⊢ A : ∗ 𝚪, x′ = e1 B id ⊢ e2 : A

𝚪 ⊢ e1 @A (𝝀 x′ : B. e2) : A

We must show 𝚪
◦ ⊢ 𝑙𝑒𝑡 𝑥 ′ = (e◦

1
B◦ 𝑖𝑑) 𝑖𝑛 e◦

2
: A◦

.

By [Let], it suffices to show

• 𝚪
◦ ⊢ (e◦

1
B◦ 𝑖𝑑) : B◦, which follows easily by the induction hypothesis applied to the premises

of [T-Cont].

• 𝚪
◦, 𝑥 ′ = (e◦

1
B◦ 𝑖𝑑) : B◦ ⊢ e◦

2
: A◦

, which follows immediately by the induction hypothesis. □

Theorem 4.9 (Consistency of CC
𝑘
). There does not exist a closed term e such that · ⊢ e : False.

5 CALL-BY-NAME CPS TRANSLATION OF CC
We now present our call-by-name CPS translation (CPS

𝑛
) of CC. The main differences between our

translation and the one by Barthe and Uustalu [2002] are that we use a locally polymorphic answer

type instead of a fixed answer type, which enables our type-preservation proof of snd e, and that

we use a domain-full target language, which supports decidable type-checking.
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As we discussed in Section 3, we need a computation translation and a value translation on

types. But in addition to types, we will need to translate universes, kinds, and terms as well. All

of our translations are defined by induction on the typing derivations. This is important when

translating to a domain-full target language, since the domain annotations we generate come from

the type of the term we are translating. However, as in Section 3, we find it useful to abbreviate

these with t÷ (for computation) and t+ (for value translation). Below we give abbreviations for all

of the translation judgments we define for our CPS translation. Note that anywhere we use this

notation, we require the typing derivation as an implicit parameter.

A÷ def

= A where Γ ⊢ A : ∗{𝑛
𝐴÷ A

e÷ def

= e where Γ ⊢ e : A{𝑛
𝑒 e

U+ def

= U where Γ ⊢ U {𝑛
𝑈
U

𝜅+
def

= 𝜿 where Γ ⊢ 𝜅 : U {𝑛
𝜅 𝜿

A+ def

= A where Γ ⊢ A : 𝜅 {𝑛
𝐴
A

The CPS
𝑛
translations on universes, kinds, and types are defined in Figure 8. We define the

translation for kinds CPS
𝑛
𝜅 and universe CPS

𝑛
𝑈
, which we abbreviate with

+
. There is no separate

computation translation for kinds or universes. We only have separate computation and value

translations for types since we only internalize the concept of evaluation at the term-level, and

types describe term-level computations and term-level values. Recall that this is the call-by-name

translation, so function arguments, even type-level functions, are still computations. Note, therefore,

that the rule [CPS
𝑛
𝜅 -ProdA] uses the computation translation on the domain annotation A of Π x :A. 𝜅—

i.e., the kind describing a type-level function that abstracts over a term of type A.
For types, we define a value translation CPS

𝑛
𝐴
and a computation translation CPS

𝑛
𝐴÷ . Most rules

are straightforward. We translate type-level variables 𝛼 in-place in rule [CPS
𝑛
𝐴
-Var]. Again, since this

is the CBN translation, we use the computation translation on domain annotations. The rule [CPS
𝑛
𝐴
-

Constr] for the value translation of type-level functions that abstract over a term, 𝜆 x :A. B, translates
the domain annotation A using the computation translation. The rule for the value translation of a

function type, [CPS
𝑛
𝐴
-Prod], translates the domain annotation A using the computation translation.

This means that a function is a value when it accepts a computation as an argument. The rule

[CPS
𝑛
𝐴
-Sigma] produces the value translation of a pair type by translating both components of a

pair using the computation translation. This means we consider a pair a value when it contains

computations as components. Note that since our translation is defined on typing derivations, we

have an explicit translation of the conversion rule [CPS
𝑛
𝐴
-Conv].

There is only one rule for the computation translation of a type, [CPS
𝑛
𝐴÷ -Comp], which is the

polymorphic answer type translation described in Section 3. Notice that [CPS
𝑛
𝐴÷ -Comp] is defined

only for types of kind ∗, since only types of kind ∗ have inhabitants. For example, we cannot apply

[CPS
𝑛
𝐴÷ -Comp] to type-level function since no term inhabits a type-level function.

The CPS
𝑛
translation on terms is defined in Figure 9. Intuitively, we translate each term e of type

A to e of type 𝚷 𝜶 : ∗. (A→ 𝜶 ) → 𝜶 , where A is the value translation of A. This type represents a
computation that, when given a continuation k that expects a value of type A, promises to call k
with a value of type A. Since we have only two value forms in the call-by-name translation, we do

not explicitly define a separate value translation, but inline that translation. Note that the value

cases, [CPS
𝑛
𝑒 -Fun] and [CPS

𝑛
𝑒 -Pair], feature the same pattern: produce a computation 𝝀 𝜶 .𝝀 k. k v

that expects a continuation and then immediately calls that continuation on the value v. In the

case of [CPS
𝑛
𝑒 -Fun], the value v is the function 𝝀 x : A. e produced by translating the source function

𝜆 x :A. e using the computation type translation from A {𝑛
𝐴÷ A and the computation term translation

e {𝑛
𝑒 e. In the case of [CPS

𝑛
𝑒 -Pair], the value we produce ⟨e1, e2⟩ contains computations, not values.

The rest of the translation rules are for computations. Notice that while all terms produced by

the term translation have a computation type, all continuations take a value type. Since this is a

CBN translation, we consider variables as computations in [CPS
𝑛
𝑒 -Var]. We translate term variables
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Γ ⊢ U {𝑛
𝑈
U

Γ ⊢ ∗{𝑛
𝑈 ∗

[CPS
𝑛
𝑈
-Star]

Γ ⊢ □{𝑛
𝑈 □

[CPS
𝑛
𝑈
-Box]

Γ ⊢ 𝜅 : U {𝑛
𝜅 𝜿 Lemma 5.5 will show Γ+ ⊢ 𝜅+ : U+

Γ ⊢ ∗ : □{𝑛
𝜅 ∗

[CPS
𝑛
𝜅 -Ax]

Γ ⊢ 𝜅 : U {𝑛
𝜅 𝜿 Γ, 𝛼 : 𝜅 ⊢ 𝜅 ′ : U ′{𝑛

𝜅 𝜿
′

Γ ⊢ Π𝛼 : 𝜅. 𝜅 ′ : U ′{𝑛
𝜅 𝚷 𝜶 : 𝜿 .𝜿 ′ [CPS

𝑛
𝜅 -ProdK]

Γ ⊢ A : 𝜅 ′{𝑛
𝐴÷ A Γ, x : A ⊢ 𝜅 : U {𝑛

𝜅 𝜿

Γ ⊢ Π x : A. 𝜅 : U {𝑛
𝜅 𝚷 x : A.𝜿

[CPS
𝑛
𝜅 -ProdA]

Γ ⊢ A : 𝜅 {𝑛
𝐴
A Lemma 5.5 will show Γ+ ⊢ A+

: 𝜅+

. . . Γ ⊢ 𝛼 : 𝜅 {𝑛
𝐴 𝜶

[CPS
𝑛
𝐴
-Var]

Γ ⊢ A : 𝜅 ′{𝑛
𝐴÷ A Γ, x : A ⊢ B : 𝜅 {𝑛

𝐴 B

Γ ⊢ 𝜆 x : A. B : Π x : A. 𝜅 {𝑛
𝐴 𝝀 x : A.B

[CPS
𝑛
𝐴
-Constr]

Γ ⊢ A : Π x : B. 𝜅 {𝑛
𝐴 A Γ ⊢ e : B{𝑛

𝑒 e

Γ ⊢ A e : 𝜅 [e/x] {𝑛
𝐴 A e

[CPS
𝑛
𝐴
-AppConstr]

Γ ⊢ A : 𝜅 {𝑛
𝐴÷ A Γ, x : A ⊢ B : 𝜅 ′{𝑛

𝐴÷ B

Γ ⊢ Π x : A. B : 𝜅 ′{𝑛
𝐴 𝚷 x : A.B

[CPS
𝑛
𝐴
-Prod]

Γ ⊢ 𝜅 : U {𝑛
𝜅 𝜿 Γ, x : A ⊢ B : 𝜅 ′{𝑛

𝐴÷ B

Γ ⊢ Π𝛼 : 𝜅. B : 𝜅 ′{𝑛
𝐴 𝚷 𝜶 : 𝜿 .B

[CPS
𝑛
𝐴
-ProdK]

Γ ⊢ e : A{𝑛
𝑒 e Γ ⊢ A : 𝜅 {𝑛

𝐴÷ A Γ, x = e : A ⊢ B : 𝜅 ′{𝑛
𝐴 B

Γ ⊢ let x = e : A inB : 𝜅 ′{𝑛
𝐴 let x = e : A inB

[CPS
𝑛
𝐴
-Let]

Γ ⊢ A : ∗{𝑛
𝐴÷ A Γ, x : A ⊢ B : ∗{𝑛

𝐴÷ B

Γ ⊢ Σ x : A. B : ∗{𝑛
𝐴 𝚺 x : A.B

[CPS
𝑛
𝐴
-Sigma]

Γ ⊢ A : 𝜅 ′ Γ ⊢ 𝜅 ≡ 𝜅 ′ Γ ⊢ A : 𝜅 ′{𝑛
𝐴 A

Γ ⊢ A : 𝜅 {𝑛
𝐴 A

[CPS
𝑛
𝐴
-Conv]

Γ ⊢ A : ∗{𝑛
𝐴÷ A Lemma 5.5 will show Γ+ ⊢ A÷

: ∗+

Γ ⊢ A : ∗{𝑛
𝐴 A

Γ ⊢ A : ∗{𝑛
𝐴÷ 𝚷 𝜶 : ∗. (A→ 𝜶 ) → 𝜶

[CPS
𝑛
𝐴
-Comp]

Fig. 8. CPS𝑛 of Universes, Kinds, and Types (excerpts)

as an 𝜂-expansion of a CPS’d computation. We must 𝜂-expand the variable case to guarantee CBN

evaluation order, as we discuss shortly. In [CPS
𝑛
𝑒 -App] we encode the CBN evaluation order for

function application e e′ in the usual way. We translate the computations e {𝑛
𝑒 e and e′ {𝑛

𝑒 e′.
First we evaluate e to a value f , then apply f to the computation e′. The application f e′ is itself a
computation, which we call with the continuation k.

Notice that only the translation rules [CPS
𝑛
𝑒 -Fst] and [CPS

𝑛
𝑒 -Snd] use the new@ form. As discussed

in Section 3, to type check the translation of snd e produced by [CPS
𝑛
𝑒 -Snd], we require the rule

[T-Cont] when type checking the continuation that performs the second projection. While type

checking the continuation, we know that the value y that the continuation receives is equivalent to
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Γ ⊢ e : A{𝑛
𝑒 A Lemma 5.5 will show Γ+ ⊢ e÷ : A÷

. . .

Γ ⊢ A : 𝜅 {𝑛
𝐴 A

Γ ⊢ x : A{𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : A→ 𝜶 . x 𝜶 k

[CPS
𝑛
𝑒 -Var]

Γ ⊢ A : 𝜅 {𝑛
𝐴÷ A Γ, x : A ⊢ B : 𝜅 ′{𝑛

𝐴÷ B Γ, x : A ⊢ e : B{𝑛
𝑒 e

Γ ⊢ 𝜆 x : A. e : Π x : A. B{𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : (𝚷 x : A.B) → 𝜶 . k (𝝀 x : A. e)

[CPS
𝑛
𝑒 -Fun]

Γ ⊢ e : Π x : A. B{𝑛
𝑒 e Γ ⊢ A : 𝜅 {𝑛

𝐴÷ A÷

Γ, x : A ⊢ B : 𝜅 ′{𝑛
𝐴÷ B÷ Γ, x : A ⊢ B : 𝜅 ′{𝑛

𝐴 B+ Γ ⊢ e′ : A{𝑛
𝑒 e′

Γ ⊢ e e′ : B[e′/x] {𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : (B+ [e′/x]) → 𝜶 .

e 𝜶 (𝝀 f : 𝚷 x : A÷ .B÷ . (f e′) 𝜶 k)

[CPS
𝑛
𝑒 -App]

Γ ⊢ e : A{𝑛
𝑒 e

Γ ⊢ A : 𝜅 {𝑛
𝐴÷ A Γ, x = e : A ⊢ B : 𝜅 ′{𝑛

𝐴 B Γ, x = e : A ⊢ e′ : B{𝑛
𝑒 e′

Γ ⊢ let x = e : A in e′ : B[e/x] {𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : B[e/x] → 𝜶 . let x = e : A in e′ 𝜶 k

[CPS
𝑛
𝑒 -Let]

Γ ⊢ e1 : A{𝑛
𝑒 e1 Γ ⊢ e2 : B[e1/x] {𝑛

𝑒 e2 Γ ⊢ A : ∗{𝑛
𝐴÷ A Γ, x : A ⊢ B : ∗{𝑛

𝐴÷ B

Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B{𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : 𝚺 x : A.B→ 𝜶 . k ⟨e1, e2⟩ as 𝚺 x : A.B

[CPS
𝑛
𝑒 -Pair]

Γ ⊢ A : ∗{𝑛
𝐴÷ A÷ Γ, x : A ⊢ B : ∗{𝑛

𝐴÷ B÷ Γ ⊢ A : ∗{𝑛
𝐴 A+ Γ ⊢ e : Σ x : A. B{𝑛

𝑒 e

Γ ⊢ fst e : A{𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : A+

→ 𝜶 .

e @ 𝜶 (𝝀 y : 𝚺 x : A÷ .B÷ . let z = fst y in z 𝜶 k)

[CPS
𝑛
𝑒 -Fst]

Γ ⊢ A : ∗{𝑛
𝐴÷ A÷ Γ, x : A ⊢ B : ∗{𝑛

𝐴÷ B÷

Γ, x : A ⊢ B : ∗{𝑛
𝐴 B+ Γ ⊢ (fst e) : A{𝑛

𝑒 (fst e)÷ Γ ⊢ e : Σ x : A. B{𝑛
𝑒 e

Γ ⊢ snd e : B[(fst e)/x] {𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : B+ [(fst e)÷/x] → 𝜶 .

e @ 𝜶 (𝝀 y : 𝚺 x : A÷ .B÷ . let z = snd y in z 𝜶 k)

[CPS
𝑛
𝑒 -Snd]

Γ ⊢ e : B{𝑛
𝑒 e

Γ ⊢ e : A{𝑛
𝑒 e

[CPS
𝑛
𝑒 -Conv]

⊢ Γ {𝑛
𝚪 Lemma 5.5 will show ⊢ Γ+

⊢ · {𝑛 ·
[CPS

𝑛
Γ-Empty]

⊢ Γ {𝑛
𝚪 Γ ⊢ A : 𝜅 {𝑛

𝐴÷ A

⊢ Γ, x : A {𝑛
𝚪, x : A

[CPS
𝑛
Γ-AssumT]

⊢ Γ {𝑛
𝚪 Γ ⊢ 𝜅 : U {𝑛

𝜅 𝜿

⊢ Γ, 𝛼 : 𝜅 {𝑛
𝚪,𝜶 : 𝜿

[CPS
𝑛
Γ-AssumK]

⊢ Γ {𝑛
𝚪 Γ ⊢ A : 𝜅 {𝑛

𝐴÷ A Γ ⊢ e : A{𝑛
𝑒 e

⊢ Γ, x = e : A {𝑛
𝚪, x = e : A

[CPS
𝑛
Γ-Def]

⊢ Γ {𝑛
𝚪 Γ ⊢ A : 𝜅 {𝑛

𝐴 A Γ ⊢ 𝜅 : U {𝑛
𝜅 𝜿

⊢ Γ, 𝛼 = A : 𝜅 {𝑛
𝚪,𝜶 = A : 𝜿

[CPS
𝑛
Γ-DefT]

Fig. 9. CPS𝑛 of Terms and Environments (excerpts)
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e÷ 𝜶 id. Now, the reason we must use the @ syntax in the in the translation [CPS
𝑛
𝑒 -Fst] is so that

we can apply the [≡-Cont] rule to resolve the equivalence of the two first projections in the type

of the second projection. That is, as we saw in Section 3, type preservation fails because we must

show equivalence between (fst e)÷ and fst y. Since these are the only two cases that require our new

rules, these are the only cases where we use the @ form in our translation; all other translation

rules use standard application. In Section 6, we will see that the CBV translation must use the @
form much more frequently since, intuitively, our new equivalence rule recovers a notion of “value”

in our CPS’d language, and in call-by-value types can only depend on values.

Our CPS translation encodes the CBN evaluation order explicitly so that the evaluation order

of compiled terms is independent of the target language’s evaluation order. This property is not

immediately obvious since the [CPS
𝑛
𝑒 -Let] rule binds a variable x to an expression e, making it

seem like there are two possible evaluation orders: either evaluate e first, or substitute e for x first.
Note, however, that our CBN translation always produces a 𝝀 term—even in the variable case since

[CPS
𝑛
𝑒 -Var] employs 𝜂-expansion as noted above. Therefore, in the [CPS

𝑛
𝑒 -Let] rule e will always be

a value, which means it doesn’t evaluate in either CBN or CBV. Therefore, there is no ambiguity in

how to evaluate the translation of let.
The translation rule [CPS

𝑛
𝑒 -Conv] is deceptively simple. We could equivalently write this transla-

tion as follows, which makes its subtlety apparent.

Γ ⊢ e : B Γ ⊢ A ≡ B Γ ⊢ e : B{𝑛
𝑒 e Γ ⊢ A : 𝜅 {𝑛

𝐴 A Γ ⊢ B : 𝜅 {𝑛
𝐴 B

Γ ⊢ e : A{𝑛
𝑒 𝝀 𝜶 : ∗.𝝀 k : A→ 𝜶 . e 𝜶 (𝝀 x : B. k x)

[CPS
𝑛
𝑒 -Conv]

Notice now that while the continuation k expects a term of type A, we call k with a term of type B.
Intuitively, this should be fine since A and B should be equivalent, but formally this introduces a

subtlety in the staging of our proof of type preservation, which we discuss next in Section 5.1.

We lift the translations to environments in the usual way, at the bottom of Figure 9. Since this is

the CBN translation, we recur over the environment applying the computation translation.

5.1 Proof of Type Preservation for CPS𝑛

In a dependent type system, type preservation requires coherence, which essentially tells us that

the translation preserves definitional equivalence. Since equivalence is defined by reduction, we

first have to show that reduction sequences are preserved. Since reduction relies on substitution,

we first must show compositionality, i.e., that the translation commutes with substitution.

However, there is a problem with the proof architecture for CPS. Typed CPS for a domain-
full target language inserts the type of every term into the output as a type annotation on the

continuation. For example, e : A is compiled to 𝝀 𝜶 :∗.𝝀 k :A+ → 𝜶 . (. . . ). Therefore, the translation is

defined on typing derivations, not on syntax. This introduces a problem in the case of the translation

of the typing rule [Conv]. As alluded to above when describing [CPS
𝑛
𝑒 -Conv], in order to preserve

typing, we must first show coherence, i.e., that we preserve equivalence. Working with the second

definition we gave for the [CPS
𝑛
𝑒 -Conv] rule, we need to show that the following term is well-typed.

𝝀 k : A+
→ 𝜶 . e÷ 𝜶 (𝝀 x : B+ . k x)

Note that this term seems to only make sense when A+ ≡ B+. While we have A ≡ B from the source

typing derivation, we don’t know that A+ ≡ B+ unless we have coherence. But if equivalence is only
defined on well-typed terms, as is the case in some dependently typed languages, we must first

prove type preservation to know that A+
and B+ are well typed before we can prove coherence. So we

have a circularity: type preservation requires coherence, but coherence requires type preservation.

A similar problem arises in other dependent typing rules, like the translation of application.

In the case of application, to show type preservation we must show compositionality, i.e., that
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the translation commutes with substitution up to equivalence. Again we have a circularity: we

need type preservation to prove compositionality, but to prove compositionality we need type

preservation.

Barthe et al. [1999] explain this in detail, and their solution is to use a domain-free target language.

This avoids the circularity because when there are no type annotations to generate, the translation

can be defined on the syntax instead of typing derivations.

We solve the problem by using an untyped equivalence, which is based on the equivalence for

the Calculus of Inductive Constructions from the Coq reference manual [The Coq Development

Team 2017, Chapter 4]. Since the equivalence is untyped, we can show equivalence between terms

with different domain annotations as long as their behavior is equivalent. This allows us to stage

the proof: we can prove compositionality before coherence, and prove coherence before type

preservation. While it seems surprising that we can prove equivalence between possibly ill-typed

terms, recall that in the type system, we only appeal to the equivalence after checking that the

terms we wish to prove equivalent are well typed. We can think of this equivalence as proving

a stronger equivalence than we provide for well-typed terms, allowing us to prove a stronger

form of coherence: in addition to preserving all well-typed equivalences, we also preserve certain

equivalences that are valid according to their dynamic behavior, but conservatively ruled out by

the strong type system. From this version of coherence, we are able to prove type preservation.

The proofs in this section are staged as follows. First we show compositionality (Lemma 5.1),

since reduction is defined in terms of substitution. Then we show that the translation preserves

reduction sequences (Lemma 5.2 and Lemma 5.3), which allows us to show coherence (Lemma 5.4).

Using compositionality and coherence, we prove that the translation is type preserving (Lemma 5.5).

We now show Lemma 5.1, which states that the CPS
𝑛
translation commutes with substitution.

The formal statement of the lemma is somewhat complicated since we have the cross product of

four syntactic categories and two translations. However, the intuition is simple: first substituting

and then translating is equivalent to translating and then substituting.

This lemma is critical to our proofs. Since reduction is essentially defined by substitution, this

lemma does most of the work in showing that the translation preserves reduction. However, it is

also necessary in type preservation when showing that a dependent type is preserved. A dependent

type, such as B[e′/x] produced by the rule [App], occurs when we perform substitution into a type.

We want to show, for example, that if e : B[e′/x] then the translation of e has the type translation
(B[e′/x])÷. Since our translation is compositional, i.e., commutes with substitution, we know how

to translate B[e′/x] by simply translating B and e′.

Lemma 5.1 (CPS
𝑛
Compositionality).

(1) (𝜅 [A/𝛼])+ ≡ 𝜅+ [A+/𝜶 ]
(2) (𝜅 [e/x])+ ≡ 𝜅+ [e÷/x]
(3) (A[B/𝛼])+ ≡ A+ [B+/𝜶 ]
(4) (A[e/x])+ ≡ A+ [e÷/x]

(5) (A[B/𝛼])÷ ≡ A÷ [B+/𝜶 ]
(6) (A[e/x])÷ ≡ A÷ [e÷/x]
(7) (e[A/𝛼])÷ ≡ e÷ [A+/𝜶 ]
(8) (e[e′/x])÷ ≡ e÷ [e′÷/x]

Proof. In the PTS syntax, we represent source expressions as t [t ′/x]. The proof is by induction on
the typing derivations for t. Note that our ÷

and
+
notation implicitly require the typing derivations

as premises. The proof is completely straightforward.

Case [Conv]. The proof is trivial, now that we have staged the proof appropriately. We give

part 8 as an example.

Γ ⊢ e : B Γ ⊢ A : U Γ ⊢ A ≡ B

Γ ⊢ e : A
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We must show that (e[e′/x])÷ ≡ e÷ [e′÷/x] (at type A). Note that by part 8 of the induction

hypothesis, we know that (e[e′/x])÷ ≡ e÷ [e′÷/x] (at the smaller derivation for type B). But
recall that our equivalence cares nothing for types, so the proof is complete. □

We next prove that the translation preserves reduction sequences, Lemma 5.2 and Lemma 5.3.

Note that kinds do not take steps in the one step reduction, but can in the ▷★ relation since it

reduces under all contexts. As mentioned earlier, this is necessary to show equivalence is preserved,

since equivalence is defined in terms of reduction.

Lemma 5.2 (CPS
𝑛
Preserves One-Step Reduction).

• If Γ ⊢ e : A and e ▷ e′ then e÷ ▷★ e′ and e′ ≡ e′÷

• If Γ ⊢ A : 𝜅 and A ▷ A′ then A+ ▷★ A′ and A′ ≡ A′+

• If Γ ⊢ A : ∗ and A ▷ A′ then A÷ ▷★ A′ and A′ ≡ A′÷

Proof. The proof is straightforward by cases on the ▷ relation. □

Lemma 5.3 (CPS
𝑛
Preserves Reduction Seqences).

• If Γ ⊢ e : A and e ▷★ e′ then e÷ ▷★ e′ and e′ ≡ e′÷

• If Γ ⊢ A : 𝜅 and A ▷★ A′ then A+ ▷★ A′ and A′ ≡ A′+

• If Γ ⊢ A : ∗ and A ▷★ A′ then A÷ ▷★ A′ and A′ ≡ A′÷

• If Γ ⊢ 𝜅 : U and 𝜅 ▷★ 𝜅 ′ then 𝜅+ ▷★ 𝜿 ′ and 𝜿 ′ ≡ 𝜅 ′+

Proof. The proof is straightforward by induction on the length of the reduction sequence. The

base case is trivial and the inductive case follows by Lemma 5.2 and the inductive hypothesis. □

Lemma 5.4 (CPS
𝑛
Coherence).

• If e ≡ e′ then e÷ ≡ e′÷

• If A ≡ A′ then A+ ≡ A′+
• If A ≡ A′ then A÷ ≡ A′÷

• If 𝜅 ≡ 𝜅 ′ then 𝜅+ ≡ 𝜅 ′+

Proof. The proof is by induction on the derivation of e ≡ e′. The base case follows by Lemma 5.3,

and the cases of 𝜂-equivalence follow from Lemma 5.3, the induction hypothesis, and the fact that

we have the same 𝜂-equivalence rules in the CC
𝑘
. □

We first prove type preservation, Lemma 5.5, using the explicit syntax on which we defined

CPS
𝑛
. This proof is our central contribution to the call-by-name translation. In this lemma, proving

that the translation of snd e preserves typing requires both the new typing rule [T-Cont] and the

equivalence rule [≡-Cont]. The rest of the proof is straightforward. For full details, see our online
supplementary materials [Bowman et al. 2017].

Lemma 5.5 (CPS
𝑛
is Type Preserving (Explicit Syntax)).

(1) If ⊢ Γ then ⊢ Γ+

(2) If Γ ⊢ e : A then Γ+ ⊢ e÷ : A÷

(3) If Γ ⊢ A : 𝜅 then Γ+ ⊢ A+
: 𝜅+

(4) If Γ ⊢ A : ∗ then Γ+ ⊢ A÷
: ∗+

(5) If Γ ⊢ 𝜅 : U then Γ+ ⊢ 𝜅+ : U+

Proof. All cases are proven simultaneously by mutual induction on the type derivation and

well-formedness derivation. Part 4 follows easily by part 3 in every case, so we elide its proof. Most

cases follow easily from the induction hypotheses.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 22. Publication date: January 2018.



22:20 William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed

Case [Snd] Γ ⊢ snd e : B[fst e/x]
We must show that 𝝀 𝜶 : ∗.𝝀 k : B+ [(fst e)÷/x] → 𝜶 .

e÷ @ 𝜶 (𝝀 y : 𝚺 x : A÷ . B÷ . let z = snd y in z 𝜶 k)
has type (B[fst e/x])÷.
By part 6 of Lemma 5.1, and definition of the translation, this type is equivalent to

𝚷 𝜶 : ∗. (B+ [(fst e)÷/x] → 𝜶 ) → 𝜶
By [Lam], it suffices to show that

Γ+,𝜶 : ∗, k : B+ [(fst e)÷/x] → 𝜶 ⊢ e÷ @ 𝜶 (𝝀 y : 𝚺 x : A÷ . B÷ . let z = snd y in z 𝜶 k) : 𝜶

This is the key difficulty in the proof. Recall from Section 3 that the term z 𝜶 has type

(B+ [fst y/x] → 𝜶 ) → 𝜶 while the term k has type B+ [(fst e)÷/x] → 𝜶 . To show that z 𝜶 k is

well-typed, we must show that (fst e)÷ ≡ fst y. We proceed by our new typing rule [T-Cont],

which will help us prove this.

First, note that e÷ (𝚺 x : A÷ . B÷) id is well-typed. By part 4 of the induction hypothesis we

know that Γ+ ⊢ A÷
: ∗ and Γ+, x : A÷ ⊢ B÷ : ∗. By part 2 of the induction hypothesis applied to

Γ ⊢ e : Σ x : A. B, we know Γ+ ⊢ e÷ : 𝚷 𝜶 : ∗. (𝚺 x : A÷ . B÷ → 𝜶 ) → 𝜶 .
Now, by [T-Cont], it suffices to show that

Γ+,𝜶 : ∗, k : B+ [(fst e)÷/x] → 𝜶 , y = e÷ 𝚺 x : A÷ . B÷id ⊢ let z = snd y in z 𝜶 k : 𝜶

Note that we now have the definitional equivalence y = e÷ (𝚺 x : A÷ . B÷) id. By [Let] it suffices

to show

Γ+,𝜶 : ∗, k : B+ [(fst e)÷/x] → 𝜶 , y = e÷ 𝚺 x : A÷ . B÷ id, z = snd y : B÷ [fst y/x] ⊢ z 𝜶 k : 𝜶

Note that

z : B÷ [fst y/x] (11)

= 𝚷 𝜶 : ∗. (B+ [fst y/x] → 𝜶 ) → 𝜶 by definition of B÷ (12)

≡ 𝚷 𝜶 : ∗. (B+ [fst (e÷ _ id)/x] → 𝜶 ) → 𝜶 by 𝛿 reduction on y (13)

The Equation (13) above, in which we 𝛿 reduce y, is impossible without [T-Cont].

By [Conv], and since k : B+ [(fst e)÷/x] → 𝜶 , to show z 𝜶 k : 𝜶 it suffices to show that

(fst e)÷ ≡ fst (e÷ _ id).
Note that (fst e)÷ = 𝝀 𝜶 : ∗.𝝀 k′ : (A+ → 𝜶 ) .

e÷ @ 𝜶 (𝝀 y : 𝚺 x : A÷ . B÷ . let z′ = fst y : A÷ in z′ 𝜶 k′)
by definition of the translation.

By [≡-𝜂], it suffices to show that

e÷ @ 𝜶 (𝝀 y : 𝚺 x : A÷ . B÷ . let z′ = fst y : A÷ in z′ 𝜶 k′) (14)

≡ (𝝀 y : 𝚺 x : A÷ . B÷ . let z′ = fst y in z′ 𝜶 k′) (e÷ _ id) [≡-Cont] (15)

≡ (fst (e÷ _ id)) 𝜶 k′ by reduction (16)

Notice that Equation (15) requires our new equivalence rule applied to the translation of the

fst.
Case [Conv] Γ ⊢ e : A such that Γ ⊢ e : B and A ≡ B.

We must show that e÷ has type A÷ = 𝚷 𝜶 : ∗. (A+ → 𝜶 ) → 𝜶 .

By the induction hypothesis, we know that e÷ : B÷ = 𝚷 𝜶 : ∗. (B+ → 𝜶 ) → 𝜶 . By [Conv] it

suffices to show that A+ ≡ B+, which follows by Lemma 5.4. □

To recover a simple statement of the type-preservation theorem over the PTS syntax, we define

two meta-functions for translating terms and types depending on their use. We define cps JtK to
translate a PTS expression in “term” position, i.e., when used on the left side of a type annotation

as in t : t ′, and we define cpsT Jt ′K to translate an expression in “type” position, i.e., when used on
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the right side of a type annotation. We define these in terms of the translation shown above, noting

that for every t : t ′ in the PTS syntax, one of the following is true: t is a term e and t ′ is a type A in

the explicit syntax; t is a type A and t ′ is a kind 𝜅 in the explicit syntax; or t is a kind 𝜅 and t ′ is a
universe U in the explicit syntax.

cps JtK def

= e÷ when t is a term

cps JtK def

= A+
when t is a type

cps JtK def

= 𝜅+ when t is a kind

cpsT Jt ′K def

= A÷
when t ′ is a type

cpsT Jt ′K def

= 𝜅+ when t ′ is a kind

cpsT Jt ′K def

= U+
when t ′ is a universe

This notation is based on Barthe and Uustalu [2002].

Theorem 5.6 (CPS
𝑛
is Type Preserving (PTS syntax)). Γ ⊢ t : t ′ then Γ+ ⊢ cps JtK : cpsT Jt ′K

5.2 Proof of Correctness for CPS𝑛

Since type preservation in a dependently typed language requires preserving reduction sequences,

we have already done most of the work to prove two other compiler correctness properties: cor-

rectness of separate compilation, and whole-program compiler correctness. To specify compiler

correctness, we need an independent specification that tells us how source values—or, more gen-

erally, observations—are related to target values. For instance, when compiling to C we might

specify that the number 5 is related to the bits 0𝑥101. Without a specification, independent of the

compiler, there is no definition that the compiler can be correct with respect to. In our setting, such

an independent specification is simple to construct. We can add ground values such as booleans to

our language with the obvious cross-language relation: True ≈ True and False ≈ False.
Next, to define separate compilation, we need a definition of linking. We can define linking as

substitution, and define valid closing substitutions 𝛾 as follows.

Γ ⊢ 𝛾 def

= ∀x : A ∈ Γ. ⊢ 𝛾 (x) : 𝛾 (A)
We extend the compiler in a straightforward way to compile closing substitutions, written 𝛾÷,

and allow compiled code to be linked with the compilation of any valid closing substitution 𝛾 .

This definition supports a separate compilation theorem that allows linking with the output of our

compiler, but not with the output of other compilers.

Now we can show that the compiler is correct with respect to separate compilation: if we first link

and run to a value, we get a related value when we compile and then link with the compiled closing

substitution. Since our target language is in CPS form, we should apply the halt continuation, id,
and compare the ground values.

Theorem 5.7 (Separate Compilation Correctness). If Γ ⊢ e : A where A is ground, and 𝛾 (e) ▷★ v
then 𝛾÷ (e÷) A+ id ▷★ v and v ≈ v.

Proof. Since reduction implies equivalence, we reason in terms of equivalence. By Lemma 5.3,

(𝛾 (e))÷ ▷★ e and v÷ ≡ e. By Lemma 5.1, (𝛾 (e))÷ ≡ 𝛾÷ (e÷), hence 𝛾÷ (e÷) ▷★ e and v÷ ≡ e. Since the
translation on all ground values is v÷ = 𝝀 𝜶 .𝝀 k. k v, where v ≈ v, we know v÷ A+ id ▷★ v such that

v ≈ v. Since v÷ ≡ e ≡ 𝛾÷ (e÷), we also know that 𝛾÷ (e÷) A+id ▷★ v′ and v′ ≡ v. Since v is ground,

v′ = v and v ≈ v′. □

Corollary 5.8 (Whole-Program Compiler Correctness). If ⊢ e : A and e ▷★ v then e÷ A+ id ▷★

v and v ≈ v.

Our separate-compilation correctness theorem is similar to the guarantees provided by SepCom-

pCert [Kang et al. 2016] in that it supports linking with only the output of the same compiler. We

could support more flexible notions of linking—such as linking with code produced by different

compilers, from different source languages, or code written directly in the target language—by
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Γ ⊢ 𝜅 : U {𝑣
𝜅 𝜿 Lemma 6.3 will show Γ+ ⊢ 𝜅+ : U+

. . .

Γ ⊢ A : 𝜅 ′{𝑣
𝐴 A Γ, x : A ⊢ 𝜅 : U {𝑣

𝜅 𝜿

Γ ⊢ Π x : A. 𝜅 : U {𝑣
𝜅 𝚷 x : A.𝜿

[CPS
𝑣
𝜅 -ProdA]

Γ ⊢ A : 𝜅 {𝑣
𝐴
A Lemma 6.3 will show Γ+ ⊢ A+

: 𝜅+

. . .

Γ ⊢ A : 𝜅 ′{𝑣
𝐴 A Γ, x : A ⊢ B : 𝜅 {𝑣

𝐴 B

Γ ⊢ 𝜆 x : A. B : Π x : A. 𝜅 {𝑣
𝐴 𝝀 x : A.B

[CPS
𝑣
𝐴
-Constr]

Γ ⊢ A : Π x : B. 𝜅 {𝑣
𝐴 A Γ, x : A ⊢ B : 𝜅 ′{𝑣

𝐴 B Γ ⊢ e : B{𝑣
𝑒 e

Γ ⊢ A e : 𝜅 [e/x] {𝑣
𝐴 A (e B id)

[CPS
𝑣
𝐴
-AppConstr]

Γ ⊢ A : 𝜅 ′{𝑣
𝐴 A Γ, x : A ⊢ B : 𝜅 {𝑣

𝐴÷ B

Γ ⊢ Π x : A. B : 𝜅 {𝑣
𝐴 𝚷 x : A.B

[CPS
𝑣
𝐴
-Prod]

Γ ⊢ 𝜅 : U ′{𝑣
𝜅 𝜿 Γ, x : A ⊢ B : U {𝑣

𝐴÷ B

Γ ⊢ Π𝛼 : 𝜅. B : U {𝑣
𝐴 𝚷 𝜶 : 𝜿 .B

[CPS
𝑣
𝐴
-ProdK]

Γ ⊢ e : A{𝑣
𝑒 e Γ ⊢ A : 𝜅 ′{𝑣

𝐴 A Γ, x = e : A ⊢ B : 𝜅 {𝑣
𝐴 B

Γ ⊢ let x = e : A inB : 𝜅 {𝑣
𝐴 let x = e A id : A inB

[CPS
𝑣
𝐴
-Let]

Γ ⊢ A : ∗{𝑣
𝐴 A Γ, x : A ⊢ B : ∗{𝑣

𝐴 B

Γ ⊢ Σ x : A. B : ∗{𝑣
𝐴 𝚺 x : A.B

[CPS
𝑣
𝐴
-Sigma]

Fig. 10. CPS𝑣 of Kinds and Types (excerpts)

defining an independent specification for when closing substitutions are related across languages

(e.g., [Ahmed and Blume 2011; Neis et al. 2015; New et al. 2016; Perconti and Ahmed 2014]).

6 CALL-BY-VALUE CPS TRANSLATION OF CC
In this section, we present the call-by-value CPS translation (CPS

𝑣
) of CC. First, we redefine our

short-hand from Section 5 to refer to call-by-value translation.

A÷ def

= A where Γ ⊢ A : ∗{𝑣
𝐴÷ A

e÷ def

= e where Γ ⊢ e : A{𝑣
𝑒 e

U+ def

= U where Γ ⊢ U {𝑣
𝑈
U

𝜅+
def

= e where Γ ⊢ 𝜅 : U {𝑣
𝜅 𝜿

A+ def

= A where Γ ⊢ A : 𝜅 {𝑣
𝐴
A

Unlike CBN, the CBV translation forces every computation to a value. Therefore, every dependent

elimination requires our new [T-Cont] typing rule. Moreover, all substitutions of a term into a type

must substitute values instead of computations so all dependent type annotations must explicitly

convert computations to values by supplying the identity continuation.

We present our call-by-value translation CPS
𝑣
in Figures 10 and 11. In general, CPS

𝑣
differs from

CPS
𝑛
in two ways. First, all term variables must have value types, so the translation rules for all

binding constructs now use the value translation for type annotations. Second, we change the

definition of value types so that functions must receive values and pairs must contain values.

The universe translation is unchanged from CPS
𝑛
, so we omit it here. The kind translation

(Figure 10) has changed in only one place. Now the translation rule [CPS
𝑣
𝜅 -ProdA] translates the

kind of type-level functions Π x : A. 𝜅 to accept a value as argument x : A+
.

The type translation (Figure 10) has multiple rules with variable annotations that have changed

from CBN. The computation translation of types is unchanged. In the value translation, similar to
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Γ ⊢ e : A{𝑣
𝑒 e Lemma 6.3 will show Γ+ ⊢ e÷ : A÷

. . .

Γ ⊢ A : 𝜅 {𝑣
𝐴 A

Γ ⊢ x : A{𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : A→ 𝜶 . k x

[CPS
𝑣
𝑒 -Var]

Γ ⊢ A : 𝜅 ′{𝑣
𝐴 A Γ, x : A ⊢ B : 𝜅 {𝑣

𝐴÷ B Γ, x : A ⊢ e : B{𝑣
𝑒 e

Γ ⊢ 𝜆 x : A. e : Π x : A. B{𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : (𝚷 x : A.B) → 𝜶 . k (𝝀 x : A. e)

[CPS
𝑣
𝑒 -Fun]

Γ ⊢ e : Π x : A. B{𝑣
𝑒 e

Γ, x : A ⊢ B : 𝜅 {𝑣
𝐴÷ B÷ Γ, x : A ⊢ B : 𝜅 {𝑣

𝐴 B+ Γ ⊢ e′ : A{𝑣
𝑒 e

′ Γ ⊢ A : 𝜅 ′{𝑣
𝐴 A

Γ ⊢ e e′ : B[e′/x] {𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : (B+ [(e′ A id)/x]) → 𝜶 .

e 𝜶 (𝝀 f : 𝚷 x : A.B÷ .
e′ @ 𝜶 (𝝀 x : A. (f x) 𝜶 k))

[CPS
𝑣
𝑒 -App]

Γ ⊢ e : A{𝑣
𝑒 e Γ ⊢ A : 𝜅 ′{𝑣

𝐴 A Γ ⊢ B : 𝜅 {𝑣
𝐴 B Γ, x = e : A ⊢ e′ : B{𝑣

𝑒 e
′

Γ ⊢ let x = e : A in e′ : B[e/x] {𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : B[(e A id)/x] → 𝜶 .

e @ 𝜶 (𝝀 x : A. e′ 𝜶 k)

[CPS
𝑣
𝑒 -Let]

Γ ⊢ e1 : A{𝑣
𝑒 e1 Γ ⊢ e2 : B[e1/x] {𝑣

𝑒 e2 Γ ⊢ A : ∗{𝑣
𝐴 A Γ, x : A ⊢ B : ∗{𝑣

𝐴 B

Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B{𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : 𝚺 x : A.B→ 𝜶 .

e1 @ 𝜶 (𝝀 x1 : A. e2 @ 𝜶 (𝝀 x2 : B[(e1 A id)/x] .
k ⟨x1, x2⟩ as 𝚺 x : A.B))

[CPS
𝑣
𝑒 -Pair]

Γ ⊢ A : ∗{𝑣
𝐴 A Γ ⊢ e : Σ x : A. B{𝑣

𝑒 e

Γ ⊢ fst e : A{𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : A+

→ 𝜶 .

e @ 𝜶 (𝝀 y : 𝚺 x : A.B. let z = fst y in k z)

[CPS
𝑣
𝑒 -Fst]

Γ ⊢ A : ∗{𝑣
𝐴 A

Γ, x : A ⊢ B : ∗{𝑣
𝐴 B Γ ⊢ (fst e) : A{𝑣

𝑒 (fst e)÷ Γ ⊢ e : Σ x : A. B{𝑣
𝑒 e

Γ ⊢ snd e : B[fst e/x] {𝑣
𝑒 𝝀 𝜶 : ∗.𝝀 k : B[((fst e)÷ A id)/x] → 𝜶 .

e @ 𝜶 (𝝀 y : 𝚺 x : A.B. let z = snd y in k z)

[CPS
𝑣
𝑒 -Snd]

Γ ⊢ e : B{𝑣
𝑒 e

Γ ⊢ e : A{𝑣
𝑒 e

[CPS
𝑣
𝑒 -Conv]

⊢ Γ {𝑣
𝚪 Lemma 6.3 will show ⊢ Γ+

⊢ · {𝑣 ·
[CPS

𝑣
Γ-Empty]

⊢ Γ {𝑣
𝚪 Γ ⊢ A : 𝜅 {𝑣

𝐴 A

⊢ Γ, x : A {𝑣
𝚪, x : A

[CPS
𝑣
Γ-AssumT]

⊢ Γ {𝑣
𝚪 Γ ⊢ 𝜅 : U {𝑣

𝜅 𝜿

⊢ Γ, 𝛼 : 𝜅 {𝑣
𝚪,𝜶 : 𝜿

[CPS
𝑣
Γ-AssumK]

⊢ Γ {𝑣
𝚪 Γ ⊢ A : 𝜅 {𝑣

𝐴 A Γ ⊢ e : A{𝑣
𝑒 e

⊢ Γ, x = e : A {𝑣
𝚪, x = e A id : A

[CPS
𝑣
Γ-Def]

⊢ Γ {𝑣
𝚪 Γ ⊢ A : 𝜅 {𝑣

𝐴 A Γ ⊢ 𝜅 : U {𝑣
𝜅 𝜿

⊢ Γ, 𝛼 = A : 𝜅 {𝑣
𝚪,𝜶 = A : 𝜿

[CPS
𝑣
Γ-DefT]

Fig. 11. CPS𝑣 of Terms and Environments (excerpts)
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the kind translation, dependent function types that abstract over terms now translate the argument

annotation x : A using the value translation. Dependent pair types Σ x : A. B now translate to

pairs of values 𝚺 x : A+ . B+. When terms appear in the type language, such as in [CPS
𝑣
𝐴
-AppConstr]

and [CPS
𝑣
𝐴
-Let], we must explicitly convert the computation to a value to maintain the invariant

that all term variables refer to term values. Hence in [CPS
𝑣
𝐴
-AppConstr] we translate a type-level

application with a term argument A e to A+ (e÷ B+ id). We similarly translate let-bound terms

[CPS
𝑣
𝐴
-Let] by casting the computation to a value. Recall from Section 3 that while expressions of

the form A+ (e÷ B+ id) are not in CPS form, this expression is a type and will be evaluated during

type checking. Terms that evaluate at run time are always in proper CPS form and do not return.

The term translation (Figure 11) changes in three major ways. As in Section 5, we implicitly

have a computation and a value translation on term values, with the latter inlined into the former.

First, unlike in CPS
𝑛
, variables are values, whereas the translation must produce a computation.

Therefore, we translate x by “value 𝜂-expansion” into 𝝀 𝜶 .𝝀 k. k x, a computation that immediately

applies the continuation to the value. Second, as discussed above, we change the translation of

application [CPS
𝑣
𝑒 -App] to force the evaluation of the function argument. Third and finally, in the

translation of pairs [CPS
𝑣
𝑒 -Pair], we force the evaluation of the components of the pair and produce

a pair of values for the continuation. Note that in cases of the translation where we have types

with dependency—[CPS
𝑣
𝑒 -App], [CPS

𝑣
𝑒 -Let], [CPS

𝑣
𝑒 -Pair], and [CPS

𝑣
𝑒 -Snd]—we cast computations to

values in the types by applying the identity continuation, and require the @ form to use our new

typing rule.

Given the translation of binding constructs in the language, the translation of the environment

(Figure 11) should be unsurprising. Since all variables are values, we translate term variables x : A
using the value translation on types to produce x : A+

instead of x : A÷
. We must also translate term

definitions x = e : A by casting the computation to a value, producing x = e÷ A+ id : A+
.

6.1 Proof of Type-Preservation for CPS𝑣

The structure of the type-preservation proof is the same as in Section 5. First we prove that

the translation commutes with substitution, then that reduction sequences are preserved, then

that equivalence is preserved, and finally that typing is preserved. Except for Lemma 6.2 (CPS
𝑣

Compositionality), the proofs of the supporting lemmas are essentially the same as in Section 5.

We elide these lemmas and their proofs for brevity. For full details, see our online supplementary

materials [Bowman et al. 2017].

We begin with a technical lemma that is essentially an 𝜂 principle for CPS’d computations. In

the CPS
𝑣
setting, we must frequently reason about normal forms of CPS’d computations. This

lemma provides a useful abstraction for doing so.
5
The lemma states that any CPS’d computation

e÷ is equivalent to a new CPS’d computation that accepts a continuation k simply applies e÷ to k.
The proof is straightforward. Note the type annotations are mismatched, as in our explanation of

coherence in Section 5.1, but the behaviors of the terms are the same and equivalence is untyped.

Lemma 6.1 (CPS
𝑣
Computation 𝜂). e÷ ≡ 𝝀 𝜶 : ∗.𝝀 k : A→ 𝜶 . e÷ @ 𝜶 (𝝀 x : B. k x)

Since variables are values in call-by-value, we adjust the statement of Lemma 6.2 to cast compu-

tations to values. Proving this lemma now requires our new equivalence rule [≡-Cont] for cases
involving substitution of terms. By convention, all terms being translated have an implicit typing

derivation, so the omitted types are easy to reconstruct.

5
The proofs for the CBN setting only require a specialized instance of this property although the general form holds.
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Lemma 6.2 (CPS
𝑣
Compositionality).

(1) (𝜅 [A/𝛼])+ ≡ 𝜅+ [A+/𝜶 ]
(2) (𝜅 [e/x])+ ≡ 𝜅+ [e÷ _ id/x]
(3) (A[B/𝛼])+ ≡ A+ [B+/𝜶 ]
(4) (A[e/x])+ ≡ A+ [e÷ _ id/x]

(5) (A[B/𝛼])÷ ≡ A÷ [B+/𝜶 ]
(6) (A[e/x])÷ ≡ A÷ [e÷ _ id/x]
(7) (e[A/𝛼])÷ ≡ e÷ [A+/𝜶 ]
(8) (e[e′/x])÷ ≡ e÷ [e′÷ _ id/x]

Proof. The proof is straightforward by induction on the typing derivation of the expression t
being substituted into. We give one representative case.

Case [Var] Part 8, (x [e/x ′])÷
We must show (x [e/x ′])÷ = x÷ [e÷ _ id/x′].
W.l.o.g., assume x = x ′.

(x [e/x])÷ (17)

= e÷ by definition of substitution (18)

≡ 𝝀 𝜶 .𝝀 k. (e÷ @ 𝜶 𝝀 x. k x) by Lemma 6.1 (19)

≡ 𝝀 𝜶 .𝝀 k. (𝝀 x. k x) (e÷ _ id) by [≡-Cont] (20)

= (𝝀 𝜶 .𝝀 k. (𝝀 x. k x) x) [(e÷ _ id)/x] by substitution (21)

≡ (𝝀 𝜶 .𝝀 k. k x) [(e÷ _ id)/x] by ▷𝛽 (22)

= x÷ [(e÷ _ id)/x] by definition of translation (23)

□

Lemma 6.3 (CPS
𝑣
is Type Preserving (Explicit Syntax)).

(1) If ⊢ Γ then ⊢ Γ+

(2) If Γ ⊢ e : A then Γ+ ⊢ e÷ : A÷

(3) If Γ ⊢ A : 𝜅 then Γ+ ⊢ A+
: 𝜅+

(4) If Γ ⊢ A : ∗ then Γ+ ⊢ A÷
: ∗+

(5) If Γ ⊢ 𝜅 : U then Γ+ ⊢ 𝜅+ : U+

Proof. All cases are proven simultaneously by mutual induction on the typing derivation and

well-formedness derivation. Part 4 follows easily by part 3 in every case, so we elide its proof. Most

cases follow easily from the induction hypotheses.

Case [W-Def] ⊢ Γ, x = e : A
We give the case for when A is a type; the case when A is a kind is similar.

We must show ⊢ Γ+, x = e÷ A+ id : A+
.

It suffices to show that Γ+ ⊢ e÷ A+ id : A+
.

By part 2 of the induction hypothesis and definition of the translation, we know that Γ+ ⊢ e÷ :

𝚷 𝜶 : ∗. (A+ → 𝜶 ) → 𝜶 , easily which implies the goal.

Case [Var] Γ ⊢ x : A
We give the case for when A is a type; the case when A is a kind is simple since the translation

on type variables is the identity.

We must show that Γ+ ⊢ 𝝀 𝜶 : ∗.𝝀 k : A+ → 𝜶 . k x : A÷

By the part 1 of the induction hypothesis, we know Γ+ ⊢ x : A+
, which implies the goal.

Case [App] Γ ⊢ e1 e2 : B[e2/x].
We must show that

Γ+ ⊢ 𝝀 𝜶 : ∗.𝝀 k : (B+ [(e÷
2
A+ id)/x]) → 𝜶 .

e÷
1
𝜶 (𝝀 f : 𝚷 x : A+ . B÷ . e÷

2
@ 𝜶 (𝝀 x : A+ . (f x) 𝜶 k))

: (B[e2/x])÷
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Note that,

(B[e2/x]) (24)

≡ B÷ [e÷2 A+ id/x] by Lemma 6.2 (25)

≡ 𝚷 𝜶 : ∗. ((B+ [e÷2 A+ id/x]) → 𝜶 ) → 𝜶 by translation (26)

Hence it suffices to show that

Γ+,𝜶 : ∗, k : (B+ [(e÷
2
A+ id)/x]) → 𝜶 ⊢ e÷

1
𝜶 (𝝀 f : 𝚷 x : A+ . B÷ . e÷

2
@ 𝜶 (𝝀 x : A+ . (f x) 𝜶 k)) : 𝜶

By part 2 of the induction hypothesis, we know that Γ+ ⊢ e÷
1

: 𝚷 𝜶 : ∗. ((𝚷 x :A+ . B÷)→𝜶 )→𝜶 ,

hence it suffices to show that

Γ+,𝜶 : ∗, k : (B+ [(e÷
2
A+ id)/x]) → 𝜶 , f : 𝚷 x : A+ . B÷ ⊢ e÷

2
@ 𝜶 (𝝀 x : A+ . (f x) 𝜶 k) : 𝜶

By [T-Cont], we must show

Γ+,𝜶 : ∗, k : (B+ [(e÷
2
A+ id)/x]) → 𝜶 , f : 𝚷 x : A+ . B÷, x = e÷

2
A+ id, ⊢ (f x) 𝜶 k : 𝜶

Note that f x : B÷ [x/x] and B÷ [x/x] = 𝚷 𝜶 : ∗. (B+ [x/x]) → 𝜶 → 𝜶 .

But k : (B+ [(e÷
2
A+ id)/x]) → 𝜶 .

Hence it suffices to show that (B+ [x/x]) ≡ (B+ [(e÷
2
A+ id)/x]), which follows by 𝛿 reduction

on x since we have x = e÷
2
A+ id by our new typing rule [T-Cont].

Note that without our new typing rule, we would be here stuck. However, thanks to [T-Cont],

we have the equality that x = e÷
2
A+ id, and we are able to complete the proof. □

Theorem 6.4 (CPS
𝑣
is Type Preserving (PTS syntax)). If Γ ⊢ e : A then Γ+ ⊢ cps JeK : cpsT JAK.

6.2 Proof of Correctness for CPS𝑣

To prove correctness of separate compilation for CPS
𝑣
, we follow the same recipe as in Section 5.2.

We use the same cross-language relation ≈ on values of ground type. However, note that in CBV

we should only link with values, so we restrict closing substitutions 𝛾 to values and use the value

translation on substitutions 𝛾+. The proofs follow exactly the same structure as in Section 5.2.

Theorem 6.5 (Separate Compilation Correctness). If Γ ⊢ e : A where A is ground, and 𝛾 (e) ▷★ v
then 𝛾+ (e÷) A+ id ▷★ v and v ≈ v.

Corollary 6.6 (Whole-Program Compiler Correctness). If ⊢ e : A and e ▷★ v then e÷ A+ id ▷★

v and v ≈ v.

7 DISCUSSION AND FUTUREWORK
Dependent Sums. In addition to showing that the traditional double-negation CPS for Σ types is

not type preserving, Barthe and Uustalu [2002] demonstrate an impossibility result for CPS and

sums with dependent case analysis. They prove that no type-correct CPS translation can exist for

sums with dependent case. However, careful inspection of their proof reveals that this impossibility

result does not apply to our CPS translation. Furthermore, we can define a CPS translation for

dependent case that appears to be type preserving, although we do not give a formal proof.

The impossibility result by Barthe and Uustalu [2002] relies on the ability to implement call/cc

via the CPS translation. Assuming there is a type-preserving CPS translation, they construct a

model of CC extended with call/cc and sum types (CCΔ+) in CC with sum types (CC+). Since

CC+ is consistent, this model proves that CCΔ+ is consistent. However, it is known that CCΔ+ is

inconsistent [Coquand 1989]. Therefore, the type-preserving CPS translation of CCΔ+ cannot exist.

Their proof is valid; however, it is well known that the polymorphic answer type CPS translation

that we use cannot implement call/cc [Ahmed and Blume 2011]. Therefore, our translation does

not give a model of CCΔ+ in CC+.
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We go further and conjecture a positive result, that our CPS translation is type preserving for

dependent case. The typing rule for dependent case is the following.

Γ, y : A + B ⊢ A′
: ∗ Γ, x : A ⊢ e1 : A′[inj1 x/y] Γ, x : B ⊢ e2 : A′[inj2 x/y]

Γ ⊢ case e of x . e1 | x . e2 : A′[e/y]
We would extend our CPS

𝑛
with the following rule.

(case e of x . e1 | x . e2)÷ = 𝝀 𝜶 : ∗.𝝀 k : A′+ [e÷/y] → 𝜶 .

e÷ @ 𝜶 (𝝀 y : A+ + B+ . case y of x. (e÷
1
𝜶 k) | x. (e÷

2
𝜶 k))

Focusing on the first branch of the case above, note that e÷
1
𝜶 : (A′+ [(inj1 x)÷/y] → 𝜶 ) → 𝜶 ,

however k : A′+ [e÷/y] → 𝜶 . We need to show that e÷ ≡ (inj1 x)÷, similar to the problem with the

second projection of dependent pairs. This time, however, to show e÷ ≡ (inj1 x)÷ we need to reason

about the flow of the underlying value of e÷ into y and also about the relationship between y and x.
Specifically, we need to first use our new [T-Cont] rule, which allows us to assume y = e÷ 𝜶 id. Next,
we need to know that since the case analysis is on the value y, in the first branch y ≡ inj1 x (and
similarly for the other branch), but the problem is that our existing typing rule for dependent case

does not let us assume that. Nonetheless, past work on dependent elimination in Agda suggests that

we can modify the typing rule for dependent case to have the equality e ≡ inj1 x while typing the
first branch, and similarly for the second branch [Cockx et al. 2016]. With this additional equality

in hand, some simple computation with the translation of (inj1 x) gives us the desired equivalence.

Hence, with the aforementioned modification to the typing rule for dependent case in our target

language CC
𝑘
, we can type check the above translation of dependent case. The part of the proof

that we have not yet carried out is showing the consistency of our target language CC
𝑘
once it is

extended with this modified typing rule for dependent case.

The Calculus of Inductive Constructions. We haven’t yet completed the above proof for sums with

dependent elimination because ultimately we want to extend our translation to the Calculus of

Inductive Constructions (CIC). Inductive types have a similar structure to sums with dependent

case, but much more involved typing rules. We believe that the sketch presented for dependent

case on sums extends to general inductive types and intend to extend our translation in the future.

However, CIC presents several other challenges.

The first is to handle the infinite hierarchy of universes. In this work, we have a single impredica-

tive universe ∗, and the locally polymorphic answer type 𝜶 lives in that universe. With an infinite

hierarchy, it is not clear what the universe of 𝜶 should be. Furthermore, our work relies on impred-

icativity in ∗. We can only use impredicativity at one universe level and the locally polymorphic

answer-type translation has not been studied in the context of predicative polymorphism, so it’s

unclear how to adapt our translation to the infinite predicative hierarchy.

The right solution for handling universes seems to be universe polymorphism [Sozeau and

Tabareau 2014]. Since the type is provided by the calling context, it seems sensible that the calling

context should also provide the universe. We could modify the type translation to be 𝚷 ℓ :Level.𝚷 𝜶 :

Type ℓ . (A+ → 𝜶 ) → 𝜶 . However, it is not clear how universe polymorphism would affect the rest of

the CPS translation.

Finally, CIC also features guarded recursive functions. As the guard condition is purely syntactic,

it seems likely to be disrupted by CPS translation. We either need to compile the guard condition to

something more semantic, like sized types, before the CPS translation, or adapt the guard condition

to the new CPS syntax.

CPS vs ANF. ANF [Flanagan et al. 1993], which is based on a structured use of let, is a popular
alternative to CPS for compiler intermediate languages. It is natural to wonder whether ANF would

be easier than CPS in CC, especially given the complexity of CPS in CC and the fact that our proof
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of consistency performs a translation similar to the inverse CPS translation of Flanagan et al. [1993].

We conjecture that, while the ANF translation on its own may be simpler owing to the additional

expressivity
6
of let, using ANF in practice will not be significantly simpler than using our CPS

translation. Kennedy [2007] points out that ANF is not preserved under 𝛽-reduction, and that ANF

in the presence of conditional expressions can result in considerable code duplication; neither

problem arises in CPS. Recently, Maurer et al. [2017] formalize a notion of join-points to solve the

latter problem, observing that this simplifies certain optimizations that are difficult in CPS. We may

be able to adapt this work to the dependently typed setting, but we conjecture that formalizing

dependent join-points will require an analog of [≡-Cont], and ANF will complicate 𝛽-reduction.

Implementing call/cc, or Predicative or Non-parametric Models. Our work relies on parametricity

to recover type preservation, but avoiding parametricity has certain benefits, such as the ability to

implement restricted forms of call/cc, or using predicative or non-parametric models of dependent

type theory. We use parametricity as a type-based mechanism to enforce a condition known as

naturality—i.e., the equivalence given by [≡-Cont]—but naturality can be defined in non-parametric

or even untyped settings. For instance, Thielecke [2003] gives a definition of naturality in terms of

a delimited continuations: a term 𝑀 is natural if 𝑀 ≡ %𝑀 (where % is the continuation delimiter

prompt). Using parametricity to enforce naturality limits the scope of our CPS translation. We cannot

use our translation to implement call/cc. This restriction is unnecessary in principle—restricted

uses of call/cc are consistent with dependent type theory [Herbelin 2012]. Our translation requires

impredicativity and parametricity in the target language type theory, and these two features are

not always admitted in type theory. For instance, Agda is predicative, and Boulier et al. [2017] give

some non-parametric models of type theory. Thielecke [2003] studies how to recover properties like

naturality in the presence of call/cc using a source language with type-and-effect system, although

using a CPS translation based on answer-type polymorphism. As future work, investigating how

to extend that work to dependent type theory may let us broaden the scope of our CPS translation.

Weak Normalization Implies Strong Normalization. In this paper, we only CPS translate terms,
i.e., run-time expressions. However, other work [Barthe et al. 2001] studies pervasive translation of

PTSs. A pervasive CPS translation internalizes evaluation order for all expressions: terms, types,

and kinds. A pervasive CPS translation has been used to give a partial solution to the Barendregt-

Geuvers-Klop conjecture [Geuvers 1993] which essentially states that every weakly normalizing

PTS is also strongly normalizing. The conjecture has been solved for non-dependent PTSs, but

the solution for dependent PTSs remains open. As future work, we intend to extend our work

to a pervasive translation. This may allow us to make progress on the Barendregt-Geuvers-Klop

conjecture. However, as our translation requires additional axioms, it’s not clear to what class of

dependent PTSs the result might apply.

8 RELATEDWORK
Type-Preserving Compilation of Dependent Types. The challenges of extending CPS translations

to dependently typed languages were first pointed out by Barthe et al. [1999]. As discussed in

Section 5.1, a difficulty arises when working in the domain-full lambda calculus with a typed
equivalence: we cannot stage the proofs of compositionality, coherence, and type preservation.

Barthe et al. solve this problem using domain-free lambda abstractions, and successfully define

a type-preserving call-by-name CPS translation for CC (without Σ types). Unfortunately, type

6
Unfortunately, we lack a formal system for discussing the relative expressiveness of type features along the same lines as

macro expressibility used to discuss expressiveness of runtime features [Felleisen 1991]. We therefore appeal to the reader’s

intuition.
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checking becomes undecidable in the domain-free calculus. We avoid the circularity by using an

untyped equivalence, which allows us to use a domain-full calculus, eliminating one source of

undecidability. Recall from Section 4.1 that since we provide a model of our target language CC
𝑘
in

the extensional CC, we do not yet have a proof that type checking in CC
𝑘
is decidable.

Other approaches to type-preserving compilation for dependent types avoid the difficulties

we’ve seen with CPS by avoiding full spectrum dependent types, i.e., Σ and Π with no explicit

distinctions between terms and types. (Full spectrum dependent types support code reuse across

terms and types, and avoid the need for programmers to marshall between different term and type

representations.) Shao et al. [2005] develop type-preserving CPS and closure-conversion passes for

a language that uses CIC as an extrinsic type system, for use in developing certified binaries. In

their language, types cannot depend on run-time expressions. Instead, certain expressions have

a second, type-level representation, and CIC specifications and proofs can be written for these

type-level representations. One motivation for this design was exactly the problem with CPS we

have solved. Chen et al. [2010] develop a type-preserving compiler from Fine, an ML-like language

with refinement types instead of full spectrum dependent types, to DCIL, a typed variant of the

.NET Common Intermediate Language with type-level computation. The type system in DCIL was

used to encode security and verification conditions, also supporting certified binaries.

Control Operators and Dependent Types. There is a line of work combining dependent types

and control operators. Herbelin [2005] shows that unrestricted use of call/cc and throw in a

language with Σ types and equality leads to an inconsistent system. The inconsistency is caused

by type dependency on terms involving control effects. Herbelin [2012] solves the inconsistency

by constraining types to depend only on negative-elimination-free (NEF) terms, which are free of

effects. This restriction makes dependent types compatible with classical reasoning enabled by the

control operators. Our CPS translation doesn’t allow implementing control operators, but this line

of work leads us to suspect that there exists a less restricted translation that preserves typing.

Recent work by Miquey [2017] uses the NEF restriction to soundly extend the
¯𝜆𝜇𝜇̃-calculus

of Curien and Herbelin [2000], a computational classic calculus, with dependent types. He then

extends the language with delimited continuations, and defines a type-preserving CPS to a standard

intuitionistic dependent type theory. By comparison, our source language CC is effect-free, therefore

we do not need the NEF condition to restrict dependency. Our use of the identity function serves a

similar role to their delimited continuations—allowing local evaluation of a CPS’d computation.

Miquey [2017] makes an interesting observation that certain evaluation contexts in dependently

typed languages are not well typed, and we conjecture that our work offers a solution. As the

¯𝜆𝜇𝜇̃-calculus has explicit evaluation contexts in the syntax, he observes that subject reduction fails,

and calls this “desynchronization of typing with respect to the execution.” We can see this problem

in CC evaluation contexts as well, although evaluation contexts are purely meta-theoretic features

and do not exist in the syntax of CC. Consider a well-typed CBN context representing a function

application, 𝐸 𝑒 : (Γ′ ⊢ 𝐴′) ⇒ (Γ ⊢ 𝐵 [𝑒/𝑥]), which says that when we plug a term of type 𝐴′
into the

hole of 𝐸, this context yields a term of type 𝐵 [𝑒/𝑥]. In general, contexts can capture variables, so we

include in the type the environment Γ′ of the hole and remaining free variables Γ after plugging

a term. This works for a CBN application context, but in CBV we have an additional evaluation

context for application, 𝑣 𝐸, which evaluates the argument. The type of 𝑣 𝐸 now depends on the

context 𝐸, not on a term, so it is not clear how to proceed: 𝑣 𝐸 : (Γ′ ⊢ 𝐴′) ⇒ (Γ ⊢ 𝐵 [???/𝑥]). In
both CBN and CBV, the same problem arises in the evaluation context for the second projection:

snd 𝐸 : (Γ′ ⊢ 𝐴′) ⇒ (Γ ⊢ 𝐵 [fst ???/𝑥]). As our CPS translation produces well-typed continuations from
these apparently ill-typed contexts, it should be possible to design a source syntax for well-typed

CC evaluation contexts that is realized by our translation.
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Effects and Dependent Types. Pédrot and Tabareau [2017] define theweaning translation, a monadic

translation for adding effects to dependent type theory. The weaning translation allows us to

represent self-algebraic monads, i.e., monads whose algebras’ universe itself forms an algebra, such

as exception and non-determinism monads. However, it does not apply to the standard continuation

monad, which is not self-algebraic. The paper extends the translation to inductive types, with a

restricted form of dependent elimination. Full dependent elimination can be implemented only

for terms whose type is first-order, and this comes at the cost of inconsistency, although one can

recover consistency by requiring that every inductive term be parametric. Our translation does

not lead to inconsistency, and requires no restrictions on the type to be translated. However, our

translation appears to impose the self-algebraic structure on our computation types, and our use of

parametricity to cast computations to values is similar to their parametricity restriction.

Multi-language Semantics. A full spectrum dependently typed language resembles a multi-
language system [Matthews and Findler 2007] between a (compile time) type language and a

(run time) term language. In CC, the two languages happen to be the same, but the distinction

between them is made clear via CPS. We recover type preservation for CPS translations by defining

interoperability between the CPS’d terms and the direct-style types. To define interoperability,

we allow types to run a CPS’d term to a value by supplying the halt, or identity, continuation.

This is exactly the interoperability semantics defined by Ahmed and Blume [2011] between a CPS

and direct-style language. Their work also makes use of answer-type polymorphism to enforce

naturality. A similar strategy appears in the multi-language semantics given by Patterson et al.

[2017] for interoperability between a direct-style functional language and a continuation-based

assembly language. Their work does not use answer-type polymorphism, but enforces naturality

by augmenting the type system to track return addresses and adding a special halt instruction to

interpret assembly components as values.

Applications of the Polymorphic Answer Type. The polymorphic answer type has proven useful in

other work on CPS translations as well. Thielecke [2003] studies the connection between control

effects and answer-type polymorphism in a call-by-value language with call/cc. He defines an

effect system that tells us whether we can regard a term as a pure term. Then he shows pure

terms use their continuation linearly, and that their answer type is polymorphic. Using the latter

property, he proves that enclosing a pure term with a control delimiter does not affect its meaning,

i.e., naturality. Thielecke [2004] extends this study to the call-by-name setting, showing that

answer-type polymorphism holds not only for pure functions, but also for effectful functions.

Ahmed and Blume [2011] give a full-abstraction proof of a call-by-value CPS translation that

uses polymorphic answer types. Full abstraction is an important property for secure compilation,

which ensures that a translation converts two terms that are indistinguishable in any source context

into two terms that are indistinguishable in any target context. Their proof relies on exactly the

free theorem we proved in Section 4.1. We conjecture therefore that our CPS translation is fully

abstract.

Internalizing Parametricity. Our work internalizes a specific free theorem, but ongoing work

focuses on how to internalize parametricity more generally in a dependent type theory. Krish-

naswami and Dreyer [2013] develop a technique for adding new rules to the extensional CC. They

present a logical relation for terms that are not syntactically well typed, but are semantically well

behaved and equivalent at a particular type. Using this logical relation, they prove the consistency of

several extensions to extensional CC, including sum types, dependent records, and natural numbers.

Bernardy et al. [2012]; Keller and Lasson [2012] give translations from one dependent type theory

into another that yield a parametric model of the original theory. These essentially encode the
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logical relation in the target type theory, similar to the approach we took in Section 4.1 (Consis-

tency of CC
𝑘
). Recent work by Nuyts et al. [2017] develops a theory that internalizes parametricity,

including the important concept of identity extension, and gives a thorough comparison of the

literature. By building a target language based on one of these systems, it’s possible that we could

eliminate the rule [≡-Cont] as an axiom and instead derive it internally.

Verified Compilation. CertiCoq is a mechanically verified optimizing compiler currently under

development [Anand et al. 2017]. It compiles Coq’s Gallina to CompCert’s Clight. As mentioned

in Section 1, CertiCoq is not a type-preserving compiler: it erases types before CPS conversion,

optimizations, and closure conversion. CertiCoq’s current compiler correctness theorem aims to

prove separate compilation correctness. We have proved similar separate-compilation correctness

theorems, Theorem 5.7 and Theorem 6.5, but our typed target language can statically enforce

these guarantees via type checking. Our theorems differ in a few key aspects. First, we only show

correctness for the CPS translation of CC. Second, our relation on ground terms is impoverished;

we only prove that booleans are related, while CertiCoq has an abstract relation that is preserved

on all ground types. Finally, our long-term goals are different from CertiCoq’s current goal of

correct separate compilation. We are interested in type-preserving compilation of Coq as a means

of supporting correct and secure (fully abstract) compilation even when the compiled code is

linked with code compiled from different, possibly effectful, languages. By picking the right type

translation for each phase of the compiler, we wish to use the target-level type specification to—

statically, or dynamically via gradual typing—rule out unsafe or insecure interactions with target

code. In our CPS translation, the polymorphic answer type does the work to rule out interaction

with computations that have control effects. Therefore, even if we could encode call/cc in the target

language (which is type safe when restricted to Herbelin’s negative-elimination-free fragment), it

would not interoperate with the output of our compiler.
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